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Abstract. T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if
these  Lukasiewicz algebras are algebras of some logic system. In this article an affirmative
answer is given and the L

m
n -propositional calculus, denoted by ℓmn , is introduced in terms

of the binary connectives → (implication), ։ (standard implication), ∧ (conjunction), ∨

(disjunction) and the unary ones f (negation) and Di, 1 6 i 6 n − 1 (generalized Moisil
operators). It is proved that ℓmn belongs to the class of standard systems of implicative
extensional propositional calculi. Besides, it is shown that the definitions of Lm

n -algebra
and ℓmn -algebra are equivalent. Finally, the completeness theorem for ℓmn is obtained.
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1. Introduction and preliminaries

In 1977, generalizing De Morgan algebras by omitting the polarity condition

(i.e. the law of double negation), J. Berman [2] began the study of what he called dis-

tributive lattices with an additional unary operation. Two years later, A. Urquhart

in [11] named them Ockham lattices. These algebras are the algebraic counterpart of

logics provided with a negation operator which satisfies De Morgan laws. Then, recall

that an Ockham algebra is an algebra 〈L,∧,∨, f, 0, 1〉, where the reduct 〈L,∧,∨, 0, 1〉

is a bounded distributive lattice and f is a unary operation satisfying the following

conditions:

(O1) f0 = 1,

(O2) f1 = 0,

(O3) f(x ∧ y) = fx ∨ fy,

(O4) f(x ∨ y) = fx ∧ fy.
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Ockham algebras, which are more closely related to De Morgan algebras, are the

ones that satisfy the identity f2mx = x for some m > 1. The variety of these algebras

will be denoted by Km,0. More details on these algebras can be consulted in [3].

Furthermore, for the notions of universal algebra including De Morgan algebras and

n-valued  Lukasiewicz-Moisil algebras outlined in this paper we refer the reader to

[4], [5].

On the other hand, in 2001, T. Almada and J. Vaz de Carvalho [1] generalized

 Lukasiewicz-Moisil algebras of order n by considering algebras of the same type which

have a reduct in Km,0 instead of a reduct which is a De Morgan algebra. Hence, they

introduced the variety Lm
n of m-generalized  Lukasiewicz algebras of order n which

were defined as follows:

An m-generalized  Lukasiewicz algebra of order n (or Lm
n -algebra) is an algebra

〈A,∨,∧, f,D1, . . . , Dn−1, 0, 1〉 of type (2, 2, 1, . . . , 1, 0, 0) such that

(GL1) 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice for which f is a dual endomor-

phism satisfying the identity f2mx = x,

(GL2) Di

(

x ∧
m−1
∨

p=0
f2py

)

= Dix ∧Di

(m−1
∨

p=0
f2py

)

, 1 6 i 6 n− 1,

(GL3) Dix ∧Djx = Djx, 1 6 i 6 j 6 n− 1,

(GL4) Dix ∨ f Dix = 1, 1 6 i 6 n− 1,

(GL5) Dif
(m−1

∨

p=0
f2px

)

= fDn−i

(m−1
∨

p=0
f2px

)

, 1 6 i 6 n− 1,

(GL6) DiDjx = Djx, 1 6 i, j 6 n− 1,

(GL7) x ∨D1x = D1x,

(GL8) Dix = Di

(m−1
∨

p=0
f2px

)

, 1 6 i 6 n− 1,

(GL9) (x ∧ fx) ∨ y ∨ fy = y ∨ fy,

(GL10)
m−1
∨

p=0
f2px 6

m−1
∨

p=0
f2py ∨ fDi

(m−1
∨

p=0
f2py

)

∨Di+1

(m−1
∨

p=0
f2px

)

, 1 6 i 6 n− 2.

From the definition it follows that the identities listed below are also verified.

Proposition 1.1 ([1]). Let A ∈ Lm
n . Then

(GL11) Di(x ∨ y) = Dix ∨Diy, 1 6 i 6 n− 1,

(GL12) f2Dix = Dix, 1 6 i 6 n− 1,

(GL13) Dix ∧ fDix = 0, 1 6 i 6 n− 1,

(GL14) fx ∨D1x = 1, f
(m−1

∨

p=0
f2px

)

∧Dn−1

(m−1
∨

p=0
f2px

)

= 0,

(GL15)
m−1
∨

p=0
f2px ∧Dn−1

(m−1
∨

p=0
f2px

)

= Dn−1

(m−1
∨

p=0
f2px

)

,

(GL16) Di0 = 0, Di1 = 1, 1 6 i 6 n− 1.
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Let A ∈ Lm
n . The set SA = {x ∈ A : f2x = x} =

{

x ∈ A :
m−1
∨

p=0
f2px = x

}

plays an

important role in the study of these algebras. In particular, as a direct consequence of

(GL8) it follows that in Lm
n -algebras the operations Di, 1 6 i 6 n−1 are determined

by its restrictions to SA. Besides, SA is a subalgebra of A and it is the greatest

subalgebra of A that belongs to the variety of Ln-algebras ([1], Proposition 2.2).

In addition to the properties (GL11) through (GL16), we show other ones that will

be useful throughout this paper.

Proposition 1.2 ([7]). Let A ∈ Lm
n . Then the following properties are verified:

(g1) DjfDix = fDix, 1 6 i, j 6 n− 1,

(g2) fDix is the Boolean complement of Dix, 1 6 i 6 n− 1,

(g3) Dix 6 Diy if and only if fDix ∨Diy = 1, 1 6 i 6 n− 1,

(g4) Dj(Dix ∧Diy) = Dix ∧Diy, 1 6 i, j 6 n− 1,

(g5) x ∧ fD1x = 0,

(g6) (fDix ∧ fDiy) ∨ (Dix ∧Diy) = (Dix ∨ fDiy) ∧ (Diy ∨ fDix), 1 6 i 6 n− 1,

(g7) z ∈ SA implies Di(x ∧ z) = Dix ∧Diz, 1 6 i 6 n− 1.

Bearing in mind some unpublished results established by M. Sequeira in the con-

text of congruences on algebras of certain subvarieties of Ockham algebras some

of which are Km,0, J. Vaz de Carvalho considered certain elements which we will

describe in what follows.

Let A ∈ Lm
n and T = {0, 1, . . . ,m− 1}. For each z ∈ A and s ∈ {1, . . . ,m} take

qsz =
∧

J⊆T
|J|=s

∨

j∈J

f2jz.

The same author asserted that it is straightforward to see the following statements.

Lemma 1.1 ([12]). Let A ∈ Lm
n . Then

(i) f2qsz = qsz, s ∈ {1, . . . ,m},

(ii) qsz 6 qs+1z, s ∈ {1, . . . ,m− 1},

(iii) q1z =
m−1
∧

p=0

f2pz and
m−1
∨

p=0

f2pz = qmz,

(iv) z ∈ SA implies qsz = z, s ∈ {1, . . . ,m},

(v) x 6 z implies qsx 6 qsz, s ∈ {1, . . . ,m}.

On the other hand, in [7], we introduced a new binary operation → on Lm
n -algebras,

called weak implication, as follows:

x → y = D1fx ∨ y.
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The deductive systems associated with this implication enable us to establish

an isomorphism between the congruence lattice of an m-generalized  Lukasiewicz

algebra A of order n and the lattice of all the deductive systems of A. This result

turns out to be quite useful for characterizing the principal congruences on these

algebras. Furthermore, it is worth noting that from this operation the one considered

by R. Cignoli [6] for Ln-algebras is deduced.

