On regularity properties of solutions to the
compressible Euler system

Eduard Feireis!

based on joint work with P.Gwiazda, A. Swierczewska-Gwiazda (Warsaw), E.Wiedemann
(Hannover)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Analysis of complex fluids, Fudan University, October 13-17, 2017

The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078



Compressible Euler system

Field equations
Oro + divy(ou) =0
Ot(ou) 4 divi(ou ® u) + V,p(p) =0

Periodic boundary conditions

Q=T"= ([-1,1|{_z})"

Initial conditions




Weak solutions

Equation of continuity

{/ oy dx} = / / (00rp + ou - Vi) dxdt
Q t=0 0 Q

for any ¢ € C°([0, T) x Q)

Balance of momentum

[/ ou- dx}
Q t=0

= / / (ou-0rp + ou@u:-Vyp+ p(o)divey) dx dt
0o Ja

for any ¢ € C°([0, T) x Q; RN),




Weak solutions: Existence

Global existence for large data in 1D

The Euler system admits global-in-time weak solutions for any
bounded initial data (DiPerna, Chen et al.). The weak solutions
can be recovered as a vanishing viscosity limit of the Navier-Stokes
system (Chen and Perepelitsa)

Global existence for large data for N = 2,3

The compressible Euler system admits infinitely many global-in-time
weak solutions for any smooth initial data (Chiodaroli, EF - based
on the work of DeLellis and Székelyhidi)




Stability of 1D solutions - hypotheses

Theorem EF, Y.Sun [2015]

N 1 1
>—, g>max{2,7}, =+ —==1ifN=2
7> {27} St

q>max{3,5fy6j6} if N =3

Let [R, V] be a (strong) solution of the one-dimensional
Navier-Stokes system, with the initial data belonging to the class

Ry € WY9(0,1), Ry >0, Vo € W, 9(0,1)

Let [0, u] be a finite energy weak solution to the Navier-Stokes
system in
(0, T) xQ, Q=(0,1) x TN,

with the initial data

00 € L(Q), 00 >0, ug € L3(Q; R3).




Stability of 1D solutions - conclusion

Conclusion
Then

[ [3el= v+ P - PR~ R) - PRI () ax

< e(T) [ | ool = Vil + Plen) ~ P/(Re)an ~ Ro) - P(Ro)| ax

fora.a. 7€ (0, 7),




Energy conservation

1
E= ZSoluf + Ple) , Plo)
A ~—~—

I elastic ener,
kinetic energy gy

Energy balance equation

OrE + divy(Eu) 4 divy(p(0)u) =0

t=1
fevs
Q t=0

:/ /(E@tnp—l—Eu-ngo—i—p(g)u-ngo) dx dt
0o Jo

Weak formulation

for any p € C°([0, T) x Q)




Admissible weak solution

Energy dissipation

0:E + div(Eu) + div(p(o)u) <0

Weak formulation

t=71
{ / Ep dx}
Q t=0

S/ /(Eatso+Eu~sz0+p(9)U-szo) dx dt
0 Q

for any o € C°([0, T) x Q), ¢ >0




Related results on Onsager’s conjecture

Inhomogeneous incompressible Navier-Stokes system

T. M. Leslie and R. Shvydkoy.

The energy balance relation for weak solutions of the
density-dependent Navier- Stokes equations.
arXiv:1602.08527v1, 2016.

Inhomogeneous incompressible Euler system

R. M. Chen and C. Yu.
Onsager’s energy conservation for inhomogeneous Euler equations.
arXiv:1706.08506v1, 2017.




Minimal regularity

Function spaces - Besov spaces

[w(- +&) = wll

B¢ w|ga = ||w||r + sup
opr Wlee , = llwl|ee sup

€l

Mollifiers

Basic estimates
<
[we — wll, ~e¥llwllps ,

< a—
[Vwellp ~ e Hiwllga,

B, , N L™ is algebra




Onsager’s conjecture - incompressible fluids

Constantin, E, Titi [1994]

If a velocity field u solving the incompressible Euler system belongs
to the class BY, 5 for a > % then the total energy

1
f/|u|2dx
2 Jo

is conserved.




