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Abstract

We study the Cauchy problem for a system of equations corresponding to a singular limit of radiative
hydrodynamics, namely the 3D radiative compressible Euler system coupled to an electromagnetic
field. Assuming smallness hypotheses for the data, we prove that the problem admits a unique global
smooth solution and study its asymptotics.
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1 Introduction

In [3], after the studies of Lowrie, Morel and Hittinger [15] and Buet and Després [5] we considered
a singular limit for a compressible inviscid radiative flow where the motion of the fluid is given by
the Euler system for the evolution of the density o = o(t, ), the velocity field @ = (¢, x), and the
absolute temperature ¥ = ¥(¢, ), and where radiation is described in the limit by an extra temperature
T. = T.(t,x). All of these quantities are functions of the time ¢ and the Eulerian spatial coordinate
r e R3

In [3] we proved that the associated Cauchy problem admits a unique global smooth solution, provided
that the data are small enough perturbations of a constant state.

In [4] we coupled the previous model to the electromagnetic field through the so called magnetohydro-
dynamic (MHD) approximation, in presence of thermal and radiative dissipation. Hereafter we consider
the perfect non-isentropic Euler-Maxwell’s system and we also consider a radiative coupling through a
pure convective transport equation for the radiation (without dissipation). Then we deal with a pure
hyperbolic system with partial relaxation (damping on velocity).

More specifically the system of equations to be studied for the unknowns (o, @, ¥, E,., é, E) reads

0o + div, (o) = 0, (1.1)

Ou(oit) + divy (07 @ @) + Vao(p+pr) = —p (B +1 x B) - vy, (1.2)
8 (0E) + div, ((0F + p)@) + @ - Vop, = —04 (a9* — E,) — pE - @, (1.3)
HE, + div, (B, @) + prdivyi = —o, (B, — a¥?), (1.4)

8, B + curl, E = 0, (1.5)

O E — curl, B = oil, (1.6)

div, B =0, (1.7)

div,E =9 — o, (1.8)



where p is the density, 4 the velocity, ¢ the temperature of matter, £ = %WP + e(p,¥) is the total
mechanical energy, E,. is the radiative energy related to the temperature of radiation T} by E, = aT?
and p, is the radiative pressure given by p, = %an = % E,., with a > 0. Finally E is the electric field
and B is the magnetic induction,

We assume that the pressure p(p,?) and the internal energy e(p, 1) are positive smooth functions of

their arguments with

C’U::%>O7 g—];>0,
and we also suppose for simplicity that v = % (where 7 > 0 is a momentum-relaxation time), u, o, and
a are positive constants.

A simplification appears if one observes that, provided that equations (1.7) and (1.8) are satisfied at
t = 0, they are satisfied for any time ¢ > 0 and consequently they can be discarded from the analysis
below.

Notice that the reduced system (1.1)-(1.4) is the non equilibrium regime of radiation hydrodynamics
introduced by Lowrie, Morel and Hittinger [15] and more recently by Buet and Després [5], and studied
mathematically by Blanc, Ducomet and Necasova [3]. Extending this last analysis, our goal in this work
is to prove global existence of solutions for the system (1.1) - (1.8) when data are sufficiently close to an
equilibrium state, and study their large time behaviour.

Just mention for completeness that related non isentropic Euler-Maxwell systems have been the object
of a number of studies in the recent past. Let us quote some recent works: Y. Feng, S. Wang, S. Kawashima
[9], Y. Feng, S. Wang, X. Li [10], J.W. Jerome [12], C. Lin, T. Goudon [14], Z. Tan, Y. Wang [17] and J.
Xiu, J. Xiong [21].

In the following we show that the ideas used by Y. Ueda, S. Wang and S. Kawashima in [19] [20] in
the isentropic case can be extended to the (radiative) non isentropic system (1.1-1.6). To this purpose
we follow the following plan: in Section 2 we present the main results, then (Section 3) we prove well-
posedness of system (1.1-1.6). Finally in Section 4 we prove the large time asymptotics of the solution.