Proposition 1.3. Let A ∈ Lm
n . Then the following statements hold:

(W1) x → 1 = 1,

(W2) x → x = 1,

(W3) 1 → x = x,

(W4) x → (y → x) = 1,

(W5) x 6 y implies x → y = 1,

(W6) x → (y → z) = (x → y) → (x → z),

(W7) x → (x ∧ y) = x → y,

(W8) (x → y) → ((x → z) → (x → (y ∧ z))) = 1,

(W9) (x ∧ y) → z = x → (y → z),

(W10) Dix → Diy = fDix ∨Diy, 1 6 i 6 n− 1,

(W11) Dix → Diy = 1 if and only if Dix 6 Diy, 1 6 i 6 n− 1,

(W12) Diqs(x∨y) → Diqs(x∧y) = 1 if and only if x = y, 1 6 i 6 n−1, 1 6 s 6 m,

(W13) ((x ∧ z) → (y ∧ z)) → (z → (x → y)) = 1,

(W14) Diqsx → D1x = 1, 1 6 i 6 n− 1, 1 6 s 6 m,

(W15) Diqs(x ∧ fx) → Diqs((x ∧ fx) ∧ (y ∨ fy)) = 1, 1 6 i 6 n− 1, 1 6 s 6 m,

(W16) Diqs

(m−1
∨

p=0
f2px

)

→ Diqs

((m−1
∨

p=0
f2px

)

∧
(m−1

∨

p=0
f2py ∨ fDi

(m−1
∨

p=0
f2py

)

∨

Di+1

(m−1
∨

p=0
f2px

)))

= 1, 1 6 i 6 n− 1, 1 6 s 6 m,

(W17) Diqsx → Diqs(x ∧ f2m−1(fx ∧ fy)) = 1, 1 6 i 6 n− 1, 1 6 s 6 m,

(W18) Diqs(x ∧ f2m−1(fy ∧ fz) ∨ f2m−1(f(z ∧ x) ∧ f(y ∧ x))) →

Diqs(x ∧ f2m−1(fy ∧ fz) ∧ f2m−1(f(z ∧ x) ∧ f(y ∧ x))) = 1, 1 6 i 6 n− 1,

1 6 s 6 m,

(W19) x∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) → Diqs(x∧y)) = y∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) → Diqs(x∧y)),

(W20) Djqkx∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) → Diqs(x∧y)) = Djqky∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) →

Diqs(x ∧ y)), 1 6 j 6 n− 1, 1 6 k 6 m,

(W21) Dn−1q1x ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y)) =

Dn−1q1y ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y)).
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P r o o f. We will only prove (W12), (W13), (W14), (W15), (W18), (W19) and (W20)

since the proof of the remaining properties is routine.

(W12): It is a direct consequence of [12], Proposition 4.2.

(W13): From (W9) and (W6) we have that ((x∧z) → (y∧z)) → (z → (x → y)) =

((x ∧ z) → (y ∧ z)) → ((x ∧ z) → y). Hence, by (W5) and (W1) we conclude that

((x ∧ z) → (y ∧ z)) → (z → (x → y)) = (x ∧ z) → 1 = 1.

(W14): From (ii) in Lemma 1.1 and (GL11) we infer that Diqsx 6 Diqmx, 1 6 i 6

n − 1, 1 6 s 6 m. On the other hand, by (iii) in Lemma 1.1, (GL8) and (GL3) we

have that Diqmx = Dix 6 D1x, 1 6 i 6 n − 1 and so, by (W11) we conclude that

Diqsx → D1x = 1, 1 6 i 6 n− 1, 1 6 s 6 m.

(W15): From (GL9) we have that x∧fx = (x∧fx)∧(y∨fy) and so, Diqs(x∧fx) =

Diqs((x ∧ fx) ∧ (y ∨ fy)), 1 6 i 6 n− 1, 1 6 s 6 m. Hence, by (W2) we conclude

the proof.

(W18): It is a direct consequence of the fact that x∧f2m−1(fy∧fz) = f2m−1(f(z∧

x) ∧ f(y ∧ x)) and (W2).

(W19): By virtue of (g1) and the definition of the weak implication we have that

Diqs(x∧y)∨fDiqs(x∨y) = Diqs(x∧y)∨D1fDiqs(x∨y) = Diqs(x∨y) → Diqs(x∧y),

1 6 i 6 n − 1, 1 6 s 6 m and so, by [12], Proposition 3.5, we conclude that

x ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y)) = y ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y)).

(W20): Following reasoning analogous to that in (W19) we obtain the proof. �

Next, in order to simplify reading we will summarize the fundamental concepts we

use on the class of standard systems of implicative extensional propositional calculi

([9], VIII).

Let L = (A0, F ) be a formalized language of zero order ([9], VIII 1). A system

S = (L, CL), where CL is determined by a set A of logical axioms and by a set

{r1, . . . , rk} of rules of inference, belongs to the class S of standard systems of im-

plicative extensional propositional calculi provided that the following conditions are

satisfied:

(s1) the set A of logical axioms is closed under substitutions,

(s2) the rules of inference ri, i = 1, . . . , k, are invariant under substitutions,

(s3) for every formula α ∈ F , α ⇒ α ∈ CL(∅),

(s4) for all formulas α, β ∈ F and for every set H ⊆ F , if α, α ⇒ β ∈ CL(H), then

β ∈ CL(H),

(s5) for all formulas α, β, γ ∈ F and for every set H ⊆ F , if α ⇒ β, β ⇒ γ ∈ CL(H),

then α ⇒ γ ∈ CL(H),

(s6) for every formula α ∈ F and for every set H ⊆ F the condition α ∈ CL(H)

implies that for every formula β ∈ F , β ⇒ α ∈ CL(H),
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(s7) for all formulas α, β ∈ F and for every set H ⊆ F the condition α ⇒ β, β ⇒

α ∈ CL(H) implies that for each unary connective ◦ of L, ◦α ⇒ ◦β ∈ CL(H),

(s8) for all formulas α, β, γ, δ ∈ F and for every set H ⊆ F the condition α ⇒

β, β ⇒ α, γ ⇒ δ, δ ⇒ γ ∈ CL(H) implies that for each binary connective ∗ of

L, (α ∗ γ) ⇒ (β ∗ δ) ∈ CL(H).

If S is a system in S and there exists a formula α of L such that α /∈ CL(∅) we

will say that S is consistent.

On the other hand, any system S ∈ S determines a class of algebras called S-

algebras in the following way: an algebra U = 〈A,⇒, ∗1, . . . , ∗k, o1, . . . , ot, e1, . . . ,

em,∨〉 associated with the formalized language L ([9], VIII 1) is an S-algebra pro-

vided that

(a1) if a formula α of L belongs to the set A of logical axioms of S, then v(α) = ∨

for every valuation v of L in U ,

(a2) if a rule of inference r in S assigns to the premises α1, . . . , αn the conclusion

β, then for every valuation v of L in U the condition v(α1) = . . . = v(αn) = ∨

implies v(β) = ∨,

(a3) for all a, b, c ∈ A, if a ⇒ b = ∨ and b ⇒ c = ∨, then a ⇒ c = ∨,

(a4) for all a, b ∈ A, if a ⇒ b = ∨ and b ⇒ a = ∨, then a = b.

Let S = (L, CL) be a consistent system in S. A formula α ∈ L is valid in an

algebra U associated with L provided that v(α) = ∨ for every valuation v of L in U .

Furthermore, α is S-valid if it is valid in every S-algebra. Taking into account that

if α is derivable in S ([9], VIII 5), then v(α) = ∨ for every valuation v of L in every

S-algebra U ([9], VIII 6.1), every formula derivable in S is S-valid. The converse

statement is also true and this equivalence is known as the completeness theorem for

propositional calculi in the class S ([9], VIII 7.2).

