Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime

Bangwei She

Joint work with E. Feireisl, M. Lukáčová, Š. Nečasová, A. Novotný

Equadiff 2017

2017.07.24-28 @ Bratislava, Slovakia

Introduction - I

Let ρ , **u**, p be the fluid density, velocity, pressure.

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0. \tag{1a}$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon^2} \nabla p = \operatorname{div} \mathbb{S}(\nabla \mathbf{u}).$$
 (1b)

$$\rho(\mathbf{x}, 0) = \rho_0 > 0, \quad \mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0.$$
(1c)

$$\mathbb{S} = \mu \big(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathcal{T}} - \frac{2}{3} \mathsf{divul} \big) + \eta \mathsf{divul}, \quad \mu > 0, \quad \eta \geq 0.$$

Introduction - I

Let ρ , **u**, p be the fluid density, velocity, pressure.

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0. \tag{1a}$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon^2} \nabla \rho = \operatorname{div} \mathbb{S}(\nabla \mathbf{u}).$$
 (1b)

$$\rho(\mathbf{x}, 0) = \rho_0 > 0, \quad \mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0.$$
(1c)

$$\mathbb{S} = \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \operatorname{div} \mathbf{u} \mathbf{I}) + \eta \operatorname{div} \mathbf{u} \mathbf{I}, \quad \mu > 0, \quad \eta \ge 0.$$

$$p \in C^{2}(0,\infty) \cap C^{1}[0,\infty), p(0) = 0, p'(\rho) > 0, \text{ for all } \rho > 0,$$
$$\lim_{\rho \to \infty} \frac{p'(\rho)}{\rho^{\gamma-1}} = p_{\infty} > 0, \lim_{\rho \to 0^{+}} \frac{p'(\rho)}{\rho^{\alpha}} = p_{0} > 0, \gamma \ge 1, \alpha \le 1.$$
(1d)

Introduction - I

Let ρ , **u**, p be the fluid density, velocity, pressure.

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0. \tag{1a}$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon^2} \nabla \rho = \operatorname{div} \mathbb{S}(\nabla \mathbf{u}).$$
 (1b)

$$\rho(\mathbf{x}, 0) = \rho_0 > 0, \quad \mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0.$$
(1c)

$$\mathbb{S} = \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \operatorname{div} \mathbf{u} \mathbf{I}) + \eta \operatorname{div} \mathbf{u} \mathbf{I}, \quad \mu > 0, \quad \eta \ge 0.$$

$$p \in C^{2}(0,\infty) \cap C^{1}[0,\infty), p(0) = 0, p'(\rho) > 0, \text{ for all } \rho > 0,$$
$$\lim_{\rho \to \infty} \frac{p'(\rho)}{\rho^{\gamma-1}} = p_{\infty} > 0, \lim_{\rho \to 0^{+}} \frac{p'(\rho)}{\rho^{\alpha}} = p_{0} > 0, \gamma \ge 1, \alpha \le 1.$$
 (1d)

 $p = \rho^{\gamma}$

Introduction - II

Asymptotic preserving $^{\left[3\right] }$

$$\bar{\rho}(\partial_t \mathbf{V} + \mathbf{V} \cdot \nabla_x \mathbf{V}) + \nabla_x \pi = \mu \Delta \mathbf{V}, \operatorname{div}_x \mathbf{V} = 0, \bar{\rho} > 0, \qquad (2a)$$
$$\mathbf{V}(0) = \mathbf{V}_0. \qquad (2b)$$

