# EXPONENTIAL DECAY OF A SOLUTION FOR SOME PARABOLIC EQUATION INVOLVING A TIME NONLOCAL TERM 

Kota Kumazaki, Tomakomai

(Received September 30, 2013)


#### Abstract

We consider the large time behavior of a solution of a parabolic type equation involving a nonlocal term depending on the unknown function. This equation is proposed as a mathematical model of carbon dioxide transport in concrete carbonation process, and we proved the existence, uniqueness and large time behavior of a solution of this model. In this paper, we derive the exponential decay estimate of the solution of this model under restricted boundary data and initial data.


Keywords: large time behavior; exponential decay; nonlinear parabolic equation
MSC 2010: 35B40, 35K55

## 1. Introduction

In this paper, we consider the following initial boundary value problem for a parabolic type equation involving a nonlocal term depending on the unknown function:

$$
\begin{gather*}
\frac{\partial}{\partial t}\left[\phi\left(1-\mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau}\right) u\right]-\Delta u=-w_{0} u \mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau \quad \text { in } Q(T):=(0, T) \times \Omega} \begin{array}{c}
u=u_{b} \quad \text { on } S(T):=(0, T) \times \Gamma \\
u(0)=u_{0} \quad \text { in } \Omega
\end{array} \tag{1.1}
\end{gather*}
$$

Here $\Omega$ is a bounded domain of $\mathbb{R}^{3}$ with a smooth boundary $\Gamma=\partial \Omega, T>0$ is a fixed finite number, $\phi$ is a function in $C^{1}(\mathbb{R})$ satisfying $\phi_{0} \leqslant \phi(r) \leqslant 1$ for $r \in \mathbb{R}$ where $\phi_{0}$ is a positive constant, $u_{b}$ is a given function on $Q(T)$, and $w_{0}$ and $u_{0}$ are given functions on $\Omega$.

The equation (1.1) is a diffusion equation derived from carbon dioxide transport in concrete carbonation process proposed by Aiki and Kumazaki in [1], [2]. The detailed
derivation is presented in [5], [6]. Physically, $\Omega$ is a domain occupied by concrete, and the unknown function $u=u(t, x)$ represents the concentration of carbon dioxide in water at a time $t$ and a position $x \in \Omega$. Also, $\phi=\phi(z)$ represents the porosity, which is the ratio of the volume of the voids inside the concrete to the volume of the whole concrete and $z=1-\mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau}$ is the ratio of the volume of consumed calcium hydroxide to the volume of the total calcium hydroxide.

Concerning a mathematical analysis of concrete carbonation, Aiki and Kumazaki [1], [2] proposed a mathematical model of moisture transport which involves the hysteresis operator $\mathcal{S}$, and proved existence and uniqueness of a solution of the model, uniqueness being proved only for the one-dimensional case. Also, in [5] we proved the existence and uniqueness of a global solution of $(\mathrm{P})=\{(1.1),(1.2),(1.3)\}$, and in [6] we showed that the solution converges to a solution $u_{\infty}$ of the steady state problem

$$
\begin{gather*}
-\Delta u_{\infty}+\phi^{\prime}\left(1-w_{\infty}\right) w_{\infty} u_{\infty}^{2}=-w_{0} u_{\infty} w_{\infty} \quad \text { in } \Omega,  \tag{1.4}\\
u_{\infty}=u_{b \infty} \text { on } \Gamma, \tag{1.5}
\end{gather*}
$$

where $u_{b \infty}$ is a given function in $\Omega$ with $u_{b \infty} \geqslant 0$ in $\Omega$ which is the limit function of $u_{b}$ as $t \rightarrow \infty$, and $w_{\infty}=w_{\infty}(x)$ is the limit of $w(x, t):=\mathrm{e}^{-\int_{0}^{t} u(x, \tau) \mathrm{d} \tau}$ as $t \rightarrow \infty$, namely, $w(x, t) \rightarrow w_{\infty}(x)$ as $t \rightarrow \infty$ for each $x \in \Omega$. Moreover, we proved that if $u_{b}$ does not vanish identically on $\Gamma$, the solution $u_{\infty}$ satisfies the Dirichlet problem $-\Delta u_{\infty}=0$ in $\Omega, u_{\infty}=u_{b}$ on $\Gamma$, and $w_{\infty}=0$ a.e. on $\Omega$.