2. The standard implication

In order to establish an implicative extensional propositional calculus (see [9])

which has Lm
n -algebras as the algebraic counterpart, we introduce another implication

operation ։ on these algebras by means of the formula

x ։ y = Dn−1q1y ∨
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y))

and we call it standard implication. Furthermore, this implication allows us to obtain

a new description of the congruence lattice Con(A) of an Lm
n -algebra A which plays

an important role in what follows.
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Proposition 2.1. Let A ∈ Lm
n . Then the following statements hold:

(S1) x ։ 1 = 1,

(S2) x ։ x = 1,

(S3) 1 ։ x = Dn−1q1x,

(S4) Dn−1q1x ∧ (x ։ y) = Dn−1q1y ∧ (y ։ x),

(S5) x ∧ (x ։ y) ∧ (y ։ x) = y ∧ (x ։ y) ∧ (y ։ x),

(S6) (x ։ y) → ((y ։ z) → (x ։ z)) = 1,

(S7) (Dn−1q1x ∧ (x ։ y)) → y = 1,

(S8) f2(x ։ y) = x ։ y,

(S9) Di(x ։ y) = x ։ y, 1 6 i 6 n− 1.

P r o o f. We will only prove (S4), (S5), (S6) and (S9), since the proof of the others

is straightforward.

(S4): Taking into account the definition of the standard implication and (W21) we

have that Dn−1q1x∧(x ։ y) = (Dn−1q1x∧Dn−1q1y)∨
(

Dn−1q1x∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨

y) → Diqs(x ∧ y))
)

= (Dn−1q1x ∧ Dn−1q1y) ∨
(

Dn−1q1y ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) →

Diqs(x ∧ y))
)

= Dn−1q1y ∧ (y ։ x).

(S5): Taking into account (i) and (iii) in Lemma 1.1 we infer that Dn−1q1x 6 q1x 6

x and so we have that x∧ (x ։ y)∧ (y ։ x) = x∧
(

Dn−1q1y∨
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) →

Diqs(x ∧ y))
)

∧
(

Dn−1q1x ∨
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y))
)

=
(

Dn−1q1y ∨

m
∧

s=1

n−1
∧

i=1

(Diqs(x∨ y) → Diqs(x∧ y))
)

∧
(

(x∧Dn−1q1x)∨
(

x∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨ y) →

Diqs(x ∧ y))
))

=
(

Dn−1q1y ∨
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y))
)

∧
(

Dn−1q1x ∨

(

x∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) → Diqs(x∧y))
))

= (Dn−1q1x∧Dn−1q1y)∨
(

Dn−1q1y∧x∧

m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y))
)

∨
(

Dn−1q1x ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧

y))
)

∨
(

x ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y))
)

.

Analogously, we have that y ∧ ((x ։ y) ∧ (y ։ x)) = (Dn−1q1y ∧ Dn−1q1x) ∨
(

Dn−1q1x∧y∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) → Diqs(x∧y))∨
(

Dn−1q1y∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x∨y) →

Diqs(x ∧ y)) ∨
(

y ∧
m
∧

s=1

n−1
∧

i=1

(Diqs(x ∨ y) → Diqs(x ∧ y)). Hence, taking into account

(W19) and (W21) we infer that x ∧ (x ։ y) ∧ (y ։ x) = y ∧ ((x ։ y) ∧ (y ։ x)).
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(S6): Let A be a subdirectly irreducible Lm
n -algebra, then by ([1], Proposition 4.1)

we have that the set of Boolean elements of SA is {0, 1}. Hence, by (i) in Lemma 1.1

and (g2) we have that Diqs(a ∨ b) → Diqs(a ∧ b) ∈ {0, 1} for all a, b ∈ A. Suppose

now that there are x, y ∈ A such that Diqs(x ∨ y) → Diqs(x ∧ y) = 1. Hence, by

(W12) it follows that x = y and so, by (W2) we have that (x ։ y) → ((y ։ z) →

(x ։ z)) = (x ։ x) → ((x ։ z) → (x ։ z)) = 1. On the other hand, if we

suppose that there are x, y, z ∈ A such that Diqs(y ∨ z) → Diqs(y ∧ z) = 1 or

Diqs(x ∨ z) → Diqs(x ∧ z) = 1, following an analogously reasoning we prove (S6).

Finally, if Diqs(x ∨ y) → Diqs(x ∧ y) = Diqs(y ∨ z) → Diqs(y ∧ z) = Diqs(x ∨ z) →

Diqs(x ∧ z) = 0, then y ։ z = Dn−1q1z = x ։ z and so, by (W2) and (W1) we

conclude the proof.

(S9): It follows as a consequence of (g1), (GL11), (GL12), (g7) and (GL6). �

For any A ∈ Lm
n we will denote by D(A) the set of all deductive systems of A

associated with →, which are defined as usual ([7]).

Lemma 2.1. Let A ∈ Lm
n and F ∈ D(A). Then the following conditions are

equivalent for all x, y ∈ A:

(i) there is u ∈ F such that Dn−1u → fx = Dn−1u → fy,

(ii) there is w ∈ F such that x ∧Dn−1w = y ∧Dn−1w,

(iii) x ։ y, y ։ x ∈ F .

P r o o f. Taking into account [7], Remark 2.11, we will only prove the equivalence

between (ii) and (iii).

(ii)⇒ (iii): From the hypothesis and [7], Theorem 2.14, we have that (x, y) ∈

RF = {(a, b) ∈ A2 : there is w ∈ F such that a ∧ Dn−1w = b ∧ Dn−1w} and so,

(Diqs(x ∨ y), Diqs(x ∧ y)) ∈ RF . Hence, (Diqs(x ∨ y) → Diqs(x ∧ y), 1) ∈ RF which

implies that
(

Dn−1q1y ∨
n−1
∧

i=1

m
∧

s=1
(Diqs(x ∨ y) → qs(x ∧ y)), 1

)

∈ RF . Therefore,

x ։ y ∈ F . Similarly, we get that y ։ x ∈ F .

(iii)⇒ (ii): From the hypothesis and (S8) we have that w = (x ։ y) ∧ (y ։ x) ∈

F ∩ SA and taking into account that SA is an Ln-algebra we have that Dn−1w 6 w.

Hence, by (S5) we conclude that x ∧Dn−1w = y ∧Dn−1w. �

From now on, for any A ∈ Lm
n we will denote by A/R the quotient algebra of A

by R for any R ∈ Con(A). Besides, for x ∈ A the equivalence class of x modulo R

will be denoted by [x]R.
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Theorem 2.1. Let A ∈ Lm
n . Then the following statements hold:

(i) Con(A) = {R(F ) : F ∈ D(A)} where R(F ) = {(x, y) ∈ A2 : x ։ y, y ։

x ∈ F},

(ii) the lattices Con(A) and D(A) are isomorphic considering the applications θ 7−→

[1]θ and F 7−→ R(F ) which are inverse to each other.

P r o o f. It is a direct consequence of Lemma 2.1 and [7], Theorem 2.14. �

Let A ∈ Lm
n and z ∈ A. We will denote by [z) the principal filter of A generated

by z (i.e., [z) = {x ∈ A : z 6 x}).

Lemma 2.2. Let A ∈ Lm
n and a, b ∈ A. If w = (a ։ b) ∧ (b ։ a), then [w) is

a deductive system of A.

P r o o f. Taking into account [7], Proposition 2.6, it only remains to prove that

fDn−1fx ∈ [w) for all x ∈ [w). By (S8), (GL5), (g7) and (S9) we have that

fDn−1fw = fDn−1f((a ։ b) ∧ (b ։ a)) = f2D1((a ։ b) ∧ (b ։ a)) = f2(D1(a ։

b) ∧ D1(b ։ a)) = f2((a ։ b) ∧ (b ։ a)) = w. From this assertion the proof is

straightforward. �

Taking into account the above results we obtain a characterization of the principal

congruences on Lm
n -algebras. For any A ∈ Lm

n and a, b ∈ A we will denote by θ(a, b)

the principal congruence of A generated by (a, b).