Introduction - II

$$\bar{\rho}(\partial_t \mathbf{V} + \mathbf{V} \cdot \nabla_x \mathbf{V}) + \nabla_x \pi = \mu \Delta \mathbf{V}, \operatorname{div}_x \mathbf{V} = 0, \, \bar{\rho} > 0, \quad (2a)$$
$$\mathbf{V}(0) = \mathbf{V}_0. \quad (2b)$$

$$\begin{split} \partial_t^{\ell} \mathbf{V} &\in C^{\ell}([0,\,T];\, \mathcal{W}^{k-\ell,2}(\Omega;\,R^3)), \ell=0,1,2,\\ \partial_t^{j} \Pi &\in C^{j}([0,\,T];\, \mathcal{W}^{k-1-j}(\Omega)), j=0,1, k \geq 4,\\ V_0 &\in \mathcal{W}^{k,2(\Omega;R^3)}, \, \text{div}_{\mathbf{x}} \mathbf{V}_0 = 0. \end{split}$$

Numerical Scheme

Piecewise linear Crouzeix-Raviart element for velocity.

$$\begin{split} V_{0,h} &\equiv \{ \mathbf{v}_h \in L^2(\Omega_h); \quad \mathbf{v}_h |_{\mathcal{K}} \in \mathcal{P}^1(\mathcal{K}), \forall \mathcal{K} \in \Omega_h; \\ &\int_{\Gamma} \llbracket \mathbf{v}_h \rrbracket = 0, \forall \Gamma \in \mathcal{E}_{int}; \quad \int_{\Gamma} \mathbf{v}_h = 0, \forall \Gamma \in \partial \mathcal{T} \}. \end{split}$$

Piecewise constant element for density, pressure and temperature

$$Q_h \equiv \{\phi_h \in L^2(\Omega_h); \phi_h|_{\mathcal{K}} \in \mathcal{P}^0(\mathcal{K}), \mathcal{K} \in \Omega_h\}.$$

- Element K, L, interface $\Gamma = K \cap L$.
- $\mathbf{n}_{\Gamma,K}$ be the outer normal, pointing from K to L

Numerical Scheme

Piecewise linear Crouzeix-Raviart element for velocity.

$$\begin{split} V_{0,h} &\equiv \{ \mathbf{v}_h \in L^2(\Omega_h); \quad \mathbf{v}_h |_{\mathcal{K}} \in \mathcal{P}^1(\mathcal{K}), \forall \mathcal{K} \in \Omega_h; \\ &\int_{\Gamma} \llbracket \mathbf{v}_h \rrbracket = 0, \forall \Gamma \in \mathcal{E}_{int}; \quad \int_{\Gamma} \mathbf{v}_h = 0, \forall \Gamma \in \partial \mathcal{T} \}. \end{split}$$

Piecewise constant element for density, pressure and temperature

$$Q_h \equiv \{\phi_h \in L^2(\Omega_h); \phi_h|_{\mathcal{K}} \in \mathcal{P}^0(\mathcal{K}), \mathcal{K} \in \Omega_h\}.$$

- Element K, L, interface $\Gamma = K \cap L$.
- $\mathbf{n}_{\Gamma,K}$ be the outer normal, pointing from K to L

Upwind flux

$$\mathcal{F}^{up}(f,\mathbf{u})|_{\Gamma} = \begin{cases} f_{\mathcal{K}} & \text{if } s_{\Gamma,\mathcal{K}} \geq 0, \\ f_{L} & \text{else,} \end{cases} \quad s_{\Gamma,\mathcal{K}}^{n} = \mathbf{u}^{n}|_{\Gamma} \cdot \mathbf{n}_{\Gamma,\mathcal{K}} = s_{\Gamma,\mathcal{K}}^{n,+} + s_{\Gamma,\mathcal{K}}^{n,-}$$

Jump, average on element & edge

$$\llbracket f \rrbracket_{\Gamma} = f_L - f_K. \quad \hat{f}_K = \frac{1}{|K|} \int_K f dx. \quad \{f\}_{\Gamma} = \frac{1}{2} (f_K + f_L).$$

Numerical Scheme

A convergent scheme (Karper [4])