2 Main results

We are going to prove that system (1.1)-(1.8) has a global smooth solution close to any equilibrium state.
Namely we have

Theorem 2.1. Let (@ 0,9, E,, B, O) be a constant state with @ > 0, ¥ > 0 and E, > 0 with compatibility

condition E, = a¥ and suppose that d > 3.
There exists € > 0 such that, for any initial state (go, o, Yo, EY, éo, Eo> satisfying

div, By = 00 — 2, div,Bo =0,
(QO _571707190 _EaETO _E;EO _§7E0> € Hd7
and L -
“(QOaﬁ()aﬂOvESvBOaEO) - (E70’19’ET,B,O)HHCL S g, (21)

there exists a unique global solution (Q, i,9,E,, B, E) to (1.1)-(1.8), such that

(Q_Eaﬁ7’l9 _57E’!‘ _Eaé_ﬁaﬁ) € C([O’ +OO),Hd) ﬂCl ([O,+OO),Hd71) .

In addition, this solution satisfies the following energy inequality:

H(Q_Eaﬁvﬂ_E7E7 _E7a§_§7ﬁ)(t)“Hd



t _ _ 9 R 2 . 2
+ [ (le-2.a0-9.5 - B) @ + [0, + |E@,..) ar
0

d—2 Hd-1

_ L = L2
S CH(QO_anv,&O _ﬁuEB_ETaBO_BMEO)HHd? (22)

for some constant C > 0 which does not depend on t.
The large time behaviour of the solution is described as follows

Theorem 2.2. Let d > 3.
The unique global solution (g,ﬁ,ﬁ,Er,é, E) to (1.1)-(1.8) defined in Theorem 2.1 converges to the

—

constant state (@, 6, 9, E,, B: 0) uniformly in x € R3 as t — oco. More precisely

H(Q_E’ﬁ’ﬁ_E’Er_E’"’E)(t)Hsz —0 ast— oo. (2.3)

Remark 2.1. Note that, due to lack of dissipation by viscous, thermal and radiative fluzes, the Kawashima-
Shizuta stability criterion (see [18] and [1]) is not satisfied for the system under study and techniques of
[13] relying on the existence of a compensating matriz do not apply. However we will check that radia-

tive sources play the role of relaxation terms for temperature and radiative energy and will lead to global

existence for the system.

Moreover if d > 4 -
(B-B

~—

(t)HWdf&oo —0 ast— oo, (2.4)

3 Global existence

3.1 A priori estimates
Multiplying (1.2) by @, (1.5) by B, (1.6) by E and adding the result to equations (1.3) and (1.4) we get
the total energy conservation law

1 1/ = q .
) (29|ﬂ|2 +oe+ Bt 5 (1B + |E|2)> +div, ((0F + E)i+ (p+p)i+Ex B) =0, (31)

Introducing the entropy s of the fluid by the Gibbs law ¥ds = de + pd (%) and denoting by S, := %an’

the radiative entropy, equation (1.4) rewrites

E, —a¥?
0,5, + div, (S,@) = faa%. (3.2)
The internal energy equation is
9y (0€) + div,(geid) 4 pdive@ — vod)* = —o, (a¥* — E,), (3.3)
and dividing it by ¢}, we get the entropy equation for matter
9 — E,
0¢(0s) + divy (os) — v la|® = —aaai (3.4)
9 9
So adding (3.4) and (3.2) we obtain
. N a0 2 2 2 Vo2
O (05 + Sy) + diva (05 + 8,)0) = 5 (0 = T,)" (9 + ;) (0> +T7) + 51l (3.5)



Subtracting (3.5) from (3.1) and using the conservation of mass, we get

1 . - - 1 L = .
00 (30lil” + Hylo.0) - (0~ 00, Hy(@.) ~ Hy@.) + H,5(T,) + 5 (1B - B + |EP)

= div, ((0F + E.)i + (p+ p, )i + (o5 + S,)@) — Eg(; (0 —T)* (0 +T,) (92 +T2) — % i@, (3.6)
Introducing the Helmholtz functions Hy(p,9) := o (e — ¥s) and H, 5(T;) == E, —9S,, we check that the
quantities Hy(0,9) — (0 — 2)0,Hy(0,9) — H5(0,9) and H, 5(T,)-H 5(7 ) are non-negative and strictly
coercive functions reaching zero minima at the equilibrium state (g, 5 E.).

