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J.Hartman

Technical report No. 1252

November 2017
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1 Introduction to the UFO system

The universal functional optimization (UFO) system is an interactive modular system for solving both
dense medium-size and sparse large-scale optimization problems. The UFO system can be used for the
following applications:

1. Formulation and solution of particular optimization problems that are described in Chapter 2.

2. Preparation of specialized optimization routines (or subroutines) based on methods described in
Chapter 3.

3. Designing and testing new optimization methods. The UFO system is a very useful tool for the
development of optimization algorithms.

The special realization of the UFO system described in the subsequent sections makes this system
portable and extensible. We continue with its further development.

1.1 Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems. An
optimization problem solution is processed in three phases. In the first phase the optimization problem is
specified and an optimization method is selected. This can be done in three different ways:

1. The full dialogue mode: The problem specification and the method selection are realized by using a
conversation between the user and the UFO system.

2. The batch mode: The problem specification and the method selection are realized by using the UFO
control language, which is a generalization and enlargement of the batch editing language (BEL) (see
Appendix B). An input file written in the UFO control language has to be prepared and stored.

3. The combined mode: Only a part of the specification is written in the input file. The rest of the
specification is obtained as in the dialogue mode. This possibility is usually the best one since the
problem functions can be defined beforehand by using a convenient text editor.

The first phase is realized by using the UFO control language preprocessor (UFOCLP). This preprocessor
uses the BEL interpreter controlled by input template UZDCLP.I (see Appendix B.7). The BEL interpreter
is written in Fortran 77 and its output is a Fortran 77 source program (P.FOR or P.F). This conception is
very advantageous for the following reasons:

1. Fortran 77 (full ANSI norm) is a sufficiently high and portable programming language. Fortran
77 is very suitable for numerical computations, and a large number of subroutines realizing various
numerical methods is available in this language.

2. A source program, generated by the UFO control language preprocessor, calls for necessary modules
only and its specification is very easy. Moreover, its global declarations are determined by the
problem size which decreases storage requirements. This overcomes an impossibility of dynamical
declarations in Fortran 77.

3. The UFO system is open. When a new class of optimization problems or optimization methods is
included, one only needs to change some system templates and prepare new modules. The UFO
source program is composed of individual modules by using specifications given by the user. This
fact allows us to create a great number of various optimization methods and their modifications.

6



In the second phase, the UFO source program P.FOR (or P.F) is compiled by using a suitable Fortran 77
compiler and a final executable program is linked by using library modules. In the third phase, the final
executable program is started and thus results which can be viewed by using extensive output means are
obtained.

The above conception is made possible by a special form of source modules. These modules usually
consist of two parts, the interface template and the Fortran 77 realization. The interface template is used
by the UFO preprocessor only and it serves for the UFO source program generation (the part of the UFO
source program corresponding to a given module is coded in the template). These templates also contain
knowledge bases for automatic selection of the optimization method. If the UFO system is extended then
usually only templates, which do not need to be compiled, are changed. Besides interface templates, which
are a part of source modules, special templates controlling the UFO preprocessor exist. A batch input file
written in the UFO control language is the first of these special templates.

The UFO macroprocessor works in two passes. In the first pass, the file P.TMP is created. This file
is a predecessor of the UFO source program. It contains macroinstructions and macrovariables which are
processed in the second pass. The UFO source program P.FOR (or P.F) is the result of the second pass.

1.2 The UFO versions for PC computers

The UFO system is distributed in five versions depending on the installed operating system and the Fortran
compiler:

UFOW6 - the 32 or 64 bit Windows system with Digital Visual Fortran compiler (version 6).

UFOW8 - the 32 or 64 bit Windows system with Intel Visual Fortran compiler (version 8).

UFOWN - the 32 or 64 bit Windows system with NAG Fortran compiler (version 5.2).

UFOWG - the 32 or 64 bit Windows system with GNU Fortran compiler (version 5.0).

UFOLG - the Red Hat Centos Linux system with GNU Fortran 95 compiler.

These versions can be found on page http://www.cs.cas.cz/luksan/ufodis.html as the files ufow6.zip,
ufow8.zip, ufown.zip, ufowg.zip, ufolg.tar.gz together with the installation notes ufow6.txt, ufow8.txt,
ufown.txt, ufowg.txt, ufolg.txt and the report V1252-17.pdf containing the UFO system description.

The UFO system can be implemented with different graphic dialogues (Section 4.4) and different graphic
screen outputs (Section 5.3). The graphic system is chosen by using the macrovariable $GRAPHICS whose
value is specified in the template UZDCLP.I (see Appendix B.7):

$GRAPHICS = 0 - The variant which does not use graphic tools. The graphic dialogue and the graphic
screen output cannot be used, but an arbitrary Fortran compiler can be chosen in this
case.

$GRAPHICS = –1 - The variant which generates output files for external graphic devices (see section 5.4).
The graphic dialogue and the graphic screen output cannot be used, but an arbitrary
Fortran compiler can be chosen in this case.

$GRAPHICS = –2 - The variant which either generates an output file P.m for the MATLAB graphics
or uses the MATLAB graphics interactively to produce special screen output (see
section 5.5). The graphic dialogue cannot be used, but an arbitrary Fortran compiler
can be chosen in this case.

$GRAPHICS = –3 - The variant which either generates an output file P.sci for the SCILAB graphics
or uses the SCILAB graphics interactively to produce special screen output (see sec-
tion 5.6). The graphic dialogue cannot be used, but an arbitrary Fortran compiler can
be chosen in this case.

$GRAPHICS = 4 - This variant requires the Microsoft Visual Fortran compiler (version 4) and uses the
QuickWin graphic system with simplified control (the mouse cannot be used), so the
graphic dialogue and the graphic screen output are possible.
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$GRAPHICS = 6 - This variant requires the Digital Visual Fortran compiler (version 6) and uses the
QuickWin graphic system with simplified control (the mouse cannot be used), so the
graphic dialogue and the graphic screen output are possible.

$GRAPHICS = 8 - This variant requires the Intel Visual Fortran compiler (version 8) and uses the
QuickWin graphic system with simplified control (the mouse cannot be used), so the
graphic dialogue and the graphic screen output are possible.

The default values $GRAPHICS = 6, $GRAPHICS = 8, $GRAPHICS = 0, $GRAPHICS = 0,
$GRAPHICS = 0 are used at versions UFOW6, UFOW8, UFOWN, UFOWG, UFOLG, respectively. In
all cases, we can also set $GRAPHICS =–1 for external graphics, $GRAPHICS =–2 for the MATLAB
graphics and $GRAPHICS =–3 for the SCILAB graphics.

1.3 Installation of the UFO system

The files ufow6.zip, ufow8.zip contain templates *.I, sample input files *.UFO, sample output files *.OUT,
batch procedures *.BAT, programs *.EXE and other important files together with the subdirectory LIB,
which contains libraries *.LIB. The files ufown.zip, ufowg.zip differ from the above files only in using library
libufo.a contained in the main directory. The selected Windows version of the UFO system is installed
by putting the file ufow6.zip (ufow8.zip, ufown.zip, ufowg.zip) into the directory UFO and unpacking it
(e.g., using the routine 7z.exe). Furthermore, paths and settings in the procedures (UFO6.BAT, UFO8.BAT,
UFON.BAT, UFOG.BAT) and (SET6.BAT, SET8.BAT, SETN.BAT, SETG.BAT) have to be arranged to correspond
to the actual directories in the PC used. For example, the procedure UFO6.BAT should have the form

CALL SET6

CALL C:\WINdows\system32\cmd.exe

and the procedure SET6.BAT should have the form

D:

CD D:\UFO6

COPY STANDARD.UFO P.UFO

SET LIB=C:\Program Files\Microsoft Visual Studio\DF98\LIB;

C:\Program Files\Microsoft Visual Studio\VC98\LIB;D:\UFO6\LIB

SET INCLUDE=C:\Program Files\Microsoft Visual Studio\DF98\INCLUDE;D:\UFO6\LIB

PATH=C:\Program Files (x86)\scilab-5.4.0\bin\;C:\Program Files (x86)\java\jre6\bin;

C:\Program Files (x86)\7-zip;C:\Program Files\Microsoft Visual Studio\Common\Tools;

C:\Program Files\Microsoft Visual Studio\Common\Msdev98\BIN;

C:\Program Files\Microsoft Visual Studio\DF98\BIN;

C:\Program Files\Microsoft Visual Studio\VC98\BIN;D:\UFO6;%PATH%

:END

(with D:\UFO6 and C:\Program Files replaced by the actual paths). More information concerning the
installation is given in the text file ufow6.txt (ufow8.txt, ufown.txt, ufowg.txt).

If the connection to the CUTE test environment is required then the subdirectory SIF has to be created
and the *.SIF files from the CUTE collection (page http://www.cuter.rl.ac.uk/) have to be copied
into this subdirectory.

The WINDOWS versions UFOW6, UFOW8, UFOWN, UFOWG are provided with a simple environ-
ment based on the PSPad editor. The UFO environment is called by using the statement UFO input name

(procedure UFO.BAT). Here input name is the first part of the batch file name input name.UFO, that is used
as a batch input for the UFO source program generation. This input file is opened in the PSPad editor
and can be modified. If the parameter is omitted, the file STANDARD.UFO (a dialogue) is chosen. When
the input file is prepared, we can use the scroll-bar menu (displayed by heart) to start procedures UFOGO,
UFOGO1, COMPIL, COMPIL1, GENER (see Section 1.4), respectively. For editing files, the PSPad editor can be
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called by using the statement EDIT input name.type (procedure EDIT.BAT). Here input name.type (e.g.
input name.I or input name.UFO) is the full name of the edited file.

The LINUX version UFOLG is distributed by using the file ufolg.tar.gz, which contains templates
*.I, sample input files *.UFO, sample output files *.OUT, library ufolib.a, executable files gener, compil,
ufogo, program ufobel and other important files. The PC Linux version is installed by putting the file
ufolg.tar.gz into the directory ufo and unpacking it (e.g. by using statements gzip -d *.gz and tar

xvf ufo.tar). If the connection to the CUTE test environment is required, the subdirectory ufo/sif has
to be created and the *.SIF files from the CUTE collection (page http://www.cuter.rl.ac.uk/) have
to be copied into this subdirectory.

1.4 Execution of the UFO system

The UFO system contains three basic procedures GENER, COMPIL and UFOGO. The UFO preprocessor is
called if the statement

GENER input name

is typed. Then the UFO source program, written in Fortran 77, is obtained. Furthermore, the compilation
of the UFO source program, followed by its loading and executing, is started if the statement

COMPIL output name

is typed. Finally, all the UFO system phases are performed if the statement

UFOGO problem name

is typed. Here input name is the first part of the batch file name input name.UFO that is used as a
batch input for the UFO source program generation, output name is the first part of the text file name
output name.OUT that is used as a text output from the UFO system and problem name is the first part
of both the batch file name problem name.UFO and the text file name problem name.OUT. All these names
have to be typed with capital letters in the LINUX versions. If GENER or UFOGO statements do not contain
a file name specification, then a full dialogue mode is considered (the batch file name is STANDARD.UFO

in this case) and the standard text file name is P.OUT. If COMPIL statement does not contain a file name
specification, then the standard text file name is P.OUT. The UFOGO statement has the same meaning
as two consecutive statements GENER and COMPIL. In the WINDOWS versions, the statements GENER,
COMPIL, UFOGO are realized by the procedures GENER.BAT, COMPIL.BAT, UFOGO.BAT. For example, in the
version UFOWG, the procedure GENER.BAT has the form

@ECHO OFF

IF EXIST PP.UFO COPY PP.UFO PPP.UFO

IF EXIST PP.FOR COPY PP.FOR PPP.FOR

IF EXIST PP.SIF COPY PP.SIF PPP.SIF

IF EXIST PP.I COPY PP.I PPP.I

IF EXIST Q.UFO COPY Q.UFO PP.UFO

COPY P.UFO Q.UFO

IF EXIST P.FOR COPY P.FOR PP.FOR

IF EXIST P.SIF COPY P.SIF PP.SIF

IF EXIST P.I COPY P.I PP.I

IF EXIST P.FOR DEL P.FOR

IF EXIST P.OBJ DEL P.OBJ

IF EXIST P.EXE DEL P.EXE

IF EXIST P.SIF DEL P.SIF

IF EXIST P.I DEL P.I

IF "%1"== GOTO S

COPY %1.UFO P.UFO

GOTO C
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:S

COPY STANDARD.UFO P.UFO

:C

COPY UZDCLP.I BEL.TEM

DEL TFILE

GREP -i $BATCH P.UFO > GFILE

CALL TESTFILE GFILE

IF EXIST TFILE GOTO M

DEL TFILE

GREP -i $TDIALOGUE P.UFO > GFILE

CALL TESTFILE GFILE

IF EXIST TFILE GOTO M

CALL BELG

GOTO N

:M

CALL BEL

:N

COPY BEL.OUT P.TMP

IF NOT EXIST P.FOR GOTO END

IF EXIST ELFUNS.FOR TYPE ELFUNS.FOR >> P.FOR

IF EXIST GROUPS.FOR TYPE GROUPS.FOR >> P.FOR

IF EXIST RANGES.FOR TYPE RANGES.FOR >> P.FOR

IF EXIST SETTYP.FOR TYPE SETTYP.FOR >> P.FOR

IF EXIST EXTERN.FOR TYPE EXTERN.FOR >> P.FOR

IF EXIST ELFUNS.FOR DEL ELFUNS.FOR

IF EXIST GROUPS.FOR DEL GROUPS.FOR

IF EXIST RANGES.FOR DEL RANGES.FOR

IF EXIST SETTYP.FOR DEL SETTYP.FOR

IF EXIST EXTERN.FOR DEL EXTERN.FOR

:END

The procedure COMPIL.BAT has the form

@ECHO OFF

IF EXIST P.EXE DEL P.EXE

IF NOT EXIST P.F GOTO END

IF EXIST ELFUNS.FOR TYPE ELFUNS.FOR >> P.F

IF EXIST GROUPS.FOR TYPE GROUPS.FOR >> P.F

IF EXIST RANGES.FOR TYPE RANGES.FOR >> P.F

IF EXIST SETTYP.FOR TYPE SETTYP.FOR >> P.F

IF EXIST EXTERN.FOR TYPE EXTERN.FOR >> P.F

IF EXIST ELFUNS.FOR DEL ELFUNS.FOR

IF EXIST GROUPS.FOR DEL GROUPS.FOR

IF EXIST RANGES.FOR DEL RANGES.FOR

IF EXIST SETTYP.FOR DEL SETTYP.FOR

IF EXIST EXTERN.FOR DEL EXTERN.FOR

gfortran P.F -o P -L. libufo.a

IF NOT EXIST P.EXE GOTO END

IF EXIST PP.OUT COPY PP.OUT PPP.OUT

IF EXIST PP.DIM COPY PP.DIM PPP.DIM

IF EXIST P.OUT COPY P.OUT PP.OUT

IF EXIST P.DIM COPY P.DIM PP.DIM

IF EXIST P.OUT DEL P.OUT
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IF EXIST P.DIM DEL P.DIM

P P.OUT

IF "%1"== GOTO S

IF "%1"=="P" GOTO S

COPY P.OUT %1.OUT

IF EXIST P.DAT COPY P.DAT %1.DAT

:S

IF NOT ERRORLEVEL 1 GOTO END

PAUSE

MODE CO80

:END

The procedure UFOGO.BAT has the form

@ECHO OFF

IF EXIST PP.UFO COPY PP.UFO PPP.UFO

IF EXIST PP.F COPY PP.F PPP.F

IF EXIST PP.SIF COPY PP.SIF PPP.SIF

IF EXIST PP.I COPY PP.I PPP.I

IF EXIST Q.UFO COPY Q.UFO PP.UFO

COPY P.UFO Q.UFO

IF EXIST P.F COPY P.F PP.F

IF EXIST P.SIF COPY P.SIF PP.SIF

IF EXIST P.I COPY P.I PP.I

IF EXIST P.F DEL P.F

IF EXIST P.O DEL P.O

IF EXIST P.EXE DEL P.EXE

IF EXIST P.SIF DEL P.SIF

IF EXIST P.I DEL P.I

IF "%1"== GOTO S

COPY %1.UFO P.UFO

GOTO C

:S

COPY STANDARD.UFO P.UFO

:C

COPY UZDCLP.I BEL.TEM

CALL UFOBEL

IF NOT EXIST P.F GOTO END

IF EXIST ELFUNS.FOR TYPE ELFUNS.FOR >> P.F

IF EXIST GROUPS.FOR TYPE GROUPS.FOR >> P.F

IF EXIST RANGES.FOR TYPE RANGES.FOR >> P.F

IF EXIST SETTYP.FOR TYPE SETTYP.FOR >> P.F

IF EXIST EXTERN.FOR TYPE EXTERN.FOR >> P.F

IF EXIST ELFUNS.FOR DEL ELFUNS.FOR

IF EXIST GROUPS.FOR DEL GROUPS.FOR

IF EXIST RANGES.FOR DEL RANGES.FOR

IF EXIST SETTYP.FOR DEL SETTYP.FOR

IF EXIST EXTERN.FOR DEL EXTERN.FOR

nagfor -o P P.F libufo.a

IF NOT EXIST P.EXE GOTO END

IF EXIST PP.OUT COPY PP.OUT PPP.OUT

IF EXIST PP.DIM COPY PP.DIM PPP.DIM

IF EXIST P.OUT COPY P.OUT PP.OUT
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IF EXIST P.DIM COPY P.DIM PP.DIM

IF EXIST P.OUT DEL P.OUT

IF EXIST P.DIM DEL P.DIM

P P.OUT

IF "%1"== GOTO X

IF "%1"=="P" GOTO X

REM COPY P.OUT %1.OUT

REM IF EXIST P.DAT COPY P.DAT %1.DAT

:X

IF NOT ERRORLEVEL 1 GOTO END

PAUSE

MODE CO80

:END

In versions UFOW6, UFOW8, UFOWN, these procedures differ only by calling the Fortran compiler.
To show how the batch mode proceeds, we suppose that the model function has the form

fF (x) = 100(x2
1 − x2)

2 + (x1 − 1)2

(the Rosenbrock function) and the starting point is x1 = −1.2 and x2 = 1.0. If we prepare the batch input
file P.UFO of the form

$REM : model specifications

$SET(INPUT)

X(1)=-1.2D0; X(2)= 1.0D0

$ENDSET

$SET(FMODELF)

FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET

$NF=2

$REM : the default method is used

$REM : print specifications

$MOUT=1

$NOUT=1

$REM : the batch mode is used

$BATCH

$REM : the standard form of the UFO source program is used

$STANDARD

and type the statement UFOGO P, then the following results appear in the output file P.OUT

CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 2

0 NIT= 40 NFV= 138 NFG= 0 NDC= 0 NCG= 0 F= .504D-13 G= .828D-05

FF = .5038712822D-13

X = .1000000098D+01 .1000000177D+01

Batch input files are written in the UFO control language. This language is described in Section 4.1 and
in Appendix B. Here we note that a certain experience of the UFO control language can be obtained by
using the demo-files PROB01.UFO,. . ., PROB36.UFO. These demo-files contain 36 test problems described in
Chapter 7. We can solve them by using the statements UFOGO PROB01,. . ., UFOGO PROB36.

Besides the batch mode, we can use the full dialogue mode. The full dialogue mode is started if we
use statements GENER or UFOGO without a batch input file specification. Full dialogue modes (text and
graphic) are described in Sections 4.3 and 4.4. An example which demonstrates the text dialogue mode
applied to the Rosenbrock function is given in Appendix A.
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1.5 Graphic utilities of the UFO system

If the MATLAB system is installed, $GRAPHICS = –2 and $GRAPH=’E’ (Section 5.5), we can use the
statement

MATGO file name

to start the MATLAB graphics environment for drawing the final results. Here file name.m is the input
file for MATLAB. If MATGO statement does not contain a file name specification, then the standard input
file is P.m. The MATGO statement is realized by the procedure MATGO.BAT, which has the form

@ECHO OFF

IF "%1"=="" GOTO P

IF "%1"=="@" GOTO I

IF NOT EXIST %1.m GOTO E1

CALL matlab -r "run(’%1’);exit;" -nodesktop -nosplash

PAUSE

IF EXIST P.EPS COPY P.eps %1.eps

GOTO END

:E1

ECHO FILE %1.m DOES NOT EXIST

GOTO END

:P

IF NOT EXIST P.m GOTO E2

IF EXIST PP.m COPY PP.m PPP.m

COPY P.m PP.m

CALL matlab -r "run(’P’);exit;" -nodesktop -nosplash

GOTO END

:E2

ECHO FILE P.m DOES NOT EXIST

GOTO END

:I

CALL matlab -r "run(’P’);display(’Press ENTER to exit’);pause;exit;" -nodesktop -nosplash

:END

If the SCILAB system is installed, $GRAPHICS = –3 and $GRAPH=’E’ (Section 5.6), we can use the
statement

SCIGO file name

to start the SCILAB graphics environment for drawing the final results. Here file name.sci is the input
file for SCILAB. If SCIGO statement does not contain a file name specification, then the standard input
file is P.sci. The SCIGO statement is realized by the procedure SCIGO.BAT, which has the form

@ECHO OFF

IF "%1"=="" GOTO P

IF "%1"=="@" GOTO I

IF NOT EXIST %1.sci GOTO E1

CALL scilex -e "exec(’%1.sci’);exit;" -nw

PAUSE

IF EXIST P.EPS COPY P.eps %1.eps

GOTO END

:E1

ECHO FILE %1.sci DOES NOT EXIST

GOTO END
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:P

IF NOT EXIST P.sci GOTO E2

IF EXIST PP.sci COPY PP.sci PPP.sci

COPY P.sci PP.sci

CALL scilex -e "exec(’P.sci’);exit;" -nw

GOTO END

:E2

ECHO FILE P.sci DOES NOT EXIST

GOTO END

:I

START scilex -e "exec(’P.sci’);halt(’Press ENTER to exit’);exit;" -nw

:END

1.6 Internal procedures and output files

In addition to the described procedures, the UFO system uses further internal procedures. The list of
internal procedures follows (x is one of characters 6, 8, N, G for versions UFOW6, UFOW8, UFOWN,
UFOWG):

UFOx.BAT - Starting the UFO system.

SETx.BAT - Setting the paths and parameters.

UFO.BAT - Starting the UFO environment.

EDIT.BAT - Starting the UFO editor.

GENER.BAT - Generation of the UFO source program.

COMPIL.BAT - Compilation of the UFO source program followed by the computation.

COMPIL1.BAT - Compilation of the UFO source program with debugging options followed by the com-
putation.

UFOGO.BAT - Generation and compilation of the UFO source program followed by the computation.

UFOGO1.BAT - Generation and compilation of the UFO source program with debugging options followed
by the computation.

MATGO.BAT - Starting the MATLAB graphics environment (Section 5.5).

SCIGO.BAT - Starting the SCILAB graphics environment (Section 5.6).

PROFILE.BAT - Computation of the performance profile (Section 6.4).

PROFMAT.BAT - Computation of the performance profile and its drawing using the MATLAB graphics
(Section 6.4).

PROFSCI.BAT - Computation of the performance profile and its drawing using the SCILAB graphics
(Section 6.4).

PROFTEX.BAT - Computation of the performance profile and its drawing using the LATEX graphics
(Section 6.4).

In addition to the described files, the UFO system produces additional files which contain some useful
information. A list of the most important UFO files follows:

P.UFO - Input template (every input file *.UFO is preliminary copied to P.UFO).

P.TMP - Temporary file containing a source program ancestor generated in the first pass of the UFO
preprocessor (Section 1.1).

P.FOR - The main Fortran routine (UFO problem solver), for versions UFOW6, UFOW8, generated
in the second pass of the UFO preprocessor (Section 1.1).

P.F - The main Fortran routine (UFO problem solver), for versions UFOWN, UFOWG, UFOLG,
generated in the second pass of the UFO preprocessor (Section 1.1).

P.OUT - Text output file (Section 5.7).

P.DAT - Stored values of problem variables (Section 5.9).

P.DUM - Dummy screen output if the graphic output is required.

P.DIM - Dimensions of basic problem vectors and matrices (Section 5.10).
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P.SIF - Messages of the SIF decoder (Section 6.6).

P.I - Template generated by the SIF decoder (Section 6.6).

P.PAT - Sparsity patterns of sparse Hessian and Jacobian matrices (Section 6.5).

P.PER - Input data for preparing performance profiles (Section 6.4).

P.PRO - Text file containing performance profiles (Section 6.4).

P.m - Input data for the MATLAB graphics environment (Sections 5.5 and 6.4).

P.sci - Input data for the SCILAB graphics environment (Sections 5.6 and 6.4).

P.tex - Latex picture for drawing performance profiles (Section 6.4).

If the specification $GRAPHICS = –1 is used, the UFO system generates additional input files:

P.PAR - Data containing problem and method parameters.

P.GRF - Data containing values of variables, approximating functions and constraints.

P.DIF - Data for drawing solutions of ordinary differential equations.

P.SUR - Data for drawing surfaces.

P.PTH - Data for drawing paths obtained by optimization methods.

1.7 Brief suggestions for the UFO users

If we want to solve a particular optimization problem, the best way to understand the UFO system is to
find a similar problem in the list of sample problems (Chapter 7). This sample problem can be solved by
typing UFOGO PROBxx (xx is the number of the sample problem). After solving the sample problem, we
can modify the batch input file PROBxx.UFO to describe our problem. The following list refers to basic
problems solved by the UFO system and to sections containing more detailed description.

Minimization of a general objective function: Sections 2.2 – 2.3.
Minimization of a linear objective function: Section 2.2.
Minimization of a quadratic objective function: Section 2.2.
Minimization of a partially separable function (the sum of approximating functions): Sections 2.4 – 2.6.
Minimization of the sum of squares (or powers) of approximating functions: Sections 2.4 – 2.6.
Minimization of the maximum of approximating functions: Sections 2.4 – 2.6.
Minimization of the sum of absolute values of approximating functions: Sections 2.4 – 2.6.
Optimization of systems described by ordinary differential equations: Sections 2.7 – 2.11.
Solution of systems of nonlinear functional equations: Section 2.16.
Solution of systems of ordinary differential equations: Section 2.17.

