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Generalized solutions

Why weak solutions?

m Existence for “any” data and “any” time interval

m Natural limits of numerical schemes

m The only alternative for certain class of problems (nonlinear,
singularities)

What is a good weak solution?

m The most general object that “satisfies” a given system of
equations with given data
m Easy to identify

m Compatibility. A strong (classical) solution is a weak solution.
“Regular” weak solution is a classical solution.

m Weak-strong uniqueness. A strong (classical) solutions
coincides with the weak solution corresponding to the same data




Hierarchy of solution classes

Strong vs. weak solutions

m Strong (classical) solutions. They possess the necessary
smoothness required by the principles of continuum mechanics.
They require strong a priori estimates not always available
(inevitable presence of singularities for certain nonlinear
problems)

Weak (distributional solutions. Classical derivatives replaced
by distributional ones. Considerably weaker requirements

concerning a priori bounds. Compactness (strong a.a. stability)
needed - no oscillatory solutions.

Measure—valued solutions. Oscillations allowed, only uniform
bounds on all quantities needed. The exact values of the
unknowns are replaced by their expectations with respect to a
probability measure.

Dissipative measure—valued solutions. Concentrations
allowed. Only uniform tightness of the probability measures
required
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Compressible Navier-Stokes/Euler system

Field equations

Oro + divy(ou) =0

O¢(ou) + divy(ou @ u) + V,p(0) = div,S(Vu)
Newton’s rheological law

2
S(Vxu) =u (qu + Viu-— §divxu]1> + ndivyul, >0, n >0

No-flux/no-slip boundary conditions

u-njpg =0, [u]tanloe =0
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Thermodynamics stability
Pressure potential
Pressure-density state equation

p € C[0,00) N €%(0,00), p(0) = 0
for 0> 0, liminf p'(0) > 0
0—00

iminf (@ <
o—+00 p(g)

Isentropic pressure-density state equation

ple) =a0”, a>0, y>1



Energy balance - conservation
Energy

e
p(z
E= GoP + Pl P@)=of PFa
~—— ;
kinetic energy elastic energy

Energy balance equation

Total energy balance
d

8, E+divy(Eu)+divy(p(0)u)—divy (S(Vxu) - u) —
dt

< |u|2+P(g> dx+/§(qu) V,u dq <P
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Classical (strong) solutions

Local existence

Smooth solutions exist on a maximal time interval (0, Tipax). This is
true for both Navier-Stokes and Euler system

Global-in-time solutions for small data

Smooth solutions of the Navier-Stokes system exist globally in time
provided the initial data are close to an equilibrium solution

(Matsumura and Nishida, Valli and Zajaczkowski, and others).
Solutions of the Euler system develop singularities in a finite time no
matter how smooth and/or small the initial data are.

Global existence for the 1-D Navier-Stokes system

The Navier-Stokes system in the 1-D geometry admits global-in-time
smooth solutions (Antontsev, Kazhikhov, Shelukhin and others)




Weak solutions

Equation of continuity

[/ 0p dX] =/ /(Qatw+gu-vx<p) dxdt
Q t=0 0 Q

for any ¢ € C2°([0, T) x Q)

Balance of momentum

[/ ou- dx}
Q t=0

= / / (ou- 0o+ ou @ u: -Vyp+ p(o)divep) dx dt
0 Q

—/ /S(qu) : Vyp dx dt
0o Ja
for any p € C2°([0, T) x Q; RM),

©lag = 0 for the no-slip condition in the viscous case
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Dissipative weak solutions

Energy (entropy) inequality

[/ﬂ (%Q|u|2 + P(Q)) dx] :; + /OT/QS(VXU) : V,u dx d0

foraa. 7€ (0, T)
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Navier-Stokes system: Weak solutions

Global existence for large data

p(o) = ag”, p>0
The Navier-Stokes system admits global-in-time weak solutions if:
mN=2v>3/2;, N=3,v>9/5P.L.Lions 1998
mN=2~v>1 N=3,v>3/2EF et al. 2000

m N=2 v>1 N=3, v>3/2 Plotnikov and Vaigant 2014

Dissipative weak solutions

The weak solutions are not known to be unique. The construction
used in the existence theory yields dissipative weak solutions. Weak

solutions can be obtained as a limit of certain numerical schemes
(Karper)