The main aim of this paper is to establish the following exponential decay of a solution:

$$
\begin{equation*}
\left|u-u_{\infty}\right|_{L^{2}(\Omega)}^{2} \leqslant C \mathrm{e}^{-\kappa t} \quad \text { for sufficiently large } t \tag{1.6}
\end{equation*}
$$

where $C$ and $\kappa$ are positive constants. As mentioned above, we assume that the solution of $(\mathrm{P})$ converges to the solution of the steady state problem; however, under the assumption that $u_{b} \geqslant 0$ in $\Omega$ and $u_{0} \geqslant 0$ in $\Omega$, we could not show the convergence rate as in (1.6). The key lemma for the proof of this decay is to prove that

$$
\begin{equation*}
u(t) \geqslant \kappa \quad \text { for sufficiently large } t \tag{1.7}
\end{equation*}
$$

where $\kappa$ is a positive constant. Accordingly, in this paper we assume that $u_{b}=$ $u_{b}(x) \geqslant \kappa$ in $\Omega$ for a positive constant $\kappa$. In order to obtain the uniform continuity of a solution, we derive higher regularity of the solution $u$ (Lemma 3.1), and show that the $H^{2}(\Omega)$ estimate independent of $t$ for the solution $u$ holds (Lemma 3.3). By this result and the fact that $u_{\infty} \geqslant \kappa$ in $\Omega$, we show that (1.7) holds. Finally, by using (1.7) we prove (1.6).

## 2. Main Result

In this paper we use the following notation. In general, for a Banach space $X$, we denote by $|\cdot|_{X}$ its norm. In particular, we denote $H=L^{2}(\Omega)$, and the norm and the inner product of $H$ are simply denoted by $|\cdot|_{H}$ and $(\cdot, \cdot)_{H}$, respectively. Also, $H^{1}(\Omega)$, $H_{0}^{1}(\Omega)$ and $H^{2}(\Omega)$ are the usual Sobolev spaces.

Throughout this paper we assume the following (A1)-(A5):
(A1) $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with a smooth boundary $\Gamma$.
(A2) $\phi$ is a non-decreasing function in $C^{2}(\mathbb{R})$ such that $\phi(0)=\phi_{0}$ and $\phi^{\prime}(0)=0$, $c_{0}=\sup _{r \in \mathbb{R}} \phi^{\prime}(r)+\sup _{r \in \mathbb{R}}\left|\phi^{\prime \prime}(r)\right|<\infty$ and $\phi_{0} \leqslant \phi(r) \leqslant 1$ for $r \in \mathbb{R}$ where $\phi_{0}$ is a positive number.
(A3) $u_{b} \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$ with $0 \leqslant u_{b} \leqslant \kappa_{0}$ in $\Omega$ where $\kappa_{0}$ is a positive constant.
(A4) $u_{0} \in H^{2}(\Omega) \cap L^{\infty}(\Omega), u_{0} \geqslant 0$ in $\Omega$ and $u_{0}=u_{b}$ on $\partial \Omega$.
(A5) $w_{0} \in L^{\infty}(\Omega)$ and $w_{0}>0$ in $\Omega$.
Next, we define a solution of $(\mathrm{P})$ on $[0, T]$ in the following way:
Definition 2.1. Let $u$ be a function on $Q(T)$ for $0<T<\infty$. We call a function $u$ a solution of $(\mathrm{P})$ on $[0, T]$ if the following conditions (S1)-(S4) hold:
(S1) $u \in W^{1,2}(0, T ; H) \cap L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right), u \geqslant 0$ a.e. on $Q(T)$.
(S2) $\left[\phi\left(1-\mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau}\right) u\right]_{t}-\Delta u=-w_{0} u \mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau}$ a.e. in $Q(T)$.
(S3) $u=u_{b}$ a.e. on $S(T)$.
(S4) $u(0)=u_{0}$ in $\Omega$.
Our first and second results show the existence and uniqueness of a solution, and the large time behavior of the solution, respectively.