Energy conservation for compressible fluids

EF, Gwiazda, Swierczewska—Gwiazda, Wiedemann [2017]

Let o, u be a weak solution of the compressible Euler system
belonging to the class

ue B 5((0,T) x TV), o,0u € BL 5((0,T)xTV), 0<p<0<0,

1 —
0§a,5§1,6>max{1—2a; a}.

2

Let p € C?[p, 7], p'(0) =0 if p=0.
Then the energy equality holds in D’'((0, T) x Q).
If, in addition, v € L* and

sup |||l 55 + |lou|| 55 }<00,5>0,
0 [l o + el o

then the energy is (weakly) continuous up to t = 0.




Sketch of proof

Regularization method

m Regularize the momentum equation by a space—time
convolution kernel

m Use the commutator estimates

m C? regularity of the pressure needed




Energy conservation for BV solutions

EF, Gwiazda, Swierczewska—Gwiazda, Wiedemann [2017]

Let p € C2(0,00) N C[0,00). Let o, u be a weak solution of the
compressible Euler system belonging to the class

0, ue L>((0,T) xQ), o(t), u(t) e CNBV(Q) fora.a. t € (0, T)

ess sup [llollcravia) + llullcneve)] < oo
te(0, T

Then the energy equality holds in D’((0, T) x Q) and the energy is
(weakly) continuous up to t = 0.




Sketch of proof

Regularization method

m Regularize in space and time. Use Steklov averaging in time

T
1
vy = / na(t — s)v(s) ds, np = El[fh,o]
0

m Use the commutator estimates

m C? regularity of the pressure up to zero not needed here

Eduard Feireiss based on joint work with P.Gwiazda, A. Sv Compressible Euler



Further observations

Remarks

B BVNL® — B;éﬁ, for any p > 1. In particular, the energy is
conserved if

0€ BVAL¥((0, T)x Q), ue BL,nL¥((0. T)x Q), a > %

m Discontinuous (shock) solutions belong to the critical space and
provide sharpness of the result




Less regular solutions conserving energy

Infinitely many weak solutions, Chiodaroli, EF, Luo, Xie, Xin
[2016]

For any piecewise constant initial density o0g, there is ug € L* such
that the Euler system admits infinitely many weak solutions
satisfying the energy equality with the energy continuous up to
t=0.

Lipschitz continuous data, Klingenberg, Markfelder [2017]

There exists Lipschitz continuous initial data such that the Euler
system admits infinitely many weak solutions satisfying the energy
equality with the energy (weakly) continuous up to t = 0.




Principle of maximal dissipation

Rewriting the energy balance
OtE 4 divy(Eu) + divy(pu) = —D
D > 0 — dissipative defect

Physical solutions

The explicit solutions of the Riemann problem have D # 0.

Good and bad news
m “Most wild solutions” do not maximize the dissipation defect.

m Some “classical” solutions do not maximize the total dissipation
defect [, D dx (Chiodaroli, Kreml [2014])




Measure—valued solutions?

Equation of continuity

|:/Q <Yt’X’ Q> v dX:| :_0

- / / (Yer: ©) e + (Yeo; o) - V) dxdlt + / / Vap 1
0 Q 0 Q

Balance of momentum

UQ (Yexiou) - dX} :_O

:/ / ((Yeniou) - 0rp + (Yix ou@u) 1 V) dxdt

//th, dlvxcpdxdtJr// xP G




Dissipation defect

Energy inequality

1 t=1
[/ <Yt,x;QUI2+P(g)> dx} +D=0
2 2 t=0

Compatibility

/ / lics| + || dxde S / D dt
0 Q 0




MV vs weak solutions

Several reasons why to go measure—valued
m Measure valued and weak are almost “equivalent”

m Measure—valued solutions are generated by numerical schemes,
they may enjoy “natural” properties

m Numerical experiments - [Mishra]