Euler system: Weak solutions

Global existence for large data in 1D

The Euler system admits global-in-time weak solutions for any
bounded initial data (DiPerna, Chen et al.). The weak solutions
can be recovered as a vanishing viscosity limit of the Navier-Stokes
system (Chen and Perepelitsa)

Global existence for large data for N =2,3

The compressible Euler system admits infinitely many global-in-time
weak solutions for any smooth initial data (Chiodaroli, EF - based
on the work of DeLellis and Székelyhidi)




Euler system: Dissipative weak solutions

Dissipative weak solutions N =23

m For any oo, there exists ug (bounded measurable) such that the
Euler system admits infinitely many dissipative weak solutions
in a given time interval (0, T) (Chiodaroli, EF)

There is a vast class of initial data for which the Euler system
admits infinitely many entropy (dissipative) weak solutions in a
given time interval (0, T) (Chiodaroli, EF, recent extension by
Luo, Xie, and Xin)

There exist Lipschitz (smooth) initial data for which the Euler
system admits infinitely many entropy (dissipative) weak

solutions in a given time interval (0, T) (Chiodaroli, DeLellis,
Kreml)

m Extension to the complete Euler system (with temperature),
(EF, Klingenberg, Kreml, Markfelder)




Relative entropy (energy)

Relative energy functional

S(g,u r,U)
- Q

[ (Geu=P+P0) - P()e= 1) - PL1)) ax

Decomposition

S(g,u r,U)
1 1 2
= Zolul*+P(o) ] dx— [ ou-Udx+ | Zp|U|* dx
Q 2 Q 92
_/ P'(r)o dx+/p(r) dx
Q Q
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Dissipation inequality

Relative energy inequality

(o))

<

_/OTR(Q,U ‘ r,u) dt

t=0
+ /O ' /Q (S(Vxt) — S(VxU)) : (Vau — V,U) dx dt

Test functions

r >0, Ulpg = 0 (or other relevant b.c.)

o>



Remainder

/OTR(Q,U r,U) dt

E/Q(@tU—l-u-VXU)-(U—u) dx
Q

+/QS(VXU) (ViU — Vyu) dx + /Q (p(r) — p(p)) div,U dx

"‘/ [(r = 0)0cP'(r) + VP'(r) - (rU — ou)] dx
Q

=) 5 = = T 9Dao



Applications

Weak-strong uniqueness

Weak and strong solutions of the compressible Navier-Stokes/Euler
system emanating from the same initial data coincide as long as the
latter exists (EF, Jin, Novotny, Sun [2014])

Conditional regularity

Weak solution to the Navier-Stokes system with bounded density
component emanating from smooth initial data are smooth (EF,
Jin, Novotny, Sun [2014])
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Singular limits
Rotating fluids

Oro + divy(ou) =0

1
I¢(ou) + divy(ou @ u) + Egb X u+ gz—MVXp(Q)

= eRdiv, S(V,u)

82_FVXG
Path dependent singular limit

e — 0, certain relation between M, R, F >0

m low Mach = compressible — incompressible
m high Rossby = 3D — 2D

m high Reynolds = viscous — inviscid

o>



Convergence to singular limit system

Target problem - Euler system

Ov+v-Vev+ VN =0, divav =0, x € R?

Convergence results (EF, Lu, Novotny 2014)

m Spatial geometry - infinite strip:

Q=R?*x (0,7)
m Complete slip (Navier) boundary conditions:

u-njpa =0, (S(Vxu)-n) xnjgg =0

o>



Limits on domains with variable geometry

Channel like domains

Boundary conditions

Q. - {(x, 2) ‘ z€(0,1), |x —eX(2)f < 52R2(z)}, IX(2)| < R(z)

u-njz =0, (S(Vxu)-n) xnlx =0

Y =00n{ze(0,1)}

ul,—01=0

o>



Target systems

Inviscid limit

8t(QEA) + az(QEuEA) =0

at(QEUEA) + az(QEU%A) + Aazp(QE) =0
Viscous limit

Ot(onsA) + 0. (onsunsA) =0

Or(onsunsA) + 05 (onsunsA) + Adzp(ons)

4
= Avd?uns + 10, (R'(2)/R(z)uns) , v = Fl +n7>0

A= R?
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Convergence

Korn-Poincaré inequality

/ v[? decKp/ Vv + Vivf dx
Q. Q.