Find $\{\rho_h^n, \mathbf{u}_h^n\}_{n=1}^{n_{\tau}} \subset (Q_h \times V_{0,h})$ such that for any $(\phi_h, \mathbf{v}_h) \in (Q_h \times V_{0,h})$

$$\sum_{K\in\mathcal{T}} |K| \frac{\rho_K^n - \rho_K^{n-1}}{\Delta t} \phi_h - \sum_{K\in\mathcal{T}\Gamma\in\partial K} |\sigma| \rho_{\sigma}^{n,up} (\mathbf{u}_{\sigma}^n \cdot \mathbf{n}_{\sigma,K}) \phi_h = 0, \qquad (3a)$$

$$\sum_{K\in\mathcal{T}}\int_{K} \frac{\rho_{h}^{n}\hat{\mathbf{u}}_{h}^{n} - \rho_{h}^{n-1}\hat{\mathbf{u}}_{h}^{n-1}}{\Delta t} \mathbf{v}_{h} - \sum_{K\in\mathcal{T}\Gamma\in\partial K} \sum_{|\sigma|} |(\rho\hat{\mathbf{u}})_{\sigma}^{n,up}(\mathbf{u}_{\sigma}^{n}\cdot\mathbf{n}_{\sigma,K})\cdot\mathbf{v}_{h}$$
$$- \frac{1}{\varepsilon^{2}}\sum_{K\in\mathcal{T}} \rho_{h}^{n}\sum_{\Gamma\in\partial K} \operatorname{div}_{h}\mathbf{v}_{h} + \mu \sum_{K\in\mathcal{T}} \int_{K} \nabla_{h}\mathbf{u}_{h}^{n}: \nabla_{h}\mathbf{v}_{h}$$
$$+ (\frac{\mu}{3} + \eta) \sum_{K\in\mathcal{T}} \int_{K} \operatorname{div}_{h}\mathbf{u}_{h}^{n} \operatorname{div}_{h}\mathbf{v}_{h} = 0. \quad (3b)$$

Relative Energy

Relative energy inequality (Feireisl et al.^[1])

$$\begin{split} \mathcal{E}(\rho,\mathbf{u}|z,\mathbf{V})|_{0}^{\tau} &+ \int_{0}^{\tau} \int_{\Omega} \left(\mathbb{S}(\nabla \mathbf{u}) - \mathbb{S}(\nabla \mathbf{V}) \right) : (\nabla \mathbf{u} - \nabla \mathbf{V}) dx dt \leq \int_{0}^{\tau} \mathcal{R}(\rho,\mathbf{u},z,\mathbf{V}) dt \\ & \mathcal{E}(\rho,\mathbf{u}|z,\mathbf{V}) = \int_{\Omega} (\rho|\mathbf{u} - \mathbf{V}|^{2} + E(\rho|z)) dx \\ & E(\rho|z) = H(\rho) - H'(z)(\rho-z) - H(z), H(\rho) = \rho \int_{1}^{\rho} \frac{\rho(s)}{s^{2}} ds \\ & H(\rho) \text{ convex for } \rho \in (0,\infty), E(\rho,z) \geq 0 \text{ and } E(\rho,z) = 0 \Leftrightarrow \rho = z. \end{split}$$

Relative Energy

Relative energy inequality (Feireisl et al.^[1])

$$\begin{split} \mathcal{E}(\rho,\mathbf{u}|z,\mathbf{V})|_{0}^{\tau} &+ \int_{0}^{\tau} \int_{\Omega} \left(\mathbb{S}(\nabla \mathbf{u}) - \mathbb{S}(\nabla \mathbf{V}) \right) : (\nabla \mathbf{u} - \nabla \mathbf{V}) dx dt \leq \int_{0}^{\tau} \mathcal{R}(\rho,\mathbf{u},z,\mathbf{V}) dt \\ & \mathcal{E}(\rho,\mathbf{u}|z,\mathbf{V}) = \int_{\Omega} (\rho |\mathbf{u} - \mathbf{V}|^{2} + E(\rho |z)) dx \\ & E(\rho |z) = H(\rho) - H'(z)(\rho - z) - H(z), H(\rho) = \rho \int_{1}^{\rho} \frac{p(s)}{s^{2}} ds \\ & H(\rho) \text{ convex for } \rho \in (0,\infty), E(\rho,z) \geq 0 \text{ and } E(\rho,z) = 0 \Leftrightarrow \rho = z. \end{split}$$

$$\mathcal{E}_{arepsilon}(
ho, \mathbf{u}|z, \mathbf{V}) = \int_{\Omega} (
ho |\mathbf{u} - \mathbf{V}|^2 + rac{1}{arepsilon^2} E(
ho |z)) dx$$

