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Abstract

In this contribution, we study the numerical behavior of the Generalized Minimal Resid-
ual (GMRES) method for solving singular linear systems. It is known that GMRES deter-
mines a least squares solution without breakdown if the coefficient matrix is range-symmetric
(EP), or if its range and nullspace are disjoint (GP) and the system is consistent. We show
that the accuracy of GMRES iterates may deteriorate in practice due to three distinct fac-
tors: (i) the inconsistency of the linear system; (ii) the distance of the initial residual to the
nullspace of the coefficient matrix; (iii) the extremal principal angles between the ranges
of the coefficient matrix and its transpose. These factors lead to poor conditioning of the
extended Hessenberg matrix in the Arnoldi decomposition and affect the accuracy of the
computed least squares solution. We also compare GMRES with the range restricted GM-
RES (RR-GMRES) method. Numerical experiments show typical behaviors of GMRES for
small problems with EP and GP matrices.

1 Introduction
Consider solving linear systems of equations

Ax = b, (1.1)

where A ∈ Rn×n may be singular and b ∈ Rn is not necessarily in R(A) = {y ∈ Rn | y =
Ax, x ∈ Rn}, the range of A. We say that Ax = b is consistent if b ∈ R(A), and otherwise
it is inconsistent. If (1.1) is inconsistent, instead of (1.1), it is natural to consider solving the
least squares problem

‖b−Ax‖ = min
u∈Rn

‖b−Au‖, (1.2)

where ‖ · ‖ denotes the Euclidean norm. We call a minimizer x ∈ argminu∈Rn ‖b−Au‖ a least
squares solution, which is not necessarily unique.

In order to analyze iterative methods for solving (1.1) in terms of the spaces associated with
A, we give some required definitions and notations. Let N (A) = {x ∈ Rn | Ax = 0} be the
nullspace of A. Then, we have N (AT)⊕R(A) = N (A)⊕R(AT) = Rn, dimN (AT) = dimN (A),
and dimR(AT) = dimR(A) = rank(A), where ⊕ denotes the direct sum of subspaces. Let r =
rank(A) and denote the singular value decomposition (SVD) of A by UΣV T, where U ∈ Rn×n
and V ∈ Rn×n are orthogonal matrices UTU = UUT = V TV = V V T = I, I is the identity matrix,
Σ = diag(σ1, σ2, . . . , σr, 0, 0, . . . , 0) ∈ Rn×n, and σi is the ith largest nonzero singular value of
A. Let U = [U1, U2] and V = [V1, V2], where the columns of U1 ∈ Rn×r and U2 ∈ Rn×(n−r)
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form orthonormal bases of R(A) = R(U1) and R(A)⊥ = N (AT) = R(U2), respectively, and the
columns of V1 ∈ Rn×r and V2 ∈ Rn×(n−r) form orthonormal bases of N (A)⊥ = R(AT) = R(V1)
and N (A) = R(V2), respectively.

We recall the definitions of generalized inverses. We call a matrix X ∈ Rn×n the Moore-
Penrose generalized inverse of A ∈ Rn×n ifX satisfies the Penrose equations AXA = A, XAX =
X, (AX)T = AX, and (XA)T = XA, denote it by A†, and have the identity A† = V1Σ−1

r U1
T,

where Σr = diag(σ1, σ2, . . . , σr). The condition number of A is denoted by κ(A) = ‖A‖‖A†‖
[5, Definition 1.4.2]. The smallest nonnegative integer k such that rank(Ak) = rank(Ak+1)
is called the index of A [10, Definition 7.2.1], and is denoted by index(A). In addition, k ≥
index(A) ⇐⇒ N (Ak)⊕R(Ak) = Rn [10, p. 121]. Let index(A) = 1 and X ∈ Rn×n be such that
AXA = A, XAX = X, and AX = XA. Then, X is unique, and we call X the group inverse
of A and denote it by A#. The group inverse of the matrix A is on R(A) equal to the inverse
of the restriction of A to its range R(A) and admits N (A) as its nullspace [21, Theorem 2].
The group inverse can be characterized by the Jordan canonical form. Let S be a nonsingular
matrix S such that J = S−1AS is the Jordan canonical form of A. Then, A# = SJ†S−1 holds.
In particular, we have R(A#) = R(A), N (A#) = N (A), and A#A = AA# = PR(A),N (A) [4].
Here, PR(A),N (A) denotes the projection onto R(A) along N (A).

Now, we express solutions of eqs. (1.1) and (1.2). The vector x∗ = A†b = V1Σ−1
r UT

1 b is called
the minimum-norm least squares or pseudoinverse solution of (1.1) or (1.2), and it belongs to
R(AT). We next give the expressions of the residual of (1.2). Denote the orthogonal projector
onto R(A) by PR(A) = U1U

T
1 and that onto N (AT) by PN (AT) = U2U

T
2 . If v|S ∈ Rn is the

orthogonal projection of a vector v ∈ Rn onto the subspace S ⊆ Rn, then for any x0 ∈ Rn
and any b ∈ Rn, the corresponding residual of (1.2) is r0 = b − Ax0 = b|N (AT) + b|R(A) −
Ax0 = r∗ + r0|R(A), where r∗ = b|N (AT) = PN (AT)b ∈ N (AT) is the least squares residual
and b|R(A) = PR(A)b. In particular, we have r∗ = 0 for b ∈ R(A). Assume index(A) = 1. It
holds that x# = A#b is a solution of Ax = b ⇐⇒ b ∈ R(A) [10], and it is the unique solution
of Ax = b in R(A). Furthermore, the minimum Euclidean norm solution of (1.2) satisfies
x∗ = PR(AT)x#.

