On regularity properties of solutions to the compressible Euler system

Eduard Feireisl based on joint work with P.Gwiazda, A. Świerczewska-Gwiazda (Warsaw), E.Wiedemann (Hannover)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Analysis of complex fluids, Fudan University, October 13-17, 2017

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Compressible Euler system

Field equations

$$\partial_t \varrho + \operatorname{div}_{\mathsf{x}}(\varrho \mathbf{u}) = 0$$
$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_{\mathsf{x}}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_{\mathsf{x}} p(\varrho) = 0$$

Periodic boundary conditions

$$\Omega = \mathbb{T}^{N} = \left([-1,1]|_{\{-1;1\}} \right)^{N}$$

Initial conditions

$$\varrho(0,\cdot) = \varrho_0, \ \mathbf{u}(0,\cdot) = \mathbf{u}_0$$

Weak solutions

Equation of continuity

$$\left[\int_{\Omega} \varrho \varphi \, \mathrm{d}x\right]_{t=0}^{\tau} = \int_{0}^{\tau} \int_{\Omega} \left(\varrho \partial_{t} \varphi + \varrho \mathbf{u} \cdot \nabla_{x} \varphi\right) \, \mathrm{d}x \mathrm{d}t$$

for any $\varphi \in C_{c}^{\infty}([0, T) \times \Omega)$

Balance of momentum

$$\left[\int_{\Omega} \rho \mathbf{u} \cdot \varphi \, \mathrm{d} x\right]_{t=0}^{\tau}$$

$$=\int_0^\tau\int_\Omega\left(\varrho\mathbf{u}\cdot\partial_t\varphi+\varrho\mathbf{u}\otimes\mathbf{u}:\cdot\nabla_x\varphi+p(\varrho)\mathrm{div}_x\varphi\right)\,\mathrm{d}x\,\mathrm{d}t$$

for any $\varphi \in C_c^{\infty}([0, T) \times \Omega; \mathbb{R}^N)$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Weak solutions: Existence

Global existence for large data in 1D

The Euler system admits global-in-time weak solutions for any bounded initial data (**DiPerna, Chen et al.**). The weak solutions can be recovered as a vanishing viscosity limit of the Navier-Stokes system (**Chen and Perepelitsa**)

Global existence for large data for N = 2, 3

The compressible Euler system admits *infinitely many* global-in-time weak solutions for any smooth initial data (**Chiodaroli, EF** - based on the work of **DeLellis and Székelyhidi**)

<ロト <部ト < Eト < Eト = E

Stability of 1D solutions - hypotheses

Theorem EF, Y.Sun [2015]

$$\gamma > \frac{N}{2}, \ q > \max\{2, \gamma'\}, \ \frac{1}{\gamma} + \frac{1}{\gamma'} = 1 \text{ if } N = 2$$
$$q > \max\left\{3, \frac{6\gamma}{5\gamma - 6}\right\} \text{ if } N = 3$$

Let [R, V] be a (strong) solution of the one-dimensional *Navier-Stokes system*, with the initial data belonging to the class

$$R_0 \in W^{1,q}(0,1), \ R_0 > 0, \ V_0 \in W^{1,q}_0(0,1)$$

Let $[\varrho, \mathbf{u}]$ be a finite energy weak solution to the Navier-Stokes system in

$$(0, T) imes \Omega, \ \Omega = (0, 1) imes \mathcal{T}^{N-1},$$

with the initial data

$$\varrho_0 \in L^{\infty}(\Omega), \ \varrho_0 > 0, \ \mathbf{u}_0 \in L^2(\Omega; \mathbb{R}^3).$$

Stability of 1D solutions - conclusion

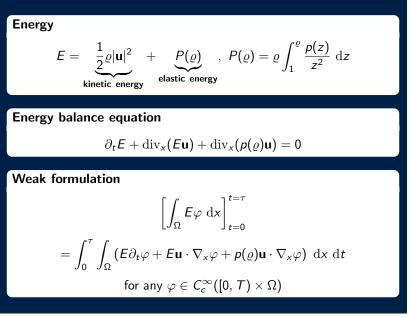
Conclusion

Then

$$\begin{split} &\int_{\Omega} \left[\frac{1}{2} \varrho |\mathbf{u} - \mathbf{V}|^2 + P(\varrho) - P'(R)(\varrho - R) - P(R) \right] (\tau, \cdot) \, \mathrm{d}x \\ &\leq c(T) \int_{\Omega} \left[\frac{1}{2} \varrho_0 |\mathbf{u}_0 - \mathbf{V}_0|^2 + P(\varrho_0) - P'(R_0)(\varrho_0 - R_0) - P(R_0) \right] \, \mathrm{d}x \\ &\text{for a.a. } \tau \in (0, T), \\ &P(\varrho) = \frac{a}{\gamma - 1} \varrho^{\gamma}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Energy conservation