Moreover, all optimization problems can contain box constraints (Section 2.1) and general linear or non-
linear constraints (Sections 2.12 – 2.14).

The standard batch input file *.UFO usually contains substitutions serving for the problem description
and directives influencing the control program generation and the method selection. The input data setting
and output data processing are realized using the substitutions

$SET(INPUT) $SET(OUTPUT)
input data setting output data processing

$ENDSET $ENDSET

In macrovariable $INPUT, we specify statements or subroutines defining problem sizes, starting points,
types of constraints, right hand sides of equalities and inequalities etc. In macrovariable $OUTPUT, we
specify statements or subroutines for output data printing and exploiting. A similar way is used for defining
problem functions. The model function can be specified using the substitutions

$SET(FMODELF) $SET(GMODELF) $SET(HMODELF)
function value gradient Hessian matrix

$ENDSET $ENDSET $ENDSET
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One can also specify the model function value and the model gradient simultaneously by the macrovariable
$FGMODELF (or all the quantities by the macrovariable $FGHMODELF). Similarly, for defining the
approximating function we use macrovariables $FMODELA, $GMODELA, $HMODELA, $FGMODELA,
$FGHMODELA, and quantities concerning the constraint function are specified using macrovariables
$FMODELC, $GMODELC, $HMODELC, $FGMODELC, $FGHMODELC. The external subroutines can
be added to the UFO system using the substitution

$SET(SUBROUTINES)
user supplied subroutines

$ENDSET

More information is given in Section 2 and Section 4.
Even if the problem sizes can be submitted to the UFO system using the macrovariable $INPUT, the

sizes serving for declarations of arrays in the UFO control program have to be specified by the following
individual substitutions

$NF = number of variables,

$NA = number of approximating functions,

$NAL = number of linear approximating functions,

$NC = number of constraints,

$NCL = number of linear constraints.

Similarly, other important sizes, described in Section 2, can be specified in the same way.
Optimization methods need not be selected by the user, the system automatically chooses a suitable

method. On the other hand, if the user is familiar with optimization methods, then the method can be
selected by using suggestions given in Section 3. The most important data for the method selection can
be given using the following macrovariables

$FORM - Form of the method (sequential quadratic programming, interior point, etc).

$CLASS - Class of the method (conjugate gradient, limited memory, variable metric, Newton, etc).

$TYPE - Type of the method (line search, trust region, etc).

$DECOMP - Matrix decomposition used (original matrix, Choleski decomposition, inversion, etc).

$NUMBER - Number of the method (choice of the individual method for direction determination).

$SEARCH - Choice of the line search method.

$UPDATE - Choice of the variable metric update.

Further details concerning the optimization method can be specified by additional macrovariables as it is
shown in Section 3.

Finally, the specifications concerning output possibilities can be selected using macrovariables $GRAPH,
$MAP, $ISO, $HIL, $PATH, $DISPLAY (see Section 5). Standard form of the UFO control program (one
method for one problem) is stated using statement $STANDARD and the batch mode is indicated by
statement $BATCH.

1.8 Conventional names of basic variables and arrays

Basic variables of optimization problems (sizes, indices, function values) require the use of the following
prescribed names.

NF - Number of variables.

NX - Number of box constraints (the index of the last box constrained variable).

FF - Value of the objective function.

M - Number of nonzero elements of sparse Hessian matrix HF (dimension of array $HF).

NA - Number of approximating functions.

KA - Index of the approximating function.
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FA - Value of the KA-th approximating function.

MA - Number of nonzero elements of sparse Jacobian matrix AG (dimension of array $AG).

MHA - Number of nonzero elements of sparse Hessian matrix HA (dimension of array $HA).

MAH - Dimension of array $AH.

NC - Number of constraint functions.

KC - Index of the constraint function.

FC - Value of the KC-th constraint function.

MC - Number of nonzero elements of sparse Jacobian matrix CG (dimension of array $CG).

MHC - Number of nonzero elements of sparse Hessian matrix HC (dimension of array $HC).

MCH - Dimension of array $CH.

NE - Number of state variables and state functions (number of differential equations).

KE - Index of the state function.

FE - Value of the KE-th state function.

Names of arrays in optimization problems are determined by the following macrovariables.

$X - Vector of variables.

$XN - Scaling coefficients.

$XL - Lower bounds of variables.

$XU - Upper bounds of variables.

$IX - Types of box constraints.

$GF - Gradient of the objective function.

$HF - Hessian matrix of the objective function (only the upper half is stored).

$IH - Pointers of diagonal elements of sparse matrix HF.

$JH - Column indices of nonzero elements of sparse matrix HF.

$AF - Vector containing values of all approximating functions.

$GA - Gradient of the KA-th approximating function.

$AG - Jacobian matrix containing gradients of all approximating functions.

$IAG - Pointers of row-start elements of sparse matrix AG.

$JAG - Column indices of nonzero elements of sparse matrix AG.

$HA - Hessian matrix of the KA-th approximating function (only the upper half is stored).

$AH - Tensor containing Hessian matrices of all approximating functions.

$AM - Vector containing fitted values of all approximating functions.

$AW - Vector containing weights of all approximating functions.

$CF - Vector containing values of all constraint functions.

$GC - Gradient of the KC-th constraint function.

$CG - Jacobian matrix containing gradients of all constraint functions.

$ICG - Pointers of row-start elements of sparse matrix CG.

$JCG - Column indices of nonzero elements of sparse matrix CG.

$HC - Hessian matrix of the KC-th constraint function (only the upper half is stored).

$CH - Tensor containing Hessian matrices of all constraint functions.

$CL - Lower bounds of constraint functions.

$CU - Upper bounds of constraint functions.

$IC - Types of general constraints.

$CW - Vector containing weights of all constraint functions.

$EF - Vector containing values of all state functions.

$GE - Gradient of the KE-th state function.

$EG - Jacobian matrix containing gradients of all state functions.

$DE - Matrix containing derivatives of the KE-th state function with respect to state variables.

$ED - Tensor containing derivatives of all state functions with respect to state variables.

The name following the symbol $ is a default name. This default name can be changed by the user using
the statement $NAME1=’NAME2’ in the macrovariable $INPUT. However, the same names cannot be
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used for different objects, i.e., NAME2 cannot appear in the above list of default names. For instance, the
example demonstrated in Section 1.4 can be rewritten in the form

$SET(INPUT)

$X=’U’

U(1)=-1.2D0; U(2)= 1.0D0

$ENDSET

$SET(FMODELF)

FF=1.0D2*(U(1)**2-U(2))**2+(U(1)-1.0D0)**2

$ENDSET

$NF=2

$MOUT=1

$NOUT=1

$BATCH

$STANDARD

1.9 Authors of the UFO system

The UFO system has been developed in the Institute of Computer Science, Czech Academy of Sciences,
Prague. In addition, the UFO system contains two direct solvers for sparse linear systems based on
UMFPACK code of T.A.Davis [85] and MA27 code of I.S.Duff [99]. Moreover, some modules for solving
ordinary differential equations are based on subroutines proposed in the book of E.Hairer, S.P.Norsett and
G.Wanner [137] (they were considerably rewritten).

The following table contains the names of individual authors, their letter codes introduced in source
modules and their contribution in percent.

Author code contribution

L.Lukšan LU 71.42
M.Tůma TU 8.60
C.Matonoha MA 5.64
J.Vlček VL 4.05
N.Ramešová RA 3.48
M.Šǐska SI 3.35
J.Hartman HA 1.45

T.A.Davis DA 1.49
I.S.Duff DU 0.93
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2 Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an objective
function F : Rn → R over a set X ⊂ Rn. The objective function can have several forms determined using
the macrovariable $MODEL:

$MODEL=’FF’ - General optimization. In this case

F (x) = ±fF (x),

where fF : Rn → R is a real valued, so-called model function

$MODEL=’FL’ - Linear optimization. In this case

F (x) = ± (fF +

n∑
i=1

gFi xi),

where fF , gFi , 1 ≤ i ≤ n, are real coefficients.

$MODEL=’FQ’ - Quadratic optimization. In this case

F (x) = ± (fF +
n∑

i=1

(gFi +
1

2

n∑
j=1

hF
ijxj)xi),

where fF , gFi , 1 ≤ i ≤ n, hF
ij , 1 ≤ i, j ≤ n, are real coefficients.

$MODEL=’AF’ - Sum of functions minimization. In this case

F (x) =

nA∑
k=1

fA
k (x),

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.

$MODEL=’AQ’ - Sum of squares minimization. In this case

F (x) =
1

2

nA∑
k=1

|fA
k (x)|2,

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.

$MODEL=’AP’ - Sum of powers minimization. In this case

F (x) =
1

p

nA∑
k=1

|fA
k (x)|r,

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions

and 1 < r <∞ is a real exponent.

$MODEL=’AA’ - Sum of absolute values minimization. In this case

F (x) =

nA∑
k=1

|fA
k (x)|,

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.
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$MODEL=’AM’ - Minimization of maximum (minimax). In this case

F (x) = max
1≤k≤nA

|fA
k (x)|,

where fA
k : Rn → R, 1 ≤ k ≤ nA, are real valued, so-called approximating functions.

$MODEL=’DF’ - Minimization of the general integral criterion with respect to the state equations. In
this case

F (x) =

∫ tmax
A

tmin
A

fA(x, yA(x, tA), tA) dtA + fF (x, yA(x, t
max
A ), tmax

A )

and

dyA(x, tA)

dtA
= fE(x, yA(x, tA), tA), y

A(x, tmin
A ) = fY (x),

where fA : Rn+nE+1 → R is a real valued, smooth, so-called subintegral function, fF :
Rn+nE+1 → R is a real valued, smooth, so-called terminal function, fE : Rn+nE+1 →
RnE is a real valued, smooth, so-called state function and fY : Rn → RnE is a real
valued, smooth, so-called initial function.

$MODEL=’DQ’ - Minimization of the sum of square integral criterion with respect to the state equa-
tions. In this case

F (x) =
1

2

∫ tmax
A

tmin
A

nE∑
i=1

wE
i (tA)(y

A
i (x, tA)− yEi (tA))

2 dtA +
1

2

nE∑
i=1

wE
i (y

A
i (x, t

max
A )− yEi )

2

and

dyA(x, tA)

dtA
= fE(x, yA(x, tA), tA), y

A(x, tmin
A ) = fY (x),

where fE : Rn+nE+1 → RnE is a real valued, smooth, so-called state function and
fY : Rn → RnE is a real valued, smooth, so-called initial function.

$MODEL=’NE’ - Solving a system of nonlinear functional equations

fA
k (x) = 0, 1 ≤ k ≤ nA,

where nA = n ($MODEL=’NE’ is equivalent to $MODEL=’AQ’ if nA = n).

$MODEL=’DE’ - Solving an initial value problem for a system of ordinary differential equations. In
this case

dyA(tA)

dtA
= fE(yA(tA), tA), y

A(tmin
A ) = ymin

A ,

where fE : RnE+1 → RnE is a real valued, smooth, so-called state function.

The model function fF : Rn → R can have several types of Hessian matrices specified by the macrovari-
able $HESF:

$HESF=’D’ - Dense Hessian matrix.

$HESF=’S’ - Sparse Hessian matrix with a general pattern.

$HESF=’N’ - Hessian matrix is not used.

The default option is $HESF=’D’. The approximating functions fA
k : Rn → R, 1 ≤ k ≤ nA, can have

20



several types of Jacobian matrices specified by the macrovariable $JACA:

$JACA=’D’ - Dense Jacobian matrix.

$JACA=’S’ - Sparse Jacobian matrix with a general pattern.

$JACA=’N’ - Jacobian matrix is not used.

If the approximating functions are used then we can choose several types of the Hessian matrix represen-
tation. These types are again specified by the macrovariable $HESF:

$HESF=’D’ - Dense Hessian matrix.

$HESF=’S’ - Sparse Hessian matrix with a general pattern.

$HESF=’B’ - Sparse Hessian matrix with a partitioned pattern.

$HESF=’N’ - Hessian matrix is not used.

If $JACA=’D’, then it must be either $HESF=’D’ or $HESF=’N’. If $JACA=’S’, then we can specify
all types of Hessian matrices ($HESF=’D’, $HESF=’S’, $HESF=’B’, $HESF=’N’). The representation
$HESF=’B’ usually leads to more expensive matrix operations. Therefore, we recommend to prefer the
choice $HESF=’S’ against the choice $HESF=’B’.

The subintegral function, the terminal function, the state function and the initial function, which
appear in the case of dynamical systems optimization, are considered to be dense. Therefore, we cannot
use the specifications $HESF=’S’ or $HESF=’B’ in this case.

The set X ⊂ Rn can be the whole Rn (unconstrained case) or defined by box constraints

xL
i ≤ xi if i ∈ I1,

xi ≤ xU
i if i ∈ I2,

xL
i ≤ xi ≤ xU

i if i ∈ I3,

xL
i = xi if i ∈ I5,

where I1 ∪ I2 ∪ I3 ∪ I5 ⊂ {i ∈ N : 1 ≤ i ≤ n}, or by general linear constraints

cLk ≤
n∑

i=1

gCkixi if k ∈ L1,

n∑
i=1

gCkixi ≤ cUk if k ∈ L2,

cLk ≤
n∑

i=1

gCkixi ≤ cUk if k ∈ L3,

cLk =
n∑

i=1

gCkixi if k ∈ L5,

where gCki, 1 ≤ k ≤ nC , 1 ≤ i ≤ n, are real coefficients and L1 ∪ L2 ∪ L3 ∪ L5 ⊂ {k ∈ N : 1 ≤ k ≤ nC}, or
by general nonlinear constraints

cLk ≤ fC
k (x) if k ∈ N1

fC
k (x) ≤ cUk if k ∈ N2

cLk ≤ fC
k (x) ≤ cUk if k ∈ N3

cLk = fC
k (x) if k ∈ N5
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where fC
k : Rn → R, 1 ≤ k ≤ nC , are real valued, smooth, so-called constraint functions and N1 ∪N2 ∪

N3 ∪N5 ⊂ {k ∈ N : 1 ≤ k ≤ nC}. The constraint functions fC
k : Rn → R, 1 ≤ k ≤ nC , can have several

types of Jacobian matrices specified by the macrovariable $JACC:

$JACC=’D’ - Dense Jacobian matrix.

$JACC=’S’ - Sparse Jacobian matrix with a general pattern.

If $JACC=’D’, then it must be $HESF=’D’ or $HESF=’N’. If $JACC=’S’, then it must be $HESF=’S’
or $HESF=’N’.

Besides the standard constraints described above, we can consider also the complementarity constraints
of the form

fC
k (x) ≥ cLk , fC

l (x) ≥ cLl , fC
k (x)fC

l (x) = 0 if (k, l) ∈ C,

where C is a set of corresponding pairs of indices. The constraints fC
k (x) ≥ cLk or fC

l (x) ≥ cLl can be
replaced by box constraints xk ≥ xL

k or xl ≥ xL
l , respectively. Thus, the box constraints can be included

into the complementarity constraints.

There are several limitations in the current version of the UFO system:

1. Minimization of dynamical systems is not implemented in the sparse case.

2. Usually the UFO system serves for local optimization. Global optimization can be used only for
small-size (n ≤ 100) dense problems that are unconstrained or contain box constraints.

These limitations will be consecutively removed in subsequent versions of the UFO system.

In the rest of this report we will use the notation NF, NA, NC instead of n, nA, nC and X, F(X),
FF(X), GF(X), HF(X), FA(KA;X), GA(KA;X), FC(KC;X), GC(KC;X) instead of x, F (x), fF (x), gF (x),
hF (x), fA

k (x), gAk (x), f
C
k (x), gCk (x). This notation corresponds to names of variables and fields in the UFO

system, which is listed in Section 1.8.

2.1 Specification of variables and the box constraints

First we must specify the number of variables using the statement $NF=number of variables. If there are
no box constraints we set $KBF=0. In the opposite case we set $KBF=1 or $KBF=2. If $KBF=1 or
$KBF=2, then

X(I) - unbounded , if IX(I) = 0,
XL(I) ≤ X(I) , if IX(I) = 1,

X(I) ≤ XU(I) , if IX(I) = 2,
XL(I) ≤ X(I) ≤ XU(I) , if IX(I) = 3,
X(I) - constant , if IX(I) = 5,

where 1≤I≤NF. The option $KBF=2 must be chosen if IX(I)=3 for at least one index 1≤I≤NF. Then
two, different fields XL(I) and XU(I), 1≤I≤NF are declared. In the opposite case we set $KBF=1 and
only one common field XL(I)=XU(I), 1≤I≤NF is declared.

The initial values of variables X(I), 1≤I≤NF, types of box constraints IX(I), 1≤I≤NF, and lower and
upper bounds XL(I) and XU(I), 1≤I≤NF, can be specified using macrovariable $INPUT. The default
values are IX(I)=0 and XL(I)=XU(I)=0, 1≤I≤NF. For example:

$KBF=2; $NF=4
$SET(INPUT)

X(1)=x1
X(2)=x2; IX(2)=1; XL(2)=xL2
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X(3)=x3; IX(3)=3; XL(3)=xL3 ; XU(3)=xU3
X(4)=x4; IX(4)=5

$ENDSET

The UFO system allows us to use a scaling of variables (for instance if the values of variables differ
very much in their magnitude). We set the option $NORMF:

$NORMF=1 - Scaling parameters XN(I), 1≤I≤NF, are determined automatically so that
X(I)/XN(I)=1, 1≤I≤NF, for the initial values of variables.

$NORMF=2 - Scaling parameters must be specified by the user by means of the macrovariable
$INPUT.

The scaling of variables is recommended only in exceptional cases since it increases the computational time
and storage requirements. The scaling of variables is suppressed if $NORMF=0 (this value is default).
The scaling of variables is not permitted in the case of general constraints (if $KBC>0).

2.2 Specification of the model function (dense problems)

If the macrovariable $MODEL is not specified or if $MODEL=’FF’, then the objective function is defined
by the formula

F(X) = + FF(X) if $IEXT = 0 (minimization)
or

F(X) = − FF(X) if $IEXT = 1 (maximization)

Option $IEXT=0 is default.
The model function FF(X) must be defined by the user either directly in the full dialogue mode, or

by using corresponding macrovariables in the batch (or mixed) mode. The value of the model function is
specified by using the macrovariable $FMODELF:

$SET(FMODELF)
FF = value FF(X)
(for given values of variables X(I), 1≤I≤NF)

$ENDSET

The first derivatives of the model function are specified by using the macrovariable $GMODELF:

$SET(GMODELF)
GF(1) = derivative ∂FF(X)/∂X(1)
GF(2) = derivative ∂FF(X)/∂X(2)
—–
GF(NF) = derivative ∂FF(X)/∂X(NF)
(for given values of variables X(I), 1≤I≤NF)

$ENDSET
The second derivatives of the model function are specified by using the macrovariable $HMODELF. If
$HESF=’D’, the Hessian matrix is assumed to be dense, and we specify only its upper half:

$SET(HMODELF)
HF(1) = derivative ∂2FF(X)/∂X(1)2

HF(2) = derivative ∂2FF(X)/∂X(1)∂X(2)
HF(3) = derivative ∂2FF(X)/∂X(2)2

HF(4) = derivative ∂2FF(X)/∂X(1)∂X(3)
HF(5) = derivative ∂2FF(X)/∂X(2)∂X(3)
HF(6) = derivative ∂2FF(X)/∂X(3)2

—–
HF(NF∗(NF+1)/2) = derivative ∂2FF(X)/∂X(NF)2
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(for given values of variables X(I), 1≤I≤NF)
$ENDSET

If the macrovariables $GMODELF or $HMODELF are not defined, we suppose that the first or the
second derivatives of the model function are not given analytically. In this case, they are computed nu-
merically by using the UFO system routines whenever it is required. If it is advantageous to compute the
first derivatives of model function FF(X) together with its value, we can replace the set of macrovariables
$FMODELF, $GMODELF by the common macrovariable $FGMODELF. Similarly we can replace the set
of macrovariables $FMODELF, $GMODELF, $HMODELF by the common macrovariable $FGHMOD-
ELF.

To improve the efficiency of the computation, we can specify additional information about the model
function FF(X). The first piece of information, useful for an automatic choice of the optimization method,
is the computational complexity specified by the macrovariable $KCF:

$KCF=1 - Evaluation of the model function FF(X) is very easy (it requires O(n) simple oper-
ations at most).

$KCF=2 - Evaluation of the model function FF(X) is of medium complexity (it requires O(n)
complicated operations at least and O(n2) simple operations at most).

$KCF=3 - Evaluation of the model function FF(X) is extremely difficult (it requires O(n2)
complicated or O(n3) simple operations at least).

The option $KCF=2 is default. An additional useful piece of information is the analytical complexity
(differentiability and conditioning), which is specified by the macrovariable $KSF:

$KSF=1 - The model function FF(X) is smooth and well-conditioned.

$KSF=2 - The model function FF(X) is smooth but ill-conditioned.

$KSF=3 - The model function FF(X) is nonsmooth.

The option $KSF=1 is default. Other specifications which can improve the computational efficiency and
robustness of optimization methods are a lower bound of the objective function values and an upper
bound of the stepsize. Both these values depend on the definition of the objective function and can be
specified by the statements $FMIN=lower bound (for the objective function) and $XMAX=upper bound
(for the stepsize). We recommend a definition of $FMIN whenever it is possible and a definition of $XMAX
whenever the objective function contains exponentials.

If $MODEL=’FL’, we suppose the model function to be linear of the form

FF(X) = FF +
NF∑
I=1

GF(I) ∗X(I)

In this case we need not specify the value and the first derivatives of the model function by the macrovari-
ables $FMODELF and $GMODELF as in the general case. Instead, we must specify the coefficients FF
(constant value) and GF(I), 1≤I≤NF, (constant gradient) by using the macrovariable $INPUT:

$ADD(INPUT)
FF = constant value
GF(1) = constant derivative ∂FF(X)/∂X(1)
GF(2) = constant derivative ∂FF(X)/∂X(2)
—–
GF(NF) = constant derivative ∂FF(X)/∂X(NF)

$ENDADD

If $MODEL=’FL’, we usually assume that either box constraints or general linear constraints are given.
In this case the optimization problem is the linear programming problem.

If $MODEL=’FQ’, we suppose the model function to be quadratic of the form
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FF(X) = FF +
NF∑
I=1

GF(I) ∗X(I) + 1

2

NF∑
I=1

NF∑
J=1

HF(K) ∗X(I) ∗X(J),

where K=MAX(I,J)∗(MAX(I,J)-1)/2+MIN(I,J). In this case we need not specify the value, the first and
second derivatives of the model function by the macrovariables $FMODELF, $GMODELF and $HMOD-
ELF as in the general case. The coefficients FF (constant value) and GF(I), 1≤I≤NF, (constant gradient)
are specified in the same way as in the linear case. The coefficients HF(K), 1≤K≤NF∗(NF+1)/2, (the con-
stant Hessian matrix) must be specified by using the macrovariable $INPUT. If $HESF=’D’, the Hessian
matrix is assumed to be dense and we specify only its upper half:

$ADD(INPUT)
HF(1) = constant derivative ∂2FF(X)/∂X(1)2

HF(2) = constant derivative ∂2FF(X)/∂X(1)∂X(2)
HF(3) = constant derivative ∂2FF(X)/∂X(2)2

HF(4) = constant derivative ∂2FF(X)/∂X(1)∂X(3)
HF(5) = constant derivative ∂2FF(X)/∂X(2)∂X(3)
HF(6) = constant derivative ∂2FF(X)/∂X(3)2

—
HF(NF*(NF+1)/2) = constant derivative ∂2FF(X)/∂X(NF)2

$ENDADD

If $MODEL=’FQ’, we usually assume that either box constraints or general constraints are given. In this
case the optimization problem is the quadratic programming problem.

If the model function is linear or quadratic, then the options $KCF and $KSF need not be defined
since they are not used.

2.3 Specification of the model function (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Hessian matrix HF. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case we use the option $HESF=’S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Hessian matrix is specified by using the macrovariable $INPUT. Two integer vectors IH and
JH are used where IH(I), 1≤I≤NF+1, are pointers and JH(K), 1≤K≤M, are indices of nonzero elements.
Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in rows. The
number of nonzero elements must be specified using the statement $M=number of elements. The number
of nonzero elements could be greater than is required (let us say twice) since it is used for the declaration
of working fields. For example, if we have the Hessian matrix

HF =


hF
11, hF

12, hF
13, 0, hF

15

hF
21, hF

22, 0, hF
24, 0

hF
31, 0, hF

33, 0, hF
35,

0, hF
42, 0, hF

44, 0,
hF
51, 0, hF

53, 0, hF
55


then we have to set:

$NF=5
$M=20 (the minimum required value is M=10)
$ADD(INPUT)

IH(1)=1; IH(2)=5; IH(3)=7
IH(4)=9; IH(5)=10; IH(6)=11
JH(1)=1; JH(2)=2; JH(3)=3; JH(4)=5; JH(5)=2
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JH(6)=4; JH(7)=3; JH(8)=5; JH(9)=4; JH(10)=5
$ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero.
As in the case of the dense problem, the second derivatives of the model function can be specified by

using the macrovariable $HMODELF. If $HESF=’S’, only nonzero elements of the upper half (including
the diagonal) of the Hessian matrix are specified. For the above example the specification has the form:

$SET(HMODELF)
HF(1)=hF

11; HF(2)=hF
12; HF(3)=hF

13; HF(4)=hF
15

HF(5)=hF
22; HF(6)=hF

24; HF(7)=hF
33; HF(8)=hF

35

HF(9)=hF
44; HF(10)=hF

55

$ENDSET

If the model function is quadratic (i.e. if $MODEL=’FQ’) and if $HESF=’S’, then the coefficients
HF(K), 1≤K≤M, (constant sparse Hessian matrix) must be specified by using the macrovariable $INPUT.
If the matrix given in the above example is the constant sparse Hessian matrix, we use the following
specification:

$ADD(INPUT)
HF(1)=hF

11; HF(2)=hF
12; HF(3)=hF

13; HF(4)=hF
15

HF(5)=hF
22; HF(6)=hF

24; HF(7)=hF
33; HF(8)=hF

35

HF(9)=hF
44; HF(10)=hF

55

$ENDADD

2.4 Objective functions for discrete approximation

If we set $MODEL=’AF’, then we suppose that the objective function F(X) has this form:

F(X) =
NA∑

KA=1

FA(KA;X) if $KBA = 0

or

F(X) =
NA∑

KA=1

AW(KA) ∗ (FA(KA;X)−AM(KA)) if $KBA = 1,

where FA(KA;X), 1≤KA≤NA, are approximating functions. This form of the objective function is very
useful in large-scale optimization when the approximating functions FA(KA;X), 1≤KA≤NA, are assumed
to have sparse gradients.