In this paper, we are interested in the numerical behavior of the Generalized Minimal Resid-
ual (GMRES) method [22] applied in particular to singular systems (1.1). In section 2, we
give some well-known conditions under which GMRES determines a solution without break-
down when applied to certain classes of singular matrices. We discuss also a relation to the
range-restricted GMRES (RR-GMRES) method proposed in [7]. In section 3, we examine the
conditioning of the coefficient matrix A restricted to the Krylov subspaces that significantly
influences the numerical behavior of GMRES. We consider first the case of EP (equal pro-
jection) or range-symmetric matrices and distinguish between the consistent and inconsistent
cases showing that the consistent case is similar to the nonsingular case. Then we discuss the
inconsistent EP case where GMRES suffers from an instability, since the convergence means
ill-conditioned restriction of A to the Krylov subspaces. In section 4 we study the case of group
projection (GP) matrices. We show that the numerical behavior of GMRES applied to such
problems depends substantially on the principal angles between the subspacesR(A) andR(AT).
Surprisingly, difficulties can be expected for non-range-symmetric problems even for consistent
systems. In section 5, we conclude the paper.

2 GMRES methods and its convergence for singular systems
GMRES for the linear system (1.1) with initial iterate x0 ∈ Rn, independent of any par-
ticular implementation of the algorithm, determines the kth iterate xk over x0 + Kk(A, r0)

2



that minimizes ‖b − Axk‖, where r0 = b − Ax0 is the initial residual and Kk(A, r0) =
span{r0, Ar0, . . . , A

k−1r0} is the Krylov subspace of order k. Note that there exist xk and
hence rk = b − Axk for all k ≥ 0 but xk may not be unique in the singular case. Denote
Kk(A, r0) by Kk for simplicity. It is clear that Kk = span{r0} + AKk−1 ⊂ span{r∗} + R(A)
holds. If dimAKk = dimKk, then the problem

‖b−Axk‖ = min
z∈Kk

‖b−A(x0 + z)‖ = min
z∈Kk

‖r0 −Az‖ = ‖r0 −Azk‖ (2.1)

has a unique solution xk = x0 +zk and hence rk = b−Axk ∈ r0 +AKk is uniquely determined.
General studies on Krylov subspace methods in the singular case were done in [16], [24], [31],

[23]. Particular studies on GMRES-type methods in the singular case were done in [7], [25],
[20], [26], [13]. See [8], [9], [14] for GMRES on ill-posed linear systems, and [32] for GMRES
with preconditioning. See also [15] for GMRES and [1] for GMRES with preconditioning in
Hilbert spaces.

The GMRES method for solving ill-posed problems was studied in [8], [9], [14]. The pre-
conditioned GMRES method applied to singular systems was considered in [32] . See also [15]
for GMRES and [1] for the preconditioned GMRES method applied in Hilbert spaces.

In the nonsingular case, GMRES determines the solution of Ax = b for all b ∈ Rn and for
all x0 ∈ Rn within n iterations. In the singular case, GMRES may fail to determine a solution
of (1.1), and is said to break down at some step k if dimAKk < dimKk or dimKk < k [6,
p. 38]. Note that, in general, dimAKk ≤ dimKk ≤ k holds for each k.

We give an explicit expression of the iterate xk for GMRES using the Arnoldi decomposition
AQk = Qk+1Hk+1,k, k = 1, 2, . . ., where the columns of Qk = [q1, q2, . . . , qk] form an orthonor-
mal basis of the Krylov subspace Kk, and Hk+1,k = (hi,j) ∈ R(k+1)×k is an extended Hessenberg
matrix. Then the iterate is given by xk = x0 +Qkyk with yk = arg miny∈Rk‖βe1 −Hk+1,ky‖,
where β = ‖r0‖, e1 is the first column of the identity matrix and ‖b−Axk‖ = ‖r0−AQkyk‖ =
‖βe1 −Hk+1,kyk‖.

It is clear that if hi+1,i 6= 0 for i = 1, 2, . . . , k − 1, the breakdown does not occur until step
k − 1 of GMRES with dimAKi = i, or rank(Hi+1,i) = i, i = 1, 2, . . . , k − 1. At breakdown of
GMRES at step k with hk+1,k = 0, one of the following cases holds [18, Appendix B] (cf. [6,
Theorem 2.2]):

Case I. dimAKk+1 = k < dimKk+1 = k + 1, whereas rank(Hk,k) = k − 1.

Case II. dimAKk = k = dimKk+1 < k + 1, whereas rank(Hk,k) = k (GMRES determines a
solution of Ax = b at step k).

Here, Hk.k = (hi,j) ∈ Rk×k.
A variant of GMRES called the range restricted GMRES (RR-GMRES) method was pro-

posed in [7]. RR-GMRES determines the kth iterate by minimizing the same objective function
as GMRES over a different Krylov subspace

‖b−AxR
k ‖ = min

z∈Kk(A,Ar0)
‖b−A(x0 + z)‖ = min

z∈Kk(A,Ar0)
‖r0 −Az‖ = ‖r0 −AzR

k ‖.