Admissible weak solution

Energy dissipation $\partial_t E + \operatorname{div}_x(E\mathbf{u}) + \operatorname{div}_x(p(\rho)\mathbf{u}) \leq 0$ Weak formulation $\left[\int_{\Omega} E\varphi \, \mathrm{d}x\right]_{t=0}^{t=\tau}$ $\leq \int_0^\tau \int_{\Omega} \left(E \partial_t \varphi + E \mathbf{u} \cdot \nabla_x \varphi + p(\varrho) \mathbf{u} \cdot \nabla_x \varphi \right) \, \mathrm{d}x \, \mathrm{d}t$ for any $\varphi \in C_c^{\infty}([0, T) \times \Omega), \ \varphi \geq 0$

Related results on Onsager's conjecture

Inhomogeneous incompressible Navier-Stokes system

T. M. Leslie and R. Shvydkoy.

The energy balance relation for weak solutions of the density-dependent Navier- Stokes equations. arXiv:1602.08527v1, 2016.

Inhomogeneous incompressible Euler system

R. M. Chen and C. Yu.

Onsager's energy conservation for inhomogeneous Euler equations. arXiv:1706.08506v1, 2017.

・ロト ・四ト ・モト・・モト

Minimal regularity

Function spaces - Besov spaces

$$B^{lpha}_{\infty,p}, \; \|w\|_{B^{lpha}_{\infty,p}} \equiv \|w\|_{L^p} + \sup_{\xi
eq 0} rac{\|w(\cdot + \xi) - w\|_{L^p}}{|\xi|^{lpha}}$$

Mollifiers

$$w_{\varepsilon} = w * \eta_{\varepsilon}, \ \eta_{p} = \frac{1}{\varepsilon^{N}} \eta \left(\frac{x}{\varepsilon}\right)$$

Basic estimates

$$\begin{split} \|w_{\varepsilon} - w\|_{L^{p}} &\lesssim \varepsilon^{\alpha} \|w\|_{B^{\alpha}_{\infty,p}} \\ \|\nabla w_{\varepsilon}\|_{L^{p}} &\lesssim \varepsilon^{\alpha-1} \|w\|_{B^{\alpha}_{\infty,p}} \\ B^{\alpha}_{\infty,p} \cap L^{\infty} \text{ is algebra} \end{split}$$

Onsager's conjecture - incompressible fluids

Constantin, E, Titi [1994]

If a velocity field **u** solving the *incompressible* Euler system belongs to the class $B^{\alpha}_{\infty,3}$ for $\alpha > \frac{1}{3}$, then the total energy

$$\frac{1}{2}\int_{\Omega}|\mathbf{u}|^2\,\,\mathrm{d}x$$

《口》 《聞》 《臣》 《臣》

900

is conserved.

Energy conservation for compressible fluids

EF, Gwiazda, Swierczewska-Gwiazda, Wiedemann [2017]

Let $\varrho,\, {\bf u}$ be a weak solution of the compressible Euler system belonging to the class

$$\begin{split} \mathbf{u} &\in B^{\alpha}_{\infty,3}((0,T)\times\mathbb{T}^{N}), \ \varrho, \varrho\mathbf{u} \in B^{\beta}_{\infty,3}((0,T)\times\mathbb{T}^{N}), \ 0 \leq \underline{\varrho} \leq \varrho \leq \overline{\varrho}, \\ &0 \leq \alpha, \beta \leq 1, \ \beta > \max\left\{1-2\alpha; \frac{1-\alpha}{2}\right\}. \end{split}$$

Let $p \in C^2[\underline{\varrho}, \overline{\varrho}]$, p'(0) = 0 if $\underline{\varrho} = 0$. Then the energy equality holds in $\mathcal{D}'((0, T) \times \Omega)$. If, in addition, $u \in L^{\infty}$ and

$$\sup_{t\in(0,T)} \left[\left\| \varrho \right\|_{B^{\beta}_{\infty,3}(\mathbb{T}^N)} + \left\| \varrho \mathbf{u} \right\|_{B^{\beta}_{\infty,3}(\mathbb{T}^N)} \right] < \infty, \ \beta > 0,$$

then the energy is (weakly) continuous up to t = 0.

Sketch of proof

《曰》 《圖》 《臣》 《臣》

900

Ξ

Regularization method

- Regularize the momentum equation by a space-time convolution kernel
- Use the commutator estimates
- C^2 regularity of the pressure needed

Energy conservation for BV solutions

EF, Gwiazda, Swierczewska–Gwiazda, Wiedemann [2017]

Let $p \in C^2(0,\infty) \cap C[0,\infty)$. Let ϱ , **u** be a weak solution of the compressible Euler system belonging to the class

$$arrho, \ \mathbf{u} \in L^\infty((0, T) imes \Omega), \ arrho(t), \ \mathbf{u}(t) \in C \cap BV(\Omega)$$
 for a.a. $t \in (0, T)$

$$\operatorname{ess sup}_{t \in (0,T)} \left[\|\varrho\|_{C \cap BV(\Omega)} + \|\mathbf{u}\|_{C \cap BV(\Omega)} \right] < \infty.$$