If we set $MODEL=’AP’, then we suppose that the objective function F(X) has this form:

F(X) =
1

R

NA∑
KA=1

|FA(KA;X)| ∗ ∗R if $KBA = 0

or

F(X) =
1

R

NA∑
KA=1

|AW(KA) ∗ (FA(KA;X)−AM(KA))| ∗ ∗R if $KBA = 1,

where FA(KA;X), 1≤KA≤NA, are approximating functions, and R>1 is a real exponent. The value of the
exponent is specified by the choice $REXP=R (default value is $REXP=2). Since the most used value of
the exponent is R=2, and since the computations are the simplest and the most efficient for such a choice,
we can use the specification $MODEL=’AQ’ in this case (minimization of the sum of squares). Moreover,
$MODEL=’AQ’ is formally set whenever we choose $MODEL=’AP’ and $REXP=2.

26



If we set $MODEL=’AA’, then we suppose that the objective function F(X) has this form:

F(X) =
NA∑

KA=1

|FA(KA;X)| if $KBA = 0

or

F(X) =
NA∑

KA=1

|AW(KA) ∗ (FA(KA;X)−AM(KA))| if $KBA = 1

where FA(KA;X), 1≤KA≤NA, are approximating functions.
If we set $MODEL=’AM’, then we suppose that the objective function F(X) has the form:

F(X) = max
1≤KA≤NA

(+FA(KA;X)) if $IEXT = −1,

F(X) = max
1≤KA≤NA

(|FA(KA;X)|) if $IEXT = 0,

F(X) = max
1≤KA≤NA

(−FA(KA;X)) if $IEXT = +1,

for $KBA=0, or

F(X) = max
1≤KA≤NA

(+AW(KA) ∗ (FA(KA;X)−AM(KA))) if $IEXT = −1,

F(X) = max
1≤KA≤NA

(|AW(KA) ∗ (FA(KA;X)−AM(KA))|) if $IEXT = 0,

F(X) = max
1≤KA≤NA

(−AW(KA) ∗ (FA(KA;X)−AM(KA))) if $IEXT = +1,

for $KBA=1, where FA(KA;X), 1≤KA≤NA, are approximating functions. The default value is $IEXT=0
(the minimax or the Chebyshev approximation).

The option $KBA serves as a decision between a simple objective function and a more complicated
one. The simple objective function uses no additional fields while the more complicated one uses two
additional fields at most, AM and AW. Vector AM usually contains frequently used observations which
can be included into the functions FA(KA;X), 1≤KA≤NA, in the case of the simple objective function.
Observations AM(KA), 1≤KA≤NA, are specified by using the macrovariable $INPUT. Their default values
are AM(KA)=0, 1≤KA≤NA. Vector AW serves for possible scaling specified by the option $NORMA:

$NORMA=0 - No scaling is performed. In this case AW(KA)=1, 1≤KA≤NA.

$NORMA=1 - Scaling parameters are determined automatically so that AW(KA)=|AM(KA)|,
1≤KA≤NA.

$NORMA=2 - Scaling parameters must be specified by the user by means of the macrovariable
$INPUT.

The number of approximating functions NA must be specified, in all the above cases, by using the
statement $NA=number of functions.

27



2.5 Specification of the approximating functions (dense problems)

The approximating functions FA(KA;X), 1≤KA≤NA, must be defined by the user either directly in the
full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of
the approximating functions are specified by using the macrovariables $FMODELA or $FMODELAS:

$SET(FMODELA)
FA = value FA(KA;X)
(for a given index KA and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(FMODELAS)
AF(1) = value FA(1;X)
AF(2) = value FA(2;X)
—–
AF(NA) = value FA(NA;X)

$ENDSET

The first derivatives of the approximating functions are specified by using the macrovariables $GMODELA
or $GMODELAS:

$SET(GMODELA)
GA(1) = derivative ∂FA(KA;X)/∂X(1)
GA(2) = derivative ∂FA(KA;X)/∂X(2)
—–
GA(NF) = derivative ∂FA(KA;X)/∂X(NF)
(for a given index KA and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(GMODELAS)
AG(1) = derivative ∂FA(1;X)/∂X(1)
AG(2) = derivative ∂FA(1;X)/∂X(2)
—–
AG(NF) = derivative ∂FA(1;X)/∂X(NF)
AG(NF+1) = derivative ∂FA(2;X)/∂X(1)
AG(NF+2) = derivative ∂FA(2;X)/∂X(2)
—–
AG(NA∗NF) = derivative ∂FA(NA;X)/∂X(NF)

$ENDSET

The second derivatives of the approximating functions are specified by using the macrovariables $HMOD-
ELA or $HMODELAS. If $JACA=’D’, the Hessian matrices are assumed to be dense and we specify only
their upper half:

$SET(HMODELA)
HA(1) = derivative ∂2FA(KA;X)/∂X(1)2

HA(2) = derivative ∂2FA(KA;X)/∂X(1)∂X(2)
HA(3) = derivative ∂2FA(KA;X)/∂X(2)2

HA(4) = derivative ∂2FA(KA;X)/∂X(1)∂X(3)
HA(5) = derivative ∂2FA(KA;X)/∂X(2)∂X(3)
HA(6) = derivative ∂2FA(KA;X)/∂X(3)2
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—–
HA(NF∗(NF+1)/2) = derivative ∂2FA(KA;X)/∂X(NF)2

(for a given index KA and given values of variables X(I), 1≤I≤NF)
$ENDSET

or

$SET(HMODELAS)
AH(1) = derivative ∂2FA(1;X)/∂X(1)2

AH(2) = derivative ∂2FA(1;X)/∂X(1)∂X(2)
AH(3) = derivative ∂2FA(1;X)/∂X(2)2

AH(4) = derivative ∂2FA(1;X)/∂X(1)∂X(3)
AH(5) = derivative ∂2FA(1;X)/∂X(2)∂X(3)
AH(6) = derivative ∂2FA(1;X)/∂X(3)2

—–
AH(NF∗(NF+1)/2) = derivative ∂2FA(1;X)/∂X(NF)2

AH(NF∗(NF+1)/2+1) = derivative ∂2FA(2;X)/∂X(1)2

AH(NF∗(NF+1)/2+2) = derivative ∂2FA(2;X)/∂X(1)∂X(2)
AH(NF∗(NF+1)/2+3) = derivative ∂2FA(2;X)/∂X(2)2

—–
AH(NA∗NF∗(NF+1)/2) = derivative ∂2FA(NA;X)/∂X(NF)2

$ENDSET

If the macrovariables $GMODELA and $GMODELAS or $HMODELA and $HMODELAS are not
defined, we suppose that the first or the second derivatives of the approximating functions are not given
analytically. In this case, they are computed numerically by using the UFO system routines, whenever they
are required. If it is advantageous to compute the first derivatives of approximating functions FA(KA;X),
1≤KA≤NA, together with their values, we can replace the set of macrovariables $FMODELA, $GMOD-
ELA by the common macrovariable $FGMODELA and the set of macrovariables $FMODELAS, $GMOD-
ELAS by the common macrovariable $FGMODELAS. Similarly we can replace the set of macrovariables
$FMODELA, $GMODELA, $HMODELA by the common macrovariable $FGHMODELA and the set of
macrovariables $FMODELAS, $GMODELAS, $HMODELAS by the common macrovariable $FGHMOD-
ELAS.

To improve the efficiency of the computation, we can specify additional information about the approx-
imating functions FA(KA;X), 1≤KA≤NA. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCA:

$KCA=1 - Evaluations of the approximating functions FA(KA;X), 1≤KA≤NA, are very easy (they
require O(n) simple operations at most).

$KCA=2 - Evaluations of the approximating functions FA(KA;X), 1≤KA≤NA, are of medium
complexity (they at least require O(n) complicated operations and O(n2) simple opera-
tions at most).

$KCA=3 - Evaluations of the approximating functions FA(KA;X), 1≤KA≤NA, are extremely dif-
ficult (they at least require O(n2) complicated or O(n3) simple operations).

The option $KCA=2 is default. An additional useful piece of information is the analytical complexity
(conditioning) which is specified by the macrovariable $KSA:

$KSA=1 - The approximating functions FA(KA;X), 1≤KA≤NA, are smooth and well-conditioned.

$KSA=2 - The approximating functions FA(KA;X), 1≤KA≤NA, are smooth but ill-conditioned.

$KSA=3 - The approximating functions FA(KA;X), 1≤KA≤NA, are nonsmooth.

The option $KSA=1 is default.
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If some of the approximating functions are linear and have the form

FA(KA;X) =
NF∑
I=1

AG((KA− 1) ∗NF + I) ∗X(I)

we can specify them separately. Then the number of linear approximating functions must be specified
by using the statement $NAL=number of linear functions (default value is $NAL=0). We always sup-
pose that the first NAL approximating functions are linear. Then the coefficients AG((KA-1)∗NF+I),
1≤KA≤NAL, 1≤I≤NF, are specified by using the macrovariable $INPUT, and the macrovariables $FMOD-
ELA or $FMODELAS, $GMODELA or $GMODELAS, $HMODELA or $HMODELAS are used only for
the specification of the nonlinear approximating functions FA(KA;X), NAL<KA≤NA.

2.6 Specification of the approximating functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix AG. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case, we use the option $JACA=’S’, which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer vectors IAG
and JAG are used where IAG(KA), 1≤KA≤NA+1, are pointers and JAG(K), 1≤K≤IAG(NA+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the approximating functions.
The number of nonzero elements must be specified by using the statement $MA=number of elements. For
example, if we have the gradients

GA(1;X) = [gA11, 0 , 0 , gA14],

GA(2;X) = [0 , gA22, 0 , gA24],

GA(3;X) = [0 , 0 , gA33, 0 ],

GA(4;X) = [gA41, g
A
42, g

A
43, 0 ],

GA(5;X) = [0 , 0 , gA53, g
A
54],

and the Jacobian matrix

AG(X) =


gA11 , 0 , 0 , gA14
0 , gA22 , 0 , gA24
0 , 0 , gA33 , 0
gA41 , gA42 , gA43 , 0
0 , 0 , gA53 , gA54


then we have to set:

$NA=5
$MA=10
$ADD(INPUT)

IAG(1)=1; IAG(2)=3; IAG(3)=5
IAG(4)=6; IAG(5)=9; IAG(6)=11
JAG(1)=1; JAG(2)=4; JAG(3)=2; JAG(4)=4; JAG(5)=3
JAG(6)=1; JAG(7)=2; JAG(8)=3; JAG(9)=3; JAG(10)=4

$ENDADD
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As in the case of the dense problem, the first derivatives of the approximating functions can be specified
by using the macrovariables $GMODELA or $GMODELAS. If $JACA=’S’, only nonzero elements of the
gradients are specified. There are two possibilities distinguished by the macrovariable $ARED (the default
value is $ARED=’N’). If $ARED=’N’, indices of nonzero elements remains unchanged. If $ARED=’Y’, in-
dices of nonzero elements are replaced by indices of elements of reduced gradients. If KA-th approximating
function depends on LA variables, we use indices 1, 2, . . . ,LA.

For the above example the specifications have the form:

$SET(GMODELA)
IF (KA.EQ.1) THEN

GA(1) = ∂FA(1;X)/∂X(1)
GA(4) = ∂FA(1;X)/∂X(4)

ELSE IF (KA.EQ.2) THEN
GA(2) = ∂FA(2;X)/∂X(2)
GA(4) = ∂FA(2;X)/∂X(4)

ELSE IF (KA.EQ.3) THEN
GA(3) = ∂FA(3;X)/∂X(3)

ELSE IF (KA.EQ.4) THEN
GA(1) = ∂FA(4;X)/∂X(1)
GA(2) = ∂FA(4;X)/∂X(2)
GA(3) = ∂FA(4;X)/∂X(3)

ELSE
GA(3) = ∂FA(5;X)/∂X(3)
GA(4) = ∂FA(5;X)/∂X(4)

ENDIF
$ENDSET

if $ARED=’N’,

$SET(GMODELA)
IF (KA.EQ.1) THEN

GA(1) = ∂FA(1;X)/∂X(1)
GA(2) = ∂FA(1;X)/∂X(4)

ELSE IF (KA.EQ.2) THEN
GA(1) = ∂FA(2;X)/∂X(2)
GA(2) = ∂FA(2;X)/∂X(4)

ELSE IF (KA.EQ.3) THEN
GA(1) = ∂FA(3;X)/∂X(3)

ELSE IF (KA.EQ.4) THEN
GA(1) = ∂FA(4;X)/∂X(1)
GA(2) = ∂FA(4;X)/∂X(2)
GA(3) = ∂FA(4;X)/∂X(3)

ELSE
GA(1) = ∂FA(5;X)/∂X(3)
GA(2) = ∂FA(5;X)/∂X(4)

ENDIF
$ENDSET

if $ARED=’Y’ or

$SET(GMODELAS)
AG(1) = ∂FA(1;X)/∂X(1)
AG(2) = ∂FA(1;X)/∂X(4)
AG(3) = ∂FA(2;X)/∂X(2)
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AG(4) = ∂FA(2;X)/∂X(4)
AG(5) = ∂FA(3;X)/∂X(3)
AG(6) = ∂FA(4;X)/∂X(1)
AG(7) = ∂FA(4;X)/∂X(2)
AG(8) = ∂FA(4;X)/∂X(3)
AG(9) = ∂FA(5;X)/∂X(3)
AG(10) = ∂FA(5;X)/∂X(4)

$ENDSET

in both cases.
As in the case of the dense problem, the second derivatives of the approximating functions can be

specified by using the macrovariables $HMODELA or $HMODELAS. If $JACA=’S’, only nonzero elements
of the Hessian matrices are specified. The use of macrovariable $HMODELA is allowed only if $ARED=’Y’.
For the above example the specifications have the form:

$SET(HMODELA)
IF (KA.EQ.1) THEN

HA(1) = ∂2FA(1;X)/∂X(1)2

HA(2) = ∂2FA(1;X)/∂X(1)∂X(4)
HA(3) = ∂2FA(1;X)/∂X(4)2

ELSE IF (KA.EQ.2) THEN
HA(1) = ∂2FA(2;X)/∂X(2)2

HA(2) = ∂2FA(2;X)/∂X(2)∂X(4)
HA(3) = ∂2FA(2;X)/∂X(4)2

ELSE IF (KA.EQ.3) THEN
HA(1) = ∂2FA(3;X)/∂X(3)2

ELSE IF (KA.EQ.4) THEN
HA(1) = ∂2FA(4;X)/∂X(1)2

HA(2) = ∂2FA(4;X)/∂X(1)∂X(2)
HA(3) = ∂2FA(4;X)/∂X(2)2

HA(4) = ∂2FA(4;X)/∂X(1)∂X(3)
HA(5) = ∂2FA(4;X)/∂X(2)∂X(3)
HA(6) = ∂2FA(4;X)/∂X(3)2

ELSE
HA(1) = ∂2FA(5;X)/∂X(3)2

HA(2) = ∂2FA(5;X)/∂X(3)∂X(4)
HA(3) = ∂2FA(5;X)/∂X(4)2

ENDIF
$ENDSET

if $ARED=’Y’ or

$SET(HMODELAS)
AH(1) = ∂2FA(1;X)/∂X(1)2

AH(2) = ∂2FA(1;X)/∂X(1)∂X(4)
AH(3) = ∂2FA(1;X)/∂X(4)2

AH(4) = ∂2FA(2;X)/∂X(2)2

AH(5) = ∂2FA(2;X)/∂X(2)∂X(4)
AH(6) = ∂2FA(2;X)/∂X(4)2

AH(7) = ∂2FA(3;X)/∂X(3)2

AH(8) = ∂2FA(4;X)/∂X(1)2

AH(9) = ∂2FA(4;X)/∂X(1)∂X(2)
AH(10) = ∂2FA(4;X)/∂X(2)2
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AH(11) = ∂2FA(4;X)/∂X(1)∂X(3)
AH(12) = ∂2FA(4;X)/∂X(2)∂X(3)
AH(13) = ∂2FA(4;X)/∂X(3)2

AH(14) = ∂2FA(5;X)/∂X(3)2

AH(15) = ∂2FA(5;X)/∂X(3)∂X(4)
AH(16) = ∂2FA(5;X)/∂X(4)2

$ENDSET

in both cases. Note that the dimensions of arrays HA or AH must be specified by the statement
$MHA=dimension of HA or $MAH=dimension of AH.

If some of the approximating functions are linear (i.e. if $NAL>0) and if $JACA=’S’, then the coeffi-
cients AG(K), 1≤K≤IAG(NAL+1)−1 (constant part of the sparse Jacobian matrix) must be specified by
using the macrovariable $INPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use this specification:

$ADD(INPUT)
AG(1)=gA11; AG(2)=gA14; AG(3)=gA22; AG(4)=gA24
AG(5)=gA33; AG(6)=gA41; AG(7)=gA42; AG(8)=gA43
AG(9)=gA53; AG(10)=gA54

$ENDADD

There is another possibility which can be useful when all approximating functions are linear. It is based
on the usage of special procedure UKMAI1 which serves for a direct input of individual Jacobian matrix
elements. The procedure UKMAI1 is formally called by using the statement

CALL $UKMAI1(K,I,GAKI) or $SETAG(K,I,GAKI),

where K is an index of a given approximating function (a row of the Jacobian matrix), I is an index
of a given variable (a column of the Jacobian matrix), and GAKI is the numerical value of the element
∂FA(K;X)/∂X(I). For the example given above we can write:

$ADD(INPUT)
$SETAG(1,1,gA11)
$SETAG(1,4,gA14)
$SETAG(2,2,gA22)
$SETAG(2,4,gA24)
$SETAG(3,3,gA33)
$SETAG(4,1,gA41)
$SETAG(4,2,gA42)
$SETAG(4,3,gA43)
$SETAG(5,3,gA53)
$SETAG(5,4,gA54)

$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the fields IAG and
JAG beforehand.

If we use the option $JACA=’S’, then we can specify a form of the objective function sparse Hessian
matrix. There are four possibilities:

$HESF=’D’ - Dense Hessian matrix.

$HESF=’B’ - Partitioned sparse Hessian matrix. This matrix is a sum of simple Hessian matrices
which correspond to the individual approximating functions. Only nonzero blocks are
stored.
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$HESF=’S’ - General sparse Hessian matrix (the same as the model function Hessian matrix
corresponding to the option $HESF=’S’).

$HESF=’N’ - Hessian matrix is not used.

This specification only serves for an internal realization of optimization methods and has no influence on
the user’s input. The default option is $HESF=’D’.

2.7 Objective functions for optimization of dynamical systems

If we set $MODEL=’DF’, then we suppose that the objective function F(X) has this form:

F(X) =

∫ TAMAX

TAMIN

FA(X,YA(TA),TA) dTA+ FF(X,YA(TAMAX),TAMAX),

where FA(X,YA(TA),TA) is a smooth subintegral function and FF(X,YA(TAMAX),TAMAX) is a smooth
terminal function. At the same time

dYA(KE;TA)

dTA
= FE(KE;X,YA(TA),TA), YA(KE;TAMIN) = FY(KE;X),

where FE(KE;X,YA(TA),TA), 1≤KE≤NE, are smooth state functions and FY(KE;X), 1≤KE≤NE, are
smooth initial functions.

If we set $MODEL=’DQ’, then we suppose the objective function F(X) has the form:

F(X) =
1

2

∫ TAMAX

TAMIN

NE∑
KE=1

WE(KE;TA) ∗ (YA(KE;TA)−YE(KE;TA))2 dTA

+
1

2

NE∑
KE=1

EW(KE) ∗ (YA(KE;TAMAX)− EY(KE))2.

At the same time

dYA(KE;TA)

dTA
= FE(KE;X,YA(TA),TA), YA(KE;TAMIN) = FY(KE;X),

where FE(KE;X,YA(TA),TA), 1≤KE≤NE, are smooth state functions and FY(KE;X), 1≤KE≤NE, are
smooth initial functions.

In all the above cases, the statement $NE=number of differential equations must be used for the speci-
fication of number of differential equations NE. Moreover, values TAMIN and TAMAX have to be specified
by using the macrovariable $INPUT.

$ADD(INPUT)
TA = initial (minimum) value of the independent variable (TA = TAMIN)
TAMAX = maximum value of the independent variable

$ENDADD

2.8 Specification of the state functions

The state functions FE(KE;X,YA(TA),TA), 1≤KE≤NE, must be defined by the user either directly in the
full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of
the state functions are specified by using the macrovariables $FMODELE or $FMODELES:

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
(for a given index KE, a given vector of variables X,
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a given vector of state variables YA(TA) and a given time TA)
$ENDSET

or

$SET(FMODELES)
EF(1) = value FE(1;X,YA(TA),TA)
EF(2) = value FE(2;X,YA(TA),TA)
—–
EF(NE) = value FE(NE;X,YA(TA),TA)

$ENDSET

The first derivatives of the state functions according to the variables are specified by using the macrovari-
ables $GMODELE or $GMODELES:

$SET(GMODELE)
GE(1) = derivative ∂FE(KE;X,YA(TA),TA)/∂X(1)
GE(2) = derivative ∂FE(KE;X,YA(TA),TA)/∂X(2)
—–
GE(NF) = derivative ∂FE(KE;X,YA(TA),TA)/∂X(NF)
(for a given index KE, a given vector of variables X,
a given vector of state variables YA(TA) and a given time TA)

$ENDSET

or

$SET(GMODELES)
EG(1) = derivative ∂FE(1;X,YA(TA),TA)/∂X(1)
EG(2) = derivative ∂FE(1;X,YA(TA),TA)/∂X(2)
—–
EG(NF) = derivative ∂FE(1;X,YA(TA),TA)/∂X(NF)
EG(NF+1) = derivative ∂FE(2;X,YA(TA),TA)/∂X(1)
EG(NF+2) = derivative ∂FE(2;X,YA(TA),TA)/∂X(2)
—–
EG(NE∗NF) = derivative ∂FE(NE;X,YA(TA),TA)/∂X(NF)

$ENDSET

The first derivatives of the state functions according to the state variables are specified by using the
macrovariables $DMODELE or $DMODELES:

$SET(DMODELE)
DE(1) = derivative ∂FE(KE;X,YA(TA),TA)/∂YA(1)
DE(2) = derivative ∂FE(KE;X,YA(TA),TA)/∂YA(2)
—–
DE(NE) = derivative ∂FE(KE;X,YA(TA),TA)/∂YA(NE)
(for a given index KE, a given vector of variables X,
a given vector of state variables YA(TA) and a given time TA)

$ENDSET

or

$SET(DMODELES)
ED(1) = derivative ∂FE(1;X,YA(TA),TA)/∂YA(1)
ED(2) = derivative ∂FE(1;X,YA(TA),TA)/∂YA(2)
—–
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ED(NE) = derivative ∂FE(1;X,YA(TA),TA)/∂YA(NE)
ED(NE+1) = derivative ∂FE(2;X,YA(TA),TA)/∂YA(1)
ED(NE+2) = derivative ∂FE(2;X,YA(TA),TA)/∂YA(2)
—–
ED(NE∗NE) = derivative ∂FE(NE;X,YA(TA),TA)/∂YA(NE)

$ENDSET

If it is advantageous to compute the first derivatives of the state functions FE(KE;X,YA(TA),TA),
1≤KE≤NE, together with their values, we can replace the set of macrovariables $FMODELE, $GMOD-
ELE, $DMODELE by the common macrovariable $FGDMODELE and the set of macrovariables $FMOD-
ELES, $GMODELES, $DMODELES by the common macrovariable $FGDMODELES. Partially we can
replace the macrovariables $FMODELE, $GMODELE or $FMODELE, $DMODELE or $GMODELE,
$DMODELE by the common macrovariables $FGMODELE or $FDMODELE or $GDMODELE, re-
spectively. Similarly we can replace the macrovariables $FMODELES, $GMODELES or $FMODELES,
$DMODELES or $GMODELES, $DMODELES by the common macrovariables $FGMODELES or $FD-
MODELES or $GDMODELES, respectively.

If $MODEL=’DQ’, we have to define the functions WE(KE;TA) and YE(KE;TA), 1≤KE≤NE, for
a given index KE and a given time TA. These functions can be specified by using the macrovariable
$FMODELE together with the state function FE(KE;X,YA(TA),TA):

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
WE = value WE(KE;TA)
YE = value YE(KE;TA)
(for a given index KE, a given vector of variables X,
a given vector of state variables YA(TA) and a given time TA)

$ENDSET

The default values WE(KE;TA)=1 and YE(KE;TA)=0 cannot be specified, they are supposed automati-
cally.

2.9 Specification of the initial functions

The initial functions FY(KE;X), 1≤KE≤NE, must be defined by the user either directly in the full dialogue
mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of the initial
functions are specified by using the macrovariables $FMODELY or $FMODELYS:

$SET(FMODELY)
FE = value FY(KE;X)
(for a given index KE and a given vector of variables X)

$ENDSET

or

$SET(FMODELYS)
EF(1) = value FY(1;X)
EF(2) = value FY(2;X)
—–
EF(NE) = value FY(NE;X)

$ENDSET

The first derivatives of the initial functions according to the variables are specified by using the macrovari-
ables $GMODELY or $GMODELYS:
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$SET(GMODELY)
GE(1) = derivative ∂FY(KE;X)/∂X(1)
GE(2) = derivative ∂FY(KE;X)/∂X(2)
—–
GE(NF) = derivative ∂FY(KE;X)/∂X(NF)
(for a given index KE and a given vector of variables X)

$ENDSET

or

$SET(GMODELYS)
EG(1) = derivative ∂FY(1;X)/∂X(1)
EG(2) = derivative ∂FY(1;X)/∂X(2)
—–
EG(NF) = derivative ∂FY(1;X)/∂X(NF)
EG(NF+1) = derivative ∂FY(2;X)/∂X(1)
EG(NF+2) = derivative ∂FY(2;X)/∂X(2)
—–
EG(NE∗NF) = derivative ∂FY(NE;X)/∂X(NF)

$ENDSET

If it is advantageous to compute the first derivatives of initial functions FY(KE;X), 1≤KE≤NE, together
with their values, we can replace the set of macrovariables $FMODELY, $GMODELY by the common
macrovariable $FGMODELY and the set of macrovariables $FMODELYS, $GMODELYS by the common
macrovariable $FGMODELYS.