It was shown in [11, Theorem A2] that if RR-GMRES applied to (1.2) breaks down at step
m with rank(A) = m − 1 and dimAKm(A,Ar0) = m − 1, then it determines a solution
of (1.2). Here, RR-GMRES is said to break down if dimAKk(A,Ar0) < dimKk(A,Ar0) or
dimKk(A,Ar0) < k.

We give an explicit expression of the RR-GMRES iterate xk using the Arnoldi decompo-
sition AQR

k = QR
k+1H

R
k+1,k, k = 1, 2, . . ., where the columns of QR

k = [qR
1 , q

R
2 , . . . , q

R
k ] form an

orthonormal basis of the Krylov subspace Kk(A,Ar0) with the initial vector qR
1 = Ar0/‖Ar0‖,
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and HR
k+1,k = (hR

i,j) ∈ R(k+1)×k is an extended Hessenberg matrix. Then, the iterate is given by
xR
k = x0 +QR

k y
R
k with yR

k = arg miny∈Rk‖(QR
k+1)Tr0 −HR

k+1,ky‖, where

‖b−AxR
k ‖2 = ‖r0 −AQR

k y
R
k ‖2

= ‖(QR
k+1)Tr0 −HR

k+1,ky
R
k ‖2 + ‖[I−QR

k+1(QR
k+1)T]r0‖2

= min
y∈Rk

‖(QR
k+1)Tr0 −HR

k+1,ky‖2 + ‖[I−QR
k+1(QR

k+1)T]r0‖2.

The last term is equal to the kth residual norm for the simpler GMRES method [29], which is
not larger than the kth residual norm for RR-GMRES, i.e., ‖b−Axk‖ ≤ ‖b−AxR

k ‖. Note also
that ‖HR

k,k−1‖ = ‖AQR
k−1‖ ≤ ‖AQk‖ = ‖Hk+1,k‖ and

σk(Hk+1,k) ≤ min
y∈Rk−1\{0}

‖AQR
k−1y‖

‖QR
k−1y‖

= σk−1(HR
k,k−1)

leading to an interesting bound κ(HR
k,k−1) ≤ κ(Hk+1,k) for k = 2, . . . , n−1, where σk(·) denotes

the kth largest singular value of a matrix.

In the following, we present conditions under which GMRES determines a solution of (1.1).
We start with the observation that in the case of N (A) ∩ R(A) 6= {0}, GMRES breaks down
and fails to determine a solution.

Proposition 2.1. If b ∈ R(A) and 0 6= r0 ∈ N (A) ∩R(A), then GMRES breaks down at step
1 without determining a solution of Ax = b.

Proof. Since r0 6= 0, we have dimK1 = dim span{r0} = 1. Since r0 ∈ N (A) gives Ar0 = 0,
we have dimAK1 = dim span{Ar0} = dim span{0} = 0. Hence, dimAK1 < dimK1 holds.
Therefore, GMRES breaks down at step 1.

Similarly to GMRES, RR-GMRES also breaks down at step 1 without determining a solution
of Ax = b if b ∈ R(A) and 0 6= r0 ∈ N (A) ∩R(A). Therefore, we will restrict our attention to
the cases of N (A) ∩R(A) = {0}. The following statement holds.

Theorem 2.2 ([6, Theorem 2.6], [31, Theorem 3.2]). If N (A) ∩ R(A) = {0}, then GMRES
determines a solution of Ax = b without breakdown for all b ∈ R(A) and for all x0 ∈ Rn. The
solution is x# + (I−A#A)x0.

The condition N (A) ∩R(A) = {0} is equivalent to rank([U1, V2]) = n, or R(U1) ∩R(V2) =
{0} [10, Lemma 7.2.1]. Then, we have PR(A),N (A) = A#A = [U1,O][U1, V2]−1 = U1(V T

1 U1)−1V T
1 ,

because of [4, Exercise 30, p. 167] and

[U1, V2]−1 =
[

(V T
1 U1)−1 O

−V2U1(V T
1 U1)−1 I

]
[V1, V2]T.

Thus, κ(A#A) = κ(V T
1 U1) holds.

For a special class of singular matrices, GMRES determines a least squares solution.

Theorem 2.3 ([6, Theorem 2.4]). If R(A) = R(AT), then GMRES determines a solution of
minx∈Rn ‖b−Ax‖ without breakdown for all b ∈ Rn and for all x0 ∈ Rn.
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A matrix A ∈ Rn×n satisfying N (A) ∩ R(A) = {0}, is called a GP (group) matrix. A GP
matrix satisfying in addition R(AT) = R(A), or equivalently R(U1) = R(V1), is called an EP
(equal projection) or range-symmetric matrix. Now, we characterize the GP and EP matrices
in terms of their singular value decompositions. The matrix A can be decomposed into

A = U

[
ΣrK ΣrL

O O

]
UT = V

[
KΣr O
MΣr O

]
V T

with the identity KKT + LLT = I, where K = V T
1 U2, L = V T

1 U1, and M = V T
2 U1, and the

pseudoinverse matrix of A can be decomposed into

A† = U

[
KTΣ−1

r O
LTΣ−1

r O

]
UT = V

[
Σ−1
r K

T Σ−1
r M

T

O O

]
V T.