Theorem 2.2. Let A ∈ Lm
n and a, b ∈ A. Then θ(a, b) = {(x, y) ∈ A2 : x ∧

((a ։ b) ∧ (b ։ a)) = y ∧ ((a ։ b) ∧ (b ։ a))}.

P r o o f. Let T = {(x, y) ∈ A2 : x ∧ ((a ։ b) ∧ (b ։ a)) = y ∧ ((a ։ b) ∧ (b ։

a))}. By (S5) we have that (a, b) ∈ T . Besides, by (S9) and (S8) it follows that

T = {(x, y) ∈ A2 : x∧Dn−1((a ։ b)∧ (b ։ a)) = y ∧Dn−1((a ։ b)∧ (b ։ a))} and

so, by Lemma 2.2, Lemma 2.1 and [7], Theorem 2.14, we conclude that T ∈ Con(A).

On the other hand, let R ∈ Con(A) be such that (a, b) ∈ R and suppose that

(x, y) ∈ T . Hence, we have that ((a ։ b) ∧ (b ։ a), 1) ∈ R and so, (x ∧ (a ։

b) ∧ (b ։ a), x) ∈ R and (y ∧ (a ։ b) ∧ (b ։ a), y) ∈ R. From these last assertions

and the fact that (x, y) ∈ T we conclude that (x, y) ∈ R. Therefore, T = θ(a, b). �

E x a m p l e 2.1. Let us consider the L2
3-algebra A shown in Figure 1, where the

operations f , Di, 1 6 i 6 2 and qi, 1 6 i 6 2 are defined as follows:

If w = (a ։ b) ∧ (b ։ a) = h, by Lemma 2.2 we have that F = [h) = {h, i, j,

k,m, n, 1} is a deductive system of A. Hence, by Theorem 2.1 we have that A/R(F ) =

{[0]R(F ), [1]R(F )} where [1]R(F ) = F and [0]R(F ) = {0, a, b, c, d, e, g}.
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x 0 a b c d e g

fx 1 n m k i j h

D1x 0 g g g g g g

D2x 0 0 0 0 g g g

q1x 0 0 0 c c c g

q2x 0 c c c g g g

x h i j k m n 1

fx g e d c a b 0
D1x h 1 1 1 1 1 1
D2x h h h h 1 1 1
q1x h h h k k k 1
q2x h k k k 1 1 1

On the other hand, by (S1) and (S3) we have that g ։ 1 = 1 and 1 ։ g = g.

Then, taking into account Theorem 2.2 we obtain that θ(g, 1) = {(x, y) ∈ A2 : x∧g =

y ∧ g} = IdA ∪{(g, 1), (1, g), (d,m), (m, d), (n, e), (e, n), (c, k), (k, c), (a, i), (i, a), (b, j),

(j, b), (0, h), (h, 0)}.

a b

c

d e

g

i j

k

m n

0

h

1

Figure 1.

From Theorem 2.2 it is easy to verify Proposition 2.2, which will be quite useful

in the development of the Lm
n -propositional calculus.

Proposition 2.2. Let A ∈ Lm
n . Then the following statements hold:

(S10) Dix ∧ (x ։ y) ∧ (y ։ x) = Diy ∧ (x ։ y) ∧ (y ։ x), 1 6 i 6 n− 1,

(S11) Diqs(fx ∨ fy) ∧ (x ։ y) ∧ (y ։ x) = Diqs(fx ∧ fy) ∧ (x ։ y) ∧ (y ։ x),

1 6 i 6 n− 1, 1 6 s 6 m,

(S12) Diqs((x ∧ z) ∨ (y ∧ z)) ∧ (x ։ y) ∧ (y ։ x) = Diqs((x ∧ z) ∧ (y ∧ z)) ∧ (x ։

y) ∧ (y ։ x), 1 6 i 6 n− 1, 1 6 s 6 m,

(S13) Diqs((x → z)∨(y → z))∧(x ։ y)∧(y ։ x) = Diqs((x → z)∧(y → z))∧(x ։

y) ∧ (y ։ x), 1 6 i 6 n− 1, 1 6 s 6 m,

(S14) Diqs((x ։ z)∨(y ։ z))∧(x ։ y)∧(y ։ x) = Diqs((x ։ z)∧(y ։ z))∧(x ։

y) ∧ (y ։ x), 1 6 i 6 n− 1, 1 6 s 6 m.

P r o o f. It is routine. �
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3. A characterization of k2m-lattices

The goal of this section is to find an equivalent formulation to (GL1) with a simpler

proof than the previous one. To this end, we take into account the results established

in [8].

Definition 3.1. A k2m-lattice, m ∈ N, is an algebra 〈A,∨,∧, f〉 such that

〈A,∨,∧〉 is a distributive lattice and f is a unary operation on A verifying the

following conditions:

(r1) f2mx = x,

(r2) f(x ∨ y) = fx ∧ fy.

Theorem 3.2 enables us to characterize k2m-lattices by means of the operations

of infimum ∧ and the dual endomorphism f . This characterization results easier by

the use of Sholander’s characterization of distributive lattices as follows:

Theorem 3.1 ([10]). An algebra 〈A,∧,∨〉 of type (2, 2) is a distributive lattice if

and only if it verifies the conditions

(l1) a = a ∧ (a ∨ b),

(l2) a ∧ (b ∨ c) = (c ∧ a) ∨ (b ∧ a).

Theorem 3.2. Let 〈A,∧, f〉 be an algebra of type (2, 1). Define (s) : a ∨ b =

f2m−1(fa∧fb) for all a, b ∈ A. Then 〈A,∧,∨, f〉 is a k2m-lattice, m ∈ N, if and only

if the following conditions are verified:

(m1) a = a ∧ f2m−1(fa ∧ fb),

(m2) a ∧ f2m−1(fb ∧ fc) = f2m−1(f(c ∧ a) ∧ f(b ∧ a)).

P r o o f. From (l1), (l2) and taking into account the definition of ∨ we have that

(m1) and (m2) immediately follow. In order to prove the converse we will first show

that A is a distributive lattice, which is a consequence of the fact that (l1) and (l2)

hold. Indeed, from (m1), (m2) and (s) we have (l1): a∧(a∨b) = f2m−1(fa∧fb)∧a =

a and (l2): (c∧a)∨(b∧a) = f2m−1(f(c∧a)∧f(b∧a)) = a∧f2m−1(fb∧fc) = a∧(b∨c).

Hence, by (m1) and (m2) we obtain (r1): a = a ∧ f2m−1(fa ∧ fa) = f2m−1(f(a ∧

a) ∧ f(a ∧ a)) = f2m−1(fa ∧ fa) = f2m−1fa. Finally, from (r1) and (s) we get (r2):

f(a ∨ b) = ff2m−1(fa ∧ fb) = fa ∧ fb. �
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4. The Lm
n -propositional calculus

In this section, which is the core of this paper, we describe a propositional calculus

and show that it has Lm
n -algebras as the algebraic counterpart. We are interested

in finding a calculus which belongs to the class of standard systems of implicative

propositional calculi. The complexity of the standard implication together with the

fact that Lm
n -algebras do not verify Moisil’s determination principle and that the

operators Di are not ∧-homomorphisms have made that in this calculus the number

of axioms and inference rules are greater than in n-valued  Lukasiewicz propositional

calculus ([4]). The terminology and symbols used here coincide with those used in [9].

Let L = (A0, F ) be a formalized language of zero order where in the alphabet

A0 = (V, L0, L1, L2, U) the set

(i) V of propositional variables is countable;

(ii) L0 is empty;

(iii) L1 contains n elements denoted by f , Di for 1 6 i 6 n− 1, called negation sign

and generalized Moisil operators signs, respectively;

(iv) L2 contains four elements denoted by ∧, ∨, → and ։ called conjunction sign,

disjunction sign, weak implication sign and standard implication sign, respec-

tively;

(v) U contains two elements denoted by ( , ).

