
140 (2015) MATHEMATICA BOHEMICA No. 2, 129–137

EXPONENTIAL DECAY OF A SOLUTION FOR SOME PARABOLIC

EQUATION INVOLVING A TIME NONLOCAL TERM

Kota Kumazaki, Tomakomai

(Received September 30, 2013)

Abstract. We consider the large time behavior of a solution of a parabolic type equation
involving a nonlocal term depending on the unknown function. This equation is proposed
as a mathematical model of carbon dioxide transport in concrete carbonation process, and
we proved the existence, uniqueness and large time behavior of a solution of this model.
In this paper, we derive the exponential decay estimate of the solution of this model under
restricted boundary data and initial data.
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1. Introduction

In this paper, we consider the following initial boundary value problem for

a parabolic type equation involving a nonlocal term depending on the unknown

function:

∂

∂t

[
φ
(
1− e−

∫
t

0
u(τ) dτ

)
u
]
−∆u = −w0ue

−
∫

t

0
u(τ) dτ in Q(T ) := (0, T )× Ω,(1.1)

u = ub on S(T ) := (0, T )× Γ,(1.2)

u(0) = u0 in Ω.(1.3)

Here Ω is a bounded domain of R3 with a smooth boundary Γ = ∂Ω, T > 0 is a fixed

finite number, φ is a function in C1(R) satisfying φ0 6 φ(r) 6 1 for r ∈ R where

φ0 is a positive constant, ub is a given function on Q(T ), and w0 and u0 are given

functions on Ω.

The equation (1.1) is a diffusion equation derived from carbon dioxide transport in

concrete carbonation process proposed by Aiki and Kumazaki in [1], [2]. The detailed
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derivation is presented in [5], [6]. Physically, Ω is a domain occupied by concrete,

and the unknown function u = u(t, x) represents the concentration of carbon dioxide

in water at a time t and a position x ∈ Ω. Also, φ = φ(z) represents the porosity,

which is the ratio of the volume of the voids inside the concrete to the volume of

the whole concrete and z = 1 − e−
∫

t

0
u(τ) dτ is the ratio of the volume of consumed

calcium hydroxide to the volume of the total calcium hydroxide.

Concerning a mathematical analysis of concrete carbonation, Aiki and Kumazaki

[1], [2] proposed a mathematical model of moisture transport which involves the

hysteresis operator S, and proved existence and uniqueness of a solution of the

model, uniqueness being proved only for the one-dimensional case. Also, in [5] we

proved the existence and uniqueness of a global solution of (P) = {(1.1), (1.2), (1.3)},

and in [6] we showed that the solution converges to a solution u∞ of the steady state

problem

−∆u∞ + φ′(1 − w∞)w∞u2
∞

= −w0u∞w∞ in Ω,(1.4)

u∞ = ub∞ on Γ,(1.5)

where ub∞ is a given function in Ω with ub∞ > 0 in Ω which is the limit function

of ub as t → ∞, and w∞ = w∞(x) is the limit of w(x, t) := e−
∫

t

0
u(x,τ) dτ as t → ∞,

namely, w(x, t) → w∞(x) as t → ∞ for each x ∈ Ω. Moreover, we proved that if

ub does not vanish identically on Γ, the solution u∞ satisfies the Dirichlet problem

−∆u∞ = 0 in Ω, u∞ = ub on Γ, and w∞ = 0 a.e. on Ω.

The main aim of this paper is to establish the following exponential decay of

a solution:

(1.6) |u− u∞|2L2(Ω) 6 Ce−κt for sufficiently large t,

where C and κ are positive constants. As mentioned above, we assume that the

solution of (P) converges to the solution of the steady state problem; however, under

the assumption that ub > 0 in Ω and u0 > 0 in Ω, we could not show the convergence

rate as in (1.6). The key lemma for the proof of this decay is to prove that

(1.7) u(t) > κ for sufficiently large t,

where κ is a positive constant. Accordingly, in this paper we assume that ub =

ub(x) > κ in Ω for a positive constant κ. In order to obtain the uniform continuity

of a solution, we derive higher regularity of the solution u (Lemma 3.1), and show

that the H2(Ω) estimate independent of t for the solution u holds (Lemma 3.3). By

this result and the fact that u∞ > κ in Ω, we show that (1.7) holds. Finally, by

using (1.7) we prove (1.6).
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2. Main result

In this paper we use the following notation. In general, for a Banach space X , we

denote by |·|X its norm. In particular, we denote H = L2(Ω), and the norm and the

inner product of H are simply denoted by |·|H and (·, ·)H , respectively. Also, H
1(Ω),

H1
0 (Ω) and H2(Ω) are the usual Sobolev spaces.