If the initial values YA(KE;TAMIN), 1≤KE≤NE, do not depend on the variables X(I), 1≤I≤NF, they
can be specified by using the macrovariable $INPUT:

$ADD(INPUT)
YA(1) = initial value YA(1,TAMIN)
YA(2) = initial value YA(2,TAMIN)
—–
YA(NE) = initial value YA(NE,TAMIN)

$ENDADD

2.10 Specification of the subintegral function

If $MODEL=’DF’, the subintegral function FA(X,YA(TA),TA) must be defined by the user either directly
in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. The
value of the subintegral function is specified by using the macrovariable $FMODELA:

$SET(FMODELA)
FA = value FA(X,YA(TA),TA)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

The first derivatives of the subintegral function according to the variables are specified by using the
macrovariable $GMODELA:

$SET(GMODELA)
GA(1) = derivative ∂FA(X,YA(TA),TA)/∂X(1)
GA(2) = derivative ∂FA(X,YA(TA),TA)/∂X(2)
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—–
GA(NF) = derivative ∂FA(X,YA(TA),TA)/∂X(NF)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

The first derivatives of the subintegral function according to the state variables are specified by using the
macrovariable $DMODELA:

$SET(DMODELA)
DA(1) = derivative ∂FA(X,YA(TA),TA)/∂YA(1)
DA(2) = derivative ∂FA(X,YA(TA),TA)/∂YA(2)
—–
DA(NE) = derivative ∂FA(X,YA(TA),TA)/∂YA(NE)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

If it is advantageous to compute the first derivatives of subintegral function FA(X,YA(TA),TA) together
with its value, we can replace the set of macrovariables $FMODELA, $GMODELA, $DMODELA by
the common macrovariable $FGDMODELA. Partially we can replace the macrovariables $FMODELA,
$GMODELA or $FMODELA, $DMODELA or $GMODELA, $DMODELA by the common macrovariables
$FGMODELA or $FDMODELA or $GDMODELA, respectively.

If $MODEL=’DQ’ and the objective function contains an integral part, then we have to set $MOD-
ELA=’YES’ and define the functions WE(KE;TA) and YE(KE;TA), 1≤KE≤NE, by using the macrovari-
able $FMODELE.

2.11 Specification of the terminal function

If $MODEL=’DF’, the terminal function FF(X,YA(TAMAX),TAMAX) must be defined by the user either
directly in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode.
The value of the terminal function is specified by using the macrovariable $FMODELF:

$SET(FMODELF)
FF = value FF(X,YA(TAMAX),TAMAX)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

The first derivatives of the terminal function according to the variables are specified by using the macrovari-
able $GMODELF:

$SET(GMODELF)
GF(1) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂X(1)
GF(2) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂X(2)
—–
GF(NF) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂X(NF)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET
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The first derivatives of the terminal function according to the state variables are specified by using the
macrovariable $DMODELF:

$SET(DMODELF)
DF(1) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂YA(1)
DF(2) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂YA(2)
—–
DF(NE) = derivative ∂FF(X,YA(TAMAX),TAMAX)/∂YA(NE)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

If it is advantageous to compute the first derivatives of terminal function FF(X,YA(TAMAX),TAMAX)
together with its value, we can replace the set of macrovariables $FMODELF, $GMODELF, $DMODELF
by the common macrovariable $FGDMODELF. Partially we can replace the macrovariables $FMODELF,
$GMODELF or $FMODELF, $DMODELF or $GMODELF, $DMODELF by the common macrovariables
$FGMODELF or $FDMODELF or $GDMODELF, respectively.

If $MODEL=’DQ’ and the objective function contains a terminal part, then we have to set $MOD-
ELF=’YES’ and define the coefficients EW(KE) and EY(KE), 1≤KE≤NE, by using the macrovariable
$INPUT:

$ADD(INPUT)
EW(1) = value EW(1); EY(1) = value EY(1)
EW(2) = value EW(2); EY(2) = value EY(2)
—–
EW(NE) = value EW(NE); EY(NE) = value EY(NE)

$ENDADD

2.12 Optimization with general constraints

If there are no general constraints we set $KBC=0. In the opposite case we set $KBC=1 or $KBC=2. If
$KBC=1 or $KBC=2, then

FC(KC;X) - unbounded , if IC(KC) = 0,
CL(KC) ≤ FC(KC;X) , if IC(KC) = 1,

FC(KC;X) ≤ CU(KC) , if IC(KC) = 2,
CL(KC) ≤ FC(KC;X) ≤ CU(KC) , if IC(KC) = 3,
CL(KC) = FC(KC;X) = CU(KC) , if IC(KC) = 5,

where 1≤KC≤NC. The option $KBC=2 must be chosen if IC(KC)=3 for at least one index 1≤KC≤NC.
Then two different fields CL(K) and CU(KC), 1≤KC≤NC are declared. In the opposite case we set
$KBC=1 and only one common field CL(KC)=CU(KC), 1≤KC≤NC is declared. The number of constraints
NC must be specified by using the statement $NC=number of functions.

The types of general constraints IC(KC), 1≤KC≤NC, and lower and upper bounds CL(KC) and
CU(KC), 1≤KC≤NC, can be specified by using the macrovariable $INPUT. The default values are
IC(KC)=3 and CL(KC)=CU(KC)=0, 1≤KC≤NC. For example:

$KBC=2; $NC=3
$ADD(INPUT)

IC(1)=1; CL(1)=cL1
IC(2)=1; CL(2)=cL2
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IC(3)=3; CL(3)=cL3 ; CU(3)=cL3
$ENDADD

2.13 Specification of the constraint functions (dense problems)

The constraint functions FC(KC;X), 1≤KC≤NC, must be defined by the user either directly in the full
dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. The values of the
constraint functions are specified by using the macrovariables $FMODELC or $FMODELCS:

$SET(FMODELC)
FC = value FC(KC;X)
(for a given index KC and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(FMODELCS)
CF(1) = value FC(1;X)
CF(2) = value FC(2;X)
—–
CF(NC) = value FC(NC;X)

$ENDSET

The first derivatives of the constraint functions are specified by using the macrovariables $GMODELC or
$GMODELCS:

$SET(GMODELC)
GC(1) = derivative ∂FC(KC;X)/∂X(1)
GC(2) = derivative ∂FC(KC;X)/∂X(2)
—–
GC(NF) = derivative ∂FC(KC;X)/∂X(NF)
(for a given index KC and given values of variables X(I), 1≤I≤NF)

$ENDSET

or

$SET(GMODELCS)
CG(1) = derivative ∂FC(1;X)/∂X(1)
CG(2) = derivative ∂FC(1;X)/∂X(2)
—–
CG(NF) = derivative ∂FC(1;X)/∂X(NF)
CG(NF+1) = derivative ∂FC(2;X)/∂X(1)
CG(NF+2) = derivative ∂FC(2;X)/∂X(2)
—–
CG(NC∗NF) = derivative ∂FC(NC;X)/∂X(NF)

$ENDSET

The second derivatives of the constraint functions are specified by using the macrovariables $HMODELC
or $HMODELCS. If $JACC=’D’, the Hessian matrices are assumed to be dense and we only specify their
upper half:

$SET(HMODELC)
HC(1) = derivative ∂2FC(KC;X)/∂X(1)2

HC(2) = derivative ∂2FC(KC;X)/∂X(1)∂X(2)
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HC(3) = derivative ∂2FC(KC;X)/∂X(2)2

HC(4) = derivative ∂2FC(KC;X)/∂X(1)∂X(3)
HC(5) = derivative ∂2FC(KC;X)/∂X(2)∂X(3)
HC(6) = derivative ∂2FC(KC;X)/∂X(3)2

—–
HC(NF∗(NF+1)/2) = derivative ∂2FC(KC;X)/∂X(NF)2

(for a given index KC and given values of variables X(I), 1≤I≤NF)
$ENDSET

or

$SET(HMODELCS)
CH(1) = derivative ∂2FC(1;X)/∂X(1)2

CH(2) = derivative ∂2FC(1;X)/∂X(1)∂X(2)
CH(3) = derivative ∂2FC(1;X)/∂X(2)2

CH(4) = derivative ∂2FC(1;X)/∂X(1)∂X(3)
CH(5) = derivative ∂2FC(1;X)/∂X(2)∂X(3)
CH(6) = derivative ∂2FC(1;X)/∂X(3)2

—–
CH(NF∗(NF+1)/2) = derivative ∂2FC(1;X)/∂X(NF)2

CH(NF∗(NF+1)/2+1) = derivative ∂2FC(2;X)/∂X(1)2

CH(NF∗(NF+1)/2+2) = derivative ∂2FC(2;X)/∂X(1)∂X(2)
CH(NF∗(NF+1)/2+3) = derivative ∂2FC(2;X)/∂X(2)2

—–
CH(NC∗NF∗(NF+1)/2) = derivative ∂2FC(NC;X)/∂X(NF)2

$ENDSET

If the macrovariables $GMODELC and $GMODELCS or $HMODELC and $HMODELCS are not
defined, we suppose that the first or the second derivatives of the constraint functions are not given ana-
lytically. In this case, they are computed numerically, by using the UFO system routines whenever they
are required. If it is advantageous to compute the first derivatives of constraint functions FC(KC;X),
1≤KC≤NC, together with their values, we can replace the set of macrovariables $FMODELC, $GMOD-
ELC by the common macrovariable $FGMODELC and the set of macrovariables $FMODELCS, $GMOD-
ELCS by the common macrovariable $FGMODELCS. Similarly we can replace the set of macrovariables
$FMODELC, $GMODELC, $HMODELC by the common macrovariable $FGHMODELC and the set of
macrovariables $FMODELCS, $GMODELCS, $HMODELCS by the common macrovariable $FGHMOD-
ELCS.

To improve the efficiency of the computation, we can specify some additional information about the
constraint functions FC(KC;X), 1≤KC≤NC. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCC:

$KCC= 1 - Evaluations of the constraint functions FC(KC;X), 1≤KC≤NC, are very easy (they
require O(n) simple operations at most).

$KCC= 2 - Evaluations of the constraint functions FC(KC;X), 1≤KC≤NC, are of medium com-
plexity (they at least require O(n) complicated operations and O(n2) simple opera-
tions at most).

$KCC= 3 - Evaluations of the constraint functions FC(KC;X), 1≤KC≤NC, are extremely diffi-
cult (they at least require O(n2) complicated or O(n3) simple operations).

The option $KCC=2 is default. An additional useful piece of information is the analytical complexity
(conditioning) which is specified by the macrovariable $KSC:

$KSC=1 - The constraint functions FC(KC;X), 1≤KC≤NC, are smooth and well-conditioned.
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$KSC=2 - The constraint functions FC(KC;X), 1≤KC≤NC, are smooth but ill-conditioned.

$KSC=3 - The constraint functions FC(KC;X), 1≤KC≤NC, are nonsmooth.

The option $KSC=1 is default.
If some of the constraint functions are linear and have the form

FC(KC;X) =
NF∑
I=1

CG((KC− 1) ∗NF+ I) ∗X(I)

we can specify them separately. Then the number of linear constraint functions must be specified by using
the statement $NCL=number of linear functions (default value is $NCL=0). We always suppose that the
first NCL constraint functions are linear. Then the coefficients CG((KC-1)∗NF+I), 1≤KC≤NCL, 1≤I≤NF,
are specified by using the macrovariable $INPUT and the macrovariables $FMODELC or $FMODELCS,
$GMODELC or $GMODELCS, $HMODELC or $HMODELCS are used only for the specification of the
nonlinear constraint functions FC(KC;X), NCL<KC≤NC.

2.14 Specification of the constraint functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix CG. This possibility decreases the computational time and storage requirements for
large-scale optimization problems. In this case, we use option $JACC=’S’, which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer vectors ICG
and JCG are used where ICG(KC), 1≤KC≤NC+1, are pointers and JCG(K), 1≤K≤ICG(NC+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the constraint functions.
The number of nonzero elements must be specified by using the statement $MC=number of elements. The
number of nonzero elements could be greater than is needed (twice say) since it is used for the declaration
of working fields. For example, if we have the gradients

GC(1;X) = [gC11, 0 , 0 , gC14],

GC(2;X) = [0 , gC22, 0 , gC24],

GC(3;X) = [0 , 0 , gC33, 0 ],

GC(4;X) = [gC41, g
C
42, g

C
43, 0 ],

GC(5;X) = [0 , 0 , gC53, g
C
54],

and the Jacobian matrix

CG(X) =


gC11 , 0 , 0 , gC14
0 , gC22 , 0 , gC24
0 , 0 , gC33 , 0
gC41 , gC42 , gC43 , 0
0 , 0 , gC53 , gC54


then we have to set:

$NC=5
$MC=20 (the minimum required value is MC=10)
$ADD(INPUT)
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ICG(1)=1; ICG(2)=3; ICG(3)=5
ICG(4)=6; ICG(5)=9; ICG(6)=11
JCG(1)=1; JCG(2)=4; JCG(3)=2; JCG(4)=4; JCG(5)=3
JCG(6)=1; JCG(7)=2; JCG(8)=3; JCG(9)=3; JCG(10)=4

$ENDADD

As in the case of the dense problem, the first derivatives of the constraint functions can be specified
by using the macrovariables $GMODELC or $GMODELCS. If $JACC=’S’, only nonzero elements of the
gradients are specified. There are two possibilities distinguished by the macrovariable $CRED (the default
value is $CRED=’N’). If $CRED=’N’, indices of nonzero elements remains unchanged. If $CRED=’Y’, in-
dices of nonzero elements are replaced by indices of elements of reduced gradients. If KC-th approximating
function depends on LC variables, we use indices 1, 2, . . . ,LC.

For the above example the specifications have the form:

$SET(GMODELC)
IF (KC.EQ.1) THEN

GC(1) = ∂FC(1;X)/∂X(1)
GC(4) = ∂FC(1;X)/∂X(4)

ELSE IF (KC.EQ.2) THEN
GC(2) = ∂FC(2;X)/∂X(2)
GC(4) = ∂FC(2;X)/∂X(4)

ELSE IF (KC.EQ.3) THEN
GC(3) = ∂FC(3;X)/∂X(3)

ELSE IF (KC.EQ.4) THEN
GC(1) = ∂FC(4;X)/∂X(1)
GC(2) = ∂FC(4;X)/∂X(2)
GC(3) = ∂FC(4;X)/∂X(3)

ELSE
GC(3) = ∂FC(5;X)/∂X(3)
GC(4) = ∂FC(5;X)/∂X(4)

ENDIF
$ENDSET

if $CRED=’N’,

$SET(GMODELC)
IF (KC.EQ.1) THEN

GC(1) = ∂FC(1;X)/∂X(1)
GC(2) = ∂FC(1;X)/∂X(4)

ELSE IF (KC.EQ.2) THEN
GC(1) = ∂FC(2;X)/∂X(2)
GC(2) = ∂FC(2;X)/∂X(4)

ELSE IF (KC.EQ.3) THEN
GC(1) = ∂FC(3;X)/∂X(3)

ELSE IF (KC.EQ.4) THEN
GC(1) = ∂FC(4;X)/∂X(1)
GC(2) = ∂FC(4;X)/∂X(2)
GC(3) = ∂FC(4;X)/∂X(3)

ELSE
GC(1) = ∂FC(5;X)/∂X(3)
GC(2) = ∂FC(5;X)/∂X(4)

ENDIF
$ENDSET
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if $CRED=’Y’ or

$SET(GMODELCS)
CG(1) = ∂FC(1;X)/∂X(1)
CG(2) = ∂FC(1;X)/∂X(4)
CG(3) = ∂FC(2;X)/∂X(2)
CG(4) = ∂FC(2;X)/∂X(4)
CG(5) = ∂FC(3;X)/∂X(3)
CG(6) = ∂FC(4;X)/∂X(1)
CG(7) = ∂FC(4;X)/∂X(2)
CG(8) = ∂FC(4;X)/∂X(3)
CG(9) = ∂FC(5;X)/∂X(3)
CG(10) = ∂FC(5;X)/∂X(4)

$ENDSET

in both cases.
As in the case of the dense problem, the second derivatives of the constraint functions can be specified

by using the macrovariables $HMODELC or $HMODELCS. If $JACC=’S’, only nonzero elements of the
Hessian matrices are specified. The use of macrovariable $HMODELC is allowed only if $CRED=’Y’. For
the above example the specifications have the form:

$SET(HMODELC)
IF (KC.EQ.1) THEN

HC(1) = ∂2FC(1;X)/∂X(1)2

HC(2) = ∂2FC(1;X)/∂X(1)∂X(4)
HC(3) = ∂2FC(1;X)/∂X(4)2

ELSE IF (KC.EQ.2) THEN
HC(1) = ∂2FC(2;X)/∂X(2)2

HC(2) = ∂2FC(2;X)/∂X(2)∂X(4)
HC(3) = ∂2FC(2;X)/∂X(4)2

ELSE IF (KC.EQ.3) THEN
HC(1) = ∂2FC(3;X)/∂X(3)2

ELSE IF (KC.EQ.4) THEN
HC(1) = ∂2FC(4;X)/∂X(1)2

HC(2) = ∂2FC(4;X)/∂X(1)∂X(2)
HC(3) = ∂2FC(4;X)/∂X(2)2

HC(4) = ∂2FC(4;X)/∂X(1)∂X(3)
HC(5) = ∂2FC(4;X)/∂X(2)∂X(3)
HC(6) = ∂2FC(4;X)/∂X(3)2

ELSE
HC(1) = ∂2FC(5;X)/∂X(3)2

HC(2) = ∂2FC(5;X)/∂X(3)∂X(4)
HC(3) = ∂2FC(5;X)/∂X(4)2

ENDIF
$ENDSET

if $CRED=’Y’ or

$SET(HMODELCS)
CH(1) = ∂2FC(1;X)/∂X(1)2

CH(2) = ∂2FC(1;X)/∂X(1)∂X(4)
CH(3) = ∂2FC(1;X)/∂X(4)2

CH(4) = ∂2FC(2;X)/∂X(2)2

CH(5) = ∂2FC(2;X)/∂X(2)∂X(4)
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CH(6) = ∂2FC(2;X)/∂X(4)2

CH(7) = ∂2FC(3;X)/∂X(3)2

CH(8) = ∂2FC(4;X)/∂X(1)2

CH(9) = ∂2FC(4;X)/∂X(1)∂X(2)
CH(10) = ∂2FC(4;X)/∂X(2)2

CH(11) = ∂2FC(4;X)/∂X(1)∂X(3)
CH(12) = ∂2FC(4;X)/∂X(2)∂X(3)
CH(13) = ∂2FC(4;X)/∂X(3)2

CH(14) = ∂2FC(5;X)/∂X(3)2

CH(15) = ∂2FC(5;X)/∂X(3)∂X(4)
CH(16) = ∂2FC(5;X)/∂X(4)2

$ENDSET

in both cases. Note that the dimensions of arrays HC or CH must be specified by the statement
$MHC=dimension of HC or $MCH=dimension of CH.

If some of the constraint functions are linear (i.e. if $NCL>0) and if $JACC=’S’, then the coefficients
CG(K), 1≤K≤ICG(NCL+1)−1 (constant part of the sparse Jacobian matrix) must be specified by using
the macrovariable $INPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use this specification:

$ADD(INPUT)
CG(1)=gC11; CG(2)=gC14; CG(3)=gC22; CG(4)=gC24
CG(5)=gC33; CG(6)=gC41; CG(7)=gC42; CG(8)=gC43
CG(9)=gC53; CG(10)=gC54

$ENDADD

There is another possibility which can be useful when all constraint functions are linear. It is based on
the usage of a special procedure UKMCI1 which serves for a direct input of individual Jacobian matrix
elements. The procedure UKMCI1 is formally called by using the statement

CALL $UKMCI1(K,I,GCKI) or $SETCG(K,I,GCKI),

where K is an index of a given constraint function (a row of the Jacobian matrix), I is an index of a given
variable (a column of the Jacobian matrix), and GCKI is a numerical value of the element ∂FC(K;X)/∂X(I).
For the example given above we can write:

$ADD(INPUT)
$SETCG(1,1,gC11)
$SETCG(1,4,gC14)
$SETCG(2,2,gC22)
$SETCG(2,4,gC24)
$SETCG(3,3,gC33)
$SETCG(4,1,gC41)
$SETCG(4,2,gC42)
$SETCG(4,3,gC43)
$SETCG(5,3,gC53)
$SETCG(5,4,gC54)

$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the fields ICG
and JCG beforehand. If the number of the constraints is very large, then we can use a slightly more
complicated procedure UKMCI2 which uses dynamic structures and, therefore, works more quickly. The
procedure UKMCI2 is formally called by using the statement
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CALL $UKMCI2(K,I,GCKI),

where K is an index of a given constraint function (a row of the Jacobian matrix), I is an index of a given
variable (a column of the Jacobian matrix), GCKI is the numerical value of the element ∂FC(K;X)/∂X(I).

2.15 Specification of complementarity constraints

Complementarity constraints can be written in the following form:

FC(ICC(I),X) ≥ CL(ICC(I)), FC(ICC(I+NCC),X) ≥ CL(ICC(I+NCC)),
FC(ICC(I),X) * FC(ICC(I+NCC),X) = 0, if ICC(I) > 0 and ICC(I+NCC) > 0,

X(−ICC(I)) ≥ XL(−ICC(I)), FC(ICC(I+NCC),X) ≥ CL(ICC(I+NCC)),
X(−ICC(I)) * FC(ICC(I+NCC),X) = 0, if ICC(I) < 0 and ICC(I+NCC) > 0,

FC(ICC(I),X) ≥ CL(ICC(I)), X(−ICC(I+NCC)) ≥ XL(−ICC(I+NCC)),
FC(ICC(I),X) * X(−ICC(I+NCC)) = 0, if ICC(I) > 0 and ICC(I+NCC) < 0,

X(−ICC(I)) ≥ XL(−ICC(I)), X(−ICC(I+NCC)) ≥ XL(−ICC(I+NCC)),
X(−ICC(I)) * X(−ICC(I+NCC)) = 0, if ICC(I) < 0 and ICC(I+NCC) < 0,

where 0 ≤ I ≤ NCC (NCC is the number of complementarity constraints), and ICC is the array with
2 ∗ NCC elements containing indices of inequality constraints (index lower than zero correspond to a box
constraint and index greater than zero correspond to a general constraint. The constraint functions are
specified in the same way as in subsections 2.12–2.14. Note that only one-sided constraints can be used in
the complementarity case.

2.16 Solution of systems of nonlinear functional equations

If we set $MODEL=’NE’, then we suppose that the system of nonlinear functional equations

FA(KA;X) = 0, 1 ≤ KA ≤ NF

is solved. This possibility is equivalent to minimization of sum of squares when $MODEL=’AQ’, but
now NA=NF so that special methods for solving systems of nonlinear functional equations can be used.
Functions FA(KA;X), 1 ≤ KA ≤ NF, are in fact approximating functions. Their specification is described
in Sections 2.5 – 2.6.

2.17 Solution of systems of ordinary differential equations

If we set $MODEL=’DE’, then we suppose that the system of ordinary differential equations

dYA(KE;TA)

dTA
= FE(KE;YA(TA),TA), YA(KE;TAMIN) = FY(KE) 1 ≤ KE ≤ NE

is solved in the interval TAMIN ≤ TA ≤ TAMAX, where FE(KE;YA(TA),TA), 1≤KE≤NE, are smooth
state functions and FY(KE), 1≤KE≤NE, are smooth initial functions. In this case, the statement
$NE=number of differential equations must be used for the specification of number of differential equations
NE. Moreover, values TAMIN and TAMAX have to be specified by using the macrovariable $INPUT.

$ADD(INPUT)
TA = initial (minimum) value of the independent variable (TA = TAMIN)
TAMAX = maximum value of the independent variable

$ENDADD
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Specification of state functions is described in Section 2.8. Specification of initial functions is described
in Section 2.9. The resulting state variables (solution of system of ordinary differential equations) can be
stored in all integration steps (if $MED=1) or in prescribed mesh points (if $MED=2). In the second
case, the macrovariable $NA specifies the number of mesh points equidistantly distributed in the interval
TAMIN ≤ TA ≤ TAMAX.

2.18 Additional specifications concerning optimization problems

Useful specifications, which can improve the computational efficiency and robustness of the optimization
methods, are a lower bound for the objective function value and an upper bound for the stepsize. Both
of these values depend on the definition of the objective function and can be specified by the statements
$FMIN=lower bound (for the objective function value) and $XMAX=upper bound (for the stepsize).
We recommend a definition of $FMIN whenever it is possible, and a definition of $XMAX whenever the
objective function contains the exponential functions. If the objective function is a sum of powers (or a sum
of squares), then automatically $FMIN=0. The default option for the maximum stepsize is $XMAX=1000.

If there are no general constraints and if the number of variables is not greater than 100, then we can
use global optimization methods. A decision between local and global optimization is effected by means
of macrovariable $EXTREM:

$EXTREM=’L’ - A local extremum is found, which usually contains the starting point in its basin of
attraction.

$EXTREM=’G’ - All extremum points in the given region are found and a global extremum is determined.

The default option is $EXTREM=’L’. If $EXTREM=’G’, we cannot use the common macrovariables
$FGMODELF and $FGHMODELF for a common specification of the value, the gradient and the Hessian
matrix of the model function. Similarly we cannot use the macrovariables $FGMODELA or $FGMODE-
LAS and $FGHMODELA or $FGHMODELAS for a common specification of the approximating functions.