In what follows, for any α1, . . . , αk in the set F of all formulas over A0,
k
∨

p=0
αp,

k
∧

p=0
αp will mean α0∨(. . .∨(αk−1∨αk) . . .) and α0∧(. . .∧(αk−1∧αk) . . .), respectively.

Besides, for any α in F , f tα is the result of applying f t times to α if t > 0, or α if

t = 0. Furthermore, for any α, β in F , we will write for brevity α ↔ β, α և։ β and

qsα instead of (α → β) ∧ (β → α), (α ։ β) ∧ (β ։ α) and
∧

J⊆T,|J|=s

∨

j∈J

f2jα, where

T = {0, 1, . . . ,m− 1} and s ∈ {1, . . . ,m}, respectively.

We assume that the set Al of logical axioms consists of all formulas of the following

form, where α, β, γ are any formulas in F :

(A1) α → (β → α),

(A2) (α → (β → γ)) → ((α → β) → (α → γ)),

(A3) α → (α ∨ β),

(A4) β → (α ∨ β),

(A5) (α ∧ β) → α,

(A6) (α ∧ β) → β,

(A7) (α → β) → ((α → γ) → (α → (β ∧ γ))),

(A8) α → D1α,

(A9) DjDiα ↔ Diα, 1 6 i, j 6 n− 1,
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(A10) Di

m−1
∨

p=0
f2pα ↔ Diα, 1 6 i 6 n− 1,

(A11) ((α ∧ γ) → (β ∧ γ)) → (γ → (α → β)),

(A12) Diα ∨ fDiα, 1 6 i 6 n− 1,

(A13) Diqs(α ∨ α) → Diqs(α ∧ α), 1 6 i 6 n− 1, 1 6 s 6 m,

(A14) Diqsα → Diqs(α ∧D1α), 1 6 i 6 n− 1, 1 6 s 6 m,

(A15) Diqs(f
2Diα ∨Diα) → Diqs(f

2Diα ∧Diα), 1 6 i 6 n− 1, 1 6 s 6 m,

(A16) Diqs

(

Di

(

α ∧
m−1
∨

p=0
f2pβ

)

∨ (Diα ∧Diβ)
)

→

Diqs

(

Di

(

α ∧
m−1
∨

p=0
f2pβ

)

∧ (Diα ∧Diβ)
)

, 1 6 i 6 n− 1, 1 6 s 6 m,

(A17) Diqs(Djα ∨ (Diα ∧ Djα)) → Diqs(Djα ∧ (Diα ∧Djα)), 1 6 i 6 j 6 n − 1,

1 6 s 6 m,

(A18) Diqs

(

Dif
(m−1

∨

p=0
f2pα

)

∨ fDn−i

(m−1
∨

p=0
f2pα

))

→

Diqs

(

Dif
(m−1

∨

p=0
f2pα

)

∧ fDn−i

(m−1
∨

p=0
f2pα

))

, 1 6 i 6 n− 1, 1 6 s 6 m,

(A19) Diqs(α ∧ fα) → Diqs((α ∧ fα) ∧ (β ∨ fβ)), 1 6 i 6 n− 1, 1 6 s 6 m,

(A20) Diqs

(m−1
∨

p=0
f2pα

)

→

Diqs

(m−1
∨

p=0
f2pα ∧

(m−1
∨

p=0
f2pβ ∨ fDi

(m−1
∨

p=0
f2pβ

)

∨Di+1

(m−1
∨

p=0
f2pα

)))

,

1 6 i 6 n− 1, 1 6 s 6 m,

(A21) Diqsα → Diqs(α ∧ f2m−1(fα ∧ fβ)), 1 6 i 6 n− 1, 1 6 s 6 m,

(A22) Diqs((α∧f2m−1(fβ∧fγ))∨f2m−1(f(γ∧α)∧f(β∧α))) → Diqs(α∧f2m−1(fβ∧

fγ) ∧ f2m−1(f(γ ∧ α) ∧ f(β ∧ α))), 1 6 i 6 n− 1, 1 6 s 6 m,

(A23) α ։ β ↔ Dn−1q1β ∨
n−1
∧

i=1

m
∧

s=1
(Diqs(α ∨ β) → Diqs(α ∧ β)),

(A24) (Diqs(fα ∨ fβ) ∧ (α և։ β)) → (Diqs(fα ∧ fβ) ∧ (α և։ β)), 1 6 i 6 n − 1,

1 6 s 6 m,

(A25) (Diα ∧ (α և։ β)) → (Diβ ∧ (α և։ β)), 1 6 i 6 n− 1,

(A26) (Diqs((α ∧ γ) ∨ (β ∧ γ)) ∧ (α և։ β)) → (Diqs((α ∧ γ) ∧ (β ∧ γ)) ∧ (α և։ β)),

1 6 i 6 n− 1, 1 6 s 6 m,

(A27) (α ∧ γ) ։ (γ ∧ α),

(A28) (Diqs((γ → α)∨(γ → β))∧(α և։ β)) → (Diqs((γ → α)∧(γ → β))∧(α և։ β)),

1 6 i 6 n− 1, 1 6 s 6 m,

(A29) (Diqs((α → γ)∨(β → γ))∧(α և։ β)) → (Diqs((α → γ)∧(β → γ))∧(α և։ β)),

1 6 i 6 n− 1, 1 6 s 6 m,

(A30) (Diqs((γ ։ α)∨(γ ։ β))∧(α և։ β)) → (Diqs((γ ։ α)∧(γ ։ β))∧(α և։ β)),

1 6 i 6 n− 1, 1 6 s 6 m,
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(A31) (Diqs((α ։ γ)∨(β ։ γ))∧(α և։ β)) → (Diqs((α ։ γ)∧(β ։ γ)∧(α և։ β))),

1 6 i 6 n− 1, 1 6 s 6 m,

(A32) (α ։ β) → ((β ։ γ) → (α ։ γ)),

(A33) (f2m−1(fα ∧ fβ) ։ (α ∨ β)) ∧ ((α ∨ β) ։ f2m−1(fα ∧ fβ)),

(A34) (Dn−1q1α ∧ (α ։ β)) → β.

The consequence operation CL in L = (A0, F ) is determined by Al and by the

following rules of inference:

(R1)
α, α → β

β
,

(R2)
Diα → Djβ,Djβ → Diα

Diα ։ Djβ
, 1 6 i, j 6 n− 1,

(R3)
Diqsα → Diqs(α ∧ β)

Diqs(α ∨ (α ∧ β)) → Diqs(α ∧ (α ∧ β))
, 1 6 i 6 n− 1, 1 6 s 6 m,

(R4)
α

Dn−1q1α
,

(R5)
Diqs(α ∨ β) → Diqs(α ∧ β)

Diqs(β ∨ α) → Diqs(β ∧ α)
, 1 6 i 6 n− 1, 1 6 s 6 m.

The system ℓmn = (L, CL) thus obtained will be called the Lm
n -propositional calcu-

lus. It is worth mentioning that the above connectives are not independent, however,

we consider them for simplicity. We will denote by T the set of all formulas derivable

in ℓmn . If α ∈ T , we will write ⊢ α.

Lemma 4.1 summarizes the most important rules and theorems necessary for the

further development.