Theorem

Let p satisfy (1d) with $\gamma \geq 3/2$. Let $\{\rho^n, \mathbf{u}^n\}_{0 \leq n \leq N}$ be a family of numerical solutions constructed by the scheme (3) and the mesh be regular, and initial data (ρ^0, \mathbf{u}^0) obey

$$\mathcal{E}_{\varepsilon}(\rho_{\varepsilon}^{0},\mathbf{u}_{\varepsilon}^{0}|\bar{\rho},\mathbf{V}(0)) \leq E_{0} < \infty, \ M_{0}/2 \leq \int_{\mathcal{T}} \rho_{\varepsilon}^{0} dx \leq 2M_{0}, \ M_{0} = \bar{\rho}|\mathcal{T}| \ (4)$$

Moreover, suppose that $[\Pi, \mathbf{V}]$ is a classical solution to (2) emanating from the initial data $\mathbf{V}_0 \in W^{k,2}(\Omega; \mathbb{R}^3)$, $divV_0 = 0, k \ge 4$. Then there exists a positive number independent of $h, \Delta t, \varepsilon$ such that

$$\sup_{1 \le n \le N} \mathcal{E}_{\varepsilon}(\rho_{\varepsilon}^{n}, \mathbf{u}_{\varepsilon}^{n} | \bar{\rho}, \mathbf{V}(t_{n}, \cdot)) + \Delta t \sum_{1 \le n \le N} \int_{\mathcal{T}} |\nabla_{h} \mathbf{u}^{n} - \nabla_{x} \mathbf{V}(t_{n}, \cdot)|^{2} \\ \le c \Big(\sqrt{\Delta t} + h^{a} + \varepsilon + \mathcal{E}_{\varepsilon}(\rho_{\varepsilon}^{0}, \mathbf{u}_{\varepsilon}^{0} | \bar{\rho}, \mathbf{V}_{0}) \Big) \quad (5)$$

where $a = \min\{\frac{2\gamma-3}{\gamma}, 1\}$.

Idea of Proof - I

• Step 1: uniform estimates (Karper^[4], Gallouët et al.^[2])

$$(\mathbf{3b})|_{\mathbf{v}_{h}=\mathbf{u}_{K}^{n}}+(\mathbf{3a})|_{\phi_{h}=\frac{-|\hat{\mathbf{u}}_{K}^{n}|^{2}}{2}}+(\mathbf{3a})|_{\phi_{h}=H'(\rho_{K}^{n})}$$

sum up for each time step \implies

$$\sum_{K\in\mathcal{T}} |K| \left(\frac{1}{2} \rho_K^m |\hat{\mathbf{u}}_K^m| + \frac{1}{\varepsilon^2} E(\rho_K^m |\bar{\rho}) \right) - \sum_{K\in\mathcal{T}} |K| \left(\frac{1}{2} \rho_K^0 |\hat{\mathbf{u}}_K^0| + \frac{1}{\varepsilon^2} E(\rho_K^0 |\bar{\rho}) \right)$$
$$+ \Delta t \sum_{n=1}^m \sum_{K\in\mathcal{T}} \int_K \left(\mu \int_K |\nabla_x \mathbf{u}^n|^2 + \left(\frac{\mu}{3} + \eta \right) \int_K |\mathrm{div}_x \mathbf{u}^n|^2 \right) + D_i^m = 0$$