Lemma 1. Let o and ¥ = T, be given positive constants. Let O and Oy be the sets defined by
2 0 _ 9 —
(91::{(9,19)6R :2<Q<29,2<19<219,}. (3.7)
Oy = {TTGR : ;<Tr<2Tr,}. (3.8)
There exist positive constants C12(,9) and C34(T,.) such that
1. B B B
Ci(le =2 + [0 = 1) < Hy(o.9) — (¢ — 2)9,H5(2, V) — Hy (2, V)
<Gy (lo—2f + v -0, (3.9)
for all (0,9) € Ox,

2. - - -

Cs|T, = T.|* < H,5(T,) — H,5(T,) < Cu4|T, = T, |?, (3.10)

for all T, € Os.

Proof:

1. Point 1 is proved in [8] and we only sketch the proof for convenience. According to the decomposition
0 — Hy(0,9) — (0~ 0)9,H5(2, V) — Hy(2,9) = F(o) + G(0),

where (o) = Hy(0,9) — (0 — 20, Hy (3, 9) — Hy (2, 9) and G(0) = Hy(o,9) — Hy(o, ), one checks
that F is strictly convex and reaches a zero minimum at g, while G is strictly decreasing for ¥ < 9
and strictly increasing for 9 > 1, according to the standard thermodynamic stability properties [8].
Computing the derivatives of Hy leads directly to the estimate (3.9).

2. Point 2 follows after properties of v — H, 5(z) — H, 5(T7-) = azd(z — 39) + %54. O

Using the previous entropy properties, we have the energy estimate

Proposition 3.1. Let the assumptions of Theorem 2.1 be satisfied with V = (p, ﬁ,ﬁ,Er,é,E), V =

(ﬁO,@,E,E, 0). Consider a solution (0,9, E,, B,E) of system (1.1)-(1.2)-(1.3) on [0,t], for some
t > 0. Then, one gets for a constant Cy > 0

t
[V =PI+ [ @I dr < Co[Vo =l (3.11)



Proof: Defining
n(t, @) = Hz(e,9) — (¢ — 2) 0,5 (¢.9) — Hy (2,9) + H,5 (T;), (3.12)

we multiply (3.5) by 9, and subtract the result to (3.1). Integrating over [0,¢] x R*, we find

1 . 1 =
[ yela? +atea)+ 318~ B o+ piEpans [ [

1 2 14 j2 142
< = t 0 —|Bp— B —|Eo|” dz.
< [y 5e0lol © +1(0.2) + 5150~ B? + 51l do

Applying Lemma 1, we find (3.11). O

Defining for any d > 3 the auxiliary quantities

0<7r<
t
I2(t) == i (e —2,@9 — 0, B, — E,)|[;.. dr,
and .
_ _ . 2 . 2
D2(t) = /0 <||(g ~2.3.9-0,E - B0l + |E@)| L+ aZB(T)HH“) dr,

we can bound the spatial derivatives as follows

Proposition 3.2. Assume that the hypotheses of Theorem 2.1 are satisfied. Then, we have for a Cy > 0
t

102V (8) 374 +/ 102 (T) 301 dr < Co[|0:Voll}a s + Co (E(H)D()* + F()I(H)D(t)) . (3.13)
0

Proof: Rewriting the system (1.1)-(1.6) in the form

0o+ u-Vyo+ odiv,d =0,
i+ (- V)i + %Vngr %sz%r Bigv E, +E+uxB+1/uf—ux (E—E),

00 + (i - V)0 + 222 div, il = — - (ad* — E,),

(3.14)
WE, + (i V,)E, + §Edivyii = —0, (B, — a¥?),

8,55 + curle' =0,

OE — curl, B — 91 = (0 — )i,
and applying 9% to this system, we get
9:(0%0) + (@ - V4)0ho + odiv, 0t = FY,

0,(840)+ (7Y )Lt +p9v o +pﬁv ALY +—v OB, +0 B0l ax Brvdtid = —0! [ux (éfﬁ)}wg,



{ To_ (av* - ET)] +FL

Upy . .
¢ (o ol
2)09 + o div, 0,4 o, oC.