The equivalences for GP matrices

R(U1) ∩R(V2) = {0} ⇐⇒ rank([U1, V2]) = n⇐⇒ V T
1 U1(= K) is nonsingular

follow from the equation

[V1, V2]T[U1, V2] =
[
V T

1 U1 O
V T

2 U1 I

]
.

The group inverse of a GP matrix A can be decomposed into

A# = U

[
K−1Σ−1

r K−1Σ−1
r K−1L

O O

]
UT = V

[
Σ−1
r K

−1 O
MK−1Σ−1

r K
−1 O

]
V T.

See [2, Section 1]. The conditioning of K = V T
1 U1 is independent of the conditioning of A but it

gives a difficulty in solving singular linear systems with GMRES. The EP case R(AT) = R(A)
is equivalent to that K = V T

1 U1 is orthogonal, since L = V T
1 U2 = O.

Next, we characterize GP and EP matrices in terms of the principal angles. In the EP case
R(AT) = R(A), the matrix V T

1 U1 is orthogonal and the cosines of the principal angles between
R(A) and R(AT) are all zero. In the GP case, since the columns of U1 and V1 form bases of
R(A) and R(AT), respectively, the cosines of the canonical angles between R(A) and R(AT) are
the singular values of V T

1 U1 [12, section 1.2]. Hence, the condition number of V T
1 U1 is related

to the extremal principal angles.
Note that due to ‖V T

1 U1‖ ≤ 1 all singular values of V T
1 U1 are less than or equal to 1 and the

number of those equal exactly to 1 gives the dimension of R(U1) ∩ R(V1). So, if ‖V T
1 U1‖ < 1,

thenR(U1)∩R(V1) = R(A)∩R(AT) = {0}. If a matrix A ∈ Rn×n satisfiesR(A)∩R(AT) = {0},
it is called a disjoint range (DR) matrix [3].

3 GMRES and EP matrices
As was already noted, the GMRES iterate xk = x0 + zk solves the least squares problem (2.1).
Therefore, the restriction of A to the Krylov subspace Kk ⊆ Rn denoted by A|Kk

plays an
important role in the numerical behavior of GMRES. Indeed, the ill-conditioning of A|Kk

was
studied and its condition number

κ(A|Kk
) =

maxz∈Kk\{0} ‖Az‖
/
‖z‖

minz∈Kk\{0} ‖Az‖
/
‖z‖

5



was introduced by Brown and Walker in [6]. In practical computations, the iterate xk is
computed as xk = x0 + Qkyk, where the columns of Qk form an orthonormal basis of the
Krylov subspace Kk and the vector yk is a solution of the extended Hessenberg least squares
problem miny∈Rk ‖βe1 −Hk+1,ky‖ (see section 2). The accuracy of xk is thus affected directly
by the conditioning of the matrix Hk+1,k, whereas the identity κ(Hk+1,k) = κ(A|Kk

) follows
from the identities

{max,min
z∈Kk\{0}

}‖Az‖
‖z‖

= {max,min
w∈Rk\{0}

}‖AQkw‖
‖Qkw‖

= {max,min
w∈Rk\{0}

}‖Hk+1,kw‖
‖w‖

.

Next, we give bounds on the extremal singular values of Hk+1,k. The norm of the matrix
Hk+1,k can be always bounded above by that of A

‖Hk+1,k‖ = max
z∈Kk\{0}

‖Az‖
‖z‖

≤ max
z∈span{r∗}⊕R(A)\{0}

‖Az‖
‖z‖

≤ max
z∈Rn\{0}

‖Az‖
‖z‖

= ‖A‖.

This approach cannot be used to bound the kth (or smallest) singular value of Hk+1,k due to

σk(Hk+1,k) = min
z∈Kk\{0}

‖Az‖
‖z‖

≥ min
z∈span{r∗}⊕R(A)\{0}

‖Az‖
‖z‖

≥ min
z∈Rn\{0}

‖Az‖
‖z‖

= 0 (3.1)

as the last equality holds for A singular.
In the consistent case, the condition number is bounded by κ(Hk+1,k) ≤ κ(A|R(A)) from

Kk ⊆ R(A) and

σk(Hk+1,k) ≥ min
z∈R(A)\{0}

‖Az‖
‖z‖

,

where A|R(A) denotes the restriction of A to the range R(A). If A is an EP matrix R(A) =
R(AT) = N (A)⊥, then

min
z∈R(A)\{0}

‖Az‖
‖z‖

= min
z∈R(AT)\{0}

‖Az‖
‖z‖

= σr(A) > 0

and

κ(A|R(A)) = ‖A‖
minz∈R(A)\{0} ‖Az‖/‖z‖

= κ(A).

Indeed, the consistent EP case is similar to the nonsingular case, and the condition number
of the extended Hessenberg matrix Hk+1,k is bounded by κ(Hk+1,k) ≤ κ(A) (cf. [33, Remark
3.2, Theorem 3.6]). Consequently, the rank deficiency of the least squares problem (2.1) cannot
occur and GMRES will terminate if a solution is reached at some step with a degeneracy of the
Krylov subspace at the next step.