Idea of Proof - I

• Step 1: uniform estimates (Karper^[4], Gallouët et al.^[2])

$$(\mathbf{3b})|_{\mathbf{v}_{h}=\mathbf{u}_{K}^{n}}+(\mathbf{3a})|_{\phi_{h}=\frac{-|\hat{\mathbf{u}}_{K}^{n}|^{2}}{2}}+(\mathbf{3a})|_{\phi_{h}=H'(\rho_{K}^{n})}$$

sum up for each time step \implies

$$\sum_{K\in\mathcal{T}} |K| \left(\frac{1}{2} \rho_K^m |\hat{\mathbf{u}}_K^m| + \frac{1}{\varepsilon^2} E(\rho_K^m |\bar{\rho}) \right) - \sum_{K\in\mathcal{T}} |K| \left(\frac{1}{2} \rho_K^0 |\hat{\mathbf{u}}_K^0| + \frac{1}{\varepsilon^2} E(\rho_K^0 |\bar{\rho}) \right)$$
$$+ \Delta t \sum_{n=1}^m \sum_{K\in\mathcal{T}} \int_K \left(\mu \int_K |\nabla_x \mathbf{u}^n|^2 + \left(\frac{\mu}{3} + \eta \right) \int_K |\mathrm{div}_x \mathbf{u}^n|^2 \right) + D_i^m = 0$$

Remark: not valid for linear scheme yet

Idea of Proof - II

• Step 2: Relative energy inequality (Gallouët et al.^[2])

$$\frac{(3b)|_{\mathbf{v}_{h}=\mathbf{u}_{K}^{n}}+(3a)|_{\phi_{h}=\frac{-|\hat{\mathbf{u}}_{K}^{n}|^{2}}{2}}+(3a)|_{\phi_{h}=H'(\rho_{K}^{n})}}{-(3b)|_{\mathbf{v}_{h}=\mathbf{V}_{K}^{n}}+(3a)|_{\phi_{h}=\frac{-|\hat{\mathbf{v}}_{K}^{n}|^{2}}{2}}+(3a)|_{\phi_{h}=H'(z_{K}^{n-1})}}$$

sum up for each time step \implies

$$\int_{\Omega} \left(\rho^{m} |\hat{\mathbf{u}}^{m} - \hat{\mathbf{V}}_{h}^{m}|^{2} + \frac{1}{\varepsilon^{2}} E(\rho^{m} |\bar{\rho}) \right) dx - \int_{\Omega} \left(\rho^{0} |\hat{\mathbf{u}}^{0} - \hat{\mathbf{V}}_{h}^{0}|^{2} + \frac{1}{\varepsilon^{2}} E(\rho^{0} |\bar{\rho}) \right) dx$$
$$+ \Delta t \sum_{n=1}^{m} \sum_{K \in \Omega} \left(\int_{K} |\nabla_{X} (\mathbf{u}^{n} - \mathbf{V}_{h}^{n})|^{2} + (\frac{\mu}{3} + \eta) \int_{K} |\operatorname{div} (\mathbf{u}^{n} - \mathbf{V}_{h}^{n})|^{2} \right) \leq \sum_{i=1}^{3} S_{i}(\rho_{h}) + R_{1}^{m} + G^{m}$$

$$|\mathcal{R}_1^m| \leq c(\sqrt{\Delta t} + h^a), \quad |\mathcal{G}^m| \leq c\Delta t\sum_{n=1}^m \mathcal{E}_{arepsilon}(
ho^n, \mathbf{u}^n|ar{
ho}, \mathbf{V}^n)$$