Throughout this paper we assume the following (A1)–(A5):

(A1) Ω ⊂ R
3 is a bounded domain with a smooth boundary Γ.

(A2) φ is a non-decreasing function in C2(R) such that φ(0) = φ0 and φ′(0) = 0,

c0 = supr∈R φ
′(r) + supr∈R |φ′′(r)| < ∞ and φ0 6 φ(r) 6 1 for r ∈ R where φ0

is a positive number.

(A3) ub ∈ H2(Ω) ∩ L∞(Ω) with 0 6 ub 6 κ0 in Ω where κ0 is a positive constant.

(A4) u0 ∈ H2(Ω) ∩ L∞(Ω), u0 > 0 in Ω and u0 = ub on ∂Ω.

(A5) w0 ∈ L∞(Ω) and w0 > 0 in Ω.

Next, we define a solution of (P) on [0, T ] in the following way:

Definition 2.1. Let u be a function on Q(T ) for 0 < T < ∞. We call a function

u a solution of (P) on [0, T ] if the following conditions (S1)–(S4) hold:

(S1) u ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), u > 0 a.e. on Q(T ).

(S2)
[
φ
(
1− e−

∫
t

0
u(τ) dτ

)
u
]
t
−∆u = −w0ue

−
∫

t

0
u(τ) dτ a.e. in Q(T ).

(S3) u = ub a.e. on S(T ).

(S4) u(0) = u0 in Ω.

Our first and second results show the existence and uniqueness of a solution, and

the large time behavior of the solution, respectively.

Theorem 2.1. If (A1)–(A5) hold, then for any T > 0, (P) has one and only

one solution u on [0, T ] such that 0 6 u 6 u∗ := max{|u0|L∞(Ω), κ0} a.e. on Q(T ),

where u0 is the initial data and κ0 is the same constant as in (A3).

Theorem 2.2. Assume (A1)–(A5) hold, and let u and u∞ be a solution of (P)

and (P)
∞

:= {(1.4), (1.5)}, respectively. Then

u(t) → u∞ strongly in H and weakly in H1(Ω) as t → ∞.

Moreover, if ub does not vanish identically on Γ, then u∞ is a solution of the steady

state problem −∆u∞ = 0 a.e. in Ω, u∞ = ub a.e. on Γ. Also, w∞ = 0 a.e. on Ω.

Here we note how much the concrete is carbonated finally. In Theorem 2.2, we

showed that w∞ = 0 a.e. on Ω. Therefore, we see that z = 1 − e−
∫

t

0
u(τ) dτ → 1
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as t → ∞ for a.e. x ∈ Ω. Since z is the ratio of the volume of consumed calcium

hydroxide to the volume of the total calcium hydroxide, z = 1 a.e. on Ω implies that

calcium hydroxide is fully consumed almost everywhere in the concrete. Accordingly,

finally, we see that the concrete is carbonated almost everywhere.

Theorems 2.1 and 2.2 are already proved in [5], [6] so that we omit the proof.

Now, we state the main result concerning the exponential decay estimate.

Theorem 2.3. Assume (A1)–(A5) hold, and let u and u∞ be solutions of (P) and

(P)
∞
, respectively. In addition, we assume that ub > κ in Ω for a positive constant

κ satisfying (φ0C
2
P )

−1 > κ where CP is a positive constant in Poincaré’s inequality.

Then there exists t∗ > 0 such that

|u(t)− u∞|2H 6 Ce−κt for t > t∗,

where C is a positive constant.