The global optimization is performed over a bounded region specified by lower and upper bounds
XL(I) and XU(I), 1≤I≤NF. If these bounds are not specified (using the macrovariable $INPUT), they are
computed from initial values of variables and from the given maximum stepsize so that XL(I)=X(I)−XMAX
and XU(I)=X(I)+XMAX, 1≤I≤NF. The maximum stepsize is specified, as in the case given above, using
the statement $XMAX=maximum stepsize. The default option is again $XMAX=1000.

Additional useful specifications, concerning the solution precision, are bounds used in termination
criteria. These bounds can be specified by the macrovariables $TOLX, $TOLF, $TOLB, $TOLG, $TOLC
and $MIT, $MFV, $MFG:

$TOLX - lower bound for a relative change of variables
$TOLF - lower bound for a relative change of function values
$TOLB - lower bound for the objective function value
$TOLG - lower bound for the objective function gradient norm
$TOLC - lower bound for the violated constraint functions

$MIT - maximum number of iterations
$MFV - maximum number of function evaluations
$MFG - maximum number of gradient evaluations

The default values are $TOLX=’1.0D-8’, $TOLF=’1.0D-16’, $TOLB=’−1.0D60’, $TOLG=’1.0D-6’,
$TOLC=’1.0D-6’ and $MIT=500, $MFV=1000, $MFG=10000.

If a direct solver ($NUMBER=1) is used for direction determination in methods for sparse constrained
problems, the statement $MMAX=space for sparse factor should be given. The default value $MMAX=M
can be insufficient in these cases.
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3 Optimization methods in the UFO system

The UFO system has a modular structure. All optimization methods can be set up using the individual sim-
ple modules. For example, the sequential quadratic programming variable metric methods for nonlinearly
constrained optimization problems are set up by using the modules for an objective function evaluation,
penalty function definition, direction determination, quadratic programming solution, stepsize selection,
and variable metric update. The optimization methods contained in the UFO system can be roughly
divided into two groups. The first group contains methods for unconstrained and linearly constrained
optimization problems, while the second group contains methods for general nonlinear programming prob-
lems (or problems which are transformed to general nonlinear programming problems, e.g. l1, l∞ and
minimax problems). Methods for general nonlinear programming problems, i.e. for problems with non-
linear constraints, are classified by their realization form which is determined by using the macrovariable
$FORM:

$FORM=’SL’ - Recursive linear or quadratic programming methods for dense unconstrained mini-
max problems.

$FORM=’SQ’ - Recursive quadratic programming methods for dense nonlinear programming prob-
lems.

$FORM=’SE’ - Recursive quadratic programming methods for sparse equality constrained problems.

$FORM=’SI’ - Primal-dual interior point methods for sparse nonlinear programming problems.

$FORM=’SF’ - Nonsmooth equation methods for sparse nonlinear programming problems.

$FORM=’SP’ - Primal interior point methods for sparse nonlinear programming problems, sparse
unconstrained minimax problems and sparse unconstrained l∞ or l1 approximation
problems.

$FORM=’SM’ - Smoothing methods for sparse unconstrained minimax problems and sparse uncon-
strained l∞ or l1 approximation problems.

Sections 3.1 – 3.24 concern methods for unconstrained and linearly constrained problems. These methods
do not use the macrovariable $FORM for the classification. Sections 3.25 – 3.30 are devoted to minimiza-
tion of unconstrained or linearly constrained structured functions, especially to l1 and l∞ approximation.
These problems can be transformed to general nonlinear programming problems, but also special methods
can be used. For dense l1 approximation, only the choice $FORM=’SQ’ is possible. For sparse l1 approx-
imation, the choices $FORM=’SP’, $FORM=’SM’, $FORM=’SI’, $FORM=’SF’ can be used. For dense
l∞ approximation, the choices $FORM=’SL’ $FORM=’SQ’ are possible. For sparse l∞ approximation,
the choices $FORM=’SP’, $FORM=’SM’, $FORM=’SI’, $FORM=’SF’ can be used. Methods for general
nonlinear programming problems are described in Sections 3.31 – 3.35. For dense nonlinear programming
problems, only the choice $FORM=’SQ’ is possible. For sparse nonlinear programming problems, the
choices $FORM=’SE’, $FORM=’SI’, $FORM=’SF’ can be used. The basic parts of optimization methods
are described in Sections 3.36 – 3.40. Section 3.41 is devoted to global optimization methods.

Methods for unconstrained and linearly constrained problems contained in the UFO system can be
partitioned into several classes which are specified by using the macrovariable $CLASS:

$CLASS=’HM’ - Heuristic methods for small-size problems. This class contains the pattern search
method and the simplex method.

$CLASS=’CD’ - Conjugate direction methods which use no matrices. This class contains conjugate
gradient methods and variable metric methods with limited memory based on the
Strang recursions.

$CLASS=’VL’ - Variable metric methods with limited memory based on compact matrix updates.

$CLASS=’VS’ - Variable metric methods with limited memory based on shifted product-form up-
dates.

$CLASS=’VP’ - Variable metric methods with limited memory based on projected product-form
updates.

$CLASS=’VR’ - Variable metric methods with limited memory based on reduced Hessians.
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$CLASS=’VM’ - Variable metric methods which use an approximation of the Hessian matrix which
is updated in each iteration.

$CLASS=’MN’ - Modified Newton methods which use the Hessian matrix computed either analyti-
cally or numerically.

$CLASS=’TN’ - Truncated Newton methods based on the difference approximation of directional
derivatives.

$CLASS=’GN’ - Modified Gauss-Newton methods for nonlinear least squares problems which use the
normal equation matrix as an approximation of the Hessian matrix. These methods
are also realized by using the Jacobian matrix representation.

$CLASS=’QN’ - Quasi-Newton methods for nonlinear least squares problems or nonlinear equations.
$CLASS=’QL’ - Quasi-Newton methods with limited memory for large-scale nonlinear least squares

problems or large-scale nonlinear equations.

$CLASS=’QB’ - Simple quasi-Newton methods or Brent methods for nonlinear equations.

$CLASS=’BM’ - Proximal bundle methods for nonsmooth optimization.

$CLASS=’BN’ - Bundle-Newton methods for nonsmooth optimization.

$CLASS=’BV’ - Bundle variable metric methods for nonsmooth optimization.

$CLASS=’BL’ - Bundle limited-memory variable metric methods for large-scale nonsmooth opti-
mization.

$CLASS=’LP’ - Simplex type methods for linear programming problems.

$CLASS=’LI’ - Interior point methods for linear programming problems.
$CLASS=’QP’ - Simplex type methods for quadratic programming problems.
$CLASS=’QI’ - Interior point methods for quadratic programming problems.

Individual methods from the above classes can be chosen by using additional specifications. The most
important ones, concerning direction determination and stepsize selection, are the type of the method, the
kind of the matrix decomposition, the serial number of the method, and the way of the stepsize selection.
For unconstrained optimization, these specifications are described in Sections 3.37–3.38. For constrained
optimization, more information can be found in Sections 3.31–3.35.

The type of the method is specified by the macrovariable $TYPE:

$TYPE=’L’ - Line search methods.

$TYPE=’G’ - General trust region methods.

$TYPE=’T’ - Special trust region methods for nonlinear least squares problems.

$TYPE=’M’ - Modified Marquardt methods for nonlinear least squares problems.

$TYPE=’R’ - Cubic regularization methods.

$TYPE=’P’ - Pattern search method of Hooke and Jeeves.

$TYPE=’S’ - Simplex method of Nelder and Mead.

The kind of the matrix decomposition is specified by the macrovariable $DECOMP:

$DECOMP=’M’ - The original symmetric matrix is used as an input for the direction determination.

$DECOMP=’G’ - The LDLT decomposition without permutations is used as an input for the direction
determination. This decomposition is usually obtained by the Gill-Murray algorithm
[123].

$DECOMP=’S’ - The LDLT decomposition with permutations is used as an input for the direc-
tion determination. This decomposition is usually obtained by the Schnabel-Eskow
algorithm [304].

$DECOMP=’B’ - The block LDLT decomposition with permutations is used as an input for the
direction determination. This decomposition is usually obtained by the Bunch-Parlett
[34] or the Bunch-Kaufmann algorithms [35].

$DECOMP=’I’ - The inverse of a symmetric matrix is used as an input for the direction determination.

$DECOMP=’P’ - The product form SST of inverse is used as an input for the direction determination.
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$DECOMP=’R’ - The RTR decomposition without permutations is used as an input for the direction
determination. This decomposition is usually obtained by the recursive QR factor-
ization [167].

$DECOMP=’A’ - The rectangular matrix is used as an input for the direction determination.
$DECOMP=’Q’ - The QR decomposition of a rectangular matrix without permutations is used as

an input for the direction determination. This decomposition is usually obtained by
using the Householder reflection with the explicitly stored orthogonal matrix Q.

$DECOMP=’E’ - The general square matrix is used as an input for the direction determination in the
case NA=NF (system of nonlinear equations).

If $FORM=’SE’, we have additional possibilities for a representation of matrices in the direction determi-
nation:

$DECOMP=’K’ - The indefinite Karush-Kuhn-Tucker matrix is used as an input for the direction
determination.

$DECOMP=’Z’ - The null space representation based on orthogonal projection is used as an input for
the direction determination.

$DECOMP=’G’ - The range space representation based on the Schur complement is used as an input
for the direction determination.

If $FORM=’SI’, then the following possibility for a representation of matrices in the direction determination
is used implicitly:

$DECOMP=’I’ - The interior point Karush-Kuhn-Tucker matrix is used as an input for the direction
determination.

If $FORM=’SF’, then the following possibility for a representation of matrices in the direction determina-
tion is used implicitly:

$DECOMP=’F’ - The nonsmooth equation Karush-Kuhn-Tucker matrix is used as an input for the
direction determination.

Macrovariable $DECOMP is also used for the selection of conjugate direction methods. In this case, it
does not concern the kind of matrix decomposition. The allowed kinds of the matrix decomposition, owed
to individual classes of optimization methods, are listed in the corresponding sections.

The serial number of the method is specified by the macrovariable $NUMBER. This option determines
an individual realization of the direction determination method. In almost all cases, the selected value
specifies the method for solving systems of linear equations in either line search or trust region frameworks.
The values $NUMBER=1,2,3,4,5,6,7,8,9 can be used as is described in Section 3.37. If $CLASS=’CD’,
$CLASS=’VL’, $CLASS=’VR’, the macrovariable $NUMBER has a different meaning, which is described
in sections 3.2, 3.3, 3.4, 3.7. If $CLASS=’VS’ or $CLASS=’VP’, the implicit value $NUMBER=1 is used.

The way of the stepsize selection is specified by the macrovariable $SEARCH:

$SEARCH=’B’ - Basic line search methods based on various interpolation and extrapolation formulas
(if $TYPE=’L’) or basic trust region methods with stepsize control based on the
comparison of the actual and the predicted function decreases (if $TYPE=’G’).

$SEARCH=’M’ - Mixed line search methods which control the maximum stepsize like the trust re-
gion methods (if $TYPE=’L’) or mixed trust region methods which use interpolation
formulas for stepsize reduction like the line search methods (if $TYPE=’G’).

$SEARCH=’N’ - Special nonmonotone line search methods.

$SEARCH=’H’ - Special line search methods described in [141], which are suitable for conjugate
gradient methods.

Note that the choices $SEARCH=’B’ and $KTERS<0 specify standard nonmonotone line search methods
introduced in [135]. The absolute value of $KTERS gives the number of nonmonotone steps (see Section
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3.38).
If the variable metric or quasi-Newton methods are used, the individual update is specified by the

macrovariables $UPTYPE and $UPDATE as is described in corresponding sections.
All options used for the method selection have default values which follow from the knowledge bases

coded in the individual templates. Therefore, they need not be necessarily specified by the user. This fact
especially concerns macrovariables $METx, $MOTx, $MESx, $MOSx, where x is the empty symbol or one
of digits 1–5. The possibilities we describe in this section can be of service to users who are familiar with
optimization methods.

Almost all optimization methods have different realizations for the three different representations of the
objective function. If $HESF=’D’, dense variants can be used for either unconstrained problems or box con-
strained problems or linearly constrained problems (with dense linear constraints specified by $JACC=’D’).
If $HESF=’S’, sparse variants can be used for either unconstrained problems or box constrained problems
or linearly constrained problems (with sparse linear constraints specified by $JACC=’S’). Moreover, the
option $HESF=’B’ can be used for partially separable problems.

If $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’, the objective function is partially separable
and its Hessian matrix has a partitioned pattern. If $JACA=’S’ and $HESF=’S’, the original matrix
with a partitioned pattern is transformed to the sparse matrix with a general pattern, which is then
used for direction determination by using either direct or iterative solution methods. If $JACA=’S’ and
$HESF=’B’, the original matrix with a partitioned pattern is immediately used for direction determination
by using iterative solution methods (direct solution methods cannot be utilized in this case). Partitioned
variants of optimization methods are usually less efficient due to the more expensive matrix operations.
Therefore, we recommend preferring sparse variants ($HESF=’S’) to the partitioned ones ($HESF=’B’).

3.1 Heuristic methods

Heuristic (or comparative) methods are specified by the statement $CLASS=’HM’ and are generated from
the driver template U0FDU1. These methods should be used only for small-size problems (with 10 variables
at most). The main advantage of heuristic methods is that they do not require continuity of the objective
function.

The individual heuristic methods are specified by the macrovariable $TYPE:

$TYPE=’P’ - Pattern search method of Hooke and Jeeves [152].

$TYPE=’S’ - Simplex method of Nelder and Mead [270].

The default value is $TYPE=’P’.

3.2 Nonlinear conjugate gradient methods

Nonlinear conjugate gradient methods are specified by the statements $CLASS=’CD’ and $DECOMP=’C’
and are generated from the driver template U1FLU1. These methods use only few vectors and are very
efficient for large problems with computationally simple objective functions ($KCF=1 or $KCA=1). The
main advantage of conjugate gradient methods is that no matrices are used (implicitly $HESF=’N’). This
fact highly decreases storage requirements.

Two families of conjugate gradient methods are implemented in the UFO system:

$NUMBER=1 - Basic conjugate gradient methods described in [193].

$NUMBER=2 - Generalized conjugate gradient methods introduced in [176].

If $NUMBER=1, the individual methods and their modifications are specified by using the macrovari-
ables $MET, $MET1, $MET2, $MET3, $MET4, $MET5 and $MOS1.

Macrovariable $MET determines the type of conjugate gradient method:

$MET=0 - The steepest descent method is used.
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$MET=±1 - The Hestenes-Stiefel method [149] is used.

$MET=±2 - The Polak-Ribiere method [281] is used.

$MET=±3 - The Liu-Storey method [176] is used.

$MET=±4 - The Dai-Yuan method [71] is used.

$MET=±5 - The Fletcher-Reeves method [111] is used.

$MET=±6 - The conjugate descent method [107] is used.

$MET=±7 - The Perry version of Hestenes-Stiefel method [149] is used.

$MET=±8 - The Perry version of Polak-Ribiere method [281] is used.

$MET=±9 - The Perry version of Liu-Storey method [176] is used.

$MET=±10 - The Kou and Dai method [165] is used.

If $MET<0, the previous direction vector is used for the determination of conjugate direction parameters.
If $MET>0, the vector of variables difference is used in this case. The default value is $MET=1.

Macrovariable $MET1 specifies a modification of the conjugate gradient method.

$MET1=±1 - The standard CG method [67] (basic or combined) is used.

$MET1=±2 - The two term descent CG method [378] (basic or combined) is used.

$MET1=±3 - The improved CG method with scaled gradients [379] is used.

$MET1=±4 - The three term descent CG method [380] is used.

$MET1=±5 - The modified descent CG method [369] is used.

$MET1=±6 - The modified descent CG method with scaled gradients [369] is used.

$MET1=±7 - The modified three term descent CG method [376] is used.

$MET1=±8 - The Dai-Liao CG method [67] is used.

$MET1=±9 - The convex combination [358] of CG methods is used.

$MET1=±10 - The modified CG method [370] is used.

If $MET1>0, the CG method with a general parameter is used. If $MET1<0, the CG method with a
nonnegative parameter is used. The default value is $MET1=4 if |$MET|=1,2,3 and $MET1=3 otherwise.

Macrovariable $MET2 specifies some details concerning CG methods. If $MET1=1, $MET1=2, then
the basic CG or the combined CG methods are used for $MET2=1 or $MET2=2, respectively. If
$MET1=5, $MET1=6, $MET1=7, $MET1=8, then the general or the positive first terms are used for
$MET2=1 or $MET2=-1, respectively. If $MET1=9, then the general or the convex combinations of CG
methods are used for $MET2=1 or $MET2=-1, respectively.

Macrovariable $MET3 specifies a test on conjugacy or orthogonality described in [193].

$MET3=1 - The basic CG method is used.

$MET3=2 - A test on conjugacy is used.

$MET3=3 - A test on orthogonality is used.

The default value is $MET3=2 if |$MET|=4,5,6 and $MET3=1 otherwise.
Macrovariable $MET4 specifies the scaling parameter as described in [193].

$MET4=1 - No scaling is used.

$MET4=2 - The BFGS scaling in every iteration is used.

$MET4=3 - The DFP scaling in every iteration is used.

$MET4=4 - The Hoshino scaling in every iteration is used.

The default value is $MET4=1.
Macrovariable $MET5 specifies a nonquadratic correction.

$MET5=1 - No correction is used.

$MET5=2 - The backward Taylor expansion with 3 terms [317] is used.

$MET5=3 - The backward Taylor expansion with 4 terms [197] is used.

$MET5=4 - The value determined from the homogeneous model [197] is used.
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$MET5=5 - The Wei nonquadratic model [171] is used.

$MET5=6 - The Deng nonquadratic model [374] is used.

Choices $MET5=2, $MET5=3, $MET5=4 are possible only if $MET1=±8 (Dai-Liao). The default value
is $MET5=1.

Macrovariable $MOS1 specifies a periodic restart.

$MOS1=1 - Periodic restart after n iterations is used.

$MOS1=2 - Periodic restart after 2n iterations is used.

$MOS1=3 - Periodic restart after 12n iterations is used.

The default value is $MOS1=3.
If $NUMBER=2, then macrovariable $MET1 specifies the restart strategy as is described in [193].

$MET1=1 - The basic CG method is used.

$MET1=2 - The CG method with a positive parameter is used.

$MET1=3 - The CG method with a bounded positive parameter is used.

$MET1=4 - The CG method with a bounded positive parameter and the Storey restart is used.

$MET1=5 - The modified CG method with a bounded and restricted parameter is used.

$MET1=6 - The CG method with the Powell restart is used.

The default value is $MET1=4.
Possible specifications (type-decomposition-number) for the conjugate gradient methods in the uncon-

strained case are these:

L-C-1,
L-C-2.

The default value is L-C-1. Conjugate gradient methods can also be used for problems with sparse linear
constraints when $JACC=’S’.

3.3 Variable metric methods with limited memory based on vector recurrences

Variable metric methods with limited memory based on vector recurrences are specified by the statements
$CLASS=’CD’ and $DECOMP=’V’ and are generated from the driver template U1FLU1. These methods
use several small-size matrices which are updated in every iteration in such a way that their product
approximates the Hessian matrix as precisely as possible. Starting with the scaled unit matrix, every
iteration contains a small number of variable metric updates utilizing previous differences of gradients.
The number of these VM steps is specified by the macrovariable $MF. This fact highly decreases storage
requirements.

he following variable metric methods with limited memory based on the Strang recurrences [249],
corresponding to the choice $DECOMP=’V’, are implemented in the UFO system:

$NUMBER=1 - The BFGS method with limited memory described in [272]. The default number of
VM steps is $MF=5.

$NUMBER=2 - The extended BFGS method with limited memory described in [157]. The default
number of VM steps is $MF=3.

$NUMBER=3 - Modified methods with limited memory transformed to the BFGS form described
in [349] – a general version. The default number of VM steps is $MF=5.

$NUMBER=4 - Modified methods with limited memory transformed to the BFGS form described
in [349] – a simplified version. The default number of VM steps is $MF=5.

$NUMBER=5 - Modified methods with limited memory that utilize vectors from the previous iter-
ation described in [350]. The default number of VM steps is $MF=5.
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$NUMBER=6 - Modified methods with limited memory that construct conjugate directions de-
scribed in [351]. The default number of VM steps is $MF=5.

$NUMBER=7 - Modified methods with limited memory that use corrections described in [352]. The
default number of VM steps is $MF=5.

$NUMBER=8 - Block methods with limited memory described in [353]. The default number of VM
steps is $MF=5.

$NUMBER=9 - The BNS version of the BFGS method with limited memory described in [39]. The
default number of VM steps is $MF=5.

If $NUMBER=1, the limited memory method is realized by using various scaling techniques [175] specified
by the macrovariable $MET1.

$MET1=1 - The scaling is suppressed.

$MET1=2 - The scalar scaling is used.

$MET1=3 - The diagonal scaling is used.

$MET1=4 - The scalar and diagonal scalings are used simultaneously.

The default value is $MET1=2. If $NUMBER=2, only the scalar scaling is possible, which is specified by
the macrovariable $MET1.

$MET1=1 - The scaling is suppressed.

$MET1=2 - The scalar scaling is used.

The default value is $MET1=2. If $NUMBER>2, the scalar scaling is always used. If $NUMBER=7, the
macrovariable $MET3 specifies the number of corrections. The possible values are $MET3=1, $MET3=2,
$MET3=3, $MET3=4. The default value is $MET3=4.

Possible specifications (type-decomposition-number) for variable metric methods with limited memory
based on vector recurrences are these:

L-V-1,
L-V-2,
L-V-3,
L-V-4,
L-V-5,
L-V-6,
L-V-7,
L-V-8,
L-V-9.

The default choice is L-V-1. Variable metric methods with limited memory based on vector recurrences
can also be used for problems with sparse linear constraints when $JACC=’S’.

3.4 Variable metric methods with limited memory based on compact matrix representations

Variable metric methods with limited memory based on matrix representations are specified by the state-
ment $CLASS=’VL’ and are generated from the driver template U1FLU2. These methods use several
small-size matrices which are updated in every iteration in such a way that their product approximates
the Hessian matrix as precisely as possible. Starting with the scaled unit matrix, every iteration contains
a small number of variable metric updates utilizing previous differences of gradients. The number of these
VM steps is specified by the macrovariable $MF (the default value is $MF=5).

Individual variable metric methods are specified by using the macrovariables $MET, $MET1 and
$MET5. Macrovariable $MET determines the variable metric update.

$MET=1 - The BFGS update [29], [105], [127], [306] is used.
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$MET=2 - The DFP update [83], [110] is used.

$MET=3 - The Hoshino update [153] is used.

$MET=4 - The safeguarded rank-one update [190] is used.

$MET=5 - The optimally conditioned update [84] is used.

$MET=6 - The rank-one based update [190] from the perfect Broyden subclass is used.

$MET=7 - The variable metric update with the constant VM parameter [194] is used.

$MET=8 - The heuristic well conditioned update [197] is used.

The default value is $MET=1. If $MET=7, then the constant VM parameter is specified by the macrovari-
able $ETA3. The default value is $ETA3=1. If $MET=1 or $MET=4, then the explicit matrix repre-
sentation described in [39] is used. If $MET̸=1 and $MET ̸=4, then the recursive matrix representation
described in [239] is used.

Macrovariable $MET1 determines the scaling technique.

$MET1=1 - The scaling is suppressed.

$MET1=2 - The scalar scaling is used.

The default value is $MET1=2.
Macrovariable $MET5 determines a way of the method realization.

$MET5=1 - The realization that requires 6mn arithmetic operations is used.

$MET5=2 - The realization that requires 4mn arithmetic operations is used.

(these realizations differ by the sensitivity to round-off errors). The default value is $MET5=1.
Possible specifications (type-decomposition-number) for variable metric methods with limited memory

based on compact matrix representations are these:

L-I-1,
L-M-3.

The default choice is L-I-1.

3.5 Variable metric methods with limited memory based on shifted product-form updates

Variable metric methods with limited memory based on shifted product-form updates are specified by the
statement $CLASS=’VS’ and are generated from the driver template U1FLU4. The number of VM steps is
specified by the macrovariable $MF (the default value is $MF=10). Variable metric methods with limited
memory based on shifted product-form updates use a rectangular matrix containing $MF columns with
$NF elements which is updated in every iteration in such a way that the shifted product of this matrix
with its transposition approximates the Hessian matrix [344], [345], [346].

There are two types of shifted product-form updates which are distinguished by using the macrovariable
$UPDATE:

$UPDATE=’B’ - Basic shifted product-form updates [344].

$UPDATE=’V’ - Variationally derived shifted product-form updates [345].

Individual variable metric methods with limited memory based on shifted product-form updates are
specified by using the macrovariables $MET, $MET2, $MET3 and $MET5. If $UPDATE=’B’, macrovari-
able $MET determines the variable metric update.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.
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$MET=5 - The variationally derived method [194] from the preconvex part of the Broyden
family is used.

$MET=6 - The hybrid globally convergent update described in [344] is used.

The default value is $MET=1.
Macrovariable $MET2 determines the value of the correction parameter.

$MET2=1 - The unit value is used.

$MET2=2 - The balancing value equal to the previous shift quotient is used.

$MET2=3 - The value derived from the gradient differences is used.

$MET2=4 - The geometric mean of the previous values is used.

$MET2=5 - The geometric mean of the previous shift quotient and the ratio ζ/(ζ + σ) is used.

$MET2=6 - The ratio ζ/(ζ+σ) is used, where ζ and σ are the old and the new shift parameters.

$MET2=7 - The ratio
√
ζ/(
√
ζ +
√
σ) is used.

Macrovariable $MET3 determines the value of the shift parameter.

$MET3=0 - The shift parameter from the previous iteration is used.

$MET3=1 - The simple choice with the constant shift quotient is used.

$MET3=2 - The choice defined by a quadratic equation is used.

$MET3=3 - The heuristic choice with the shift quotient not greater than half is used.

$MET3=4 - The heuristic choice with the optimally conditioned first iteration (the first form) is
used.

$MET3=5 - The heuristic choice with the optimally conditioned first iteration (the second form)
is used.

$MET3=6 - The heuristic choice derived from the lowest eigenvalue of the updated matrix is
used.