Idea of Proof - III

• Step 3: Control of S_i

$$\begin{split} S_{1} &= \Delta t \sum_{n=1}^{m} \sum_{K \in \mathcal{T}} \int_{K} \mu \nabla_{x} \mathbf{V}_{h}^{n} : \nabla_{x} (\mathbf{V}_{h}^{n} - \mathbf{u}^{n}) dx, \\ S_{2} &= \Delta t \sum_{n=1}^{m} \sum_{K \in \mathcal{T}} |K| \bar{\rho} \frac{\mathbf{V}_{h,K}^{n} - \mathbf{V}_{h,K}^{n-1}}{\Delta t} \cdot (\mathbf{V}_{h,K}^{n} - \mathbf{u}_{K}^{n}) dx, \\ S_{3} &= \Delta t \sum_{n=1}^{m} \sum_{K \in \mathcal{T}} \sum_{\Gamma \in \partial K} |\sigma| \bar{\rho} (\hat{\mathbf{V}}_{h,\sigma}^{n,up} - \hat{\mathbf{u}}_{\sigma}^{n,up}) \cdot (\mathbf{V}_{h,\sigma}^{n} - \mathbf{V}_{h,K}^{n}) \hat{\mathbf{V}}_{h,\sigma}^{n,up} \cdot \mathbf{n}_{\sigma,K} dx. \end{split}$$

Navier-Stokes (2) test with $(\mathbf{V}^n - \mathbf{u}^n) \Longrightarrow$

$$\sum_{i=1}^3 S_i+R_2^m=0, \quad |R_2^m|\leq c(h^b+\Delta t+arepsilon), \quad b=\min\{rac{5\gamma-6}{2\gamma},1\}.$$

Error Estimates

$$\begin{split} \sup_{1 \le n \le N} \mathcal{E}_{\varepsilon} \Big(\rho_{\varepsilon}^{n}, \mathbf{u}_{\varepsilon}^{n} | \bar{\rho}, \mathbf{V}(t_{n}, \cdot) \Big) + \Delta t \sum_{1 \le n \le N} \int_{\mathcal{T}} | \nabla_{h} \mathbf{u}^{n} - \nabla_{x} \mathbf{V}(t_{n}, \cdot) |^{2} \\ & \le c \Big(\sqrt{\Delta t} + h^{a} + \varepsilon + \mathcal{E}_{\varepsilon} \big(\rho_{\varepsilon}^{0}, \mathbf{u}_{\varepsilon}^{0} | \bar{\rho}, \mathbf{V}_{0} \big) \Big), \quad \boldsymbol{a} = \min\{\frac{2\gamma - 3}{\gamma}, 1\} \end{split}$$

Error Estimates

$$\begin{split} \sup_{1 \le n \le N} \mathcal{E}_{\varepsilon} \Big(\rho_{\varepsilon}^{n}, \mathbf{u}_{\varepsilon}^{n} | \bar{\rho}, \mathbf{V}(t_{n}, \cdot) \Big) + \Delta t \sum_{1 \le n \le N} \int_{\mathcal{T}} | \nabla_{h} \mathbf{u}^{n} - \nabla_{x} \mathbf{V}(t_{n}, \cdot) |^{2} \\ & \le c \Big(\sqrt{\Delta t} + h^{a} + \varepsilon + \mathcal{E}_{\varepsilon} (\rho_{\varepsilon}^{0}, \mathbf{u}_{\varepsilon}^{0} | \bar{\rho}, \mathbf{V}_{0}) \Big), \quad a = \min\{\frac{2\gamma - 3}{\gamma}, 1\} \end{split}$$

Remark

Theorem holds also in the 2D case for any $0 \le a < \frac{2\gamma-2}{\gamma}$ if $\gamma \in (1,2]$ and a = 1 if $\gamma > 2$. Note that in this case the limit system (2) admits global-in-time smooth solutions as long as the initial data are regular.

Error Estimates

$$\begin{split} \sup_{1 \le n \le N} \mathcal{E}_{\varepsilon} \Big(\rho_{\varepsilon}^{n}, \mathbf{u}_{\varepsilon}^{n} | \bar{\rho}, \mathbf{V}(t_{n}, \cdot) \Big) + \Delta t \sum_{1 \le n \le N} \int_{\mathcal{T}} | \nabla_{h} \mathbf{u}^{n} - \nabla_{x} \mathbf{V}(t_{n}, \cdot) |^{2} \\ & \le c \Big(\sqrt{\Delta t} + h^{a} + \varepsilon + \mathcal{E}_{\varepsilon} (\rho_{\varepsilon}^{0}, \mathbf{u}_{\varepsilon}^{0} | \bar{\rho}, \mathbf{V}_{0}) \Big), \quad a = \min\{\frac{2\gamma - 3}{\gamma}, 1\} \end{split}$$