In the inconsistent EP case, the equivalence R(AT) = R(A) ⇐⇒ N (AT) = N (A) shows
that the nonzero least squares residual r∗ ∈ N (AT) belongs also to N (A) and

σk(Hk+1,k) ≥ min
z∈span{r∗}⊕R(A)\{0}

‖Az‖
‖z‖

= 0.

It follows from (2.1) that the residual rk−1 at step k−1 belongs to the Krylov subspace Kk and
satisfies rk−1 − r∗ ∈ R(A). In addition, due to Ar∗ = 0 we have

σk(Hk+1,k) = min
z∈Kk\{0}

‖Az‖
‖z‖

≤ ‖Ark−1‖
‖rk−1‖

= ‖A(rk−1 − r∗)‖
‖rk−1‖

≤ ‖A‖‖rk−1 − r∗‖
‖rk−1‖

. (3.2)

6



This result was derived in a somewhat different form in [6, Theorem 2.5]. It is clear that in
the inconsistent case, the least squares problem (2.1) becomes ill-conditioned as the GMRES
iterate converges to a least squares solution. This situation is illustrated in Figure 3.1. Note
that we also have

σk(Hk+1,k) = min
z∈Kk\{0}

‖Az‖
‖z‖

≤ ‖Ar0‖
‖r0‖

≤
‖A‖‖r0|R(AT)‖

‖r0‖
=
‖A‖‖r0|R(A)‖
‖r0‖

.

This bound indicates that if the norm of Ar0 is too small, then Hk+1,k becomes ill-conditioned
and the inaccuracy can be expected at all subsequent steps of GMRES. Finally, since a symmet-
ric matrix is an EP matrix, the above discussion also covers the MINRES method [19] applied
to symmetric singular systems.

The conditioning of the extended Hessenberg matrix Hk+1,k for GMRES and its relation to
the conditioning of A are illustrated on small examples. First for simplicity, consider applying
GMRES with x0 = 0 to Ax = b, where

A =
[
1 0
0 0

]
, b =

[
1
ε

]
, ε > 0. (3.3)

The matrix A is EP, it has the range R(A) = R(AT) = span{[1, 0]T} and the nullspace N (A) =
N (AT) = span{[0, 1]T}, and its minimum nonzero singular value is σ1(A) =
minz∈R(A)\{0} ‖Az‖/‖z‖ = 1. The first two steps of the Arnoldi process for A and the ini-
tial vector q1 = b/‖b‖ give the decomposition AQ2 = Q2H2,2, where

Q2 = [q1, q2] = 1√
1 + ε2

[
1 ε
ε −1

]
, H2,2 = 1

1 + ε2

[
1 ε
ε ε2

]
.

Hence, H2,2 is singular and we have σ1(A) = σ1(H2,2) = 1. Solving miny∈R2 ‖βe1 − H2,2y‖,
where β =

√
1 + ε2, we have the minimum-norm solution y2 = 1/

√
1 + ε2[1, ε]T and ‖y2‖ = 1.

Therefore, ‖x2‖ = ‖y2‖ and thus the norm of the iterate is not large, even if ε is very small. It
is also clear that for ε = 0 the system (3.3) becomes consistent and then GMRES will deliver
the minimum norm solution x∗ = [1, 0]T in one iteration.

For comparison, we also consider the 2×2 nonsingular ill-posed linear system Ax = b, where

A =
[
1 0
0 δ

]
, b =

[
1
ε

]
, δ, ε > 0 (3.4)

with the condition number κ(A) = 1/δ, where δ is a small scalar and the right-hand side b
is contaminated by the error [0, ε]T. The exact solution is [1, 0]T and the error-contaminated

x#

R(A)

Figure 3.1: Geometric illustration of residual vectors in the EP case.
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solution is [1, ε/δ]T. GMRES applied to Ax = b with x0 = 0 gives the same Q2 as the one for
(3.3) but the different Hessenberg matrix

H2,2 = 1
1 + ε2

[
1 + δε2 (1− δ)ε
(1− δ)ε δ + ε2

]
,

whose condition number is the same as that of A. Thus, we have the upper bound ‖A−1b‖ =
‖x2‖ = ‖y2‖ ≤ ‖A−1‖‖b‖ = ‖H−1

2,2‖‖r0‖ =
√

1 + ε2/δ. This means that if ε 6= 0 and δ is small,
then the iterates computed by GMRES can be inaccurate. In the exactly singular case with
δ = 0, this is not the case.

In the following numerical examples, we examine the accuracy of the GMRES iterate with
respect to the degree of consistency of linear systems by using the test matrix and right hand
side vectors

A =
[
D 0
0 0

]
∈ R128×128, b =

[
γ
δ

]
, (3.5)

where D = diag(10
0

63 , 10
−4
63 , 10

−8
63 , . . . , 10−4) ∈ R64×64, γ = [γ, γ, . . . , γ]T ∈ R64 and δ =

[δ, δ, . . . , δ]T ∈ R64. Hence, A has the condition number 104, and b 6∈ R(A) ⇐⇒ δ 6= 0. The
degree of inconsistency of the linear system Ax = b can be controlled by the ratio between γ and
δ, as ‖b|R(A)‖ = 8γ and ‖b|N (AT)‖ = 8δ hold. Since R(A) = R(AT), GMRES should determine
the least squares solution of minx∈Rn ‖b − Ax‖ for all b ∈ R128 (Theorem 2.3). Throughout
all our numerical experiments, we use GMRES and RR-GMRES with the Householder or-
thogonalization process [28] to ensure the best possible orthogonality among the Arnoldi basis
vectors q1, q2, . . . , qk and we compute the kth residual rk = b − Axk explicitly from xk by
solving the extended Hessenberg least squares problem miny∈Rk ‖βe1−Hk+1,ky‖ with the Mat-
lab backslash solver, which utilizes column pivoting. A mathematically equivalent solution of
miny∈Rk ‖βe1 −Hk+1,ky‖ was presented in [17].