The default value is $MET3=4.
If $UPDATE=’B’, macrovariable $MET5 determines the individual limited-memory method.

$MET5=1 - The rank-one limited memory method is used.

$MET5=2 - The simple rank-two limited memory method is used.

$MET5=3 - The rank-two limited memory method derived from the shifted Broyden class
(method SSBC in [346]) is used.

$MET5=4 - The rank-two limited memory method derived from the shifted Broyden class (based
on the minimization of the Frobenius norm) is used.

$MET5=5 - The rank-two limited memory method derived from the shifted Broyden class
(method DSBC in [346]) is used.

The default value is $MET5=3.
If $UPDATE=’V’, macrovariable $MET5 determines the variationally derived limited-memory method.

$MET5=1 - The rank-one limited memory method (method VAR1 in [345]) is used.

$MET5=2 - The simple rank-two limited memory method (method VAR2 in [345]) is used.

$MET5=3 - The general rank-two limited memory method with the constant Broyden parameter
η is used (for η = 1 it is the previous choice).

$MET5=4 - The general rank-two limited memory method with the Broyden parameter η derived
by the minimum principle is used.

$MET5=5 - The simple rank-two limited memory method with a special choice of matrices (the
first variant) is used.

$MET5=6 - The simple rank-two limited memory method with a special choice of matrices (the
second variant) is used.
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$MET5=7 - The simple rank-two limited memory method with a special choice of matrices (the
third variant) is used.

The default value is $MET5=3.
Possible specifications (type-decomposition-number) for variable metric methods with limited memory

based on shifted product-form updates are these:

L-I-1.

3.6 Variable metric methods with limited memory based on projected product-form updates

Variable metric methods with limited memory based on projected product-form updates are specified
by the statement $CLASS=’VP’ and are generated from the driver template U1FLU5. The number of
VM steps is specified by the macrovariable $MF (the default value is $MF=5). Variable metric methods
with limited memory based on projected product-form updates use either one or two rectangular matrices
containing $MF columns with $NF elements.

There are two types of projected product-form updates which are distinguished by using the macrovari-
able $UPDATE:

$UPDATE=’C’ - One rectangular matrix is used which is updated in every iteration in such a way that
the product of this matrix with its transposition satisfies the quasi-Newton condition.
This product is augmented by the scaled unit matrix and the resulting matrix is
corrected by using a limited number of the Strang recurrences [347].

$UPDATE=’P’ - Two rectangular matrices are used which are updated in every iteration in such a way
that the difference of products of these matrices with their transpositions augmented
by the scaled unit matrix satisfies the quasi-Newton condition [348].

If $UPDATE=’C’, individual variable metric methods with limited memory based on projected product-
form updates are specified by using the macrovariables $MET2, $MET3 and $MET5. Macrovariable
$MET2 determines a nonquadratic correction.

$MET2=±1 - The unit value is used.

$MET2=±2 - The Spedicato value [317] is used.

$MET2=±3 - The modified Spedicato value [197] is used.

$MET2=±4 - The value determined from the homogeneous model [197] is used.

$MET2=±5 - The value determined from the Bigs cubic model [15] is used.

If $MET2<0, the basic variable metric update is used. If $MET2>0, a modified variable metric update is
used. The default value is $MET2=1.

Macrovariable $MET3 determines a variable metric method used for a correction.

$MET3=1 - The variable metric correction with a constant Broyden parameter is used.

$MET3=2 - The variable metric correction with a variable Broyden parameter computed by a
special formula is used.

The default value is $MET3=1.
Macrovariable $MET5 determines the number of the Strang recurrences used in the correction phase.

This number has to be nonnegative. The default value is $MET5=2.
If $UPDATE=’P’, no additional specifications are used.
Possible specifications (type-decomposition-number) for variable metric methods with limited memory

based on projected product-form updates are these:

L-I-1.
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3.7 Variable metric methods with limited memory based on reduced Hessians

Variable metric methods with limited memory based on reduced Hessians are specified by the statement
$CLASS=’VR’ and are generated from the driver template U1FLU3. The number of VM steps is specified
by the macrovariable $MF (the default value is $MF=10). Variable metric methods with limited memory
based on reduced Hessians use a small-size matrix which is updated in every iteration in such a way that
it approximates the reduced Hessian matrix as precisely as possible [121].

There are two families of variable metric methods with limited memory based on reduced Hessians
implemented in the UFO system:

$NUMBER=1 - Basic variable metric methods with limited memory based on reduced Hessians
described in [121].

$NUMBER=2 - Variable metric methods with limited memory based on reduced Hessians and or-
thogonal transformations described in [344].

Individual variable metric methods with limited memory based on reduced Hessians are specified by
using the macrovariables $MET, $MET1, $MET2, $MET3, $MET4 and $MET5. Macrovariable $MET
determines the variable metric update.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

$MET=5 - The optimally conditioned method [84] is used.

$MET=6 - The rank-one based method [190] from the perfect Broyden subclass is used.

$MET=7 - The variationally derived method [194] from the perfect Broyden subclass is used.

$MET=8 - The heuristic method [197] is used.

$MET=9 - The method [381] derived from the matrix decomposition is used.

$MET=10 - The method [382] which minimizes the angle between the direction vector and the
negative gradient is used.

The default value is $MET=1.
Macrovariable $MET1 determines the Oren (scaling) parameter [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3.
Macrovariable $MET2 determines the value of the Biggs (nonquadratic model) parameter [14].

$MET2=±1 - The unit value is used.

$MET2=±2 - The Spedicato value [317] is used.

$MET2=±3 - The modified Spedicato value [197] is used.

$MET2=±4 - The value determined from the homogeneous model [197] is used.

$MET2=±5 - The value determined from the Biggs cubic model [15] is used.

Moreover, if $MET2>0, the basic update is used and if $MET2<0, the modified update [291] is used. The
default value is $MET2=2.

Macrovariable $MET3 determines the Powell correction [288].

$MET3=1 - The Powell correction is suppressed (the strong update elimination).

$MET3=2 - The Powell correction is suppressed (the weak update elimination).

58



$MET3=3 - The Powell correction is applied.

The default value is $MET3=1.
Macrovariable $MET4 specifies a rule for the determination of the scaling parameter [219].

$MET4=1 - The BFGS scaling is used.

$MET4=2 - The DFP scaling is used.

$MET4=3 - The geometric mean is used.

$MET4=4 - The harmonic mean is used.

$MET4=5 - The arithmetic mean is used.

The default value depends on the value of macrovariable $MET (values $MET4=1 or $MET4=3 are most
frequently used).

Macrovariable $MET5 specifies a type of scaling.

$MET5=1 - The standard scaling is used.

$MET5=2 - The simplified scaling is used.

The default value is $MET5=1.
Possible specifications (type-decomposition-number) for variable metric methods with limited memory

based on reduced Hessians are these:

L-R-1 L-I-1,
L-R-2 L-I-2.

The default choice is L-R-1.

3.8 Variable metric methods

Variable metric methods are specified by the statement $CLASS=’VM’. These methods use approximations
of the Hessian matrix or its inverse, which are updated by rank-one or rank-two correction matrices.
Variable metric methods are realized in three different forms for $HESF=’D’, $HESF=’S’ and $HESF=’B’
depending on the Hessian matrix specification. Although the variable metric methods can be realized as
trust region methods ($TYPE=’G’) or cubic regularization methods ($TYPE=’R’) it is more advantageous
to realize them as line search methods ($TYPE=’L’).

3.8.1 Variable metric methods for problems with dense Hessian matrices

Variable metric methods for problems with dense Hessian matrices are generated from the driver template
U1FDU1 if $CLASS=’VM’ and $HESF=’D’. These methods are the most efficient tools for solving small or
medium size unconstrained or linearly constrained problems. Variable metric methods for dense problems
use a symmetric positive definite matrix which is updated in every iteration in such a way that it approx-
imates the Hessian matrix of the objective function or its inverse as precisely as possible. There are five
families of variable metric methods for dense problems which are distinguished by using the macrovariable
$UPDATE:

$UPDATE=’B’ - The Broyden family [29]. Variable metric methods from this family are the most
commonly used ones since they are very robust and efficient.

$UPDATE=’D’ - The Broyden family with Davidon projections [84]. Variable metric methods from
this family are similar to the previous ones. The only difference is that projections into
the new subspace are computed. This guarantees the quadratic termination property
even in the case of an imperfect line search.

$UPDATE=’L’ - The Davidon family described in [178]. Here the Davidon projections are replaced
by a special one-parameter update, where the parameter is chosen in such a way to
guarantee the positive definiteness of the updated matrix.
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$UPDATE=’M’ - The Broyden family of multistep updates described in [113]. Here the argument and
gradient differences are combined with previous ones by using special interpolation
techniques.

$UPDATE=’S’ - The shifted Broyden family [344]. Variable metric methods from this family are
efficient without scaling strategies.

If $DECOMP=’M’ or $DECOMP=’P’ , only the choice $UPDATE=’B’ is possible. If $DECOMP=’I’,
choices $UPDATE=’B’, $UPDATE=’M’, $UPDATE=’S’ are possible. In the remaining cases, choices
$UPDATE=’B’, $UPDATE=’D’, $UPDATE=’L’ are possible. The default value is $UPDATE=’B’.

Individual variable metric methods are specified by using macrovariables $MET, $MET1, $MET2
$MET3 and $MET4. Macrovariable $MET determines the following variable metric updates.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

$MET=5 - The optimally conditioned method [84] is used.

$MET=6 - The rank-one based method [190] from the perfect Broyden subclass is used.

$MET=7 - The special variationally derived method [194] from the perfect Broyden subclass is
used.

$MET=8 - The heuristic well conditioned method [197] is used.

$MET=9 - The method [381] derived from the matrix decomposition is used.

$MET=10 - The method [382] which minimizes the angle between the direction vector and the
negative gradient is used.

$MET=11 - The method [197] which minimizes the norm of the direction vector is used.

$MET=12 - The least prior deviation method [254] is used.

$MET=13 - The general variationally derived method [194] from the perfect Broyden subclass
is used.

$MET=14 - The determinant preserving method [178] is used.

$MET=15 - The Oren and Spedicato method [278] is used.

The default value is $MET=1. If $DECOMP=’M’, only values $MET=1,2,3,4 can be used. If $DE-
COMP=’P’, only value $MET=1 can be used. If $UPDATE=’M’, only values $MET=1,2,3,4,5,6,7,8
can be used. If $UPDATE=’L’ or $UPDATE=’S’, only values $MET=1,2,3,4,5,6 can be used (if $UP-
DATE=’S’, the choice $MET=6 corresponds to the hybrid globally convergent update described in [344]).

Macrovariable $MET1 determines the scaling parameter [277].

$MET1=±1 - No scaling is used.

$MET1=±2 - The initial scaling [310] is used.

$MET1=±3 - The controlled scaling [194] is used.

$MET1=±4 - The interval scaling [221] is used.

$MET1=±5 - The scaling in each iteration is used.

If $MET1>0, the basic initial scaling is used. If $MET1<0, the modified initial scaling is used. The
default value is $MET1=4.

If $UPDATE=’B’ or $UPDATE=’D’ or $UPDATE=’S’, macrovariable $MET2 determines the param-
eter of the nonquadratic correction model [14].

$MET2=±1 - The unit value is used.

$MET2=±2 - The backward Taylor expansion with 3 terms [317] is used.

$MET2=±3 - The backward Taylor expansion with 4 terms [197] is used.

$MET2=±4 - The value determined from the homogeneous model [197] is used.

$MET2=±5 - The modified quasi-Newton condition with 3 terms [375] is used.

$MET2=±6 - The modified quasi-Newton condition with 4 terms [374] is used.
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$MET2=±7 - The inverse spectral scaling [46] is used.

If $MET2>0, the basic update is used. If $MET2<0, the modified update [291] is used. The default value
is $MET2=4. If $UPDATE=’D’ or $UPDATE=’S’, only values $MET2=1,2,3,4 can be used.

If $UPDATE=’M’, macrovariable $MET2 determines the multistep interpolation model [113].

$MET2=0 - The standard one-step quasi-Newton condition is used.

$MET2=1 - The double step equidistant model is used.

$MET2=2 - The double step accumulative model is used.

$MET2=3 - The first double step fixed-point model is used.

$MET2=4 - The second double step fixed-point model is used.

The default value is $MET2=4.
If $UPDATE=’B’, macrovariable $MET3 determines the Powell correction [288].

$MET3=1 - The Powell correction is suppressed (the strong update elimination).

$MET3=2 - The Powell correction is suppressed (the weak update elimination).

$MET3=3 - The Powell correction is applied.

The default value is $MET3=1.
If $UPDATE=’L’, macrovariable $MET3 determines the condition for the Davidon vector selection

[178].

$MET3=1 - The conjugacy condition is used.

$MET3=2 - The quasi-Newton condition is used.

The default value is $MET3=1.
If $UPDATE=’S’, macrovariable $MET3 determines the value of the shift parameter [344].

$MET3=0 - The parameter from the previous iteration is used.

$MET3=1 - A simple choice with the constant relative parameter is used.

$MET3=2 - A choice defined by a quadratic equation is used.

$MET3=3 - A heuristic choice with the relative parameter not greater than half is used.

$MET3=4 - A heuristic choice with the optimally conditioned first iteration (the first formula)
is used.

$MET3=5 - A heuristic choice with the optimally conditioned first iteration (the second formula)
is used.

$MET3=6 - A heuristic choice derived from the lowest eigenvalue is used.

The default value is $MET3=4.
Macrovariable $MET4 specifies a rule for the determination of the scaling parameter [219].

$MET4=0 - The optimum scaling parameter is used.

$MET4=1 - The BFGS scaling parameter is used.

$MET4=2 - The DFP scaling parameter is used.

$MET4=3 - The geometric mean of the BFGS and DFP parameters is used.

$MET4=4 - The harmonic mean of the BFGS and DFP parameters is used.

$MET4=5 - The arithmetic mean of the BFGS and DFP parameters [84] is used.

The default value depends on the value of macrovariable $MET (values $MET4=1 or $MET4=3 are most
frequently used).

Possible specifications (type-decomposition-number) for dense variable metric methods in the uncon-
strained case are these:
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L-G-1, L-S-1, L-B-1, L-I-1, L-P-1, L-M-1,
L-M-3,

G-G-1, G-S-1, G-B-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-6,
G-M-7.

The default choice is L-I-1. In both the box constrained and the linearly constrained cases we cannot use
specifications with $DECOMP=’B’.

3.8.2 Variable metric methods for problems with sparse or partitioned Hessian matrices

Variable metric methods for problems with sparse Hessian matrices are generated from the driver template
U1FSU1 if $CLASS=’VM’ and $HESF=’S’. In this case, the sparse Hessian matrix has a general pattern
specified by arrays IH, JH (see Section 2.3), which is preserved by sparse variable metric updates. If
$DECOMP=’M’, the types of sparse variable metric updates are specified by using the macrovariable
$UPTYPE:

$UPTYPE=’B’ - The basic variable metric updates derived from variational principles [322].

$UPTYPE=’F’ - The fractioned variable metric updates introduced in [337], which combine the vari-
able metric and the Newton approaches. Fractioned updates can only be used in the
unconstrained case.

The default value is $UPTYPE=’B’. The individual sparse variable metric updates (or families) are spec-
ified by using the macrovariable $UPDATE:

$UPDATE=’M’ - The Marwil projection update [248] is considered.

$UPDATE=’T’ - The Toint projection update (the best method given in [330]) is considered.

$UPDATE=’B’ - The partitioned variable metric updates from the Broyden family [134]. These
updates can only be used if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’.

The default value is $UPDATE=’B’ in case $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’ and
$UPDATE=’M’ otherwise.

If $UPTYPE=’B’ and either $UPDATE=’M’ or $UPDATE=’T’, the sparse updates are applied on
various sparsity patterns. These patterns are specified by using the macrovariable $CHORDAL:

$CHORDAL=’N’ - The sparse updates are applied on the input Hessian pattern.

$CHORDAL=’Y’ - The sparse updates are applied on an extended Hessian pattern which corresponds
to a chordal graph.

The default value is $CHORDAL=’N’. The choice $CHORDAL=’Y’ is ignored (replaced by $CHORDAL=’N’)
if $UPTYPE=’F’ or $UPDATE=’B’.

If $UPDATE=’B’, the particular update is specified by using the macrovariable $MET.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.
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If $DECOMP=’G’, less efficient sparse product form updates from the Broyden family are used. In
this case, the particular update is specified by using the macrovariable $MET as in the previous case. The
default value is $MET=1.

Possible specifications (type-decomposition-number) for sparse variable metric methods in the uncon-
strained case are these:

L-G-1, L-M-1,
L-M-3,

G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-6,
G-M-7,
G-M-8,
G-M-9.

The default choice is L-M-3. In the box constrained case, only the choice $DECOMP=’M’ is permitted.
Variable metric methods for problems with partitioned Hessian matrices are generated from the driver

template U1FBU1 if $CLASS=’VM’ and $HESF=’B’. This choice is permitted only if $MODEL=’AF’ or
$MODEL=’AQ’ or $MODEL=’AP’. In this case, the Hessian matrix has a partitioned pattern specified by
arrays IAG, JAG (see Section 2.6). Only the partitioned variable metric updates, specified by the choice
$UPDATE=’B’, can be used. These updates are the same as in case the Hessian matrix is sparse with a
general pattern, but the use of a partitioned pattern for the direction determination is usually less efficient
due to more expensive matrix operations.

Possible specifications (type-decomposition-number) for partitioned variable metric methods in the
unconstrained case are these:

L-M-3,
G-M-3.

The default choice is L-M-3.

3.9 Modified Newton methods

Modified Newton methods are specified by the statement $CLASS=’MN’. These methods use the Hessian
matrix of the objective function which is computed either analytically from given explicit formulas or au-
tomatically using automatic differentiation technique or numerically using gradient differences. The UFO
system performs automatic differentiation (if $IADS=2) or numerical differentiation (if $IADS<2) auto-
matically whenever the macrovariable $HMODELF (or $FGHMODELF) is not defined. Modified Newton
methods are realized in three different forms for $HESF=’D’, $HESF=’S’ and $HESF=’B’ depending on
the Hessian matrix specification. Although the modified Newton methods can be realized as line search
methods ($TYPE=’L’), it is more advantageous to realize them as trust region methods ($TYPE=’G’) or
cubic regularization methods ($TYPE=’R’).

3.9.1 Modified Newton methods for problems with dense Hessian matrices

Modified Newton methods for problems with dense Hessian matrices are generated from the driver tem-
plate U2FDU1 if $CLASS=’MN’ and $HESF=’D’. In this case, we have to compute n(n + 1)/2 second
derivatives. Symmetric Hessian matrix is stored in the packed form containing n(n+1)/2 elements. Possi-
ble specifications (type-decomposition-number) for dense modified Newton methods in the unconstrained
case are these:
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L-G-1, L-S-1, L-B-1, L-M-1,
L-G-2, L-S-2, L-B-2, L-M-2,

L-M-3,
G-G-1, G-S-1, G-B-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-6,
G-M-7,
R-M-7.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot
use specifications with $DECOMP=’S’ and $DECOMP=’B’.

3.9.2 Modified Newton methods for problems with sparse or partitioned Hessian matrices

Modified Newton methods for problems with sparse Hessian matrices are generated from the driver tem-
plate U2FSU1 if $CLASS=’MN’ and $HESF=’S’. In this case, the sparse Hessian matrix has a general
pattern specified by arrays IH, JH (see Section 2.3). If $MODEL=’FF’, only the structurally nonzero sec-
ond derivatives are given analytically by using the prescribed pattern. The numerical computation of the
second derivatives is based on the fact that a substantially lower number of differences is used in compar-
ison with the dense case. The determination of suitable differences is a combinatorial problem equivalent
to a graph coloring problem [50], [49]. If $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’, arrays
IH, JH, HF, are determined from arrays IAG, JAG. If the second derivatives are not given analytically,
there are two possibilities distinguished by using the macrovariable $NUMDER:

$NUMDER=1 - Second derivatives of individual approximating functions are computed.

$NUMDER=2 - The graph coloring problem [50], [49] (as in case $MODEL=’FF’) is solved.

The default value is $NUMDER=1. If $NUMDER=1. Only the nonzero second derivatives of the approx-
imating functions are given analytically by using the prescribed pattern. The numerical computation of
the second derivatives is based on the fact that the approximating functions depend on a small number of
variables so that the number of differences is substantially lower in comparison to the dense case.

If $MODEL=’AQ’ (sum of squares), the combination [200] of both the modified Newton and the
modified Gauss-Newton methods can be used. This choice is possible by using the macrovariable $MET.

$MET=1 - The modified Newton method is used.

$MET=2 - The combined method is used.

The default value is $MET=2.
Possible specifications (type-decomposition-number) for sparse modified Newton methods in the un-

constrained case are these:
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L-G-1, L-M-1,
L-M-3,

G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-6,
G-M-7,
G-M-8,
G-M-9,
R-M-7.

The default choice is G-M-3. In the box constrained case, only the choice $DECOMP=’M’ is permitted.
Modified Newton methods for problems with partitioned Hessian matrices are generated from the driver

template U2FBU1 if $CLASS=’MN’ and $HESF=’B’. This choice is permitted only if $MODEL=’AF’ or
$MODEL=’AQ’ or $MODEL=’AP’. In this case, the Hessian matrix has a partitioned pattern specified
by arrays IAG, JAG (see Section 2.6). A computation of the second derivatives is the same as in case the
Hessian matrix is sparse with a general pattern and $NUMDER=1, but the use of a partitioned pattern
for the direction determination is usually less efficient due to more expensive matrix operations.

If $MODEL=’AQ’ (sum of squares), the combination of both the modified Newton and the modified
Gauss-Newton methods can be used. This choice is possible by using the macrovariable $MET in the same
way as in case $HESF=’S’. Possible specifications (type-decomposition-number) for partitioned modified
Newton methods in the unconstrained case are these:

L-M-3,
G-M-3.

The default choice is G-M-3.

3.10 Truncated Newton methods

Truncated Newton methods are specified by the statement $CLASS=’TN’ and are generated from the
driver template U1FSU2. These methods differ from modified Newton methods in that the directional
derivatives are determined by the numerical differentiation instead of the sparse Hessian matrix multi-
plication. Truncated Newton methods are very efficient for large problems with computationally simple
objective functions ($KCF=1 or $KCA=1). The main advantage of truncated Newton methods is that no
matrices are used (implicitly $HESF=’N’). This fact highly decreases storage requirements.

The precision control strategy for inexact solution is specified by the macrovariable $MOS.

$MOS=1 - The simple strategy is used for precision control.

$MOS=2 - The geometric decreasing strategy is used for precision control.

$MOS=3 - The harmonic decreasing strategy is used for precision control.

The default value is $MOS=3. The preconditioning technique is specified by the macrovariable $MOS2.

$MOS2=0 - Preconditioning is not used.

$MOS2=1 - Preconditioning by the limited-memory variable metric methods based on vector
recurrences is used.

$MOS2=2 - Preconditioning by the limited-memory variable metric methods based on compact
matrix representations is used.

$MOS2=3 - Preconditioning by diagonal matrices is used.

$MOS2=4 - Preconditioning by tridiagonal matrices is used.

$MOS2=5 - Preconditioning by pentadiagonal matrices is used.
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$MOS2=6 - Preconditioning by the Lanczos method is used.

The default value is $MOS2=0.
If $MOS2=1, then macrovariable $MOS3 specifies the limited-memory variable metric update.

$MOS3=1 - The BFGS update [272] is used.

$MOS3=2 - The update described in [157] is used.

$MOS3=3 - The modified BFGS update that utilizes vectors from the previous iteration [350] is
used.

$MOS3=4 - The modified BFGS update that constructs conjugate directions is used.

The default value is $MOS3=1.
If $MOS2=2, then macrovariable $MOS3 specifies the matrix representation of the BFGS update.

$MOS3=1 - The explicit matrix representation [39] is used.

$MOS3=2 - The recursive matrix representation [239] is used.

The default value is $MOS3=1.
If $MOS2=3 or $MOS2=4 or $MOS2=5, then the preconditioning technique can be determined using

macrovariables $MOS1, $MOS3, $MOS4 and $MOS5. The macrovariable $MOS1 specifies the number of
unpreconditioned iterations.

$MOS1=0 - The preconditioning is used in all iterations.

$MOS1>1 - The preconditioning is not used in the first $MOS1 iterations, see [240].

The default value is $MOS1=0. The macrovariable $MOS3 specifies the method for obtaining the band
preconditioner.

$MOS3=1 - The band preconditioner is obtained by the numerical differentiation, see [217].

$MOS3=2 - The band preconditioner is obtained by the BFGS method equivalent to the pre-
conditioned conjugate gradient method, see [217] and [262].

The default value is $MOS3=1. If $MOS3=2, then the macrovariable $MET3 specifies the maximum
number of the BFGS updates (if $MET3=0, then this number is infinity). The default value is $MET3=0.
If $MOS2=6, then the macrovariable $MOS3 gives the maximum number of the Lanczos steps (the order
of the Lanczos tridiagonal matrix). The default value is $MOS3=5. The macrovariable $MOS4 specifies
the rejecting the band preconditioner after the Gill-Murray [123] decomposition.

$MOS4=0 - Preconditioning in both the ill-conditioned and the indefinite cases is suppressed.

$MOS4=1 - Preconditioning in the ill-conditioned case is suppressed.

$MOS4=2 - Preconditioning is always used.

The default value is $MOS4=0.
The macrovariable $MOS5 specifies the correction of the band preconditioner. If $MOS2=3, then the

following choices are possible.

$MOS5=0 - Correction is not used.

$MOS5=1 - The diagonal elements are replaced by their absolute values.

$MOS5=2 - The diagonal elements are replaced by their absolute values. These new values are
increased if necessary.

The default value is $MOS5=2. If $MOS2=4 and $MOS3=1 or $MOS2=5 and $MOS3=1, then the
following choices are possible.

$MOS5=0 - Correction is not used.

$MOS5=1 - The diagonal elements are replaced by their absolute values.
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$MOS5=2 - The diagonal elements are replaced by their absolute values. These new values are
increased if necessary.

$MOS5=3 - The diagonal elements are replaced by their absolute values and the off-diagonal
elements are corrected to ensure positive definiteness.