Remark

Theorem holds also in the 2D case for any $0 \le a < \frac{2\gamma-2}{\gamma}$ if $\gamma \in (1,2]$ and a = 1 if $\gamma > 2$. Note that in this case the limit system (2) admits global-in-time smooth solutions as long as the initial data are regular.

$$p = \rho^{\gamma}, z = (1 + \varepsilon^{2} \Pi)^{1/\gamma}$$

$$e_{\varepsilon} = \sup_{1 \le n \le N} \mathcal{E}_{\varepsilon} \left(\rho_{\varepsilon}^{n}, \mathbf{u}_{\varepsilon}^{n} | \bar{\rho}, \mathbf{V}(t_{n}, \cdot) \right)$$

$$e_{\nabla \mathbf{u}} = \| \nabla_{h} \mathbf{u}^{n} - \nabla_{x} \mathbf{V}(t_{n}, \cdot) \|_{L^{2}(L^{2})}$$

$$e_{u} = \| \mathbf{u}^{n} - \mathbf{V}(t_{n}, \cdot) \|_{L^{2}(L^{2})}$$

$$e_{\rho} = \| \rho - z \|_{L^{2}(L^{2})},$$

$$e_{p} = \| \rho - 1 - \varepsilon^{2} \Pi \|_{L^{2}(L^{2})}.$$

Experiment - I

 $u_1(x, y, 0) = \sin^2(\pi x) \sin(2\pi y)$ $u_2(x, y, 0) = -\sin(2\pi x) \sin^2(\pi y)$ $\rho(x, y, 0) = 1 - \frac{\varepsilon^2}{2} \tanh(y - 0.5)$

Table : Error with respect to the numerical solution of $NS^{[5]}$

h	eE	EOC	e⊽u	EOC	eu	EOC	$e_{ ho}$	EOC	ep	EOC
1/8	1.12e-03	-	4.91e-01	-	1.82e-03	-	3.65e-04	-	5.11e-04	-
1/16	3.74e-04	1.58	2.55e-01	0.95	1.18e-03	0.63	7.90e-05	2.21	1.11e-04	2.20
1/32	1.09e-04	1.78	2.29e-01	0.16	7.87e-04	0.58	1.50e-05	2.40	2.09e-05	2.41
1/64	1.91e-05	2.51	1.26e-01	0.86	3.24e-04	1.28	3.31e-06	2.18	4.64e-06	2.17
1/128	4.50e-06	2.09	4.41e-02	1.51	1.41e-04	1.20	8.73e-07	1.92	1.22e-06	1.93
1/256	1.14e-06	1.98	1.54e-02	1.52	6.32e-05	1.16	2.06e-07	2.08	2.88e-07	2.08

(a) $\varepsilon = h, \mu = 0.01$

h	eE	EOC	e⊽u	EOC	eu	EOC	$e_{ ho}$	EOC	ep	EOC
1/8	5.42e-03	-	4.66e-01	-	2.99e-03	-	8.81e-04	-	1.23e-03	-
1/16	1.34e-03	2.02	1.73e-01	1.43	2.17e-03	0.46	1.79e-04	2.30	2.51e-04	2.29
1/32	3.66e-04	1.87	6.58e-02	1.39	1.17e-03	0.89	3.78e-05	2.24	5.30e-05	2.24
1/64	1.06e-04	1.79	2.37e-02	1.47	6.13e-04	0.93	8.21e-06	2.20	1.15e-05	2.20
1/128	2.96e-05	1.84	8.26e-03	1.52	2.78e-04	1.14	1.81e-06	2.18	2.54e-06	2.18
1/256	7.96e-06	1.89	2.97e-03	1.48	1.31e-04	1.09	4.09e-07	2.15	5.73e-07	2.15