Theorem 2.1. If (A1)-(A5) hold, then for any $T>0$, ( P ) has one and only one solution $u$ on $[0, T]$ such that $0 \leqslant u \leqslant u^{*}:=\max \left\{\left|u_{0}\right|_{L^{\infty}(\Omega)}, \kappa_{0}\right\}$ a.e. on $Q(T)$, where $u_{0}$ is the initial data and $\kappa_{0}$ is the same constant as in (A3).

Theorem 2.2. Assume (A1)-(A5) hold, and let $u$ and $u_{\infty}$ be a solution of (P) and $(\mathrm{P})_{\infty}:=\{(1.4),(1.5)\}$, respectively. Then

$$
u(t) \rightarrow u_{\infty} \quad \text { strongly in } H \text { and weakly in } H^{1}(\Omega) \text { as } t \rightarrow \infty .
$$

Moreover, if $u_{b}$ does not vanish identically on $\Gamma$, then $u_{\infty}$ is a solution of the steady state problem $-\Delta u_{\infty}=0$ a.e. in $\Omega, u_{\infty}=u_{b}$ a.e. on $\Gamma$. Also, $w_{\infty}=0$ a.e. on $\Omega$.

Here we note how much the concrete is carbonated finally. In Theorem 2.2, we showed that $w_{\infty}=0$ a.e. on $\Omega$. Therefore, we see that $z=1-\mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau} \rightarrow 1$
as $t \rightarrow \infty$ for a.e. $x \in \Omega$. Since $z$ is the ratio of the volume of consumed calcium hydroxide to the volume of the total calcium hydroxide, $z=1$ a.e. on $\Omega$ implies that calcium hydroxide is fully consumed almost everywhere in the concrete. Accordingly, finally, we see that the concrete is carbonated almost everywhere.

Theorems 2.1 and 2.2 are already proved in [5], [6] so that we omit the proof. Now, we state the main result concerning the exponential decay estimate.

Theorem 2.3. Assume (A1)-(A5) hold, and let $u$ and $u_{\infty}$ be solutions of (P) and $(\mathrm{P})_{\infty}$, respectively. In addition, we assume that $u_{b} \geqslant \kappa$ in $\Omega$ for a positive constant $\kappa$ satisfying $\left(\phi_{0} C_{P}^{2}\right)^{-1}>\kappa$ where $C_{P}$ is a positive constant in Poincaré's inequality. Then there exists $t^{*}>0$ such that

$$
\left|u(t)-u_{\infty}\right|_{H}^{2} \leqslant C \mathrm{e}^{-\kappa t} \quad \text { for } t>t^{*}
$$

where $C$ is a positive constant.

## 3. Proof of Theorem 2.3

In the rest of this paper, we use the following notation: For the solution $u$ of $(\mathrm{P})$,

$$
w(t)=\mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau}, \quad \alpha(t)=\phi\left(1-\mathrm{e}^{-\int_{0}^{t} u(\tau) \mathrm{d} \tau}\right)=\phi(1-w(t)) \quad \text { for } t>0 .
$$

First, we show the following higher regularity result for the solution $u$ of (P).
Lemma 3.1. For $0<T<\infty$, (P) has at least one solution $u$ on $[0, T]$ such that

$$
\left\{\begin{array}{l}
u_{t} \in C([0, T] ; H) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \\
t^{1 / 2} u_{t} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \\
t^{1 / 2} u_{t t} \in L^{2}(0, T ; H)
\end{array}\right.
$$