The default value is $MOS5=2. If $MOS2=4 or $MOS2=5 and $MOS3=2, then the following choices are
possible.

$MOS5=0 - Correction is not used.

$MOS5=1 - The off-diagonal elements are decreased to ensure positive definiteness.

$MOS5=2 - The off-diagonal elements are adaptively decreased to ensure positive definiteness.

$MOS5=3 - The off-diagonal elements are corrected to ensure positive definiteness.

The default value is $MOS5=3. If $MOS2=6, then the following choices are possible.

$MOS5=1 - Preconditionong in the current iteration is used.

$MOS5=2 - Preconditionong in the next iteration is used.

The default value is $MOS5=1.
Possible specifications (type-decomposition-number) for truncated Newton methods are these:

L-M-3,
G-M-3.

The default choice is G-M-3. Note that choices G-M-4 and G-M-5 are also permitted, but no precondi-
tioning can be used in these cases.

3.11 Modified Gauss-Newton methods for nonlinear least squares problems

Modified Gauss-Newton methods, specified by the statement $CLASS=’GN’, are special optimization
methods for solving nonlinear least squares ($MODEL=’AQ’) or nonlinear least powers ($MODEL=’AP’)
problems and can be used also for solving systems of nonlinear equations ($MODEL=’NE’). These methods
are based on the fact that the first term in the Hessian matrix expression, the so-called normal equation
matrix, depending on the first derivatives of the approximating functions only, is a good approximation
of the whole Hessian matrix. The second term in the Hessian matrix expression can be approximated
by using variable metric updates. Modified Gauss-Newton methods are realized in five different forms
(for $HESF=’D’, $HESF=’S’, $HESF=’B’, $HESF=’N’ with $JACA=’D’, $HESF=’N’ with $JACA=’S’)
depending on the Hessian matrix specification or the Jacobian matrix specification. Although the modified
Gauss-Newton methods can be realized as the line search methods ($TYPE=’L’), it is more advantageous to
realize them as the trust region methods ($TYPE=’G’). If the Hessian matrix is not specified ($HESF=’N’),
the normal equation matrix is not used. The Jacobian matrix, defining a linear least squares problem, is
utilized in each iteration instead. Such so-called normal equation free Gauss-Newton methods are realized
in two different forms (for $JACA=’D’ and $JACA=’S’) depending on the Jacobian matrix specification.

3.11.1 Modified Gauss-Newton methods for problems with dense Hessian matrices

Modified Gauss-Newton methods for problems with dense Hessian matrices are generated from the driver
template U2SDU1 if $CLASS=’GN’ and $HESF=’D’. In this case, the normal equation matrix is also
dense and we can use hybrid methods with dense updates:

$UPDATE=’N’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).

$UPDATE=’B’ - The variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [200].
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$UPDATE=’F’ - The Fletcher hybrid approach [1], [112] is used. The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained by using the variable
metric updates. The decision between the two cases is based on the rate of the
function value decrease and on the normal equation matrix conditioning.

$UPDATE=’S’ - The Dennis structured approach [90] is used. The second part of the Hessian matrix
is approximated by using modified variable metric updates. This part is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method
are satisfied.

The default value is $UPDATE=’N’.
Individual variable metric updates from the above families are specified by using the macrovariable

$MET.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The original (unsafeguarded) rank-one method is used.

The value $MET=4 is allowed only if $UPDATE=’S’ and is the default in this case. The value $MET=1
is the default in the other cases.

If $UPDATE=’B’ or $UPDATE=’S’, macrovariable $MET1 determines the scaling parameter [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=5 (values $MET1=3 and $MET1=4 cannot be used if $UPDATE=’S’).
If $UPDATE=’B’, macrovariable $MET2 determines the parameter of the nonquadratic correction

model [14].

$MET2=1 - The unit value is used.

$MET2=2 - The backward Taylor expansion with 3 terms [317] is used.

The default value is $MET2=1.
If $UPDATE=’S’, macrovariable $MET2 determines the type of scaling.

$MET2=1 - The standard scaling is used.

$MET2=2 - The Biggs scaling [15] is used.

The default value is $MET2=1.
If $UPDATE=’S’, macrovariable $MET3 determines the realization of the hybrid method.

$MET3=1 - The standard realization is used.

$MET3=2 - The Huschens realization [155] is used.

The default value is $MET3=1.
If $UPDATE=’S’, macrovariable $MET4 determines the quasi-Newton condition.

$MET4=1 - The standard quasi-Newton condition is used.

$MET4=2 - The quasi-Newton condition with intermediate gradients [91] is used.

The default value is $MET4=1.
If $UPDATE=’B’ or $UPDATE=’F’, the variable metric updates can be realized either as simple

updates (normal equation matrix is updated) or as cumulative updates (previous approximation of the
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Hessian matrix is updated), as described in [200]. A decision between these possibilities is mediated by
the macrovariable $MET5.

$MET5=1 - The simple update is used.

$MET5=2 - The cumulative update is used.

The default values are $MET5=2 if $UPDATE=’B’ and $MET5=1 if $UPDATE=’F’.
In the dense case, the modified Gauss-Newton methods can be realized with additional special matrix

decomposition which cannot be used in other cases. If $DECOMP=’R’, the recursive QR decomposition
[281] is used with an additional correction of the upper triangular matrix R. Possible specifications (type-
decomposition-number) for dense modified Gauss-Newton methods in the unconstrained case are these:

L-G-1, L-S-1, L-B-1, L-R-1, L-M-1,
L-M-3,

G-G-1, G-S-1, G-B-1, G-R-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-R-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-6,
G-M-7,

T-G-1, T-S-1, T-R-1, T-M-1,
T-G-2,

T-S-7, T-M-7,
R-M-7,
M-M-1.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot
use specifications $DECOMP=’S’ and $DECOMP=’R’. If $DECOMP=’S’, then variable metric updates
cannot be used ($UPDATE=’N’). The specification $UPDATE=’S’ can only be used if $DECOMP=’M’.

3.11.2 Modified Gauss-Newton methods for problems with sparse and partitioned Hessian matrices

Modified Gauss-Newton methods for problems with sparse Hessian matrices are generated from the driver
template U2SSU1 if $CLASS=’GN’ and $HESF=’S’. In this case, the normal equation matrix is sparse
with a general pattern specified by arrays IH, JH (see Section 2.3). We can use hybrid methods with the
following sparse or partitioned updates:

$UPDATE=’N’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).

$UPDATE=’M’ - The sparse update based on the Marwil projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [200].

$UPDATE=’B’ - The variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [200].

$UPDATE=’D’ - The Brown-Dennis structured approach [30] is used. The Hessian matrices of approx-
imating functions are approximated by using variable metric updates. These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method
are satisfied.
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$UPDATE=’S’ - The Dennis structured approach [90] is used. The second part of the Hessian matrix
is approximated by using modified variable metric updates. This part is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method
are satisfied.

The default value is $UPDATE=’M’.
Individual variable metric updates from the above families are specified by using the macrovariable

$MET as in the dense case. The default value is $MET=4. The macrovariable $MET is not utilized if
$UPDATE=’M’.

Variable metric updates ($UPDATE=’M’ or $UPDATE=’B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian ma-
trix is updated). A decision between these possibilities is mediated by the macrovariable $MET5 similarly
as in the dense case. The default value is $MET5=2 if $UPDATE=’M’ and $MET5=1 if $UPDATE=’B’

If $UPDATE=’D’, we can use several switches for utilizing variable metric updates specified by the
macrovariable $MET3.

$MET3=0 - The Fletcher and Xu switch [112] is used.

$MET3=1 - The modification of the Fletcher and Xu switch is used.

$MET3=2 - The Dennis and Welsch switch [95] is used.

$MET3=3 - The Ramsin and Wedin switch [296] is used.

The default value is $MET3=0.
Possible specifications (type-decomposition-number) for sparse modified Gauss-Newton methods in the

unconstrained case are these:

L-G-1, L-M-1,
L-M-3,

G-G-1, G-M-1,
G-G-2, G-M-2,

G-M-3,
G-M-4,
G-M-5,
G-M-6,
G-M-7,
G-M-8,

T-G-1, T-M-1,
T-M-7,
R-M-7,
M-M-1.

The default choice is G-M-3. In the box constrained case, only the choice $DECOMP=’M’ is permitted.
Modified Gauss-Newton methods for problems with partitioned Hessian matrices are generated from

the driver template U2SBU1 if $CLASS=’GN’ and $HESF=’B’. In this case, the normal equation matrix
has a partitioned pattern specified by arrays IAG, JAG (see Section 2.6). We can use hybrid methods
with partitioned updates $UPDATE=’N’, $UPDATE=’B’, $UPDATE=’D’, $UPDATE=’S’ whose details
are explained in Section 3.11.2. Note that the use of a partitioned pattern for the direction determination
is usually less efficient due to more expensive matrix operations.

Possible specifications (type-decomposition-number) for partitioned modified Gauss-Newton methods
are these:

L-M-3,
G-M-3.

The default choice is G-M-3.
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3.11.3 Modified Gauss-Newton methods for problems with dense Jacobian matrices

Modified Gauss-Newton methods for problems with dense Jacobian matrices are generated from the driver
template U1SDU1 if $CLASS=’GN’, $HESF=’N’ and $JACA=’D’. In this case, we can use hybrid methods
with dense rectangular updates:

$UPDATE=’N’ - No update is used. The method utilizes the rectangular Jacobian matrix.

$UPDATE=’L’ - The special variable metric update [242] is applied either to the Jacobian matrix
or to the rectangular factor of the previous approximation of the Hessian matrix if
conditions for leaving the Gauss-Newton method are satisfied [200].

$UPDATE=’S’ - The Shen and Zhou structured partitioned update [312] is used if conditions for
leaving the Gauss-Newton method are satisfied.

The default value is $UPDATE=’S’.
If $UPDATE=’L’, the variable metric update can be realized either as a simple update (Jacobian

matrix is updated) or as a cumulative update (the rectangular factor of the previous approximation of
the Hessian matrix is updated). A decision between these possibilities is mediated by the macrovariable
$MET5.

$MET5=1 - The simple update is used.

$MET5=2 - The cumulative update is used.

The default value is $MET5=2.
If $UPDATE=’S’, the particular realization of the variable metric update can be specified by macrovari-

ables $MET2, $MET3, $MET4 as in Section 3.11.1 (when $UPDATE=’S’).
The Jacobian matrix can be stored either rowwise ($JASA=’R’) or columnwise ($JASA=’C’). The

default values are $JASA=’C’ if $DECOMP=’A’ or $DECOMP=’Q’ and $JASA=’R’ if $DECOMP=’E’.
The specification $JASA=’C’ cannot be used for problems with linear approximating functions if $NAL>0.

Possible specifications (type-decomposition-number) for dense, normal equation free, Gauss-Newton
methods are these:

L-Q-1, L-A-1, L-E-1,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-Q-1, G-A-1, G-E-1,
G-Q-2, G-E-2,

G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $DECOMP=’E’ can only be used if NA=NF (system of nonlinear equations).

3.11.4 Modified Gauss-Newton methods for problems with sparse Jacobian matrices

Modified Gauss-Newton methods for problems with sparse Jacobian matrices are generated from the driver
template U1SSU1 if $CLASS=’GN’, $HESF=’N’ and $JACA=’S’. In this case, we can use hybrid methods
with simple variable metric updates:

$UPDATE=’N’ - No update is used. The method utilizes the original Jacobian matrix.

$UPDATE=’V’ - The simple factorized BFGS update [200] is used. The second order information is
approximated by the unsymmetric rank-one update of the Jacobian matrix.
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$UPDATE=’R’ - The simple factorized rank-one update [200] is used. The second order information
is approximated by adding a special dense row to the Jacobian matrix.

The default value is $UPDATE=’N’.
If $UPDATE=’R’, we can use several switches for utilizing variable metric updates, specified by the

macrovariable $MET3 as in Section 3.11.2 (when $UPDATE=’D’). The default value is $MET3=0.
The main advantage of sparse, normal equation free, Gauss-Newton methods consists in the fact that

the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row. If this
is the case, then the classical Gauss-Newton methods cannot be used. On the other hand, the normal
equation matrix often has a lower number of nonzero elements than the Jacobian matrix. Consequently,
the classical Gauss-Newton methods are more efficient in this case.

Possible specifications (type-decomposition-number) for sparse, normal equation free, Gauss-Newton
methods are these:

L-A-1, L-E-1,
L-A-2,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-A-1, G-E-1,
G-A-2, G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $DECOMP=’E’ can only be used if NA=NF (system of nonlinear equations). The choice
L-E-1 differs from the choice L-E-2. The latter corresponds to the incomplete LU decomposition.

3.12 Quasi-Newton methods for systems of nonlinear equations

Quasi-Newton methods, specified by the statement $CLASS=’QN’, are special methods for solving sys-
tems of nonlinear equations ($MODEL=’NE’) which can be also used for minimizing the sum of squares
($MODEL=’AQ’). These methods use a rectangular matrix which is updated in every iteration in such
a way that it approximates the Jacobian matrix as precisely as possible. In the UFO system, the quasi-
Newton methods are realized in two different forms (for $JACA=’D’ and $JACA=’S’) depending on the
Jacobian matrix specification.

3.12.1 Quasi-Newton methods for systems with dense Jacobian matrices

Quasi-Newton methods for systems with dense Jacobian matrices are generated from the driver template
U0SDU1 if $CLASS=’QN’ and $JACA=’D’. In this case, we can use quasi-Newton methods with dense
updates:

$UPDATE=’N’ - No update is used. If the first derivatives are not specified analytically (the
macrovariable $GMODELA is not defined), an approximation of the Jacobian matrix
is computed numerically by using differences.

$UPDATE=’A’ - The adjoint quasi-Newton updates [302], [303] are used in almost all iterations.
These updates are efficient only if the first derivatives are specified analytically.

$UPDATE=’B’ - The Broyden [28] rank-one quasi-Newton updates are used in almost all iterations. If
the first derivatives are not specified analytically, the Jacobian matrix is approximated
numerically by using differences after restarts.
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$UPDATE=’X’ - The Fletcher and Xu [364] rank-one quasi-Newton updates are used in almost all
iterations. If the first derivatives are not specified analytically, the Jacobian matrix
is approximated numerically by using differences after restarts.

The default value is $UPDATE=’B’.
If $UPDATE=’A’, the individual adjoint quasi-Newton methods are specified by using the macrovari-

able $MET.

$MET=1 - The basic residual adjoint quasi-Newton update [303] is used.

$MET=2 - The new quasi-Newton update [241] is used.

$MET=3 - The secant residual adjoint quasi-Newton update [302] is used.

$MET=4 - The tangent (two-sided) residual adjoint quasi-Newton update [302] is used.

The default value is $MET=2.
If $UPDATE=’B’ or $UPDATE=’X’ , the individual quasi-Newton methods are specified by using the

macrovariable $MET.

$MET=1 - The good Broyden update [28] is used.

$MET=2 - The column update [246] is used.

$MET=3 - The Greenstadt update [133] is used.

$MET=4 - The first Todd optimal update [159] is used.

$MET=5 - The second Todd optimal update [159] is used.

If $DECOMP=’A’, only values $MET=1 and $MET=2 can be used. The default value is $MET=1.
If $DECOMP=’E’, the rank-one updates are realized by one of the following methods distinghuised by

using the macrovariable $MOS3:

$MOS3=1 - The Bennet method without permutations [26] is used.

$MOS3=2 - The Schwetlick method with permutations [320] is used.

$MOS3=3 - The combination of the previous methods is used.

The default value is $MOS3=1.

The Jacobian matrix can be stored either rowwise ($JASA=’R’) or columnwise ($JASA=’C’). The
default values are $JASA=’C’, if $DECOMP=’A’ or $DECOMP=’Q’, and $JASA=’R’ if $DECOMP=’E’
(the specification $JASA=’C’ cannot be used for problems with linear approximating functions with
$NAL>0).

Dense quasi-Newton methods can only be used in the unconstrained case. Possible specifications (type-
decomposition-number) for dense quasi-Newton methods are these:

L-Q-1, L-A-1, L-E-1,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-Q-1, G-A-1, G-E-1,
G-Q-2, G-E-2,

G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-Q-1. The specification $DECOMP=’E’ can only be used if NA=NF (system of
nonlinear equations).
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3.12.2 Quasi-Newton methods for systems with sparse Jacobian matrices

Quasi-Newton methods for systems with sparse Jacobian matrices are generated from the driver template
U0SSU1 if $CLASS=’QN’ and $JACA=’S’. In this case, there are two possibilities for computing an
approximation of the Jacobian matrix by the differences. These possibilities are distinguished by using the
macrovariable $NUMDER:

$NUMDER=1 - Derivatives of individual approximating functions are computed.

$NUMDER=2 - The Coleman-More [51] graph coloring algorithm is used.

The default value is $NUMDER=1.
Moreover, various sparse quasi-Newton updates which preserve the pattern of the Jacobian matrix can be
used.

If $NUMDER=1, there are five choices of the quasi-Newton updates which are specified by the
macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. If the first derivatives are not specified analytically (the
macrovariable $GMODELA is not defined), an approximation of the Jacobian matrix
is computed numerically by using differences.

$UPDATE=’A’ - Sparse Schubert-like adjoint quasi-Newton update is used in almost all iterations.
This update is efficient only if the first derivatives are specified analytically.

$UPDATE=’B’ - Sparse quasi-Newton updates are used in almost all iterations. If the first derivatives
are not specified analytically, the Jacobian matrix is approximated numerically by
using differences after restarts.

$UPDATE=’S’ - Modified Newton methods such as the row scaling update are used in almost all
iterations. If the first derivatives are not specified analytically, the Jacobian matrix
is approximated numerically by using differences after restarts.

$UPDATE=’T’ - Sparse tensor correction is used in almost all iterations. This correction is advanta-
geous only if the first derivatives are specified analytically.

The default value is $UPDATE=’N’.
If $NUMDER=2, there are six choices of the quasi-Newton updates which are specified by the macrovari-

able $UPDATE:

$UPDATE=’N’ - No update is used. If the first derivatives are not specified analytically (the
macrovariable $GMODELA is not defined), an approximation of the Jacobian matrix
is computed numerically by using differences.

$UPDATE=’A’ - Sparse Schubert-like adjoint quasi-Newton update is used in almost all iterations.
This update is efficient only if the first derivatives are specified analytically.

$UPDATE=’B’ - Sparse quasi-Newton updates are used in almost all iterations. If the first derivatives
are not specified analytically, the Jacobian matrix is approximated numerically by
using differences after restarts.

$UPDATE=’S’ - Modified Newton methods that use the row scaling update in almost all iterations. If
the first derivatives are not specified analytically, the Jacobian matrix is approximated
numerically by using differences after restarts.

$UPDATE=’C’ - Cyclic column determination methods are used in almost all iterations. If the first
derivatives are not specified analytically, the Jacobian matrix is approximated numer-
ically by using differences after restarts.

$UPDATE=’T’ - Sparse tensor correction is used in almost all iterations. This correction is advanta-
geous only if the first derivatives are specified analytically.

The default value is $UPDATE=’N’.
Individual quasi-Newton methods are specified by using the macrovariable $MET. If $UPDATE=’A’ the
macrovariable $MET is not used. If $UPDATE=’B’, the following specifications are possible.
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$MET=1 - The Schubert update [305] is used.

$MET=2 - The Bogle-Perkins update [24] is used.

$MET=3 - The column update [246] is used.

The default value is $MET=1.
If $UPDATE=’S’, the following specifications are possible.

$MET=0 - The modified Newton method is used.

$MET=1 - The row scaling update [246] is used.

The default value is $MET=0.
If $UPDATE=’C’, the following specifications are possible.

$MET=0 - The cyclic column determination method [170] is used.

$MET=1 - The cyclic column determination method [170] is used followed by the Schubert
update [305].

$MET=2 - The cyclic column determination method [170] is used followed by the Bogle-Perkins
update [24].

$MET=3 - The cyclic column determination method [170] is used followed by the column update
[246].

The default value is $MET=1.
Possible specifications (type-decomposition-number) for sparse quasi-Newton methods are these:

L-A-1, L-E-1,
L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-A-1, G-E-1,

G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-7.

The default choice is G-A-3 for the least squares problems and G-E-3 for systems of nonlinear equations.
The specification $DECOMP=’E’ can only be used if NA=NF (system of nonlinear equations). The choice
L-E-1 differs from the choice L-E-2. The latter corresponds to the incomplete LU decomposition.

3.13 Quasi-Newton methods with limited memory for systems of nonlinear equations

Quasi-Newton methods with limited memory are specified by the statement $CLASS=’QL’ and are gen-
erated from the driver template U0SSU2. The number of QN steps is specified by the macrovariable $MF
(the default value is $MF=5). These methods are special methods for solving sparse systems of nonlinear
equations ($MODEL=’NE’) when the first derivatives are not specified analytically (the macrovariable
$GMODELA is not defined). Therefore, only the case NA=NF is permitted. Quasi-Newton methods
with limited memory use an initial approximation of the sparse Jacobian matrix together with several
small-size matrices which are updated in every iteration in such a way that their product approximates
the Jacobian matrix as precisely as possible [39]. There are two possibilities which are distinguished by
using the macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.
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$UPDATE=’B’ - The Broyden good update with limited memory [39] is used in almost all itera-
tions. After the restart, the Jacobian matrix is approximated numerically by using
differences.

The default value is $UPDATE=’N’.
Possible specifications (type-decomposition-number) for quasi-Newton methods with limited memory

are these:

L-A-3, L-E-3,
L-A-4, L-E-4,

L-E-5,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,

The default choice is G-E-3.
Besides the quasi-Newton methods with limited memory, this class contains inverse column scaling

methods which are chosen by using the specification $DECOMP=’I’. There are two possibilities which are
distinguished by using the macrovariable $UPDATE:

$UPDATE=’N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.

$UPDATE=’B’ - The inverse column scaling update [247] is used in almost all iterations. After the
restart, the Jacobian matrix is approximated numerically by using differences.

The default value is $UPDATE=’B’.

Possible specifications (type-decomposition-number) for inverse column scaling methods are these:

L-I-1,
L-I-3.

If $NUMBER=1, then a complete LU decomposition is used. If $NUMBER=3, then a combination of
direct and iterative methods is used. The default value is $NUMBER=3.

3.14 Truncated Newton methods for systems of nonlinear equations

Truncated Newton methods are specified by the statement $CLASS=’TN’ and are generated from the
driver template U0SSU3. These methods are special methods for solving systems of nonlinear equations
($MODEL=’NE’) when the first derivatives are not specified analytically (the macrovariable $GMODELA
is not defined). Therefore, only the case NA=NF is permitted. Truncated Newton methods differ from
quasi-Newton methods in that the sparse Jacobian matrix multiplication is replaced by the numerical
differentiation. These methods are very efficient for large problems with computationally simple functions
in nonlinear equations ($KCA=1). The main advantage of truncated Newton methods is that no matrices
are used (implicitly $JACA=’N’). This fact highly decreases storage requirements.

Truncated Newton methods are implemented either as the line search methods or as the trust region
methods and are based on the smoothed CGS subalgorithm. This subalgorithm can be preconditioned by
using the tridiagonal decomposition. This possibility is determined by the macrovariable $MOS2.

$MOS2=0 - The tridiagonal decomposition is not used.

$MOS2=1 - The tridiagonal decomposition is used before the iterative process is started.

$MOS2=2 - The tridiagonal decomposition is used as a preconditioner.

$MOS2=3 - Both previous cases are assumed.

The default value is $MOS2=0.
Possible specifications (type-decomposition-number) for truncated Newton methods are these:
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L-E-3,
L-E-4,
L-E-5,
G-E-3,
G-E-4,
G-E-5.

The default choice is G-E-3.

3.15 Simple quasi-Newton and Brent methods for systems of nonlinear equations

Simple quasi-Newton and Brent methods are specified by the statement $CLASS=’QB’ and are generated
from the driver template U0SDU2. These methods are special simple methods for solving dense systems
of nonlinear equations ($MODEL=’NE’) when the first derivatives are not specified analytically (the
macrovariable $GMODELA is not defined). Therefore, only the case NA=NF is permitted. Individual
methods are selected using the macrovariable $NUMBER:

$NUMBER=1 - The Brent method described in [27].

$NUMBER=3 - The simple Newton method (this method can also be used if the macrovariable
$GMODELA is defined).

The default value is $NUMBER=3.

3.16 Simplex type methods for linear programming problems

Simplex type methods for linear programming problems are specified by the statement $CLASS=’LP’.
These methods are realized in two different forms (for $JACC=’D’ and $JACC=’S’) depending on the
constraint Jacobian matrix specification and are generated from the driver templates U1LDL1 and U1LSL1.

If the constraint Jacobian matrix is dense ($JACC=’D’), we can use two different linear programming
methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [122]),
which is a special implementation of the steepest descent reduced gradient method.

$NUMBER=2 - Primal projected gradient (range-space) method, which is a special implementation
of the steepest descent projected gradient method.

Possible specifications (type-number) for dense simplex type linear programming methods are L-1 and
L-2. The default choice is L-1.

If the constraint Jacobian matrix is sparse ($JACC=’S’), we can use two different linear programming
methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method described in [335].

$NUMBER=2 - Primal projected steepest descent (range-space) method.

A possible specification (type-number) for sparse simplex type linear programming methods are L-1
and L-2. The default choice is L-1, but this choice is not suitable for problems with equality constraints.

3.17 Interior point methods for linear programming problems

Interior point methods for linear programming problems are specified by the statement $CLASS=’LI’
and are generated from the driver template U1LSL2. These methods, based on an infeasible primal-dual
predictor-corrector strategy, can be used only in the sparse case when $JACC=’S’. Moreover, only the
standard LP constraints Ax = b, x ≥ 0 can be considered at present. Individual methods are chosen by
using the macrovariable $MLP:
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$MLP=1 - The first algorithm of Miao [252].

$MLP=2 - The second algorithm of Miao [252].

$MLP=3 - The Mizuno algorithm [255].

The default value is $MLP=1.

All these methods can be realized in three forms depending on the way of solving the linear generalized
Karush-Kuhn-Tucker system:

$NUMBER=1 - Direct solution based on the Gill-Murray decomposition applied to the Schur com-
plement.