Then the energy equality holds in $\mathcal{D}'((0, T) \times \Omega)$ and the energy is (weakly) continuous up to t = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Sketch of proof

Regularization method

■ Regularize in space and time. Use *Steklov averaging* in time

$$v_h = \int_0^T \eta_h(t-s)v(s) \, \mathrm{d}s, \ \eta_h = \frac{1}{h} \mathbb{1}_{[-h,0]}$$

Use the commutator estimates

 \blacksquare C² regularity of the pressure up to zero not needed here

Eduard Feireisl based on joint work with P.Gwiazda, A. Śv Compressible Euler

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = 三 のへ⊙

Further observations

Remarks

■ $BV \cap L^{\infty} \hookrightarrow B^{1/p}_{\infty,p}$ for any $p \ge 1$. In particular, the energy is conserved if

 $\varrho \in BV \cap L^{\infty}((0, T) \times \Omega), \ \mathbf{u} \in B^{\alpha}_{\infty,3} \cap L^{\infty}((0, T) \times \Omega), \ \alpha > \frac{1}{3}.$

 Discontinuous (shock) solutions belong to the critical space and provide sharpness of the result

《口》 《圖》 《臣》 《臣》 三臣

Less regular solutions conserving energy

Infinitely many weak solutions, Chiodaroli, EF, Luo, Xie, Xin [2016]

For any piecewise constant initial density ϱ_0 , there is $\mathbf{u}_0 \in L^{\infty}$ such that the Euler system admits *infinitely many* weak solutions satisfying the energy equality with the energy continuous up to t = 0.

Lipschitz continuous data, Klingenberg, Markfelder [2017]

There exists Lipschitz continuous initial data such that the Euler system admits *infinitely many* weak solutions satisfying the energy equality with the energy (weakly) continuous up to t = 0.

《曰》 《圖》 《臣》 《臣》 三臣

Principle of maximal dissipation

Rewriting the energy balance

$$\partial_t E + \operatorname{div}_x(E\mathbf{u}) + \operatorname{div}_x(pu) = -\mathcal{D}$$

 $\mathcal{D} \geq 0 - \text{ dissipative defect}$

Physical solutions

The explicit solutions of the Riemann problem have $\mathcal{D}\neq 0.$

Good and bad news

- "Most wild solutions" do not maximize the dissipation defect.
- Some "classical" solutions do not maximize the *total* dissipation defect $\int_{\Omega} \mathcal{D} \, dx$ (Chiodaroli, Kreml [2014])

Measure-valued solutions?

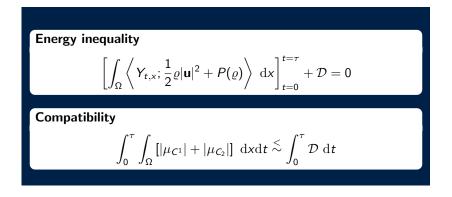
Equation of continuity

$$\begin{split} & \left[\int_{\Omega} \left\langle Y_{t,x}, \varrho \right\rangle \varphi \, \mathrm{d}x \right]_{t=0}^{\tau} \\ &= \int_{0}^{\tau} \int_{\Omega} \left(\left\langle Y_{t,x}; \varrho \right\rangle \partial_{t} \varphi + \left\langle Y_{t,x}; \varrho \mathbf{u} \right\rangle \cdot \nabla_{x} \varphi \right) \, \mathrm{d}x \mathrm{d}t + \int_{0}^{\tau} \int_{\Omega} \nabla_{x} \varphi \cdot \mu_{C_{1}} \end{split}$$

Balance of momentum

$$\begin{bmatrix} \int_{\Omega} \langle Y_{t,x}; \varrho \mathbf{u} \rangle \cdot \varphi \, \mathrm{d}x \end{bmatrix}_{t=0}^{\tau} \\ = \int_{0}^{\tau} \int_{\Omega} \left(\langle Y_{t,x}; \varrho \mathbf{u} \rangle \cdot \partial_{t} \varphi + \langle Y_{t,x}; \varrho \mathbf{u} \otimes \mathbf{u} \rangle : \cdot \nabla_{x} \varphi \right) \, \mathrm{d}x \mathrm{d}t \\ + \int_{0}^{\tau} \int_{\Omega} \langle Y_{t,x}; p(\varrho) \rangle \, \mathrm{div}_{x} \varphi \, \mathrm{d}x \, \mathrm{d}t + \int_{0}^{\tau} \int_{\Omega} \nabla_{x} \varphi : \mu_{C_{2}} \end{bmatrix}$$

Dissipation defect



MV vs weak solutions

Several reasons why to go measure-valued

- Measure valued and weak are almost "equivalent"
- Measure-valued solutions are generated by numerical schemes, they may enjoy "natural" properties

《曰》 《聞》 《臣》 《臣》

Ξ

200

Numerical experiments - [Mishra]