0Ly

Op(059) + (4 -V

4
Oi(0LE,) 4 (- V)0 B, + gErdivzaﬁﬂ' = -0! [0a (B, — a¥*)] + Fy,

8,(8°B) + curl, 0 E = 0,
01(0LE) — curl, 04 B — 5okl = 0L [(0 — )1,

where
Ff = — (05,1 V] @ — [0, odiv,] @,
1
Ffi=—[0',a-V,]i— {aﬁ,p’-’v } 0— {aﬁ,mvx] 09— {aﬁ,vx] E,,
0 3ag
Flim [l Va9 — |2, iy, | 4,
x x QCU

and

Ff:=—[0.,1 V.| E, {a S dlvw:|

Then taking the scalar product of each of the previous equations respectively by Z ¢, 0L, S04

and aﬁﬁ and adding the resulting equations, we get

0,8 + div, F + v (9ld)" = RE + S,

ot L {p@]t (00) + L [%L (09)” + ; Llagl)EJ (04E,)?

Pe *) (0L0)” + %divwﬂ (0La)” + dlvm (?9 ) (920)" + %divw (4a;E

1.
+§d1vI (gu
+V, ( ) 9o 0+ VY, ( ) 9t 0%+ V, <1> OB, d'd
0 0 3ao

+%3ﬁ@ Ff +05@ Fy + %85;19 Ff+0'E, F!+30'E - 94,
and .
L. _alt=> ol |= _’_j -4 0 Oq 4
8=~k [ix (B - B)| - Loty o [QCU (a0 Er)}

oLE, o (00 (B — a¥")] + 0LE 0%[(0 — 0)i]

4aQE
Integrating (3.15) on space, one gets

at/ glde + |04, g/ (1RY| +|8")) da
R3 R3

x 7 4agE

(3.15)

a’) (0E,)

oE,, 9'B



Integrating now with respect to ¢ and summing on ¢ with [£] < d, we get
t d
102V (1) g + / 10:7(7) [37a-1 dr < Co19aVollzga-r +Co D / (R +15")) da.
0 R
le]=1

Observing that [Op0| < C|0y0|, |0:9| < C(|0z0|+|0:0|+|0: Er||AY]) and |0, E, | < C(|050|+|0:0|+|0:Er|),
and that, using commutator estimates (see Moser-type calculus inequalities in [16])

I(FY, Fy, Fy, F{)llL> < 10:(¢ — 0,1,9 — 0, Er — E,)|| = |04(0 — 0, @, 0 — 0, B, — E,) |72,
we see that

IR < C(19s0llpoe + 1052 + 10:9]| 2 + |00 Brl| ) 10z (¢ — 2,79 = U, Er = Ey) |72

/ R dr

Then integrating with respect to time

t
< C s {[10z0flr= + [10ztllre + [0l + HﬁxErllLoo}/ 105 (0 = 0., 9 — 0, E, — B,)||F2dr
<7<t 0
< CE()D*(t),
for any |[¢| < d. In the same stroke, we estimate
¢ ¢ ¢ 5 AP ¢ ¢ | Oa ’
'] < Cllokals ||k [ax (B B)]||, +Clowli | ot [ (a0 Er)}
L? oCy L2

+OOLE N2 (|05 [00 (Br — ad®)] |3, + CIOLE|22 [|041(0 — 2)id)| 5
Then we get
|84 < C|IB — Bl|p~ |04 2
+C|l (o —2.@,9 — U, E, — E,) | =|0% (0 — 8,70 — U, B, — E,) || 2]|04(B, E)|| 1~
+C (|0s0ll + 10x@ll = + 10:9] 2 + |0:Ex | =) 10(0 — 0,9 — 0, By — E,)|3.