Proof. Let $u$ be the solution of (P), and set $l=-w_{0} u(t) w(t)-\alpha_{t}(t) u(t)$. Then by the regularity of $u$ we see that $l_{t} \in L^{2}(0, T ; H)$. Now, we consider the following problem (AP)

$$
(\mathrm{AP})\left\{\begin{array}{l}
\alpha(t) Z_{t}(t)-\Delta Z(t)+\alpha_{t}(t) Z(t)=l_{t}(t) \quad \text { in } Q(T), \\
Z(t)=0 \text { on } S(T) \\
Z(0)=z_{0}:=\frac{1}{\phi_{0}}\left(\Delta u_{0}-w_{0} u_{0}\right) \quad \text { in } \Omega
\end{array}\right.
$$

where $\phi_{0}$ is the same as in (A2). Here, we remark that $\alpha z_{t}+\alpha_{t} z=(\alpha z)_{t}$ and $\alpha$, $\alpha_{t} \in L^{\infty}(Q(T))$. For $z_{0} \in H$ we can take a sequence $\left\{z_{0, n}\right\} \subset H_{0}^{1}(\Omega)$ such that
$z_{0, n} \rightarrow z_{0}$ in $H$ as $n \rightarrow \infty$. Then, for each $n \in \mathbb{N}$, by using a classical result on parabolic equations (for example [7]) we can see that the problem (AP) $)_{n}$ with $z_{0}$ in (AP) replaced by $z_{0, n}$ has a unique solution $z_{n} \in C([0, T] ; H) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ with $z_{n} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $\left(z_{n}\right)_{t} \in L^{2}(0, T ; H)$. Now, for $n, m \in \mathbb{N}$, we see that

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} \alpha(t)\left|z_{n}(t)-z_{m}(t)\right|^{2} \mathrm{~d} x+\left|\nabla\left(z_{n}(t)-z_{m}(t)\right)\right|_{H}^{2}  \tag{3.1}\\
& \quad \leqslant \frac{1}{2}\left|\alpha_{t} / \alpha\right|_{L^{\infty}(Q(T))} \int_{\Omega} \alpha(t)\left|z_{n}(t)-z_{m}(t)\right|^{2} \mathrm{~d} x \quad \text { for } 0 \leqslant t \leqslant T
\end{align*}
$$

Hence, Gronwall's lemma implies that $\left\{z_{n}\right\}$ is a Cauchy sequence in $C([0, T] ; H) \cap$ $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ so that there exists $z \in C([0, T] ; H) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ such that $z_{n} \rightarrow z$ in $C([0, T] ; H) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ as $n \rightarrow \infty$. Therefore, by [3], Chapter 4, or [4], Chapter 1, it holds that $t^{1 / 2} z \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $t^{1 / 2} z_{t} \in L^{2}(0, T ; H)$. For $\varphi \in C_{0}^{\infty}(\Omega)$, by integrating over $[0, t]$ after multiplying by $\varphi$ the equation of (AP) $n$ and letting $n \rightarrow \infty$, we have

$$
\int_{\Omega}\left(\alpha(t) Z(t)-\phi_{0} z_{0}\right) \varphi \mathrm{d} x+\int_{\Omega} \nabla\left(\int_{0}^{t} Z(\tau) \mathrm{d} \tau\right) \cdot \nabla \varphi \mathrm{d} x=\int_{\Omega}(l(t)-l(0)) \varphi \mathrm{d} x
$$

Now, we introduce a new variable

$$
\widetilde{u}(t):=\int_{0}^{t} Z(\tau) \mathrm{d} \tau+u_{0} .
$$

Then, due to $z_{0}=\left(1 / \phi_{0}\right)\left(\Delta u_{0}-w_{0} u_{0}\right)$ and $l(0)=-w_{0} u_{0}$, we have

$$
\int_{\Omega} \alpha(t) \widetilde{u}_{t}(t) \varphi \mathrm{d} x+\int_{\Omega} \nabla \widetilde{u}(t) \cdot \nabla \varphi \mathrm{d} x=\int_{\Omega} l(t) \varphi \mathrm{d} x \quad \text { for } \varphi \in C_{0}^{\infty}(\Omega)
$$

Since we can see from (1.1) that the above equality with $\widetilde{u}$ replaced by $u$ holds, we have

$$
\int_{\Omega} \alpha(t)\left(\widetilde{u}_{t}(t)-u_{t}(t)\right) \varphi \mathrm{d} x+\int_{\Omega} \nabla(\widetilde{u}(t)-u(t)) \cdot \nabla \varphi \mathrm{d} x=0 \quad \text { for } \varphi \in C_{0}^{\infty}(\Omega)
$$

Similarly to (3.1), by taking $\varphi=u(t)-\widetilde{u}(t)$ in this equation for $t>0$, Gronwall's inequality implies that $\widetilde{u}=u$ so that Lemma 3.1 holds.

