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based on joint work with P.Gwiazda, A. Świerczewska-Gwiazda (Warsaw), E.Wiedemann

(Hannover)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Analysis of complex fluids, Fudan University, October 13–17, 2017

The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078



Compressible Euler system

Field equations

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0

Periodic boundary conditions

Ω = TN =
(
[−1, 1]|{−1;1}

)N
Initial conditions

%(0, ·) = %0, u(0, ·) = u0



Weak solutions

Equation of continuity[∫
Ω

%ϕ dx

]τ
t=0

=

∫ τ

0

∫
Ω

(%∂tϕ+ %u · ∇xϕ) dxdt

for any ϕ ∈ C∞c ([0,T )× Ω)

Balance of momentum [∫
Ω

%u · ϕ dx

]τ
t=0

=

∫ τ

0

∫
Ω

(%u · ∂tϕ+ %u⊗ u : ·∇xϕ+ p(%)divxϕ) dx dt

for any ϕ ∈ C∞c ([0,T )× Ω;RN),



Weak solutions: Existence

Global existence for large data in 1D

The Euler system admits global-in-time weak solutions for any
bounded initial data (DiPerna, Chen et al.). The weak solutions
can be recovered as a vanishing viscosity limit of the Navier-Stokes
system (Chen and Perepelitsa)

Global existence for large data for N = 2, 3

The compressible Euler system admits infinitely many global-in-time
weak solutions for any smooth initial data (Chiodaroli, EF - based
on the work of DeLellis and Székelyhidi)



Stability of 1D solutions - hypotheses

Theorem EF, Y.Sun [2015]

γ >
N

2
, q > max {2, γ′} , 1

γ
+

1

γ′
= 1 if N = 2

q > max

{
3,

6γ

5γ − 6

}
if N = 3

Let [R,V ] be a (strong) solution of the one-dimensional
Navier-Stokes system, with the initial data belonging to the class

R0 ∈W 1,q(0, 1), R0 > 0, V0 ∈W 1,q
0 (0, 1)

Let [%,u] be a finite energy weak solution to the Navier-Stokes
system in

(0,T )× Ω, Ω = (0, 1)× T N−1,

with the initial data

%0 ∈ L∞(Ω), %0 > 0, u0 ∈ L2(Ω;R3).



Stability of 1D solutions - conclusion

Conclusion

Then∫
Ω

[
1

2
%|u− V|2 + P(%)− P ′(R)(%− R)− P(R)

]
(τ, ·) dx

≤ c(T )

∫
Ω

[
1

2
%0|u0 − V0|2 + P(%0)− P ′(R0)(%0 − R0)− P(R0)

]
dx

for a.a. τ ∈ (0,T ),

P(%) =
a

γ − 1
%γ .



Energy conservation

Energy

E =
1

2
%|u|2︸ ︷︷ ︸

kinetic energy

+ P(%)︸︷︷︸
elastic energy

, P(%) = %

∫ %

1

p(z)

z2
dz

Energy balance equation

∂tE + divx(Eu) + divx(p(%)u) = 0

Weak formulation [∫
Ω

Eϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

(E∂tϕ+ Eu · ∇xϕ+ p(%)u · ∇xϕ) dx dt

for any ϕ ∈ C∞c ([0,T )× Ω)



Admissible weak solution

Energy dissipation

∂tE + divx(Eu) + divx(p(%)u) ≤ 0

Weak formulation [∫
Ω

Eϕ dx

]t=τ

t=0

≤
∫ τ

0

∫
Ω

(E∂tϕ+ Eu · ∇xϕ+ p(%)u · ∇xϕ) dx dt

for any ϕ ∈ C∞c ([0,T )× Ω), ϕ ≥ 0



Related results on Onsager’s conjecture

Inhomogeneous incompressible Navier–Stokes system

T. M. Leslie and R. Shvydkoy.
The energy balance relation for weak solutions of the
density-dependent Navier- Stokes equations.
arXiv:1602.08527v1, 2016.

Inhomogeneous incompressible Euler system

R. M. Chen and C. Yu.
Onsager’s energy conservation for inhomogeneous Euler equations.
arXiv:1706.08506v1, 2017.



Minimal regularity

Function spaces - Besov spaces

Bα∞,p, ‖w‖Bα∞,p
≡ ‖w‖Lp + sup

ξ 6=0

‖w(·+ ξ)− w‖Lp

|ξ|α

Mollifiers

wε = w ∗ ηε, ηp =
1

εN
η
(x
ε

)
Basic estimates

‖wε − w‖Lp

<∼ εα‖w‖Bα∞,p

‖∇wε‖Lp

<∼ εα−1‖w‖Bα∞,p

Bα∞,p ∩ L∞ is algebra



Onsager’s conjecture - incompressible fluids

Constantin, E, Titi [1994]

If a velocity field u solving the incompressible Euler system belongs
to the class Bα∞,3 for α > 1

3 , then the total energy

1

2

∫
Ω

|u|2 dx

is conserved.