Lemma 4.1. In ℓmn the following rules and theorems hold:

(R6)
α

β → α
,

(R7)
α → (β → γ)

(α → β) → (α → γ)
,

(T1) ⊢ α → α,

(T2) ⊢ (α → β) → ((γ → α) → (γ → β)),

(R8)
α → β

(γ → α) → (γ → β)
,

(R9)
(α → β) → (α → γ)

β → (α → γ)
,

(R10)
α → (β → γ)

β → (α → γ)
,

(T3) ⊢ (α → (α → β)) → (α → β),

(T4) ⊢ (α → β) → ((β → γ) → (α → γ)),

(R11)
α → β, β → γ

α → γ
,
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(R12)
α → β

(β → γ) → (α → γ)
,

(R13)
α, β

α ∧ β
,

(T5) ⊢ α ։ α,

(R14)
Diqs(α ∨ β) → Diqs(α ∧ β)

α ։ β
, 1 6 i 6 n− 1, 1 6 s 6 m,

(R15)
α, α ։ β

β
,

(R16)
α ։ β, β ։ γ

α ։ γ
,

(R17)
β

α ։ β
,

(R18)
α ։ β, β ։ α

fα ։ fβ
,

(R19)
α ։ β, β ։ α

Diα ։ Diβ
, 1 6 i 6 n− 1,

(R20)
α ։ β, β ։ α

(α ∧ γ) ։ (β ∧ γ)
,

(R21)
α ։ β, β ։ α

(γ ∧ α) ։ (γ ∧ β)
,

(R22)
α ։ β, β ։ α

(α ∨ γ) ։ (β ∨ γ)
,

(R23)
α ։ β, β ։ α

(γ ∨ α) ։ (γ ∨ β)
,

(R24)
α ։ β, β ։ α

(γ → α) ։ (γ → β)
,

(R25)
α ։ β, β ։ α

(α → γ) ։ (β → γ))
,

(R26)
α ։ β, β ։ α

(γ ։ α) ։ (γ ։ β))
,

(R27)
α ։ β, β ։ α

(α ։ γ) ։ (β ։ γ)
.

P r o o f. The proof of (R6) to (R13) is routine.

(T5):

(1) Diqs(α ∨ α) → Diqs(α ∧ α), [(A13)]

(2)
n−1
∧

i=1

m
∧

s=1
(Diqs(α ∨ α) → Diqs(α ∧ α)), [(1), (R13)]

(3) α ։ α. [(2), (A4), (R1), (A23)]

(R14):

(1) Diqs(α ∨ β) → Diqs(α ∧ β), 1 6 i 6 n− 1, 1 6 s 6 m,

(2)
n−1
∧

i=1

m
∧

s=1
(Diqs(α ∨ β) → Diqs(α ∧ β)), [(1), (R13)]
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(3)
n−1
∧

i=1

m
∧

s=1
(Diqs(α ∨ β) → Diqs(α ∧ β)) →

(

Dn−1q1β ∨
n−1
∧

i=1

m
∧

s=1
(Diqs(α ∨ β) → Diqs(α ∧ β))

)

, [(A4)]

(4) Dn−1q1β ∨
n−1
∧

i=1

m
∧

s=1
(Diqs(α ∨ β) → Diqs(α ∧ β)), [(2), (3), (R1)]

(5) α ։ β. [(4), (A23)]

(R15): It is a consequence of (R4), (R13), (A34) and (R1).

(R16): It is routine.

(R17): It follows as a consequence of (R4), (A3), (R1) and (A23).

(R18):

(1) α ։ β,

(2) β ։ α,

(3) α և։ β, [(1), (2), (R13)]

(4) (Diqs(fα ∨ fβ) ∧ (α և։ β)) → (Diqs(fα ∧ fβ) ∧ (α և։ β)), 1 6 i 6 n − 1,

1 6 s 6 m, [(A24)]

(5) (α և։ β) → (Diqs(fα ∨ fβ) → Diqs(fα ∧ fβ)), 1 6 i 6 n− 1, 1 6 s 6 m,

[(A11), (4), (R1)]

(6) Diqs(fα ∨ fβ) → Diqs(fα ∧ fβ), 1 6 i 6 n− 1, 1 6 s 6 m, [(3), (5), (R1)]

(7) fα ։ fβ. [(6), (R14)]

(R19):

(1) α ։ β,

(2) β ։ α,

(3) α և։ β, [(1), (2), (R13)]

(4) (Diα ∧ (α և։ β)) → (Diβ ∧ (α և։ β)), 1 6 i 6 n− 1, [(A25)]

(5) (α և։ β) → (Diα → Diβ), 1 6 i 6 n− 1, [(A11), (4), (R1)]

(6) Diα → Diβ, 1 6 i 6 n− 1, [(3), (5), (R1)]

(7) (Diβ ∧ (β և։ α)) → (Diα ∧ (β և։ α)), 1 6 i 6 n− 1, [(A25)]

(8) β և։ α, [(2), (1), (R13)]

(9) (β և։ α) → (Diβ → Diα), 1 6 i 6 n− 1, [(A11), (7), (R1)]

(10) Diβ → Diα, 1 6 i 6 n− 1, [(8), (9), (R1)]

(11) Diα ։ Diβ, 1 6 i 6 n− 1. [(6), (10), (R2)]

(R20):

(1) α ։ β,

(2) β ։ α,

(3) α և։ β, [(1), (2), (R13)]

(4) (Diqs((α ∧ γ) ∨ (β ∧ γ)) ∧ (α և։ β)) → (Diqs((α ∧ γ) ∧ (β ∧ γ)) ∧ (α և։ β)),

1 6 i 6 n− 1, 1 6 s 6 m, [(A26)]
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(5) (α և։ β) → (Diqs((α ∧ γ) ∨ (β ∧ γ)) → Diqs((α ∧ γ) ∧ (β ∧ γ))), 1 6 i 6 n− 1,

1 6 s 6 m, [(A11), (4), (R1)]

(6) Diqs((α ∧ γ) ∨ (β ∧ γ)) → Diqs((α ∧ γ) ∧ (β ∧ γ)), 1 6 i 6 n− 1, 1 6 s 6 m,

[(3), (5), (R1)]

(7) (α ∧ γ) ։ (β ∧ γ). [(6), (R14)]

(R22):

(1) α ։ β, β ։ α,

(2) fα ։ fβ, fβ ։ fα, [(1), (R18)]

(3) (fα ∧ fγ) ։ (fβ ∧ fγ), [(2), (R20)]

(4) (fβ ∧ fγ) ։ (fα ∧ fγ), [(2), (R20)]

(5) f2m−1(fα ∧ fγ) ։ f2m−1(fβ ∧ fγ), [(3), (4), (R18)]

(6) f2m−1(fβ ∧ fγ) ։ (β ∨ γ), [(A5), (A33), (R1)]

(7) (α ∨ γ) ։ f2m−1(fα ∧ fγ), [(A6), (A33), (R1)]

(8) (α ∨ γ) ։ (β ∨ γ). [(7), (5), (6), (R16)]

(R24):

(1) α ։ β, [hip.]

(2) β ։ α, [hip.]

(3) α և։ β, [(1), (2), (R13)]

(4) (Diqs((γ → α)∨ (γ → β))∧ (α և։ β)) → (Diqs((γ → α)∧ (γ → β)),∧(α և։ β))

[(A28)]

(5) (α և։ β) → ((Diqs((γ → α) ∨ (γ → β))) → (Diqs((γ → α) ∧ (γ → β)))),

[(A11), (4), (R1)]

(6) Diqs((γ → α) ∨ (γ → β)) → Diqs((γ → α) ∧ (γ → β)), [(3), (5), (R1)]

(7) (γ → α) ։ (γ → β). [(6), (R14)]

(R26):

(1) α ։ β,

(2) β ։ α,

(3) α և։ β, [(1), (2), (R13)]

(4) (Diqs((γ ։ α)∨ (γ ։ β))∧ (α և։ β)) → (Diqs((γ ։ α)∧ (γ ։ β))∧ (α և։ β)),

1 6 i 6 n− 1, 1 6 s 6 m, [(A30)]

(5) (α և։ β) → ((Diqs((γ ։ α) ∨ (γ ։ β))) → (Diqs((γ ։ α) ∧ (γ ։ β)))),

1 6 i 6 n− 1, 1 6 s 6 m, [(A11), (4), (R1)]

(6) Diqs((γ ։ α)∨(γ ։ β)) → Diqs((γ ։ α)∧(γ ։ β)), 1 6 i 6 n−1, 1 6 s 6 m,

[(3), (5), (R1)]

(7) (γ ։ α) ։ (γ ։ β). [(6), (R14)]

Using a reasoning similar to that for (R20), (R22), (R24) and (R26) we infer (R21),

(R23), (R25) and (R27), respectively. �
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Theorem 4.1. The propositional calculus ℓmn belongs to the class of standard

systems of implicative extensional propositional calculi.