Now we note the global estimate of a solution $u$ obtained in [6].
Lemma 3.2. Let $u$ be the solution of (P). Then $u_{t} \in L^{2}(0, \infty ; H), \nabla u \in$ $L^{2}(0, \infty ; H)$ and $\Delta u \in L^{2}(0, \infty ; H)$.

By Lemmas 3.1 and 3.2 we obtain the estimate for the norm of a solution in $H^{2}(\Omega)$.

Lemma 3.3. Let $\delta_{0}$ be any positive constant. Then there exists a positive constant $C$ depending only on $\delta$ such that

$$
\sup _{t \geqslant \delta_{0}}|u(t)|_{H^{2}(\Omega)} \leqslant C .
$$

Proof. Let $s$ and $s_{1}$ be any positive numbers with $s<s_{1}<s+1$. Then, for $t \in\left[s, s_{1}\right]$, multiplying (1.1) by $(t-s) u_{t}$, we have

$$
\frac{\phi_{0}}{2}(t-s)\left|u_{t}(t)\right|_{H}^{2}+\frac{\mathrm{d}}{\mathrm{~d} t}(t-s)|\nabla u(t)|_{H}^{2} \leqslant C_{1}(t-s)\left(u(t), w^{2}(t)\right)_{H}+|\nabla u(t)|_{H}^{2},
$$

where $C_{1}=\left(c_{0}^{2}\left(u^{*}\right)^{3}+\left|w_{0}\right|_{L^{\infty}(\Omega)}^{2} u^{*}\right) / \phi_{0}$. Here we note that

$$
\begin{equation*}
(t-s)\left(u(t), w^{2}(t)\right)_{H}=-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left[(t-s)|w(t)|_{H}^{2}\right]+\frac{1}{2}|w(t)|_{H}^{2} . \tag{3.2}
\end{equation*}
$$

Therefore, we have

$$
\frac{\phi_{0}}{2}(t-s)\left|u_{t}(t)\right|_{H}^{2}+\frac{\mathrm{d}}{\mathrm{~d} t}\left[(t-s)|\nabla u(t)|_{H}^{2}+\frac{C_{1}}{2}(t-s)|w(t)|_{H}^{2}\right] \leqslant|\nabla u(t)|_{H}^{2}+\frac{C_{1}}{2}|w(t)|_{H}^{2} .
$$

By integrating over [ $s, s_{1}$ ] we obtain

$$
\begin{equation*}
\frac{\phi_{0}}{2} \int_{s}^{s_{1}}(t-s)\left|u_{t}(t)\right|_{H}^{2} \mathrm{~d} t \leqslant \int_{s}^{s_{1}}|\nabla u(t)|_{H}^{2} \mathrm{~d} t+\frac{C_{1}}{2}|\Omega| \quad \text { for } s<s_{1} \leqslant s+1 \tag{3.3}
\end{equation*}
$$

Next, we differentiate (1.1) with respect to $t$ and multiply the result by $(t-s) u_{t}$ to obtain

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left[(t-s) \int_{\Omega} \alpha(t)\left|u_{t}(t)\right|^{2} \mathrm{~d} x\right]+\left(\alpha_{t t} u(t)+\frac{3}{2} \alpha_{t}(t) u_{t}(t),(t-s) u_{t}(t)\right)_{H}  \tag{3.4}\\
&+(t-s)\left|\nabla u_{t}(t)\right|_{H}^{2} \leqslant\left(-w_{0} u_{t}(t) w(t)-w_{0} u(t) w_{t}(t),(t-s) u_{t}(t)\right)_{H} \\
&+\frac{1}{2}(1-s) \int_{\Omega} \alpha(t)\left|u_{t}(t)\right|^{2} \mathrm{~d} x .
\end{align*}
$$