Then integrating with respect to time

t —
/ [S5(r)| dr < C sup (B~ B)(7)llr= [ [0za(r)|Z-dr
0 0<r<t 0

t
+C sup Haﬁ(BaE)(T)HL?/ (e~ 0 ~0,B — E;) (1)l 107 (¢ — 2,@,9 — ¥, B, — Ey) (7)|| p2dr
0

0<r<t
+C sup {[[0zollLee + (|02l + 1020 Lo + (|02 B[~ (7))
0<r<t
t
< [ oz
0

< C (E(t)D*(t) + F(t)I(t)D(t)) ,

for any |¢| < d. O

(Q -0 ﬂ:a U — E7 ET - ET)||%2dT

The above results, together with (3.11), allow to derive the following energy bound:



Corollary 3.1. Assume that the assumptions of Proposition 3.1 are satisfied. Then

1V = V)@ 570 + / |@(P)fa dr < C[[(V = V)(O0)|[ga + C (B@OD(E)? + FOI(1)D()) -

(3.16)

Our goal is now to derive bounds for the integrals in the right-hand and left-hand sides of equation

(3.16). For that purpose we adapt the results of Ueda, Wang and Kawashima [19].

Lemma 2. Under the same assumptions as in Theorem 2.1, and supposing that d > 3, we have the

following estimate for any € > 0

[ (1e-20-9.5.-E) O+ |[E],,) ar

Seéw

Proof: We linearize the principal part of the system (1.1)-(1.2)-(1.3) as follows

Oro+ 7o divyu = g1,
Ol + a1 Vo + Ty Vol + a3 VaEr + E+@x B+ v = go,
049 + by div,ii + by(V — 9) = g3,
OE, +7¢ div,d + (B, — E,) = g4,

with coefficients )
a1(9719) = %7 a2(g719) = %7 a3(97?9) = 377 aj = aj(§719)7

0
Py a0q , 49 — ac, —+
b ) = b 9, E, 9 19 9+9), b3(o,0,E.)=—, b;=0b
l(Qa ) QC’U7 2(9) ) ) QCv( + )( + ) 3(9 ) QCU J
4 _ _
CNQ&EJZ*EHCAQ&EJ=amMﬁ+0%W+ﬁ%6d@&E0=0m2%=%@7

3
and sources
g1 = _{ﬁ Vo + (Q - @)dlvmﬂ}v

g2 == —{(ﬁ-vx)ﬁ-l-(al — @) Va0 + (a2 — @) Vol + (a3 — G3) V. By + i x (B — E)}
B}

gs ‘= — {(ﬁ Vx)ﬁ + (bl - El)lexﬁ'F (bg - 52)(19 19) + bg
g1 1= —{(@- Vo) By + (&1 — e1)diva@ + co(9 — ) + (c5 — e3)(Er — Bn) },
and
g5 = (0 — 0)u.

B dr € {IVo VI + BODW? + FOID()}

Multiplying (3.18) by —a;div,, (3.19) by @) Veo+as Ve +as Vo E, + E, (3.20) by —aodiv,d+19 — 1,

(3.21) by —azdiv,@ + E, — E,, (3.22) by 1, (3.23) by @ and summing up, we get

@1 (Va0 @y — 0y divy@d) + ao(Vad @y — 9y div, i) + as(VeE, @ — (BE,); div,@) + Edy + Eyii

3 10-97+ @ -5}

t



@ Va0 + GVl + @3V By + E)? + (@1 Voo + 8y Vo + a3 VoI, + E)(@ x B + vil)
1529 — D)2 + (B, — B)?
by (9 — 0)div, i + ¢ (B, — E,)div,d
+(a362 — agbg)( )lezU + (CLde — agcd)(Er — Er)dIVI’L—l;
—ii curl, B — 9@ — (div,@)? [a, + as + as] = G, (3.24)
where
GV = —ayg1divy i@+ [@1 Voo + a2 Ved+a3Ve By + Egy — [an +0 — 0]div, @gs — [as + Ey — Ey]div, @igs + g5.
Rearranging the left hand side of (3.24) we get
{H}, + div, FY + DY = MY + GY, (3.25)

where

HY = —[@i(0—0) + @0 = 9) + @3(E, — )] div,d + E - @+ = [(0 = 9)* + (B, — E,.)?],

N =

FY = [ai(o—0) +a2(0 — 9) +a3(E, — )] @ — 2 [a1(0 — 8) + @29 — 9) + a3(E, —
+(@3Cy — by + b1)(V — 9 + (@2bs — ascs + ¢ )(E, — E,)i,
DY =@ |V, 0)* + @V + @3V E | + |EI> + 281 (0 — 0)* + b2 (9 — 0)? + C(E, — E,)?,