3. Proof of Theorem 2.3

In the rest of this paper, we use the following notation: For the solution u of (P),

w(t) = e−
∫

t

0
u(τ) dτ , α(t) = φ

(
1− e−

∫
t

0
u(τ) dτ

)
= φ(1 − w(t)) for t > 0.

First, we show the following higher regularity result for the solution u of (P).

Lemma 3.1. For 0 < T < ∞, (P) has at least one solution u on [0, T ] such that





ut ∈ C([0, T ];H) ∩ L2(0, T ;H1
0 (Ω)),

t1/2ut ∈ L∞(0, T ;H1
0 (Ω)),

t1/2utt ∈ L2(0, T ;H).

P r o o f. Let u be the solution of (P), and set l = −w0u(t)w(t)−αt(t)u(t). Then

by the regularity of u we see that lt ∈ L2(0, T ;H). Now, we consider the following

problem (AP)

(AP)





α(t)Zt(t)−∆Z(t) + αt(t)Z(t) = lt(t) in Q(T ),

Z(t) = 0 on S(T ),

Z(0) = z0 := 1
φ0

(∆u0 − w0u0) in Ω,

where φ0 is the same as in (A2). Here, we remark that αzt + αtz = (αz)t and α,

αt ∈ L∞(Q(T )). For z0 ∈ H we can take a sequence {z0,n} ⊂ H1
0 (Ω) such that
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z0,n → z0 in H as n → ∞. Then, for each n ∈ N, by using a classical result on

parabolic equations (for example [7]) we can see that the problem (AP)n with z0 in

(AP) replaced by z0,n has a unique solution zn ∈ C([0, T ];H)∩L2(0, T ;H1
0 (Ω)) with

zn ∈ L∞(0, T ;H1
0 (Ω)) and (zn)t ∈ L2(0, T ;H). Now, for n,m ∈ N, we see that

(3.1)
1

2

d

dt

∫

Ω

α(t)|zn(t)− zm(t)|2 dx+ |∇(zn(t)− zm(t))|2H

6
1

2
|αt/α|L∞(Q(T ))

∫

Ω

α(t)|zn(t)− zm(t)|2 dx for 0 6 t 6 T.

Hence, Gronwall’s lemma implies that {zn} is a Cauchy sequence in C([0, T ];H) ∩

L2(0, T ;H1
0(Ω)) so that there exists z ∈ C([0, T ];H) ∩ L2(0, T ;H1

0 (Ω)) such that

zn → z in C([0, T ];H)∩L2(0, T ;H1
0 (Ω)) as n → ∞. Therefore, by [3], Chapter 4, or

[4], Chapter 1, it holds that t1/2z ∈ L∞(0, T ;H1
0(Ω)) and t1/2zt ∈ L2(0, T ;H). For

ϕ ∈ C∞

0 (Ω), by integrating over [0, t] after multiplying by ϕ the equation of (AP)n
and letting n → ∞, we have

∫

Ω

(α(t)Z(t) − φ0z0)ϕdx+

∫

Ω

∇

(∫ t

0

Z(τ) dτ

)
· ∇ϕdx =

∫

Ω

(l(t)− l(0))ϕdx.

Now, we introduce a new variable

ũ(t) :=

∫ t

0

Z(τ) dτ + u0.

Then, due to z0 = (1/φ0)(∆u0 − w0u0) and l(0) = −w0u0, we have

∫

Ω

α(t)ũt(t)ϕdx+

∫

Ω

∇ũ(t) · ∇ϕdx =

∫

Ω

l(t)ϕdx for ϕ ∈ C∞

0 (Ω).

Since we can see from (1.1) that the above equality with ũ replaced by u holds, we

have
∫

Ω

α(t)(ũt(t)− ut(t))ϕdx+

∫

Ω

∇(ũ(t)− u(t)) · ∇ϕdx = 0 for ϕ ∈ C∞

0 (Ω).

Similarly to (3.1), by taking ϕ = u(t) − ũ(t) in this equation for t > 0, Gronwall’s

inequality implies that ũ = u so that Lemma 3.1 holds. �

Now we note the global estimate of a solution u obtained in [6].