Note that $\alpha_{t t}=\phi^{\prime \prime}(w u)^{2}-\phi^{\prime} w u^{2}+\phi^{\prime} w u_{t}$ and that $\left(\phi^{\prime} w u_{t},(t-s) u_{t}\right)_{H} \geqslant 0,\left(\alpha_{t} u_{t}\right.$, $\left.(t-s) u_{t}\right)_{H} \geqslant 0,\left(w_{0} u_{t} w,(t-s) u_{t}\right) \geqslant 0$ and

$$
(t-s)\left|\left(\left(\phi^{\prime \prime}\right)^{2},(w u)^{4}\right)_{H}\right|+(t-s)\left|\left(\left(\phi^{\prime}\right)^{2},\left(w u^{2}\right)^{2}\right)_{H}\right| \leqslant C_{2}(t-s)\left(u, w^{2}\right)_{H}
$$

where $C_{2}$ is a positive constant depending on $c_{0}$ and $u^{*}$. By virtue of $w_{t}(t)=$ $-u(t) w(t)$ for $t>0,(3.2),(3.4)$ and using Young's inequality, we have

$$
\begin{gathered}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left[(t-s) \int_{\Omega} \alpha(t)\left|u_{t}(t)\right|^{2} \mathrm{~d} x\right]+C_{3} \frac{\mathrm{~d}}{\mathrm{~d} t}\left[(t-s)|w(t)|_{H}^{2}\right]+(t-s)\left|\nabla u_{t}(t)\right|_{H}^{2} \\
\leqslant \frac{3}{2}(t-s)\left|u_{t}(t)\right|_{H}^{2}+\frac{1}{2}\left|u_{t}(t)\right|_{H}^{2}+C_{3}|w(t)|_{H}^{2}
\end{gathered}
$$

where $C_{3}=C_{2} / 2+\left(\left|w_{0}\right|_{L^{\infty}(\Omega)}^{2}\left(u^{*}\right)^{3}\right) / 2$. Integrating this result over $[s, t]$ with $t \in$ [ $s, s_{1}$ ] and adding (3.3), we derive

$$
\begin{align*}
\frac{\phi_{0}}{2}(t-s)\left|u_{t}(t)\right|_{H}^{2} & \leqslant \frac{3}{\phi_{0}}\left(\int_{s}^{s_{1}}|\nabla u(\tau)|_{H}^{2} \mathrm{~d} \tau+\frac{C_{1}}{2}|\Omega|\right)  \tag{3.5}\\
& +\frac{1}{2} \int_{s}^{s_{1}}\left|u_{t}(\tau)\right|_{H}^{2} \mathrm{~d} \tau+C_{3}|\Omega| \quad \text { for } 0 \leqslant s \leqslant t<s_{1} \leqslant s+1
\end{align*}
$$

By Lemma 3.2 and (3.5) we see that there exists a positive constant $C$ such that

$$
\begin{equation*}
\sup _{s \leqslant t \leqslant s_{1}}(t-s)\left|u_{t}(t)\right|_{H}^{2} \leqslant C \quad \text { for any } s \text { and } s_{1} \text { with } 0 \leqslant s<s_{1} \leqslant s+1 \text {. } \tag{3.6}
\end{equation*}
$$

Now, we complete the proof of Lemma 3.3. Multiplying (1.1) by $(t-s)(-\Delta u)$, we have

$$
\begin{aligned}
\frac{1}{4}(t-s)|\Delta u(t)|_{H}^{2} \leqslant & (t-s)\left|u_{t}(t)\right|_{H}^{2}+\left|\alpha_{t}\right|_{L^{\infty}(Q(T))}^{2}(t-s)|u(t)|_{H}^{2} \\
& +\left|w_{0}\right|_{L^{\infty}(\Omega)}^{2}|u(t) w(t)|_{H}^{2}
\end{aligned}
$$

for any $s$ and $t$ with $0 \leqslant s<t \leqslant s_{1} \leqslant s+1$. Therefore, from (3.6) we have that $\sup _{s \leqslant t \leqslant s_{1}}(t-s)|\Delta u|_{H}^{2}$ is bounded for any $s$ and $s_{1}$ with $0 \leqslant s<s_{1} \leqslant s+1$. Finally, by taking $s_{1}=s+\tau$ with $0<\tau \leqslant \min \left(1, \delta_{0}\right)$ for any positive constant $\delta_{0}$, we have that $\sup _{t \geqslant \delta_{0}}|\Delta u|_{H}$ is bounded, which implies that Lemma 3.2 holds.