P r o o f. We have to prove that conditions (s1) to (s8) in Section 1 are verified.

Clearly, (s1) and (s2) hold. Besides, (s3), (s4), (s5) and (s6) follow from (T12),

(R15), (R16) and (R17), respectively. On the other hand, taking into account (R18)

and (R19), we have that (s7) is satisfied. Finally, if α ։ β, β ։ α, δ ։ γ,

γ ։ δ ∈ CL(H) for every subset H of formulas, then by (R20) we have that (α∧δ) ։

(β ∧ δ) ∈ CL(H). Besides, by (R21) we get (β ∧ δ) ։ (β ∧ γ) ∈ CL(H). Hence,

by (R16) we infer that (α ∧ δ) ։ (β ∧ γ) ∈ CL(H). In an analogous manner, from

(R22), (R23), (R25), (R26) and (R27) we conclude the proof of (s8). �

In what follows, our attention is focused on establishing the relationship between

Lm
n -algebras and ℓmn -algebras which are the class of algebras determined by the sys-

tem ℓmn . To this aim, Lemma 4.2 will be fundamental.

Lemma 4.2. In ℓmn the following theorems hold:

(T6) ⊢ (α ∧ f2m−1(fα ∧ fβ)) ։ α,

(T7) ⊢ α ։ (α ∧ f2m−1(fα ∧ fβ)),

(T8) ⊢ (α ∧ f2m−1(fβ ∧ fγ)) ։ f2m−1(f(γ ∧ α) ∧ f(β ∧ α)),

(T9) ⊢ f2m−1(f(γ ∧ α) ∧ f(β ∧ α)) ։ (α ∧ f2m−1(fβ ∧ fγ)),

(T10) ⊢ D1(α ։ α),

(T11) ⊢ f2D1α ։ D1α,

(T12) ⊢ D1α ։ f2D1α,

(T13) ⊢ Di

(

α ∧
m−1
∨

p=0
f2pβ

)

։ (Diα ∧Diβ), 1 6 i 6 n− 1,

(T14) ⊢ (Diα ∧Diβ) ։ Di

(

α ∧
m−1
∨

p=0
f2pβ

)

, 1 6 i 6 n− 1,

(T15) ⊢ Djα ։ (Diα ∧Djα), 1 6 i 6 j 6 n− 1,

(T16) ⊢ (Diα ∧Djα) ։ Djα, 1 6 i 6 j 6 n− 1,

(T17) ⊢ Dif
(m−1

∨

p=0
f2pα

)

։ fDn−i

(m−1
∨

p=0
f2pα

)

, 1 6 i 6 n− 1,

(T18) ⊢ fDn−i

(m−1
∨

p=0
f2pα

)

։ Dif
(m−1

∨

p=0
f2pα

)

, 1 6 i 6 n− 1,

(T19) ⊢ Diα ։ DjDiα, 1 6 i, j 6 n− 1,

(T20) ⊢ DjDiα ։ Diα, 1 6 i, j 6 n− 1,

(T21) ⊢ (α ∧D1α) ։ α,

(T22) ⊢ α ։ (α ∧D1α),

(T23) ⊢ Di

(m−1
∨

p=0
f2pα

)

։ Diα, 1 6 i 6 n− 1,

28



(T24) ⊢ Diα ։ Di

(m−1
∨

p=0
f2pα

)

, 1 6 i 6 n− 1,

(T25) ⊢ ((α ∧ fα) ∧ (β ∨ fβ)) ։ (α ∧ fα),

(T26) ⊢ (α ∧ fα) ։ ((α ∧ fα) ∧ (β ∨ fβ)),

(T27) ⊢
((m−1

∨

p=0
f2pα

)

∧
(m−1

∨

p=0
f2pβ ∨ fDi

(m−1
∨

p=0
f2pβ

)

∨ Di+1

(m−1
∨

p=0
f2pα

)))

։

m−1
∨

p=0
f2pα, 1 6 i 6 n− 1,

(T28) ⊢
(m−1

∨

p=0
f2pα

)

։

((m−1
∨

p=0
f2pα

)

∧
(m−1

∨

p=0
f2pβ ∨ fDi

(m−1
∨

p=0
f2pβ

)

∨

Di+1

(m−1
∨

p=0
f2pα

)))

, 1 6 i 6 n− 1.

P r o o f. The proofs of (T6) through (T18) are routine.

(T19):

(1) (Diα → DjDiα) ∧ (DjDiα → Diα), 1 6 i, j 6 n− 1, [(A9)]

(2) ((Diα → DjDiα) ∧ (DjDiα → Diα)) → (Diα → DjDiα), 1 6 i, j 6 n− 1,

[(A5)]

(3) Diα → DjDiα, 1 6 i, j 6 n− 1, [(1), (2), (R1)]

(4) ((Diα → DjDiα) ∧ (DjDiα → Diα)) → (DjDiα → Diα), 1 6 i, j 6 n− 1,

[(A6)]

(5) DjDiα → Diα, 1 6 i, j 6 n− 1, [(1), (4), (R1)]

(6) Diα ։ DjDiα, 1 6 i, j 6 n− 1. [(3), (5), (R2)]

(T21): It follows as a consequence of (A14), (R3), (R5) and (R14).

(T23):

(1)
(

Di

(m−1
∨

p=0
f2pα

)

→ Diα
)

∧
(

Diα → Di

(m−1
∨

p=0
f2pα

))

, 1 6 i 6 n− 1, [(A10)]

(2) Di

(m−1
∨

p=0
f2pα

)

→ Diα, 1 6 i 6 n− 1, [(A5), (1), (R1)]

(3) Diα → Di

(m−1
∨

p=0
f2pα

)

, 1 6 i 6 n− 1, [(A6), (1), (R1)]

(4) Di

(m−1
∨

p=0
f2pα

)

։ Diα, 1 6 i 6 n− 1. [(2), (3), (R2)]

(T25):

(1) Diqs(α ∧ fα) → Diqs((α ∧ fα) ∧ (β ∨ fβ)), 1 6 i 6 n− 1, 1 6 s 6 m, [(A19)]

(2) Diqs((α∧fα)∨ ((α∧fα)∧ (β ∨fβ))) → Diqs((α∧fα)∧ ((α∧fα)∧ (β ∨fβ))),

1 6 i 6 n− 1, 1 6 s 6 m, [(1), (R3)]

(3) Diqs(((α∧fα)∧ (β ∨fβ))∨ (α∧fα)) → Diqs(((α∧fα)∧ (β ∨fβ))∧ (α∧fα)),

1 6 i 6 n− 1, 1 6 s 6 m, [(2), (R5)]
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(4) ((α ∧ fα) ∧ (β ∨ fβ)) ։ (α ∧ fα). [(3), (R14)]

(T27):

(1) Diqs

(m−1
∨

p=0
f2pα

)

→ Diqs

((m−1
∨

p=0
f2pα

)

∧
((m−1

∨

p=0
f2pβ

)

∨ fDi

(m−1
∨

p=0
f2pβ

)

∨

Di+1

(m−1
∨

p=0

f2pα
)))

, 1 6 i 6 n− 1, 1 6 s 6 m, [(A20)]