Convergence (Bella, EF, Lewicka, Novotny 2015)

the inviscid limit

m Convergence to the target Euler system with geometric terms in

m Convergence to the Navier-Stokes system in the viscous limit

provided the bulk viscosity in the primitive system is positive

o>



Navier-Stokes system driven by stochastic forces

Navier—Stokes system with stochastic forcing

do + divy(pu) dt =0

d(ou)+[divy(ou @ u) + Vp(p)] dt = div,S(Vu) dt+G(p, ou)dW,
White—noise forcing

G(p, ou) dW = ZGk(g, ou) dW.

k>1

o>



Relative energy inequality

Relative energy inequality - (Breit, EF, Hofmanova 2015)

[ 0w (on]r) a
+/OT¢/Q (S(Vu) — S(V,U) : (V. — V,U) dx dt
< U(0)¢ (ou

) (0)+/0T¢dMRE+/OTwR(g,u

', U) dt
¥ € C°[0, T) (deterministic), ¢ > 0.
Test functions

dr=DZrdt+ Dir dW, dU = DZU dt + D;U dW

o>



Stochastic remainder

Remainder

'R(Q,u r, U)

—/QS(V U) : (VU — V,u) dx+/Qg(D§’U+u-VXU>(U—u) dx
Q

+/ ((r —o)H"(r)Dr + VY H'(r)(rU — Qu)) dx

k>1

k>1

1 " 2 1 1 )
3 [ oD xS [ ot ox

_/Qdiva(P(Q) —p(r)) dx + %Z /QQ’@ B Dkar N

k>1

o>



Results for stochastic Navier-Stokes system

Weak-strong uniqueness (Breit, EF, Hofmanova 2015)
m Pathwise weak-strong uniqueness

m Weak-strong uniqueness in law

Inviscid—incompressible limit in the stochastic setting (Breit,
EF, Hofmanova 2015)

Convergence to the limit stochastic Euler system for vanishing
viscosity and the Mach number. Results for well-prepared data.

u]
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Possible extensions

Numerical analysis (Gallouet, Herbin, Maltese, Novotny 2014)

Relative energy inequality for the numerical scheme proposed by
K.Karlsen and T. Karper. Error estimates.

Measure—valued solutions

Weak—strong uniqueness for measure-valued solutions (EF,
Gwiazda, Swierczewska-Gwiazda, Wiedemann 2015)
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Preliminaries to measure-valued solutions

Families of integrable solutions

[on un] - (0, T) x Q + [0,00) x RN
physical space phasevspace

{on}, {u,} bounded in L}((0, T) x Q)

Nonlinear compositions - Young measure

F bounded continuous, F(g,,u,) — F(o,u) weakly in L*((0, T)xQ)

= F(o,u) = (vt x; F(s,v)) for a.a. (t,x)

Biting limit

/OT/Q|F(Qn,un) dxdt < c = (vex: F(s,v)) € LY((0, T) x Q)

o>



Biting limit decomposition

Bounded integrable compositions

//|F(g,,,u,,)| dx de < ¢
0 Q

=

~—

up to a subsequence

F(on,u,) — F(o,u) weakly-(*) in M([0, T] x Q)
Biting limit decomposition

F(o,u) =

concentration part

F(o,u) = (vex; F(s,v)) + (V.0 F(s,v))

oscillatory part

o>



Measure-valued solutions

Parameterized (Young) measure
Vex € L22.,((0, T) x Q; P([0, 00) x RN), [s,v] € [0, 00) x RV
o(t;x) = (vexis), u= (Vexiv)

Navier-Stokes/Euler, velocity/momentum

Navier-Stokes u € L2(0, T; W01’2(Q; RMY),

Euler u & m = pu

Initial data

Regular initial data

yx = 590()()7"0()() for a.a. x

o>



Field equations
Equation of continuity

[[onesis o]

= / / (Ve x; ) Orp + (Vexi V) - Vi dx dt + (Ry; Vi)
0o JQ

t=0

Momentum balance

t=T1

[ s ax

/ / (Ve x; SV)-0rp (Ve SV Q V) 1 Vot (1t &5 p(s)) divyep dx dt
o Ja

t=0

—/ / S(Vxu) : Vip dx dt + (Ry; Vi)
o Ja

o>



Dissipativity

Energy inequality

UQ <”TX < s+ P(s )>> dx]t:T

/ /S(V u): Vudxdt+-<0

Compatibility

|R1[0,7] x Q| + | R2[0, 7] x Q| < &(7)D(7), £ € Y0, T)

/" /Q<Vt’x;|"‘“|2> dx dt < pD(7)

Q>



Truly measure-valued solutions

Truly measure-valued solutions for the Euler system (EF,
Chiodaroli, Kreml, Wiedemann)

There is a measure-valued solution to the compressible Euler system

(without viscosity) that is not a limit of bounded LP weak solutions
to the Euler system.
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Do we need measure valued solutions?