(b) $\varepsilon = h, \mu = 1$

Experiment - II

Exact solution of unsteady Taylor vortex

$$\begin{array}{l} V_1(x,y,t) = \sin(2\pi x)\cos(2\pi y) \, e^{-8\pi^2 \mu t} \\ V_2(x,y,t) = -\cos(2\pi x)\sin(2\pi y) \, e^{-8\pi^2 \mu t} \\ \Pi(x,y,t) = \frac{1}{4}\left(\cos(4\pi x) + \cos(4\pi y)\right) e^{-16\pi^2 \mu t} \end{array} \left| \begin{array}{c} \rho(x,y,0) = 1 + \varepsilon^2 \Pi(x,y,0) \\ u_1(x,y,0) = V_1(x,y,0) \\ u_2(x,y,0) = V_2(x,y,0) \end{array} \right|$$

h	eE	EOC	e⊽u	EOC	eu	EOC	e_{ρ}	EOC	ep	EOC
1/8	3.60e-02	-	3.57e-01	-	7.56e-03	-	3.66e-04	-	4.22e-04	-
1/16	3.04e-03	3.57	1.94e-01	0.88	2.35e-03	1.69	8.67e-05	2.08	9.08e-05	2.22
1/32	2.98e-04	3.35	1.30e-01	0.58	9.44e-04	1.32	1.92e-05	2.17	1.76e-05	2.37
1/64	5.26e-05	2.50	8.35e-02	0.64	3.25e-04	1.54	4.36e-06	2.14	3.45e-06	2.35
1/128	1.46e-05	1.85	4.46e-02	0.90	1.11e-04	1.55	1.08e-06	2.01	1.06e-06	1.70
1/256	3.88e-06	1.91	2.22e-02	1.01	4.05e-05	1.45	2.65e-07	2.03	2.34e-07	2.18

(a) $\varepsilon = h, \mu = 0.01, \gamma = 3$

h	eE	EOC	e⊽u	EOC	eu	EOC	e_{ρ}	EOC	ep	EOC
1/8	1.54e-03	-	4.38e-02	-	2.20e-03	-	1.26e-04	-	7.06e-04	-
1/16	3.63e-04	2.08	2.14e-02	1.03	1.04e-03	1.08	3.02e-05	2.06	1.20e-04	2.56
1/32	1.18e-04	1.62	9.99e-03	1.10	4.29e-04	1.28	1.03e-05	1.55	2.41e-05	2.32
1/64	3.95e-05	1.58	4.84e-03	1.05	1.92e-04	1.16	2.70e-06	1.93	5.22e-06	2.21
1/128	1.22e-05	1.69	2.40e-03	1.01	9.26e-05	1.05	6.89e-07	1.97	1.25e-06	2.06
1/256	3.45e-06	1.82	1.20e-03	1.00	4.59e-05	1.01	1.74e-07	1.99	3.10e-07	2.01

(b)
$$\varepsilon = h, \mu = 1, \gamma = 3$$

Error of velocity component $u_1 - V_1$ for different mesh sizes and Mach numbers; $h = \frac{1}{16}, \frac{1}{64}, \frac{1}{256}$ (left to right), $\varepsilon = 0.1, 0.001$ (top to bottom).

For more details, see Feireisl et al. 2016.

www.math.cas.cz/fichier/preprints/IM_20160916140850_71.pdf

References

- [1] E. Feireisl, B. J. Jin, A. Novotný. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech., 14(4):717-730, 2012
- [2] T. Gallouët, R. Herbin, D. Maltese, A. Novotný. Error estimate for a numerical approximation to the compressible barotropic navier-stokes equations. IMA J. Numer. Anal., 36(2):543–592, 2016

- [3] S. Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Mat. Univ. Parma, **3**:177–216, 2012
- [4] T. K. Karper. A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math., **125**(3):441–510, 2013

[5] H. Notsu, M. Tabata. *Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equations*. M2AN, 50(2):361-380, 2016

Thank you for your attention!