Lemma 3.2. Let u be the solution of (P). Then ut ∈ L2(0,∞;H), ∇u ∈

L2(0,∞;H) and ∆u ∈ L2(0,∞;H).

By Lemmas 3.1 and 3.2 we obtain the estimate for the norm of a solution in H2(Ω).
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Lemma 3.3. Let δ0 be any positive constant. Then there exists a positive con-

stant C depending only on δ such that

sup
t>δ0

|u(t)|H2(Ω) 6 C.

P r o o f. Let s and s1 be any positive numbers with s < s1 < s + 1. Then, for

t ∈ [s, s1], multiplying (1.1) by (t− s)ut, we have

φ0

2
(t− s)|ut(t)|

2
H +

d

dt
(t− s)|∇u(t)|2H 6 C1(t− s)(u(t), w2(t))H + |∇u(t)|2H ,

where C1 = (c20(u
∗)3 + |w0|

2
L∞(Ω)u

∗)/φ0. Here we note that

(3.2) (t− s)(u(t), w2(t))H = −
1

2

d

dt

[
(t− s)|w(t)|2H

]
+

1

2
|w(t)|2H .

Therefore, we have

φ0

2
(t− s)|ut(t)|

2
H +

d

dt

[
(t− s)|∇u(t)|2H +

C1

2
(t− s)|w(t)|2H

]
6 |∇u(t)|2H +

C1

2
|w(t)|2H .

By integrating over [s, s1] we obtain

(3.3)
φ0

2

∫ s1

s

(t− s)|ut(t)|
2
H dt 6

∫ s1

s

|∇u(t)|2H dt+
C1

2
|Ω| for s < s1 6 s+ 1.

Next, we differentiate (1.1) with respect to t and multiply the result by (t− s)ut to

obtain

(3.4)
1

2

d

dt

[
(t− s)

∫

Ω

α(t)|ut(t)|
2 dx

]
+
(
αttu(t) +

3

2
αt(t)ut(t), (t− s)ut(t)

)

H

+ (t− s)|∇ut(t)|
2
H 6

(
−w0ut(t)w(t) − w0u(t)wt(t), (t− s)ut(t)

)
H

+
1

2
(1 − s)

∫

Ω

α(t)|ut(t)|
2 dx.

Note that αtt = φ′′(wu)2 − φ′wu2 + φ′wut and that (φ
′wut, (t− s)ut)H > 0, (αtut,

(t− s)ut)H > 0, (w0utw, (t− s)ut) > 0 and

(t− s)|((φ′′)2, (wu)4)H |+ (t− s)|((φ′)2, (wu2)2)H | 6 C2(t− s)(u,w2)H ,

where C2 is a positive constant depending on c0 and u∗. By virtue of wt(t) =

−u(t)w(t) for t > 0, (3.2), (3.4) and using Young’s inequality, we have

1

2

d

dt

[
(t− s)

∫

Ω

α(t)|ut(t)|
2 dx

]
+ C3

d

dt

[
(t− s)|w(t)|2H

]
+ (t− s)|∇ut(t)|

2
H

6
3

2
(t− s)|ut(t)|

2
H +

1

2
|ut(t)|

2
H + C3|w(t)|

2
H ,
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where C3 = C2/2 + (|w0|
2
L∞(Ω)(u

∗)3)/2. Integrating this result over [s, t] with t ∈

[s, s1] and adding (3.3), we derive

(3.5)
φ0

2
(t− s)|ut(t)|

2
H 6

3

φ0

(∫ s1

s

|∇u(τ)|2H dτ +
C1

2
|Ω|

)

+
1

2

∫ s1

s

|ut(τ)|
2
H dτ + C3|Ω| for 0 6 s 6 t < s1 6 s+ 1.

By Lemma 3.2 and (3.5) we see that there exists a positive constant C such that

(3.6) sup
s6t6s1

(t− s)|ut(t)|
2
H 6 C for any s and s1 with 0 6 s < s1 6 s+ 1.