Limits of problems with higher order viscosities

Multipolar fluids with complex rheologies (Netas - Silhavy)

T(u, Veu, Viu,...)

k—1
=S(Vat) +6 > (1Y & (Vu + Vi) + A Aldiv,u T)
j=1

+ non-linear terms

Limit for § — 0

Limits of numerical solutions

Numerical solutions resulting from Karlsen-Karper and other schemes

Sub-critical parameters

P(Q) = 20", ¥ < Yeritical

u]
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Weak (mv) - strong uniqueness

Theorem - EF, Gwiazda, Swierczewska-Gwiazda, Wiedemann
2015

A measure valued and a strong solution emanating from the same
initial data coincide as long as the latter exists




Relative energy (entropy)

Relative energy functional

& (g,u r, U) (1)

= (vl = VR 4+ P - P05 = 1) - PO ) ax

1
= / <1/T,X; ~s|v|* + P(s)> dx —/ (Vrx; sv) - U dx
Q 2 Q

1
-I-/ ~ vy s) U dx
Q2

~ [ e Py axt [ ) ax




Relative energy (entropy) inequality

Relative energy inequality

& (Q,u

r, U) n /T S(Vu) : (Veu — V,U) dx dt +D(7)

< /Q <yo,x; %s|v — Uo|2 + P(s) — P'(r0)(5 — o) — P(r0)> dx

—i—/()TR(g,u )r,U) dt

o>



Remainder

R(g,u r, U)
= _/ / <Vt’X,SV> . 8tU dx dt
0 Q

—/ /;[(Vtyx; sv@v) 1 ViU + (e p(s)) diviU] dx dt
0o Ja

+/ / [<’/t,x; S) uU- 6tU + <Vt,x; $V> -U- VXU] dx dt
0 JQ

L (i (1 2)) P00 = s

”/fr)vxr] dx dt
+/OT<R1; %Vx (JUP - P’(r))> dt—/OT (Ry; V, U) dt

o>



Regularity

Theorem - EF, Gwiazda, Swierczewska-Gwiazda, Wiedemann
2015

Suppose that the initial data are smooth and satisfy the relevant
compatibility conditions. Let v; . be a measure-valued solution to

the compressible Navier-Stokes system with a dissipation defect D
such that

supp vex C {(s,v) ‘ 0<s<p, ve RN}

for a.a. (t,x) € (0, T) x Q.
Then D =0 and

Vix = 5g(t,x),u(t7x)

where g, u is a smooth solution.




Sketch of the proof

m The Navier-Stokes system admits a local-in-time smooth
solution

m The measure-valued solution coincides with the smooth solution
on its life-span

m The smooth solution density component remains bounded by @
as long as the solution exists

m Y. Sun, C. Wang, and Z. Zhang [2011]: The strong solution can
be extended as long as the density component remains bounded




Corollary

Convergence of numerical solutions

Bounded numerical solutions emanating from smooth data that

converge to a measure-valued solution converge, in fact,
unconditionally to the unique strong solution




Convex integration - DelLellis and Shékelyhidi

Incompressible Euler system

divev =0, Oiv + dive(vev)+ V, M=0

v(0,-) = vo, x € TV (periodic b.c.)
Reformulation

1
divyv = 0, O:v + divy <v Qv — NMZH) +V,M=0

Linear system vs. non-linear constitutive equation

divyy =0, Oyv +div,U =0

1 NxN
U=vav-— oL Ue RiL

o>



Constitutive constraint relaxation

1
Amax |V V — N|v|2]I—TU =0
Relaxation

2

1
Amax [V vV —T] > §|v|2

Goal reformulated

2

1
Amax V@V —TU] = §|v|2

o>



Concept of subsolution
Equations

v, U smooth in (0, T)
divyy =0, O;v +div,U=10
Extremal values

v(0,

)=vo, v(T,:)=vr

piece-wise smooth function e
Convex set

N
2 —_—
IVI 3

Amax VOV —T] <ein (0, T) x TV

o>



Basic subsolution

Oscillatory lemma - Delellis and Shékelyhidi

Oyv +div,U =0, diveyv =0
Oscillatory increments

divow, =0, 9yw, + div, V. =0
w,, V. € C°(Q)

