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INTRODUCTION

Interacting dynamical systems
Statistical physics
Graph theory
COMPLEX NETWORKS
Multivariate time series −→ networks

Nodes: measuring sites
Edges: dependence, “connectivity” measures

weighted graph
threshold → binary graph
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INTRODUCTION

Multivariate time series −→ networks
Edges: dependence, “connectivity” measure
linear cross-correlation – the measure of first choice

Dependence measures

Pearson correlation – linearity – Gaussianity
Nonlinearity? hidden connectivity patterns?

Dependence measure – connectivity −→ topology
dynamics (serial correlations)
temporal and spatial sampling (time lags)

Connectivity in various time scales
scale-specific networks
cross-scale interactions
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Nonlinearity in air temperature
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Figure 5: Average contribution of nonlinear dependences. Left: average mutual information for each location.
Middle: average nonlinear contribution to mutual information IE . Right: average nonlinear contribution
relative to total mutual information (IE/I).
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Figure 6: Dependence patterns of six locations with high relative nonlinear dependence contribution. Top:
total mutual information. Bottom: linear mutual information

To investigate the observed deviations from linear dependences in more detail, we visualize the total
and nonlinear contributions to dependence patterns in Figure 5. At first inspection one can see several well
defined areas of relatively high nonlinear contribution to dependence patterns. These are in particular an
extensive ring around the Anctarctica within the Southern Ocean, a few locations close to the North Pole
(Barentz Sea, Bering Sea, Baffin Bay, Greenland Sea) and areas in Brazil and Southwest Asia.

To understand the nonlinear dependence pattern in more detail, we select the locations with the highest
relative nonlinear dependences and visualize both their linear and nonlinear dependence pattern with respect
to all other locations, see Figure 6. For most of these areas, the nonlinear dependences are not generally
stronger, but rather include additional distant locations, in contrast with the mostly local character of linear
dependence patterns.

This might suggest the existence of long-range interactions or “teleconnections” of highly or predom-
inantly non-linear character, as discussed e.g. in (Hsieh et al, 2006). To elucidate the nature of these
long-range connections we inspected the bivariate distributions and time series of the variables. A represen-
tative example is shown in Figure 7. The shape of the bivariate distribution together with close inspection
of the time series suggests that the non-Gaussianity might be related to seasonal variability in variance of
the signal, which further differs between the two locations.

In this particular case, the variability at the first location is the highest in December to February, when
it is at its lowest at the second location and vice versa in July. Thus, the information shared by these time
series would be explainable just by the seasonal differences of dynamics and ultimately just by variation in
local solar influx.

9
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Nonlinearity in air temperature
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Figure 7: Example of apparent nonlinear coupling between remote areas. The apparent nonlinearity is
attributable to yearly cyclicity in variance, see text for details. Top: original data anomalies, middle: uni-
variately normalized anomalies, bottom: monthly variance normalized anomalies. Left column: scatterplots
of time series values, right column: variances of data for each month (black: 77 N, 45 E; white: 66 S, 85 W).
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CLIMATE NETWORKS

Multivariate time series: gridded “reanalysis data” of
atmospheric variables: air temperature, pressure, humidity,
precipitation...
Here: near-surface air temperature anomalies
subtraction of seasonal means (mean Jan, mean Feb ...)
removal of the annual cycle
= fluctuations around seasonal means
grid 2.5◦ x 2.5◦ −→ 104 nodes
Pearson correlation −→ weighted network
thresholding −→ binary network
−→ graph-theoretical analysis
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CLIMATE NETWORKS

absolute correlations Ci,j = |ci,j |
adjacency matrix Ai,j = 1 iff Ci,j > cT

threshold cT chosen to get network density % = 0.005
degree centrality ki =

∑NN
j=1 Ai,j

area weighted connectivity AWCi =
∑NN

j=1 Ai,j cos(λj )∑NN
j=1 cos(λj )

λj – latitude of node j
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Connectivity vs. dynamics

Area Weighted Connectivity % = 0.005 for

NCEP/NCAR SAT anomalies – absolute correlations
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Connectivity vs. dynamics

stochastic process {Xi}:
indexed sequence of random variables, characterized by
p(x1, . . . , xn)

entropy rate of {Xi} is defined as

h = lim
n→∞

1
n

H(X1, . . . ,Xn)

dynamical systems: Kolmogorov-Sinai entropy
for a Gaussian process with spectral density function f (ω)

hG =
1

2π

∫ π

−π
log f (ω)dω
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Connectivity vs. dynamics
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Connectivity vs. dynamics

SURROGATE DATA
generated by a model
obtained by constrained randomization of the original data

IID (scrambled) surrogate data
FT (AAFT, IAAFT ...) surrogate data
wavelet
recurrence
constrained randomization ...