Now, we complete the proof of Lemma 3.3. Multiplying (1.1) by (t− s)(−∆u), we

have

1

4
(t− s)|∆u(t)|2H 6 (t− s)|ut(t)|

2
H + |αt|

2
L∞(Q(T ))(t− s)|u(t)|2H

+ |w0|
2
L∞(Ω)|u(t)w(t)|

2
H

for any s and t with 0 6 s < t 6 s1 6 s + 1. Therefore, from (3.6) we have that

sup
s6t6s1

(t− s)|∆u|2H is bounded for any s and s1 with 0 6 s < s1 6 s+ 1. Finally, by

taking s1 = s+ τ with 0 < τ 6 min(1, δ0) for any positive constant δ0, we have that

supt>δ0 |∆u|H is bounded, which implies that Lemma 3.2 holds. �

P r o o f of Theorem 2.3. By Lemma 3.2 and Theorem 2.2, we see that u → u∞

weakly in H2(Ω) as t → ∞. Therefore, by the compact embeddings we have that

u → u∞ in C(Ω) as t → ∞. Now we show that u∞ > κ a.e. on Ω. Since u∞

satisfies −∆u∞ = 0 a.e. in Ω and u∞ = ub a.e. on Γ, multiplying the equation by

−[−u∞ + κ]+ and using ub > κ, we have |[−u∞ + κ]+|2H = 0 so that u∞ > κ a.e.

on Ω. From the convergence in C(Ω) and u∞ > κ in Ω we see that there exists

a positive number t∗ > δ0 such that

(3.7) u(t) = u(t)−u∞+u∞ > −|u(t)−u∞|+u∞ > −
κ

2
+κ =

κ

2
on Ω for t > t∗.

Since u and u∞ are solutions of (P) and (P)
∞
, respectively, we have

αut(t) + αt(u(t)− u∞)−∆(u(t)− u∞) = −w0u(t)w(t)− αtu∞ in Ω for t > 0.

Multiplying the equation by u− u∞, we obtain

(3.8)
1

2

d

dt

∫

Ω

α(t)|u(t) − u∞|2 dx+
1

2
|∇(u(t)− u∞)|2H 6 C4|w(t)|

2
H ,
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where CP is the positive constant in Poincaré’s inequality and C4 = C2
P

(
|w0|

2
L∞(u∗)2

|Ω|+ 3c20(u
∗)4

)
. Here, we note that (3.7) yields

(3.9)

∫

Ω

w2(t) dx =

∫

Ω

e−2
∫

t
∗

0
u(τ) dτe−2

∫
t

t∗
u(τ) dτ 6

∫

Ω

e−2
∫

t

t∗
u(τ) dτ 6 e−κ(t−t∗)|Ω|,

where |Ω| is the volume of Ω. By substituting (3.9) in (3.8) and setting I(t) =
1
2

∫
Ω α(t)|u(t) − u∞|2 dx for t > 0, we have

d

dt
I(t) +

1

φ0C2
P

I(t) 6 C4e
−κ(t−t∗)|Ω| for t > t∗.

Therefore, by putting β = (φ0C
2
P )

−1, we get

d

dt
(I(t)eβt) 6 C4e

(β−κ)t+κt∗ for t > t ∗ .

By integrating over [t∗, t] and using the fact that

∫ t

t∗
e(β−κ)s ds =

1

β − κ

(
e(β−κ)t − e(β−κ)t∗

)

we obtain

I(t) 6 e−βt
(
I(t∗)eβt

∗

+
( C4

β − κ

(
e(β−κ)t − e(β−κ)t∗

))
eκt

∗

)
for t > t∗.

Therefore, if β > κ, we have e−βt · e(β−κ)t · eκt
∗

6 e−κt · eβt
∗

so that

I(t) 6 e−κteβt
∗

(
I(t∗) +

C4

β − κ

)
for t > t∗.

Since I(t∗) = (1/2)|u(t∗) − u∞|2H 6 2(u∗)2|Ω|, by putting C5 = 2eβt
∗

(2(u∗)2|Ω| +

C4/(β − κ)), we conclude that

∫

Ω

α(t)|u(t)− u∞|2 dx 6 C5e
−κt for t > t∗.

Finally, by putting C = C5/φ0, Theorem 2.3 is proved. �
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