E,) E

and
M{J = — {ZElﬁQVZQ Va0 +2a1a3Vy0 - Vi By + 2a2a3V 0 - Vi By

+2a3(0 — 2) (9 — 0) + 2a2(0 — 0)(Br — Ey)
(@1 Voo + @y Vol + a3 Vo By + E)(T % B+ vit) — i@ curl, B — gt — (div,@)? [ay + a2 + as)
—(a3Ce — Gobo + Bl)Vxﬂ U — (6253 —asC3 + 1)V Ey - ﬁ} .

Integrating (3.25) over space and using Young’s inequality, we find

d = _
G |8 dos € (el + 19291 + IV, E s + 1B + o~ 1)

< el|l@. B2z + Ce (@5 + 19 = )20 + | Br — Ep||20) + /R |G| da. (3.26)

In fact one obtains in the same way estimates for the derivatives of V.
Namely, applying 9% to the system (3.18-3.23), we get

{H!} 4 div, Ff + DY = Mf + GY, (3.27)
where
H = — [0 (0 — ) + @050 — 9) + @304 (B, — B,)] div,d%d + 0LE - 8L
1
+5[(85 )2+ (9LE.)?,

F = [@10%(0 — 0) +@205(9 — 0) + @30%(E, — E,.)] @
+(a@3Cy — Taby + by)059 041 4 (Gabs — Gscs + ¢1)04E, O,

—2 [@10%(0 — 0) + @04 (0 — V) + @304 (E, — E,)] 9LE + 9% x 04(B — B),



Df = @ |V, 0L0l® + @3|0LV I + @R0LVL B P + |0LE + 2a1 (9(0 —2))” + 2(040)? + (0L E, )2,
M{ = —{2a1@2V 050 V050 + 2a1a3V ;050 - V0L By + 26203V 050 - V05 B,

12820 (0—0)0L. (0—0)+2020" (0—0)0(Ey— By ) +(a@1 Va0l otas Vudii+as V0L E,+0LE)(8bix B+vd' )
(agcg — a2b2 + )V 8%9 8éu — (a2b3 — ascs + cl)V (9 E 82 74

—curl, 0@ 84 (B ) (8€ ) — (div,0%@)? [ay + ao + ag]} ,

and
G = —3,0891div, 05t + [a1 V050 + @V 050 + @3V 0L, + OLE ]82

_628xg3dlvmamu - a3amg4dlvzazu + 859581’“ + 813938519 + aﬁg4a£ r

Integrating (3.27) over space and time, we find

Hi(t) de — [ HL(0) dx
R3 R3

t
+0/ (||Vmaﬁ,gu%2+||vza§j,19||%2+||vzaf;ErH%2+||af;E||iQ) dr
0
t
e / (+10%(0 — D)2 + 0500 — D25 + 105(E, — By)|22) dr
_ t
<e / 104(B — B) |2 dr + C- / (10%Z: + 1040 — D)2 + 0B, — Bl dr

t
+ / |GY| dx dr. (3.28)
0 JR3

Observing that

/R H{(1) do

and summing (3.28) on £ for 1 < ¢ < d —1, we get

< C (19z(e = 2172 + 1029 = T2 + 104(Er = Ev)llL2 + 10zal7)

| (1e=2.0 =5, = B) )l + 1B yo-s ) dr < CAV = VIO

+6/0 102 B(7)|[4a-2 dr + C: (E(t)D*(t) + F(t)I Z/ /RS|G€ )| dz dr, (3.29)

le|=1

where we used Corollary 3.1.