FT surrogates: preserve magnitudes of Fourier coefficients
(spectra), randomize Fourier phases
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Significance testing using surrogate data

Use of bootstrap-like strategy (surrogate time series)
Ideally preserve all properties except tested (coupling)
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Connectivity vs. dynamics

- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4
0 . 0 0

0 . 0 1

0 . 0 2

- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4
0 . 0 0

0 . 0 1

0 . 0 2

- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4
0 . 0 0

0 . 0 1

0 . 0 2

- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4
0 . 0 0

0 . 0 1

0 . 0 2

SUR
RO

GA
TE 

HIS
TOG

RAM

C O R R E L A T I O N

Surrogate cross-correlation for high-ER (green, blue) and
low-ER (orange, red) NCEP/NCAR grid-points. FT (green,
orange), AAFT (blue, red).
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Connectivity vs. dynamics

Mean absolute correlation of NCEP/NCAR SAT anomalies

with FT surrogate data
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Mutual information

two variables X and Y :
p(x), H(X), p(y), H(Y), joint PDF p(x,y), joint entropy H(X,Y)
mutual information

I(X ; Y ) = H(X ) + X (Y )− H(X ,Y )

static p(x) – entropy H(X)
characterization of dynamics – entropy rate

static joint p(x,y) – mutual information I(X;Y) (correlation)
similarity of dynamics – mutual information rate
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Mutual information rate

stochastic processes {Xi}, {Yi}, characterized by
p(x1, . . . , xn) and p(y1, . . . , yn)

mutual information rate

i(Xi ; Yi) = lim
n→∞

1
n

I(X1, . . . ,Xn; Y1, . . . ,Yn)
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Mutual information rate

for Gaussian stochastic processes {Xi}, {Yi},
characterized by power spectral densities (PSD) ΦX (ω),
ΦY (ω) and cross PSD ΦX ,Y (ω)

mutual information rate

i(Xi ; Yi) = − 1
4π

∫ 2π

0
log(1− |γX ,Y (ω)|2)dω

magnitude-squared coherence

|γX ,Y (ω)|2 =
|ΦX ,Y (ω)|2

ΦX (ω)ΦY (ω)
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Gaussian ER and nonlinear DS
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Gaussian ER and nonlinear DS
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Route to synchronization

unidirectionally coupled Rössler systems

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2

ẋ3 = b1 + x3(x1 − c1)

ẏ1 = −ω2y2 − y3 + ε(x1 − y1)

ẏ2 = ω2y1 + a2 y2

ẏ3 = b2 + y3(y1 − c2)

a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 = 10.0
frequencies ω1 = 1.015, ω2 = 0.985.
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Route to synchronization and MIR, ER
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Route to synchronization and MIR, ER

Synchronization as adjustment of information rates: Detection from bivariate time series

Milan Paluš
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod voda´renskou veˇžı́ 2, 182 07 Prague 8, Czech Republic

Vladimı́r Komárek, Zbyněk Hrnčı́ř, and Katalin Sˇ těrbová
Clinic of Paediatric Neurology, 2nd Medical Faculty of Charles University, V u´valu 84, 150 06 Prague 5–Motol, Czech Republic

~Received 5 July 2000; revised manuscript received 4 December 2000; published 28 March 2001!

An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. ‘‘Coarse-grained’’ information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a ‘‘direction of information flow’’ between coupled systems, i.e., to
discern the driving from the driven~response! system, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and ‘‘directions of information flow’’ among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.

DOI: 10.1103/PhysRevE.63.046211 PACS number~s!: 05.45.Tp, 05.45.Xt, 89.70.1c

I. INTRODUCTION

During the last decade there has been considerable inter-
est in the study of the cooperative behavior of coupled cha-
otic systems@1#. Synchronization phenomena have been ob-
served in many physical and biological systems, even in
cases where the chaotic nature of the scrutinized processes
has not been proven or is in doubt, e.g., in the case of car-
diorespiratory synchronization@2,3# or synchronization of
neural signals@4–7#. In such physiological and neurophysi-
ological systems it is important not only to detect synchro-
nized states, but also to identify causal~drive-response! re-
lationships between studied~sub!systems. Although several
methods have been proposed and successfully applied, espe-
cially in the field of neurophysiology@4–7#, this problem is
far from being trivial and some claims of successful detec-
tion of the causal relationships are based on contradictory
assumptions@4,5#. Also, measures of synchronization based
on infinitesimal properties and performing well on artificial
systems can fail when applied to noisy experimental data.
We propose to start a study of synchronization in such data
with statistical, coarse-grained measures with a basis in in-
formation theory, which could provide an indication of syn-
chronization as well as of causal relationships if present in
the systems scrutinized.