(2) Diqs

((m−1
∨

p=0
f2pα

)

∨
((m−1

∨

p=0
f2pα

)

∧
((m−1

∨

p=0
f2pβ

)

∨ fDi

(m−1
∨

p=0
f2pβ

)

∨

Di+1

(m−1
∨

p=0
f2pα

))))

→ Diqs

((m−1
∨

p=0
f2pα

)

∧
((m−1

∨

p=0
f2pα

)

∧
(m−1

∨

p=0
f2pβ

)

∨

fDi

(m−1
∨

p=0
f2pβ

)

∨Di+1

(m−1
∨

p=0
f2pα

)))

, 1 6 i 6 n− 1, 1 6 s 6 m, [(1), (R3)]

(3) Diqs

(((m−1
∨

p=0

f2pα
)

∧
((m−1

∨

p=0

f2pβ
)

∨ fDi

(m−1
∨

p=0

f2pβ
)

∨Di+1

(m−1
∨

p=0

f2pα
)))

∨

(m−1
∨

p=0
f2pα

))

→ Diqs

(((m−1
∨

p=0
f2pα

)

∧
((m−1

∨

p=0
f2pβ

)

∨ fDi

(m−1
∨

p=0
f2pβ

)

∨

Di+1

(m−1
∨

p=0
f2pα

)))

∧
(m−1

∨

p=0
f2pα

))

, 1 6 i 6 n− 1, 1 6 s 6 m, [(2), (R5)]

(4)
(m−1

∨

p=0
f2pα

)

∧
((m−1

∨

p=0
f2pβ

)

∨fDi

(m−1
∨

p=0
f2pβ

)

∨Di+1

(m−1
∨

p=0
f2pα

))

։
m−1
∨

p=0
f2pα,

1 6 i 6 n− 1. [(3), (R14)]

An argument similar to that for (T19), (T21), (T23), (T25) and (T27) allows us

to prove (T20), (T22), (T24), (T26) and (T28), respectively. �

Proposition 4.1. If α is a formula derivable in ℓmn , then v(α) = 1 for every

valuation v of L in every ℓmn -algebra U .

P r o o f. Since α is a formula derivable in ℓmn if and only if ⊢ α, then by (a1) and

(a2) we conclude that v(α) = 1 for every valuation v of L in every ℓmn -algebra U . �

Proposition 4.2. Let 〈L,∨,∧, f,D1, . . . , Dn−1, 0, 1〉 ∈ Lm
n . Then 〈L,→,։,∨,

∧, f,D1, . . . , Dn−1, 1〉 is an ℓmn -algebra, where → and ։ are defined as in Section 1

and Section 2, respectively.

P r o o f. We will prove that conditions (a1) to (a4) in Section 1 hold. Indeed,

taking into account the definitions of → and ։ we have that (a1) and (a2) are

satisfied. On the other hand, let a, b ∈ L be such that a ։ b = b ։ c = 1. Then, by

(S6) and (W3) we conclude (a3). Besides, if a ։ b = b ։ a = 1, hence (S5) allows

us to infer (a4). �
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Proposition 4.3. Let 〈A,→,։,∨,∧, f,D1, . . . , Dn−1, 1〉 be an ℓmn -algebra. Then

〈A,∨,∧, f,D1, . . . , Dn−1, 0, 1〉 ∈ Lm
n , where 0 = f1.

P r o o f. From (T11), (T12) and (a4) we infer that f2D1(α ։ α) = D1(α ։ α).

Besides, from (T10) we have that D1(α ։ α) = 1 and so, we conclude that f21 = 1.

This assertion and the fact that f1 = 0 imply that f0 = 1. Moreover, from (T6),

(T7), (T8) and (T9) we have that conditions (m1) and (m2) in Theorem 3.2 hold.

Therefore, (GL1) is verified. Besides, by (a4) and taking into account (T13) through

(T28) we infer (GL2), (GL3) and (GL5) through (GL10). Furthermore, from (A12)

and (a1) in Section 1 we get (GL4) and so, the proof is complete. �

From Propositions 4.2 and 4.3 we conclude:

Theorem 4.2. The notions of the ℓmn -algebra and the L
m
n -algebra are equivalent.

Let ≡ be the binary relation on F defined as follows:

α ≡ β if and only if ⊢ α ։ β and ⊢ β ։ α in ℓmn .

Then ≡ is a congruence relation on 〈F,→,։,∧,∨, f,D1, . . . , Dn−1〉 and T deter-

mines an equivalence class. On the other hand, it is easy to verify that the relation

6 defined on F/≡ by

[α] 6 [β] if and only if ⊢ α ։ β,

is a preorder on F/≡.

Proposition 4.4. F = 〈F/≡,→,։,∧,∨, f,D1, . . . , Dn−1, 1〉 is an ℓmn -algebra,

and 1 = T .

P r o o f. Let v be a valuation of L in F and let ̺ be a substitution from L into L

such that v(x) = [̺(x)] for every propositional variable x in L and so, we have that

(1) v(α) = [̺(α)] for every formula α in L. Hence, conditions (a1)–(a4) are verified.

Indeed, if α ∈ A, then by (s1), ̺(α) ∈ A. Thus, [̺(α)] = 1 and consequently (a1)

holds.

Suppose that a rule of inference (r) assigns to premises α1, . . . , αn a formula β as

the conclusion and let v(αi) = 1 for all i, 1 6 i 6 n. Thus, by (1), [̺(αi)] = 1 for

all i, 1 6 i 6 n. Hence, by (s2) it follows that [̺(β)] = 1 and so, by (1) we have that

v(β) = 1, which proves that (a2) holds.

Taking into account that ⊢ α ։ β if and only if 1 = [α ։ β] = [α] ։ [β] we

obtain that [α] 6 [β] if and only if [α] ։ [β] = 1. From this last assertion the proofs

of (a3) and (a4) are straightforward. �

From Proposition 4.3 and Proposition 4.4 we conclude the following theorem.
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Theorem 4.3. F = 〈F/≡,∧,∨, f,D1, . . . , Dn−1, 0, 1〉 ∈ Lm
n .

On the other hand, since ℓmn is consistent, from [9], VIII 7, and Theorem 4.2 we

have that the completeness theorem for ℓmn holds, which is included in Theorem 4.4.

Theorem 4.4. Let α be a formula of ℓmn . Then the following conditions are

equivalent:

(i) α is derivable in ℓmn ,

(ii) α is valid in every Lm
n -algebra,

(iii) v0(α) = 1, where v0 is the canonical valuation ([9], VIII 3.4), in the algebra F .

P r o o f. (i)⇒ (ii): It follows from the assertions given in Section 1.

(ii)⇒ (iii): It is straightforward.

(iii)⇒ (i): From the hypothesis we have that [α] = 1 = T . Hence, α is derivable

in ℓmn . �

R e m a r k 4.1. In case m = 1, we conclude that the propositional calculus ℓ1n has

n-valued  Lukasiewicz-Moisil algebras as the algebraic counterpart.

5. Conclusions

In this paper we have presented new results about the congruence lattice of Lm
n -

algebras as well as the principal congruences by means of the standard implica-

tion. Furthermore, we have established a characterization of k2m-lattices which has

provided an easy way to prove that Lm
n -algebras are the algebraic counterpart of

a propositional calculus. Finally, we have described a standard implicative exten-

sional propositional calculus ℓmn and proved that Lm
n -algebras and ℓmn -algebras are

equivalent.

On the other hand, it would be interesting to find a sequent calculus, along with

a proper notion of validity, sound and complete with respect to Lm
n -algebras, which

has the desirable property of cut-elimination. Another interesting problem would be

to present a Gentzen-style system using the tool of hypersequents.

A c k n o w l e d g e m e n t. The authors are truly thankful to the referee for his/her
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