10



Let us estimate the last integral in (3.28). we have

10591112 < Cll(e — 2.4, 0 = 9, By — Ey) || 1057 (0, @) | 2,

10592l < Cli(0 — 0.4, 0 — 0, Er — Ey)|| = [1057" (0, )| 2
+CI|B = Bllu~ 0% 12 + C1104(B ~ B)ll ]|

10593/l 2 < Cll(e — 2, @,9 = 9, By — Ey)|| = |05 (0, @) | 2

(3.30)
+Cl(e =2, @9 =0, By — Ey) || 1= 0572 (9, B, | 2,
10594l 22 < Cll(e — 2,4, 9 = 9, By — Ey)|| 1= 1057 (0, @) || 2
+Cl(e =2, @9 =3, B, — E,) || 0572 (9, Ep) | 12,
1059512 < Cll(e = 0,@,9 = T, Er — E,)|| 1 [|05(0, @)|| 2,
for 1 < |4 <d—1. Then
t
[ [ 1680 do ar < 1otz 0] e
0o Jr
+0 (1105 ollze + 19579l 2 + 1957 ol e + 104E] 12 ) 19 el o2
+C[|0; 1l 1210593 22 + CllOF @l 1210594l 22 + CllOzal 22 10595 2
Plugging bounds (3.30) into this last inequality gives
d—1 t
> / |G4(7)| da dr < CE(t)D*(t),
=1 /0 JES
which ends the proof of Lemma 2. O

Finally we check from [19] (see Lemma 4.4) that the following result for the Maxwell’s system holds
true for our system with a similar proof

Lemma 3. Under the same assumptions as in Theorem 2.1, and supposing that d > 3, for any € > 0 the
following estimate (here, we set V = (o, 1,9, E,, B, E)T) holds

t
J
Proof: Applying 0% to (1.5) and (1.6), multiplying respectively by —curlggﬁﬁ,g7 (1.6) by curlzaﬁﬁ and
adding the resulting equations, we get

2 t 2
0. B[, dr < 0||VO—V||§{S,1+C/0 0, 5(7)|

L AT+C(E@)D(t)*+F()I(t)D(t)). (3.31)

s—

_ (a;; B Cuﬂzagé)t + lewrl, 8 B2 — div, (af;ﬁ x a§§t> = M+ G,

where = ]
Mj = —gd4i - curl, 048 + [ewrl, 0L E 2,

and B
G5 = -0 ((o — 0)@) - curl, 05 B.

11



Integrating in space we get

d

~ 5 | LB curl 0L o+ Clleurl LBl < ol 9L E 3. + 0L + /]R IGY| da.

Integrating on time and summing for 1 < |¢| < d — 2, we have

t t
/0 10, Bl a-2dt < IV = V)(0) | ga- + CIV = V)(O)]| g +C / 100 E 3 a-sdt

t d—2
+c/ \|a'||§,d72dt+c§:/ GL(r)| dz dr
0 R3

le]=0

< OV = V)(O0) |l ra-r + C/O 102 Efa—2dt + C(E()D()* + F(£)1(1)D(t)),

d—1 t

where we used the bound Z / |G5(7)| dx dr < CE(t)D?(t), obtained in the same way as in the
=170 JR

proof of Lemma 2, which ends the proof of Lemma 3. ]

We are now in position to conclude with the proofs of Theorems 2.1 and 2.2.

3.2 Proof of Theorem 2.1:

We first point out that local existence for the hyperbolic system (1.1)-(1.6) may be proved using standard
fixed-point methods. We refer to [16] for the proof.

Now plugging (3.31) into (3.17) with  small enough, we get

t o o ) . 2
/0 <|| (0~ 2.0~ 0. B~ B,) [ + | )| Hd1> dr
< C{ Vo = V|3jaer + E@)D()? + F()I(t)D(t)} . (3.32)
Putting this last estimate into (3.31) we find
/0 t | amé(T)HiIH dr < Cl|Vo — VI + C(E(®)DE)? + F(H)I(#)D(1)). (3.33)

Then from (3.17), (3.32) and (3.33) we get

0.5(r)

[V = V)OIl + /0 (ll (e=2.9= 9.5~ ) ()l + B0, + |

2
) dr
Hd—2

< C|IVo = Vllza + C(E@)D(1)* + F(H)I(t)D(1)),

or equivalently
F(t)> + D(t)*> < C|Vo — V|34 + C(E(t)D(t)* + F(t)I(t)D(t)).