In Sec. II the definitions of entropy, information, and in-
formation rates are briefly reviewed. More details can be
found, e.g., in Ref.@8#. Then, the concept of ‘‘coarse-grained
entropy rates,’’ originally introduced in Ref.@12# is summa-
rized and extended by defining the coarse-grained informa-
tion rates~CIR’s! and their mutual and conditional versions.
In Sec. III the CIR’s are applied to bivariate time series
generated by unidirectionally coupled chaotic systems
~Hénon maps, Ro¨ssler and Lorenz systems! in order to dem-
onstrate how the CIR’s can detect synchronization and drive-
response relationships. An application of the approach intro-
duced is demonstrated in Sec. IV by a case study of

electroencephalogram~EEG! recordings of an epileptic pa-
tient. A conclusion is given in Sec. V.

II. COARSE-GRAINED INFORMATION RATES

Consider discrete random variablesX and Y with sets of
valuesJ andY, respectively, probability distribution func-
tions ~PDF’s! p(x) and p(y), and joint PDFp(x,y). The
entropy H(X) of a single variable, sayX, is defined as

H~X!52 (
xPJ

p~x!log p~x!, ~1!

and thejoint entropy H(X,Y) of X andY is

H~X,Y!52 (
xPJ

(
yPY

p~x,y!log p~x,y!. ~2!

The conditional entropy H(YuX) of Y given X is

H~YuX!52 (
xPJ

(
yPY

p~x,y!log p~yux!. ~3!

The average amount of common information, contained in
the variablesX andY, is quantified by themutual information
I (X;Y), defined as

I ~X;Y!5H~X!1H~Y!2H~X,Y!. ~4!

The conditional mutual informationI (X;YuZ) of the vari-
ablesX, Y given the variableZ is given as

I ~X;YuZ!5H~XuZ!1H~YuZ!2H~X,YuZ!. ~5!

For Z independent ofX andY we have

I ~X;YuZ!5I ~X;Y!. ~6!

PHYSICAL REVIEW E, VOLUME 63, 046211

1063-651X/2001/63~4!/046211~6!/$20.00 ©2001 The American Physical Society63 046211-1
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Route to synchronization and MIR, ER
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity % = 0.005 for

NCEP/NCAR SAT anomalies – absolute correlations
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity % = 0.005 for

NCEP/NCAR SAT anomalies – mutual information rate
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Scale-specific climate network, AWC, % = 0.005

NCEP/NCAR SAT anomalies – mutual information rate

scale/period 4–6 years
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Scale-specific climate network, AWC, % = 0.005

NCEP/NCAR SAT anomalies – mutual information rate

scale/period 7–8 years
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Scale-specific climate network, scale/period 7–8 years

Top: AWC, % = 0.005

Bottom NAO – SAT MIR coherence
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Scale-specific climate network, AWC, % = 0.005

NCEP/NCAR SAT anomalies – mutual information rate

scale/period 7–8 years and Gulf stream
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Phase dynamics approach for multiscale processes

FILTERING −→ HILBERT TRANSFORM
COMPLEX CONTINUOUS WAVELET TRANSFORM
ANALYTIC SIGNAL

ψ(t) = s(t) + j ŝ(t) = A(t)ejφ(t) (1)

INSTANTANEOUS PHASE

φ(t) = arctan
ŝ(t)
s(t)

(2)

INSTANTANEOUS AMPLITUDE

A(t) =
√

ŝ(t)2 + s(t)2 (3)
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CROSS-SCALE INTERACTIONS

Cross-frequency interactions

phase–phase
amplitude–amplitude
phase–amplitude

neurophysiology: phase of slow oscillations (δ, θ)
modulates the amplitude of fast oscillations (γ)
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE –> AMPLITUDE INTERACTIONS
in about a century long records of daily near-surface air
temperature records from European stations

phase φ1 of slow oscillations (around 10 year period)
amplitude A2 of higher-frequency variability (periods 5
years and less)
I(φ1(t); A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))

testing using surrogate data approach

Fourier transform (FT) surrogate data (Theiler et al.)
multifractal (MF) surrogate data (Paluš)
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CONCLUSION

Interactions within different scales – scale specific
networks
Interactions across scales

cross-scale network in a site
cross-scale (tele)connections between sites/nodes

Complex multigraphs with nodes connected by a number
of links within and across scales
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CONCLUSION
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