Pro of of Theorem 2.3. By Lemma 3.2 and Theorem 2.2, we see that $u \rightarrow u_{\infty}$ weakly in $H^{2}(\Omega)$ as $t \rightarrow \infty$. Therefore, by the compact embeddings we have that $u \rightarrow u_{\infty}$ in $C(\bar{\Omega})$ as $t \rightarrow \infty$. Now we show that $u_{\infty} \geqslant \kappa$ a.e. on $\Omega$. Since $u_{\infty}$ satisfies $-\Delta u_{\infty}=0$ a.e. in $\Omega$ and $u_{\infty}=u_{b}$ a.e. on $\Gamma$, multiplying the equation by $-\left[-u_{\infty}+\kappa\right]^{+}$and using $u_{b} \geqslant \kappa$, we have $\left|\left[-u_{\infty}+\kappa\right]^{+}\right|_{H}^{2}=0$ so that $u_{\infty} \geqslant \kappa$ a.e. on $\Omega$. From the convergence in $C(\bar{\Omega})$ and $u_{\infty} \geqslant \kappa$ in $\Omega$ we see that there exists a positive number $t^{*} \geqslant \delta_{0}$ such that
(3.7) $u(t)=u(t)-u_{\infty}+u_{\infty} \geqslant-\left|u(t)-u_{\infty}\right|+u_{\infty} \geqslant-\frac{\kappa}{2}+\kappa=\frac{\kappa}{2} \quad$ on $\Omega$ for $t>t^{*}$.

Since $u$ and $u_{\infty}$ are solutions of $(\mathrm{P})$ and $(\mathrm{P})_{\infty}$, respectively, we have

$$
\alpha u_{t}(t)+\alpha_{t}\left(u(t)-u_{\infty}\right)-\Delta\left(u(t)-u_{\infty}\right)=-w_{0} u(t) w(t)-\alpha_{t} u_{\infty} \quad \text { in } \Omega \text { for } t>0
$$

Multiplying the equation by $u-u_{\infty}$, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} \alpha(t)\left|u(t)-u_{\infty}\right|^{2} \mathrm{~d} x+\frac{1}{2}\left|\nabla\left(u(t)-u_{\infty}\right)\right|_{H}^{2} \leqslant C_{4}|w(t)|_{H}^{2} \tag{3.8}
\end{equation*}
$$

where $C_{P}$ is the positive constant in Poincaré's inequality and $C_{4}=C_{P}^{2}\left(\left|w_{0}\right|_{L}^{\infty}\left(u^{*}\right)^{2}\right.$ $\left.|\Omega|+3 c_{0}^{2}\left(u^{*}\right)^{4}\right)$. Here, we note that (3.7) yields
(3.9) $\int_{\Omega} w^{2}(t) \mathrm{d} x=\int_{\Omega} \mathrm{e}^{-2 \int_{0}^{t^{*}} u(\tau) \mathrm{d} \tau} \mathrm{e}^{-2 \int_{t^{*}}^{t} u(\tau) \mathrm{d} \tau} \leqslant \int_{\Omega} \mathrm{e}^{-2 \int_{t^{*}}^{t} u(\tau) \mathrm{d} \tau} \leqslant \mathrm{e}^{-\kappa\left(t-t^{*}\right)}|\Omega|$,
where $|\Omega|$ is the volume of $\Omega$. By substituting (3.9) in (3.8) and setting $I(t)=$ $\frac{1}{2} \int_{\Omega} \alpha(t)\left|u(t)-u_{\infty}\right|^{2} \mathrm{~d} x$ for $t>0$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} I(t)+\frac{1}{\phi_{0} C_{P}^{2}} I(t) \leqslant C_{4} \mathrm{e}^{-\kappa\left(t-t^{*}\right)}|\Omega| \quad \text { for } t>t^{*}
$$