w. — 0 weakly in L*(Q)
Energy

Amax [(V+wo) @ (v+w:) — (U+ V)] <e

liminf

e—0

/Q(|v+Ws|2)Z/(?|v|2+cA)<e—%|v|2>a

o>



Infinitely many solutions

Baire category argument

m There exists e such that the set of subsolutions is non-empty
m The set of subsolutions is a complete metric space with
Cweak([0, T]; L2(T"; RY)) topology

m Points of continuity of the I.s.c. functional

[ (2w =)o

correspond to weak solutions of the Euler system
Infinitely many solutions

divyv =0, Opv + dive(vev) —




Control of the limit pressure

Pressure

1 2 1 2
SV =e p=—lvf =

yein (0, T)x TN

Eduard Feireisl

Weak solution



Savage-Hutter model for avalanches

joint work with Gwiazda and Swierczewska-Gwiazda
Unknowns

flow height

depth-averaged velocity

O¢(hu) + divy(hu ® u) + V,(ah*) = h <

Periodic boundary conditions

e 4 f
|u|

Q = ([0, 1l0.)°

o>



Transformation - Step |

Helmholtz decomposition

hU:V+V+Vx\IJ

divyev = 0, /\I!dx:O, /vdx:O, Ve R?
Q Q

Fixing h and the potential ¥

Oth+ AV =0

h(0, ) = ho, —8:h(0,-) = AV,

o>



Problem |
Equation

p + (ah® + 0, V) 11)
+0:V

V+V+VXW
—h(- f
( TNIviv " >

D + div ((V+V+VX\U)®(V+V+VX\U)
t X

Constraints and initial conditions

divev =0, / v(t,-)dx=0
Q

V(O, ) = Vo, V(O) = Vo

Eduard Feireisl

Weak solution



Transformation - Step Il

Prescribing the kinetic energy

1v+V+ VWP
2 h
Problem |1

= E =A\(t) — ah® — 0¥

owv + 0:V
+divy <(V TV F V)

®@(v+V+V,V) _1|v+V+VX\|J|2H
h

)
h 1/2
> (V+V+ V, V) + hf

Eduard Feireisl

Weak solution



Transformation - Step IlI

Determining function V

OV — !

PN %
ﬁ/Q”(ﬁ) x
_ 1

€|

\'

/Q [7 <%> v (v+ VW) + hf

dX, V(O) = Vo

o>



Problem II1

Equation

Oev + divy ((" +V[v] + V,¥) © (v + V[v] + V,¥)

)

h

DHa



Transformation - Step IV

Solving elliptic problem

div,M = div, (Vim + Vim — div,ml)

=7 <%>1/2 (v+ V[v] + V, V)




Abstract formulation

Variable coefficients “Euler system”

dev + divy ((" + H[v]) © (v + H[v])

+ M[v]) =0

Kinetic energy

o>



Abstract operators

Boundedness

b maps bounded sets in L>((0, T) x Q; RN) on bounded sets in
Cb(Q7 RM)

Continuity

blv,] = b[v] in Co(Q; RM) (uniformly for (t,x) € Q)
whenever
Vi = v in Cuear ([0, T]; L2(2; RV))

Causality

v(t,") =w(t,-)for0 <t <7 < T implies b[v] = b[w] in [(0,7] x Q]




Subsolutions

Field equations, differential constraints

Oiv + div F =0, divev =0

V(07 ) = Vo, V(T7 ) =VT
Non-linear constraint

N
E)\max

veC(Q;RY), FeC(Q

. pNxN
'Rsym,O)v

(v + H[v]) ® (v + H[v])
h[v]

—F +MJv]| < E[v]

o>



Subsolution relaxation

Algebraic inequality

v+ H[v]?
hv]

(v+ H[v]) ® (v + H[v])
hlv]

—F + M]v]

1
2

<

Solutions

v+ H[v]) ® (v+ H|v])

N
"= v

+ M]v]

o & = = T 9Dao



Oscillatory lemma

Hypotheses:

Uc RxRY, N=2,3bounded open set
he C(U;RY), fie C(U;