Now observing that, provided that d > 3 one has ||(V — V)(t)| g« < E(t) < CF(t), and that, provided
that d > 2 one has I(t) < CD(t), for some positive constant C, we see that

F(t)* + D(t)* < C||Vo = VI}a + CF()D(2)*.

12



In order to prove global existence, we argue by contradiction, and assume that 7, > 0 is the maximum
time existence. Then, we necessarily have

lim N(t) = 400,
t—T,

where N(t) is defined by
N(t) := (F(t)* 4+ D(t)*)Y/2

We are thus reduced to prove that N is bounded. For this purpose, we use the argument used in [3].
After the previous calculation, we have

VT €[0,T.], N(t)*<C (Vo =Vl +N(@)?). (3.34)
Hence, setting ||Vo — V|| g« = €, we have

N(t)®

TNy S (3.35)

Studying the variation of ¢(N) = N2/ (52 + NS), we see that ¢'(0) = 0, that ¢ is increasing on the

interval [0, (262)1/3:| and decreasing on the interval {(2&2)1/3 , +oo). Hence,
1 /9\2/3
maxo =a (2)°) =3 (£)

Hence we can choose € small enough to have ¢(N) < C for all N € [0, N*], where N* > 0, we see that
N < N*, which contradicts (3.34). O
4 Large time behaviour

We have the following analogous of Proposition 3.1 for time derivatives

Corollary 4.1. Let the assumptions of Theorem 2.1 be satisfied and consider the solution V := (o, 4, ¥, E,, g, E)
of system (1.1)-(1.2)-(1.3) on [0,t], for some t > 0. Then, one gets for a constant Cy > 0

¢
. - =12
[CAYO! /0 (10 (0,9, B) (P acs + 1008, EY )z ) dr < Col|Vo = V[pa (1)
Proof: Using System (3.14) we see that
10V Il gas < OV =Vl

H Oy (pa ﬁaﬁaEr)”del < Haﬂﬂ(p7 ﬂvﬂvET’B?’Eﬂ)”del + CH([), ﬁvﬁvET7§7 E)‘|H4*17

and Lo oo
10:(B, E)||gra—> < [|0:(B, E)|[gra—2 + C'|| | gra-1 -

Then for d > 3, using the uniform estimate HV — VH;d < C of Theorem 2.1, we get estimate (4.1). O

4.1 Proof of Theorem 2.2:

Using Corollary 4.1, we get



o0
s/ lo—3,a,9 —
0

This implies that

<
&
|
S
=
ﬁ
&

L
+
)
D
ng
ﬁo
&
=
m:w
&

L
SN
IA
S|
=
|
=l
ﬁ

_ _ d _ _
t —|(o—0,1, ﬁ—ﬁ,ET—ET)(t)H%,d,l € Ll(O,oo) and t — aH(g—@ U, 90—, B, —E,)(t)||ga— € Ll(O, 00),
and then B -
(e —0,u,9 =¥, B, — E)(t)|| a1 — 0,
when ¢t — oo.

Now applying Gagliardo-Nirenberg’s inequality, and (2.2) we get

(o= 2,0 — 0, By — B) () |[wa-2e < [[(0 = 0,0 — 0, By — B)(8)|[ a0 020, @9, E,) (1) 2.

So
(o -0, 1,39 — 0, E. — E,.)(#)||ya-2 — 0 when t — oc.

Now in the same stroke
. d -
t— ||E(t)||§{d_1 S Ll(O,oo) and t — aHE(t)Hqu € Ll(O,oo),

and then .
|E(t)||yya-1.00 — 0 when t — oco.
Finally
. d -
t — [|0:Bt)||34-s € L*(0,00) and t — %HBIB(t)Hdes € L0, 0),

then arguing as before

(B = B)(t)|wa-se < [|(B = B)(®)|Ma,||02B ()|

So _
(B = B)|ya-s.0 — 0 when t — oo,

which ends the proof O
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