Figure 3.2 shows the relative residual norm ‖ATrk‖/‖ATb‖ versus the number of iterations
of GMRES in the weakly inconsistent cases (γ, δ) = (1, 0), (1, 10−12), (1, 10−8), and (1, 10−4) on
the left, and in the strongly inconsistent cases (γ, δ) = (1, 1), (10−4, 1), (10−8, 1), and (10−12, 1)
on the right. Note that the relative residual norm ‖ATrk‖/‖ATb‖ is associated with the normal
equations ATAx = ATb, which are mathematically equivalent to the linear least squares problem
minx∈Rn ‖b − Ax‖. Similarly, Figures 3.3 and 3.4 show the relative residual error norm ‖rk −
r∗‖/‖rk‖ (cf. equation (3.2)) and the extremal singular values of A and Hk+1,k, respectively. If
the inconsistency is small (δ � γ), then GMRES is sufficiently accurate (Figure 3.2a); otherwise
the relative residual norm ‖ATrk‖/‖ATb‖ stagnates before attaining the accuracy on the level of
uκ(A) (Figure 3.2b), where u ' 1.1 · 10−16 is the unit roundoff. In contrast to the nonsingular
case, GMRES deteriorates not only due to the condition number of A but also due to the
inconsistency measured here by δ > 0. For strongly inconsistent systems with δ � γ, i.e., for r0
close to N (A), even though ‖ATrk‖/‖ATb‖ is large and stagnates, and ‖r∗‖ and hence ‖rk‖ are
large, the residual rk approaches r∗. Figure 3.4b shows that for strongly inconsistent problems,
Hk+1,k has a condition number significantly larger than A, tends to become more ill-conditioned
in the subsequent steps, and becomes numerically rank-deficient with u‖Hk+1,k‖‖H†k+1,k‖ ≥ 1
as the iteration proceeds. In particular, for γ = 0 and δ = 1, GMRES breaks down at step 1 but
gives a least squares solution. Comparing Figures 3.3b and 3.4b, we see that in these cases the
bound (3.2) gives a reasonably good upper estimate for the smallest singular value of Hk+1,k.
The behavior described by this example is illustrated on a practical problem from a discretization
of a partial differential equation with periodic boundary conditions in [6, Experiment 4.2].
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Figure 3.2: Relative residual norm ‖ATrk‖/‖ATb‖ for GMRES.
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Figure 3.3: Relative residual error norm ‖rk − r∗‖/‖rk‖ for GMRES.
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Figure 3.4: Extremal singular values of A and Hk+1,k for GMRES.

A remedy for the ill-conditioning occurring in GMRES due to inconsistency is to form the
Krylov subspace Kk(A,Ar0) by starting with the initial vector Ar0 in R(A) instead of r0
as is done in RR-GMRES. Note that, on the other hand, the RR-GMRES residual norm is
always larger than or equal to the GMRES residual norm (see section 2). Similarly to the
above, we show numerical results for RR-GMRES on the same inconsistent linear systems
(3.5). Figures 3.5 to 3.7 show the same quantities as Figures 3.2 to 3.4 for RR-GMRES. For
any inconsistency parameter δ > 0, the condition number of HR

k+1,k is bounded above by the
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Figure 3.5: Relative residual norm ‖ATrR
k ‖/‖ATb‖ for RR-GMRES.
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Figure 3.6: Relative residual error norm ‖rR
k − r∗‖/‖rR

k ‖ for RR-GMRES.
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Figure 3.7: Extremal singular values of A and HR
k+1,k for RR-GMRES.

condition number of A and RR-GMRES is sufficiently accurate, as

σk(HR
k+1,k) = min

z∈Kk(A,Ar0)\{0}

‖Az‖
‖z‖

≥ min
z∈R(A)\{0}

‖Az‖
‖z‖

= min
z∈R(AT)\{0}

‖Az‖
‖z‖

= σr(A)

for R(A) = R(AT). Thus, the accuracy of the RR-GMRES iterate is affected only by the
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condition number of A, even though the inconsistency increases or r0 approaches N (A). Hence,
for inconsistent problems with EP matrices RR-GMRES is a successful alternative to GMRES.

4 GMRES and GP matrices
We have shown in section 3 that the condition number κ(A|R(A)) plays an important role in
the behavior of GMRES and in the EP case we have κ(A|R(A)) = κ(A). Thus for consistent
problems with EP matrices, the condition number of A represents an upper bound for the
condition number of Hk+1,k due to κ(Hk+1,k) ≤ κ(A|R(A)) = κ(A) and the accuracy of the
GMRES iterates is actually determined by the singular values of A. Consider now applying
GMRES to Ax = b, where A is a GP matrix (Theorem 2.2). We will show that in the GP case
κ(A|R(A)) can be significantly larger than κ(A) and thus the condition number κ(Hk+1,k) can
become larger than κ(A) even in the consistent case. The accuracy of the GMRES iterates can
be then affected by the inaccurate solution of the extended Hessenberg least squares problem
that can be ill-conditioned even if A is well-conditioned.