Therefore, by putting $\beta=\left(\phi_{0} C_{P}^{2}\right)^{-1}$, we get

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(I(t) \mathrm{e}^{\beta t}\right) \leqslant C_{4} \mathrm{e}^{(\beta-\kappa) t+\kappa t^{*}} \quad \text { for } t>t *
$$

By integrating over $\left[t^{*}, t\right]$ and using the fact that

$$
\int_{t^{*}}^{t} \mathrm{e}^{(\beta-\kappa) s} \mathrm{~d} s=\frac{1}{\beta-\kappa}\left(\mathrm{e}^{(\beta-\kappa) t}-\mathrm{e}^{(\beta-\kappa) t^{*}}\right)
$$

we obtain

$$
I(t) \leqslant \mathrm{e}^{-\beta t}\left(I\left(t^{*}\right) \mathrm{e}^{\beta t^{*}}+\left(\frac{C_{4}}{\beta-\kappa}\left(\mathrm{e}^{(\beta-\kappa) t}-\mathrm{e}^{(\beta-\kappa) t^{*}}\right)\right) \mathrm{e}^{\kappa t^{*}}\right) \quad \text { for } t>t^{*} .
$$

Therefore, if $\beta>\kappa$, we have $\mathrm{e}^{-\beta t} \cdot \mathrm{e}^{(\beta-\kappa) t} \cdot \mathrm{e}^{\kappa t^{*}} \leqslant \mathrm{e}^{-\kappa t} \cdot \mathrm{e}^{\beta t^{*}}$ so that

$$
I(t) \leqslant \mathrm{e}^{-\kappa t} \mathrm{e}^{\beta t^{*}}\left(I\left(t^{*}\right)+\frac{C_{4}}{\beta-\kappa}\right) \quad \text { for } t>t^{*}
$$

Since $I\left(t^{*}\right)=(1 / 2)\left|u\left(t^{*}\right)-u_{\infty}\right|_{H}^{2} \leqslant 2\left(u^{*}\right)^{2}|\Omega|$, by putting $C_{5}=2 \mathrm{e}^{\beta t^{*}}\left(2\left(u^{*}\right)^{2}|\Omega|+\right.$ $\left.C_{4} /(\beta-\kappa)\right)$, we conclude that

$$
\int_{\Omega} \alpha(t)\left|u(t)-u_{\infty}\right|^{2} \mathrm{~d} x \leqslant C_{5} \mathrm{e}^{-\kappa t} \quad \text { for } t>t^{*}
$$

Finally, by putting $C=C_{5} / \phi_{0}$, Theorem 2.3 is proved.

## References

[1] T. Aiki, K. Kumazaki: Mathematical model for hysteresis phenomenon in moisture transport in concrete carbonation process. Phys. B 407 (2012), 1424-1426.
[2] T. Aiki, K. Kumazaki: Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process. Adv. Math. Sci. Appl. 21 (2011), 361-381.
zbl MR
[3] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, 1976.
zbl MR
[4] N. Kenmochi: Solvability of nonlinear evolution equations with time-dependent constraints and applications. Bull. Fac. Educ., Chiba Univ., Part 230 (1981), 1-87.
zbl
[5] K. Kumazaki: A mathematical model of carbon dioxide transport in concrete carbonation process. Discrete Contin. Dyn. Syst., Ser. S 7 (2014), 113-125.
[6] K. Kumazaki: Large time behavior of a solution of carbon dioxide transport model in concrete carbonation process. J. Differ. Equations 257 (2014), 2136-2158.
[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva: Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society, Providence, USA, 1968.

Author's address: Kota Kumazaki, Department of Natural and Physical Sciences, Tomakomai National College of Technology, 443 Nishikioka, Tomakomai-shi, Hokkaido, 059-1275, Japan, e-mail: k.kumazaki@gt.tomakomai-ct.ac.jp.