Energy conservation for compressible fluids

EF, Gwiazda, Swierczewska–Gwiazda, Wiedemann [2017]

Let %, u be a weak solution of the compressible Euler system
belonging to the class

u ∈ Bα∞,3((0,T )×TN), %, %u ∈ Bβ∞,3((0,T )×TN), 0 ≤ % ≤ % ≤ %,

0 ≤ α, β ≤ 1, β > max

{
1− 2α;

1− α
2

}
.

Let p ∈ C 2[%, %], p′(0) = 0 if % = 0.
Then the energy equality holds in D′((0,T )× Ω).
If, in addition, u ∈ L∞ and

sup
t∈(0,T )

[
‖%‖Bβ∞,3(TN ) + ‖%u‖Bβ∞,3(TN )

]
<∞, β > 0,

then the energy is (weakly) continuous up to t = 0.



Sketch of proof

Regularization method

Regularize the momentum equation by a space–time
convolution kernel

Use the commutator estimates

C 2 regularity of the pressure needed



Energy conservation for BV solutions

EF, Gwiazda, Swierczewska–Gwiazda, Wiedemann [2017]

Let p ∈ C 2(0,∞) ∩ C [0,∞). Let %, u be a weak solution of the
compressible Euler system belonging to the class

%, u ∈ L∞((0,T )× Ω), %(t), u(t) ∈ C ∩ BV (Ω) for a.a. t ∈ (0,T )

ess sup
t∈(0,T )

[
‖%‖C∩BV (Ω) + ‖u‖C∩BV (Ω)

]
<∞.

Then the energy equality holds in D′((0,T )× Ω) and the energy is
(weakly) continuous up to t = 0.



Sketch of proof

Regularization method

Regularize in space and time. Use Steklov averaging in time

vh =

∫ T

0

ηh(t − s)v(s) ds, ηh =
1

h
1[−h,0]

Use the commutator estimates

C 2 regularity of the pressure up to zero not needed here

Eduard Feireisl based on joint work with P.Gwiazda, A. Świerczewska-Gwiazda (Warsaw), E.Wiedemann (Hannover)Compressible Euler



Further observations

Remarks

BV ∩ L∞ ↪→ B
1/p
∞,p for any p ≥ 1. In particular, the energy is

conserved if

% ∈ BV ∩ L∞((0,T )×Ω), u ∈ Bα∞,3 ∩ L∞((0,T )×Ω), α >
1

3
.

Discontinuous (shock) solutions belong to the critical space and
provide sharpness of the result



Less regular solutions conserving energy

Infinitely many weak solutions, Chiodaroli, EF, Luo, Xie, Xin
[2016]

For any piecewise constant initial density %0, there is u0 ∈ L∞ such
that the Euler system admits infinitely many weak solutions
satisfying the energy equality with the energy continuous up to
t = 0.

Lipschitz continuous data, Klingenberg, Markfelder [2017]

There exists Lipschitz continuous initial data such that the Euler
system admits infinitely many weak solutions satisfying the energy
equality with the energy (weakly) continuous up to t = 0.



Principle of maximal dissipation

Rewriting the energy balance

∂tE + divx(Eu) + divx(pu) = −D

D ≥ 0− dissipative defect

Physical solutions

The explicit solutions of the Riemann problem have D 6= 0.

Good and bad news

“Most wild solutions” do not maximize the dissipation defect.

Some “classical” solutions do not maximize the total dissipation
defect

∫
Ω
D dx (Chiodaroli, Kreml [2014])



Measure–valued solutions?

Equation of continuity[∫
Ω

〈Yt,x , %〉ϕ dx

]τ
t=0

=

∫ τ

0

∫
Ω

(〈Yt,x ; %〉 ∂tϕ+ 〈Yt,x ; %u〉 · ∇xϕ) dxdt +

∫ τ

0

∫
Ω

∇xϕ · µC1

Balance of momentum[∫
Ω

〈Yt,x ; %u〉 · ϕ dx

]τ
t=0

=

∫ τ

0

∫
Ω

(〈Yt,x ; %u〉 · ∂tϕ+ 〈Yt,x ; %u⊗ u〉 : ·∇xϕ) dxdt

+

∫ τ

0

∫
Ω

〈Yt,x ; p(%)〉divxϕ dx dt +

∫ τ

0

∫
Ω

∇xϕ : µC2



Dissipation defect

Energy inequality[∫
Ω

〈
Yt,x ;

1

2
%|u|2 + P(%)

〉
dx

]t=τ

t=0

+D = 0

Compatibility∫ τ

0

∫
Ω

[|µC 1 |+ |µC2 |] dxdt
<∼
∫ τ

0

D dt



MV vs weak solutions

Several reasons why to go measure–valued

Measure valued and weak are almost “equivalent”

Measure–valued solutions are generated by numerical schemes,
they may enjoy “natural” properties

Numerical experiments - [Mishra]