According to Theorem 2.2, GMRES in the consistent GP case determines x# +(I−A#A)x0.
The vector x# that belongs to R(A) can be related to the vector x∗ that belongs to R(AT) as
follows:

σr(V T
1 U1)‖x#‖ ≤ ‖x∗‖ ≤ ‖x#‖, (4.1)

which follows from the identity x∗ = PR(AT)x# = V1V
T

1 U1U
T
1 x#. Note that x# may have

a large component in N (A), if the angle between N (A) and R(A) is small, which may affect
the accuracy of GMRES iterates (see Figure 4.1), due to the ill-conditioning of the extended
Hessenberg matrix Hk+1,k.

In the consistent case, the extremal singular values of Hk+1,k can be bounded as

σ1(Hk+1,k) ≤ max
z∈R(A)\{0}

‖Az‖
‖z‖

= max
z∈Rr\{0}

‖U1ΣrV
T

1 U1z‖
‖U1z‖

≤ ‖A‖‖V T
1 U1‖,

σk(Hk+1,k) ≥ min
z∈R(A)\{0}

‖Az‖
‖z‖

= min
z∈Rr\{0}

‖U1ΣrV
T

1 U1z‖
‖U1z‖

≥ σr(A)σr(V T
1 U1). (4.2)

Consequently, κ(Hk+1,k) ≤ κ(A)κ(V T
1 U1) is related to the extremal principal angles between

R(A) and R(AT) (cf. [30, Theorem 2.1]). The lower bound (4.2) shows that, in the consistent
case, the smallest singular value of Hk+1,k can be smaller than the smallest nonzero singular
value of A, depending on the smallest nonzero singular value of V T

1 U1. In addition, it is easy
to see that σk(Hk+1,k) can be bounded by

σk(Hk+1,k) = min
z∈Kk\{0}

‖Az‖
‖z‖

≤ ‖Ar0‖
‖r0‖

≤
‖A‖‖r0|R(AT)‖

‖r0‖
. (4.3)

Here, the last inequality is implied by the splitting Ar0 = A(r0|N (A) + r0|R(AT)) = Ar0|R(AT).
Although Brown and Walker mention in [6, p. 50] that the condition number of A|Kk

cannot
become arbitrarily large through an unfortunate choice of b and x0, it is clear from (4.3) that
if the residual r0 has a very small component in R(AT) then the condition number of Hk+1,k
can be large for any singular matrix A.

In the following, we give illustrative examples that lead to ill-conditioned extended Hessen-
berg matrix Hk+1,k in GMRES. First, we consider GMRES with x0 = 0 applied to Ax = b,
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x#

x∗

R(A)

Figure 4.1: Geometric illustration of solution vectors in the GP case.

where

A =
[
ε 1
0 0

]
, A# =

[
1/ε 1/ε2

0 0

]
, b =

[
1
0

]
. (4.4)

The matrix A has the following ranges and nullspaces

R(A) = span
{[

1
0

]}
, N (A) = span

{[
1
−ε

]}
,

R(AT) = span
{[
ε
1

]}
, N (AT) = span

{[
0
1

]}
.

It is clear that for ε = 0 the matrix A is DR (see section 2). In addition, the initial vector
r0 satisfies r0 ∈ N (A) ∩ R(A) and thus the GMRES method breaks down at step 1. Now
suppose that 0 < ε � 1. Then, the matrix A is GP but not EP, i.e., R(AT) 6= R(A). Since
σ1(V T

1 U1) = ε/
√

1 + ε2, we have

min
z∈R(A)\{0}

‖Az‖
‖z‖

= ε, min
z∈R(AT)\{0}

‖Az‖
‖z‖

=
√

1 + ε2.

The smallest singular value of H2,1 is significantly smaller than the smallest nonzero singular
value of A, σ1(H2,1) = ε�

√
1 + ε2 = σ1(A). Indeed, the components of H2,1 are H2,1 = [ε, 0]T.

Furthermore, by solving miny∈R1 ‖βe1 − H2,1y‖ with β = 1, we have y1 = 1/ε, i.e., y1 has a
large component. We see that x1 = Q1y1 and x1 = x# = A#b = [1/ε, 0]T for b = [1, 0]T.
Therefore, ‖x1‖ becomes very large even if the condition number of A and the norm of the
right-hand side are small. Thus, the vector x# contains a large component in N (A), whereas
x∗ = 1/(1 + ε2)[ε, 1]T, and the inequalities (4.1) are satisfied.