Rs,\}lfél%)v é Fe C(U), F>0 é<einU
U5\ hlfh—lﬁl]«sin u.
2 7

o>



Conclusion:

w, € C°(U;RY), G, € C2(U;RYZN), n=0,1,.

dew,, + div,G, = 0, divew, =0in R x RN
N (h+w,) ® (h+w,)
2 max

7

(A+G,)| <&inU,

0 weakly in L2(U; RV)
liminf

~ 2
|wn|? nl? 1 |hf?
Imin /l:j dxdt > /\(e)/ — 57 dxdt

Eduard Feireisl

Weak solution



Basic ideas of proof

Localization

Localizing the result of DeLellis and Széhelyhidi to “small” cubes by
means of scaling arguments

Linearization

Replacing all continuous functions by their means on any of the
“small” cubes

Eliminating singular sets

Applying Whitney's decomposition lemma to the non-singular sets
(e.g. out of the vacuum {h = 0})

Energy and other coefficients depending on solutions
Applying compactness of the abstract operators in C




Results

Result (A)

The set of subsolutions is non-empty = there exists infinitely many
weak solutions of the problem with the same initial data

Initial energy jump

1 |V0 + H[Vo”
|
2 hv] -

¢ Llv+HV]?
2 hlv]

Result (B)

The set of subsolutions is non-empty = there exists a dense set of
times such that the values v(t) give rise to non-empty subsolution
set with

1|VO+H[V0]| :|.|V—i-H[v]|2
iy o el S LU Sty
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Application to Savage-Hutter model

Theorem
(i) Let the initial data

ho € C3(Q), ug € C*(;R?),hy >0in Q

be given, and let f and a be smooth.
Then the Savage-Hutter system admits infinitely many weak
solutions in (0, T) x Q.

(ii) Let T > 0 and
ho € C3(Q), hy >0

be given.
Then there exists
up € L®(Q; R?)

such that the Savage-Hutter system admits infinitely many weak
solutions in (0, T) x Q satisfying the energy inequality.

Eduard Feireisl Weak solution
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Example |l, Euler-Fourier system

(joint work with E.Chiodaroli and O.Kreml [2014])
Mass conservation

Oro + divy(ou) =0
Momentum balance

O¢(ou) + divy(ou @ u) + V,(09) =0
Internal energy balance

g [8t(919) + divx(gﬂu)] — A = —pidivyu

o>



Example 111, Euler-Korteweg-Poisson system

(joint work with D.Donatelli and P.Marcati [2014])
Mass conservation - equation of continuity

Oro + divy(ou) =0

Momentum equations - Newton’s second law

Ot(ou) + divy(ou @ u) + Vip(0)

1
oV (Ko + K707

—ou+ oV, V

o>



Example 1V, Euler-Cahn-Hilliard system

Model by Lowengrub and Truskinovsky

Mass conservation
Oro + divy(ou) =0
Momentum balance

Ot(ou)+divy(ouu)+V,po(0, c) = divy (,QVXC ® Vyc — §|ch|2]I>
Cahn-Hilliard equation

Du(0c) + divy(ocu) = A <,uo(g, c)— %divx (gvxc)>

o>



Example V, models of collective behavior

(joint work with J.A. Carrillo, P.Gwiazda, A.Swierczewska—Gwiazda)
Mass conservation

Oro + divy(ou) =0
Momentum balance

Ot(ou) + divy(ou ® u)

—p(0) + (1 = H (ju]*)) ou
—oViK % 0+ ot * [@(u - U(X)ﬂ

o>



Stochastically driven Euler system

Field equations

do + divy(eu)dt =0
d(ou) 4 divy(ou ® u)dt + V,p(e)dt = 0G(p, ou)dW,

Stochastic forcing

0G(0, ou)dW = " 0G0, ou)dBx

k=1
Iconic examples

0G(0, ou)dW = 0 Gi(x)dBk, 0G(e, ou)dW = Aouds
k=1

o>



Weak (PDE) solutions

Infinitely many weak (PDE) solutions, Breit, EF, Hofmanova
[2017]

Let T > 0 and the initial data

00 € C3(Q), 00 >0, ug € C3(Q)

be given.
There exists a sequence of strictly positive stopping times

™ >0, T — 00

a.s. such that the initial-value problem for the compressible Euler
system possesses infinitely many solutions defined in (0, T A 7).
Solutions are adapted to the filtration associated to the Wiener
process W.