In the following, we also consider the nonsingular ill-posed linear system Ax = b, where

A =
[
ε 1
0 δ

]
, b =

[
1
−ε

]
δ, ε > 0, (4.5)

where δ is a small parameter and the right-hand side b is contaminated by the error [0,−ε]T.
The extremal singular values of A are σ1(A) ' 1 and σ2(A) ' δε. Indeed, the condition number
of A is bounded as

κ(A) =
(

1 + δ2 + ε2 +
√

(1 + δ2 + ε2)2 − 4δ2ε2

1 + δ2 + ε2 −
√

(1 + δ2 + ε2)2 − 4δ2ε2

)1/2

≥ 1
δε

(4.6)
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Then, GMRES applied to Ax = b with the error-free right-hand side b = [1, 0]T and x0 = 0
gives the same Arnoldi vector q1 and the same extended Hessenberg matrix H2,1 as the ones
for (4.4). GMRES applied to Ax = b with (4.5) give

Q2 = 1√
1 + ε2

[
1 ε
−ε 1

]
, H2,2 = 1

1 + ε2

[
δε2 1 + ε2 − δε
δε ε(1 + ε2) + δ

]
.

Hence, we have the upper bound ‖A−1b‖ = ‖x2‖ = ‖y2‖ ≤ ‖A−1‖‖b‖ = ‖H2,2
−1‖‖r0‖ =√

1 + ε2/(δε). This means that GMRES breaks down in the exact singular case, whereas, in
the ill-posed case, GMRES does not break down but the iterates computed by GMRES can be
inaccurate as δ, ε go to zero. In both exactly singular case and nonsingular ill-posed case, the
iterates computed by GMRES will be inaccurate due to the ill-conditioning of H2,2.

The above behavior of GMRES for singular linear systems with respect to the condition
number of V T

1 U1 is illustrated on numerical examples Ax = b, where

A =
[
D I
O O

]
∈ R128×128, b =

[
f
0

]
, (4.7)

D = diag(d1, d2, . . . , d64) ∈ R64×64 is a diagonal matrix whose diagonal entries have the so-called
Strakoš distribution [27]

d1 = 1, d64 = 10−ρ, di = d64 + 64− i
63 (d1 − d64) · 0.7i−1, i = 2, 3, . . . , 63,

and f = (fi) ∈ R64 has the entries fi = 10−(64−i)ρ/63, j = 1, 2, . . . , 64. Note that A is GP
but not EP. This setting gives well-conditioned A with κ(A) =

√
2/(10−2ρ + 1) '

√
2 and

ill-conditioned V T
1 U1 for κ(V T

1 U1) = 10ρ
√

(10−2ρ + 1)/2 ' 10ρ/
√

2 for ρ � 1. Furthermore,
the norms of vectors f , Df , D2f decrease and this reduction is pronounced as the value of ρ
increases.

Figures 4.2 and 4.3 show the relative residual norm and the smallest singular value of Hk+1,k
and HR

k+1,k versus the number of iterations for GMRES and RR-GMRES, respectively, applied
to the above linear systems with ρ = 1, 4, 8, and 12. As the value of ρ increases, the condition
number of the extended Hessenberg matrix increases, and the accuracy of the relative residual
for both GMRES and RR-GMRES is significantly lost. It is clear from our experiments that
while RR-GMRES does help in the inconsistent EP case by starting with a vector in R(A) to
construct the Krylov subspace, in the GP case both GMRES and RR-GMRES may not give
accurate solutions, even in the consistent case, when the condition number of V T

1 U1 is large.

5 Conclusions
In this paper we have considered the behavior of the GMRES method for solving a linear system
Ax = b, where A is singular. We have discussed two classes of singular matrices (EP and GP)
satisfying the conditions under which GMRES converges to a least squares solution and to
the group inverse solution, respectively. We have distinguished between the consistent and
inconsistent cases and showed that the conditioning of the extended Hessenberg least squares
problem can significantly affect the accuracy of approximate solutions computed by GMRES in
finite precision arithmetic.

It appears that the consistent EP case is similar to the nonsingular case. The rank deficiency
of the extended Hessenberg least squares problem does not occur and GMRES converges to the
accurate approximate solution and terminates with a degeneracy of the Krylov space in the
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next step. If the coefficient matrix is EP, but system Ax = b is inconsistent, then despite the
theoretical guarantee for convergence to the least squares solution, the extended Hessenberg
least squares problem becomes seriously ill-conditioned and this may lead to very inaccurate
approximate solutions computed by GMRES. This happens when the distance of the initial
residual to the nullspace is too small or when the residual vector converges gradually to the
least squares residual. For such cases, a remedy is to use RR-GMRES.

It is known that if the coefficient matrix is GP and the system is consistent, then theoretically
GMRES converges to the solution given by the group inverse of A. We have shown, however,
that the extended Hessenberg least squares problem can be ill-conditioned even in the consistent
case. Indeed, the conditioning of the extended Hessenberg matrix Hk+1,k in GMRES depends
not only on the conditioning of the coefficient matrix A (as it is in the case of consistent EP
problems) but also on the smallest principal angle between the spaces R(AT) and R(A) that
can be quite large. In such cases, both GMRES and RR-GMRES may compute inaccurate
approximate solutions.

We believe that under conditions guaranteeing the convergence of GMRES to the generalized
least squares solution considered in [31], our results can be extended to singular systems with
a general index(A). Note also that in this paper we assume only exact arithmetic and our
considerations form a groundwork for future work on rounding error analysis.

We would like to point out that here we have considered the behavior of GMRES applied to
exactly singular problems. The extension of our results to GMRES applied to almost singular
(or numerically singular) linear systems is far from straightforward as it was also illustrated by
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our small examples.
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