$NUMBER=2 - Direct solution based on the Bunch-Parlett decomposition applied to the original
Karush-Kuhn-Tucker system.

$NUMBER=3 - Iterative solution based on the conjugate gradient method applied to the Schur
complement.

Possible specifications (type-number) for sparse interior point linear programming methods are L-1,
L-2 and L-3. The default choice is L-1.

3.18 Simplex type methods for quadratic programming problems

Simplex type methods for quadratic programming problems are specified by the statement $CLASS=’QP’.
These methods are realized in two different forms (for $JACC=’D’ and $JACC=’S’) depending on the con-
straint Jacobian matrix specification and are generated from the driver templates U1QDL1 and U1QSL1.

If the constraint Jacobian matrix is dense ($JACC=’D’), we can use three different quadratic program-
ming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [124]),
which is a special implementation of the Newton reduced gradient method.

$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [102]),
which is a special implementation of the Newton projected gradient method.

$NUMBER=3 - Dual projected gradient (range-space) method (like the method proposed in [128]).

Possible specifications (type-number) for dense simplex type quadratic programming methods are L-1, L-2,
and L-3. The default choice is L-1.

If the constraint Jacobian matrix is sparse ($JACC=’S’), we can use two different quadratic program-
ming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method described in [335].

$NUMBER=2 - Primal projected conjugate gradient (range-space) method.

Possible specification (type-number) for sparse simplex type quadratic programming methods are L-1
and L-2. The default choice is L-2. The choice L-1 is not suitable for problems with equality constraints.

3.19 Interior point methods for quadratic programming problems

Interior point methods for quadratic programming problems are specified by the statement $CLASS=’QI’
and are generated from the driver template U1QSL2. These primal-dual methods, based on the logarithmic
barrier function and iterative solution of the indefinite Karush-Kuhn-Tucker system, can be used only in
the sparse case when $JACC=’S’. Interior point methods for quadratic programming problems are, in fact,
the same as methods with the choices $TYPE=’L’ and $DECOMP=’I’ described in Section 3.32.

Two realizations are possible which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [99] of the indefinite Karush-
Kuhn-Tucker system is used.
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$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOS1,
$MOS2 and $MOS3.

The default value is $NUMBER=3.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - The precision guaranteeing descent direction is used together with the basic choice
of the penalty parameter.

$MOS1=2 - The precision guaranteeing descent direction is used together with an extended
choice of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.

$MOS2=±1 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form.

$MOS2=±2 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the augmented system form.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.

$MOS3=1 - A simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Possible specifications (type-number) for sparse interior point quadratic programming methods are L-1

and L-3. The default choice is L-3.

3.20 Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimization problems are specified by the statement $CLASS
=’BM’ and are generated from the driver template U1FDU3. These methods use a bundle of gradients
computed in trial points and updated in every iteration. The size of this bundle is specified by the
macrovariable $MB (the default value is $MB=’NF+3’). Proximal bundle methods solve a special quadratic
programming subproblem derived from the cutting plane approach [342]. This subproblem is, in fact,
the same as in the recursive quadratic programming methods for minimax problems. Proximal bundle
methods are realized only for unconstrained or linearly constrained dense problems ($JACA=’D’). The
special quadratic programming subproblem can be solved by using the following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [182].

$NUMBER=2 - Primal projected gradient (range-space) method, which is a special implementation
of the Newton projected gradient method.

The special quadratic programming subproblem is defined in such a way that it has a diagonal Hessian
matrix. There are several methods for computing the diagonal weight coefficients which are selected by
using the macrovariables $MOS and $MES2.

$MOS=1 - If $MES2=1, the weights are updated by using the curvature of the one-dimensional
quadratic function.
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$MOS=1 - If $MES2=2, the weights are updated by using the minimum position estimate
(suitable for polyhedral and nearly polyhedral functions).

$MOS=2 - The weights are updated by using the quasi-Newton condition.

The default values are $MOS=1 and $MES2=1.

Proximal bundle methods are only realized as line search methods in two modifications which are
specified by the macrovariable $MEX.

$MEX=0 - The convex version is assumed.

$MEX=1 - The nonconvex version is assumed and we can define a measure of nonconvexity by
using the macrovariable $ETA5. The default value is $ETA5=0.25.

The default values is $MEX=1.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Proximal bundle methods are sensitive to the values
of parameters $ETA5 and $XMAX. Therefore, these values should be carefully chosen.

Possible specifications (type-number) for proximal bundle methods are L-1 and L-2. The default
choice is L-1. Proximal bundle methods can be used when $KSF=3 or $KSA=3. They can be also
used for minimizing the sum of absolute values ($MODEL=’AA’) and for solving minimax problems
($MODEL=’AM’).

3.21 Bundle Newton methods for nonsmooth optimization

Bundle Newton methods for nonsmooth optimization problems are specified by the statement $CLASS
=’BN’ and are generated from the driver template U2FDU3. These methods use a bundle of gradients and
Hessian matrices computed in trial points and updated in every iteration. The size of this bundle is specified
by the macrovariable $MB (the default value is $MB=’NF+3’). Bundle Newton methods solve a special
quadratic programming subproblem derived from the cutting plane approach which contains second order
information [226]. This subproblem is, in fact, the same as in recursive quadratic programming methods
for minimax problems. Bundle Newton methods are only realized for unconstrained or linearly constrained
dense problems ($JACA=’D’). The special quadratic programming subproblem can be solved by using the
following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [182].

$NUMBER=2 - Primal projected gradient (range-space) method, which is a special implementation
of the Newton projected gradient method.

The special quadratic programming subproblem has a general (dense) Hessian matrix, which is a bundle
approximation of the second-order matrix of the original nonsmooth problem.

Bundle Newton methods are only realized as line search methods. A nonconvex version is assumed
and we can define a measure of nonconvexity by using the macrovariable $ETA5. The default value
is $ETA5=0.25. Another important parameter is the maximum stepsize defined by the macrovariable
$XMAX. The maximum stepsize is a safeguard which guarantees that the new point lies in the region
where the bundle model is valid. The default value is $XMAX=1000. Bundle Newton methods are
sensitive to the values of parameters $ETA5 and $XMAX. Therefore, these values should be carefully
chosen.

Possible specifications (type-number) for bundle Newton methods are L-1 and L-2. The default choice is
L-1. Bundle Newton methods can be used when $KSF=3 or $KSA=3. They can be also used for minimizing
the sum of absolute values ($MODEL=’AA’) and for solving minimax problems ($MODEL=’AM’).
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3.22 Bundle variable metric methods for nonsmooth optimization

Bundle variable metric methods for nonsmooth optimization problems are specified by the statement
$CLASS=’BV’ and are generated from the driver template U1FDU5. These methods are based on a
special realization of variable metric method updates. This realization uses special null steps and restarts.
The stepsize selection is based on the polyhedral approximation obtained by using bundles of points and
subgradients. Bundle variable metric methods are realized only for unconstrained or linearly constrained
dense problems ($JACA=’D’). They need not solve any quadratic programming subproblem.

Bundle variable metric methods are realized as line search methods in two modifications which are
specified by the macrovariable $MEX.

$MEX=0 - The convex version [229] is assumed.

$MEX=1 - The nonconvex version [343] is assumed and we can define a measure of nonconvexity
by using the macrovariable $ETA5. The default value is $ETA5=0.25.

The default values is $MEX=1.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Bundle variable metric methods are sensitive to the
values of parameters $ETA5 and $XMAX. Therefore, these values should be carefully chosen.

Bundle variable metric methods use an auxiliary bundle of gradients which serves for the initial stepsize
determination in the line search subalgorithm. The size of this bundle is specified by the macrovariable
$MB (the default value is $MB=’NF+3’).

Possible specifications (type-number) for bundle variable metric methods are L-1 and L-2. The default
choice is L-1. Bundle variable metric methods can be used when $KSF=3 or $KSA=3. They can be
also used for minimizing the sum of absolute values ($MODEL=’AA’) and for solving minimax problems
($MODEL=’AM’).

3.23 Bundle variable metric methods with limited memory for nonsmooth optimization

Bundle variable metric methods with limited memory for nonsmooth optimization problems are specified
by the statement $CLASS =’BL’ and are generated from the driver template U1FLU7. The number of
VM steps is specified by the macrovariable $MF (the default value is $MF=5). These methods are based
on a special realization of limited memory variable metric updates. This realization uses special null steps
and restarts. The stepsize selection is based on the polyhedral approximation obtained by using bundles
of points and subgradients. Bundle variable metric methods with limited memory are realized only for
unconstrained or box constrained sparse problems ($JACA=’S’ and $HESF=’S’). They need not solve any
quadratic programming subproblem.

Bundle variable metric methods with limited memory are realized as line search methods in several
modifications which are specified by the macrovariables $MEX, $MEX1, $MEX2, $MEX3.

$MEX=0 - The convex version [229] is assumed.

$MEX=1 - The nonconvex version [343] is assumed and we can define a measure of nonconvexity
by using the macrovariable $ETA5. The default value is $ETA5=0.25.

$MEX1=0 - The basic algorithm is used.

$MEX1=1 - An additional restart is used if the direction vector is short.

$MEX1=2 - The controlled correction of the direction vector is used. The correction parameter
is specified by the macrovariable $ETA3. The default value is $ETA3=10−12.

$MEX1=3 - The permanent correction of the direction vector is used. The correction parameter
is specified by the macrovariable $ETA3. The default value is $ETA3=10−12.

$MEX2=0 - The basic termination criterion is used.

$MEX2=1 - The extended termination criterion for large-scale problems is used.
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$MEX3=0 - The termination is used after a zero difference of gradients.

$MEX3=1 - The extrapolation with a constant stepsize is used after a zero difference of gradients.

$MEX3=2 - The extrapolation with an increasing stepsize is used after a zero difference of gra-
dients.

The default values are $MEX=1, $MEX1=0, $MEX2=0, $MEX3=0.
Variable metric updates are controlled by the macrovariables $MET, $MET2, $MET3, $MET4.

$MET=0 - The limited memory BFGS matrix is updated only in descent steps.

$MET=1 - The limited memory BFGS matrix is updated in all steps.

$MET2=0 - No updates are used in null steps.

$MET2=1 - Rank-one updates are used in $MET3 consecutive null steps.

$MET2=2 - Rank-one updates are used in all null steps.

$MET2=3 - BFGS updates are used in $MET4 consecutive null steps.

The default values are $MET=1, $MET2=1, $MET3=5, $MET4=5.
Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The

maximum stepsize is a safeguard which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Bundle variable metric methods with limited memory
are sensitive to the values of parameters $ETA5 and $XMAX. Therefore, these values should be carefully
chosen.

Bundle variable metric methods with limited memory use an auxiliary bundle of gradients which serves
for the initial stepsize determination in the line search subalgorithm. The size of this bundle is specified
by the macrovariable $MB (the default value is $MB=20).

A possible specification (type-number) for bundle variable metric methods with limited memory is L-1.

3.24 Bundle variable metric methods for sparse sum of absolute values

If $MODEL=’AA’, then the objective function is the sum of absolute values. In this case, bundle variable
metric methods [238] are specified by using the statement $CLASS =’BV’ and are generated from the
driver template U1FSU5. These methods are based on a special realization of partitioned variable metric
updates. This realization uses special null steps and restarts. The stepsize selection is based on the
polyhedral approximation obtained by using bundles of points and subgradients. Bundle variable metric
methods for sparse sum of absolute values are realized only for unconstrained or box constrained sparse
problems ($JACA=’S’ and $HESF=’S’). They need not solve any quadratic programming subproblem.

Bundle variable metric methods for sparse sum of absolute values are realized as line search methods
in several modifications which are specified by the macrovariables $MEX, $MEX1, $MEX2, $MEX3.

$MEX=0 - The convex version [229] is assumed.

$MEX=1 - The nonconvex version [343] is assumed and we can define a measure of nonconvexity
by using the macrovariable $ETA5. The default value is $ETA5=0.25.

$MEX1=0 - The basic algorithm is used.

$MEX1=1 - An additional restart is used if the direction vector is short.

$MEX1=2 - The controlled correction of the direction vector is used. The correction parameter
is specified by the macrovariable $ETA3. The default value is $ETA3=10−12.

$MEX1=3 - The permanent correction of the direction vector is used. The correction parameter
is specified by the macrovariable $ETA3. The default value is $ETA3=10−12.

$MEX2=0 - The basic termination criterion is used.

$MEX2=1 - The extended termination criterion for large-scale problems is used.

$MEX3=0 - The termination is used after a zero difference of gradients.

$MEX3=1 - The extrapolation with a constant stepsize is used after a zero difference of gradients.
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$MEX3=2 - The extrapolation with an increasing stepsize is used after a zero difference of gra-
dients.

The default values are $MEX=1, $MEX1=0, $MEX2=0, $MEX3=0.
The variable metric updates can be scaled. This possibility is specified by the macrovariable $MET1.

$MET1=0 - Scaling is suppressed.

$MET1=1 - Scaling is performed.

The default value is $MET1=0.
Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The

maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Bundle variable metric methods for sparse sum of
absolute values are sensitive to the values of parameters $ETA5 and $XMAX. Therefore, these values
should be carefully chosen.

Bundle variable metric methods for sparse sum of absolute values use an auxiliary bundle of gradients,
which serves for the initial stepsize determination in the line search subalgorithm. The size of this bundle
is specified by the macrovariable $MB (the default value is $MB=20).

A possible specification (type-number) for bundle variable metric methods for sparse sum of absolute
values is L-1.

3.25 Primal interior point methods for sparse sum of absolute values

If $MODEL=’AA’, then the objective function is the sum of absolute values. In this case, primal interior
point methods [211] can be chosen by using the statement $FORM=’SP’. These methods, which are
intended for large problems, belong to the following classes:

$CLASS=’VM’ - Primal interior point variable metric methods generated from the driver template
U1ASU1. An approximation of the Hessian matrix of the Lagrangian function is
updated in each iteration by using variable metric updates. The partitioned variable
metric updates from the Broyden family [134] are used.

$CLASS=’MN’ - Primal interior point modified Newton methods generated from the driver tem-
plate U2ASU1. The Hessian matrix of the Lagrangian function is computed in each
iteration either analytically or numerically.

The default value is $CLASS=’MN’.
If $CLASS=’VM’, the particular variable metric method is specified by using macrovariables $MET,

$MET1, $MET5. Macrovariable $MET determines the variable metric update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.

$MET=2 - The partitioned DFP method [83], [110] is used.

$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.

$MET5=0 - The updates concern approximating functions.
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$MET5=1 - The updates concern approximating functions multiplied by the signs of the La-
grange multipliers.

$MET5=2 - The updates concern terms of the Lagrangian function.

The default value is $MET5=1.

The macrovariable $MEP2 specifies restarts in the indefinite case.

$MEP2=0 - The Gill-Murray decomposition of the indefinite matrix is used.

$MEP2=1 - The unit matrix is used.

The default value is $MEP2=1.

The macrovariable $MEP3 determines a strategy for computation of the barrier parameter.

$MEP3=1 - A geometric sequence is used.

$MEP3=2 - A monotone sequence is used.

$MEP3=3 - A retarded monotone sequence is used.

$MEP3=4 - A retarded monotone sequence with stagnations is used.

The default value is $MEP3=4.
Primal interior point methods for sparse sum of absolute values use parameters specified by macrovari-

ables $ETA4, $ETA5. The macrovariable $ETA4 determines the reduction of the barrier parameter. The
default value is $ETA4=0.85. The macrovariable $ETA5 determines the minimum value of the barrier
parameter. The default value is $ETA5=10−8. Another important parameter is the maximum stepsize de-
fined by the macrovariable $XMAX. The maximum stepsize is a safeguard which guarantees that the new
point lies in the region where the sum of absolute values is well defined. The default value is $XMAX=1000.

Primal interior point methods for sparse sum of absolute values use either line search (if $TYPE=’L’)
or trust region (if $TYPE=’G’) strategies. Possible specifications (type-decomposition-number) are these:

L-G-1, L-M-1,
G-G-1, G-B-1, G-M-1,

G-M-7.

The default choice is L-G-1.

3.26 Smoothing methods for sparse sum of absolute values

If $MODEL=’AA’, then the objective function is the sum of absolute values. In this case, smoothing
methods can be chosen by using the statement $FORM=’SM’. These methods, which are intended for
large problems, belong to the following classes:

$CLASS=’VM’ - Smoothing variable metric methods generated from the driver template U1ASU2.
An approximation of the Hessian matrix of the Lagrangian function is updated in each
iteration by using variable metric updates. The partitioned variable metric updates
from the Broyden family [134] are used.

$CLASS=’MN’ - Smoothing modified Newton methods generated from the driver template U2ASU2.
The Hessian matrix of the Lagrangian function is computed in each iteration either
analytically or numerically.

The default value is $CLASS=’MN’.
If $CLASS=’VM’, the particular variable metric method is specified by using macrovariables $MET,

$MET1, $MET5. Macrovariable $MET determines the variable metric update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.

$MET=2 - The partitioned DFP method [83], [110] is used.
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$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.

$MET5=0 - The updates concern approximating functions.

$MET5=1 - The updates concern approximating functions multiplied by the signs of the La-
grange multipliers.

$MET5=2 - The updates concern terms of the Lagrangian function.

The default value is $MET5=1.

The macrovariable $MEP2 specifies whether the values of exponentials are saved.

$MEP2=0 - The values of exponentials are not saved.

$MEP2=1 - The values of exponentials are saved.

The default value is $MEP2=0.

The macrovariable $MEP3 determines a strategy for computation of the smoothing parameter.

$MEP3=1 - A geometric sequence is used.

$MEP3=2 - A monotone sequence is used.

$MEP3=3 - A retarded monotone sequence is used.

$MEP3=4 - A simple retarded monotone sequence with stagnations is used.

$MEP3=5 - A special monotone sequence is used.

The default value is $MEP3=3.
Smoothing methods for sparse sum of absolute values use parameters specified by macrovariables

$ETA4, $ETA5, $ETA6. The macrovariable $ETA4 determines the reduction of the smoothing param-
eter. The default value is $ETA4=0.95. The macrovariable $ETA5 determines the minimum value of
the smoothing parameter. The default value is $ETA5=10−8. The macrovariable $ETA6 determines the
threshold value of the gradient norm for the switching in the computation of the smoothing parameter.
The default value is $ETA6=10−4, if $MEP3=5, or $ETA6=1, otherwise. Another important parameter is
the maximum stepsize defined by the macrovariable $XMAX. The maximum stepsize is a safeguard which
guarantees that the new point lies in the region where the sum of absolute values is well defined. The
default value is $XMAX=1000.

Smoothing methods for sparse sum of absolute values use either line search (if $TYPE=’L’) or trust
region (if $TYPE=’G’) strategies. Possible specifications (type-decomposition-number) are these:

L-G-1, L-M-1,
G-G-1, G-B-1, G-M-1,

G-M-7.

The default choice is L-G-1.
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3.27 Recursive linear programming methods for dense minimax problems

If $MODEL=’AM’, then the objective function is the maximum of approximating functions or their abso-
lute values. In this case, recursive linear programming methods [243] can be chosen by using the statements
$FORM=’SL’ and $CLASS=’LP’. Recursive linear programming methods, generated from the driver tem-
plate U1MDU1, are realized as trust region methods with box constrained subproblems. The special linear
programming subproblem, which is derived from the minimax problem, is solved by a primal projected
gradient (range-space) method, which is a special implementation of the steepest descent method. A
possible specification (type-number) for recursive linear programming methods is G-1.

3.28 Recursive quadratic programming methods for dense minimax problems

If $MODEL=’AM’, then the objective function is the maximum of approximating functions or their abso-
lute values. In this case, recursive quadratic programming methods [144], [183] can be chosen by using the
statement $FORM=’SL’ and $CLASS=’VM’ or $CLASS=’MN’. These methods belong to the following
classes:

$CLASS=’VM’ - Recursive quadratic programming variable metric methods generated from the driver
template U1MDU1. An approximation of the Hessian matrix of the Lagrangian func-
tion is updated in each iteration by using variable metric updates belonging to the
Broyden family.

$CLASS=’MN’ - Recursive quadratic programming modified Newton methods generated from the
driver template U2MDU1. The Hessian matrix of the Lagrangian function is com-
puted in each iteration either analytically or numerically.

The default value is $CLASS=’VM’.
Recursive quadratic programming methods are realized in three different forms:

$TYPE=’L’ - Line search methods.

$TYPE=’G’ - General trust region methods.

$TYPE=’C’ - General trust region methods with second order corrections [108].

If $TYPE=’L’, the special line search method ($MES=5), described in [183], can be used.
The special quadratic programming subproblem, which is derived from the minimax problem, can be

solved by using the two different methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [182].

$NUMBER=2 - Primal projected gradient (range-space) method, which is a special implementation
of the Newton projected gradient method.

Recursive quadratic programming variable metric methods use the same variable metric updates as
methods with the choices $DECOMP=’G’ and $UPDATE=’B’ described in Section 3.8.1 (values from
$MET=1,2,. . .,12 can be used). Similarly, recursive quadratic programming modified Newton methods
correspond to the methods with the choice $DECOMP=’G’ described in Section 3.7 (the Gill-Murray
decomposition is used).

Although the minimax problems can be solved by using bundle methods described in Sections 3.19 –
3.21, it is more efficient to use the recursive quadratic programming methods that utilize a special structure
of the minimax problem.

All of the above methods can be used only for dense unconstrained or linearly constrained problems.
Possible specifications (type-number) for recursive quadratic programming methods are these:

L-1, G-1, C-1,
L-2, G-2, C-2.

The default choice is L-1.
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3.29 Primal interior point methods for sparse minimax problems

If $MODEL=’AM’, then the objective function is the maximum of approximating functions or their ab-
solute values. In this case, primal interior point methods [209] can be chosen by using the statement
$FORM=’SP’. These methods, which are intended for large problems, belong to the following classes:

$CLASS=’VM’ - Primal interior point variable metric methods generated from the driver template
U1MSU1. An approximation of the Hessian matrix of the Lagrangian function is
updated in each iteration by using variable metric updates. The partitioned variable
metric updates from the Broyden family [134] are used.

$CLASS=’MN’ - Primal interior point modified Newton methods generated from the driver tem-
plate U2MSU1. The Hessian matrix of the Lagrangian function is computed in each
iteration either analytically or numerically.

The default value is $CLASS=’MN’.
If $CLASS=’VM’, the particular variable metric method is specified by using macrovariables $MET,

$MET1, $MET5. Macrovariable $MET determines the variable metric update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.

$MET=2 - The partitioned DFP method [83], [110] is used.

$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.

$MET5=0 - The updates concern approximating functions.

$MET5=1 - The updates concern approximating functions multiplied by the signs of the La-
grange multipliers.

$MET5=2 - The updates concern the terms of the Lagrangian function.

The default value is $MET5=1.
The macrovariable $MEP determines the particular barrier function.

$MEP=0 - The minimax function is used.

$MEP=1 - The logarithmic barrier function is used.

$MEP=2 - The Ben-Tal barrier function is used.

$MEP=3 - The composite barrier function is used.

$MEP=4 - The Carrol barrier function is used.

The default value is $MEP=1.
The macrovariable $MEP3 determines a strategy for computation of the barrier parameter.

$MEP3=1 - A geometric sequence is used.

$MEP3=2 - A monotone sequence is used.

$MEP3=3 - A retarded monotone sequence is used.

$MEP3=4 - A retarded monotone sequence with stagnations is used.

The default value is $MEP3=2.
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Primal interior point methods for sparse minimax problems use parameters specified by macrovariables
$ETA3, $ETA4, $ETA5. The macrovariable $ETA3 determines the precision of the solution to inner non-
linear equation. The default value is $ETA3=10−6. The macrovariable $ETA4 determines the reduction
of the barrier parameter. The default value is $ETA4=0.85. The macrovariable $ETA5 determines the
minimum value of the barrier parameter. The default value is $ETA5=10−10. Another important param-
eter is the maximum stepsize defined by the macrovariable $XMAX. The maximum stepsize is a safeguard
which guarantees that the new point lies in the region where the minimax function is well defined. The
default value is $XMAX=1000.

Primal interior point methods for sparse minimax problems use either line search (if $TYPE=’L’) or
trust region (if $TYPE=’G’) strategies. Possible specifications (type-decomposition-number) are these:

L-G-1, L-M-1,
G-G-1, G-B-1, G-M-1,

G-M-7.

The default choice is L-G-1.

3.30 Smoothing methods for sparse minimax problems

If $MODEL=’AM’, then the objective function is the maximum of approximating functions or their
absolute values. In this case, smoothing methods [282], [365] can be chosen by using the statement
$FORM=’SM’. These methods, which are intended for large problems, belong to the following classes:

$CLASS=’VM’ - Smoothing variable metric methods generated from the driver template U1MSU2.
An approximation of the Hessian matrix of the Lagrangian function is updated in each
iteration by using variable metric updates. The partitioned variable metric updates
from the Broyden family [134] are used.

$CLASS=’MN’ - Smoothing modified Newton methods generated from the driver template U2MSU2.
The Hessian matrix of the Lagrangian function is computed in each iteration either
analytically or numerically.

The default value is $CLASS=’MN’.
If $CLASS=’VM’, the particular variable metric method is specified by using macrovariables $MET,

$MET1, $MET5. Macrovariable $MET determines the variable metric update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.

$MET=2 - The partitioned DFP method [83], [110] is used.

$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.

$MET5=0 - The updates concern approximating functions.

$MET5=1 - The updates concern approximating functions multiplied by the signs of the La-
grange multipliers.

$MET5=2 - The updates concern the terms of the Lagrangian function.
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The default value is $MET5=1.

The macrovariable $MEP2 specifies whether the values of exponentials are saved.

$MEP2=0 - The values of exponentials are not saved.

$MEP2=1 - The values of exponentials are saved.

The default value is $MEP2=0.

The macrovariable $MEP3 determines a strategy for the computation of the smoothing parameter.

$MEP3=1 - A geometric sequence is used.

$MEP3=2 - A monotone sequence is used.

$MEP3=3 - A retarded monotone sequence is used.

$MEP3=4 - A retarded monotone sequence with stagnations is used.

$MEP3=5 - A special monotone sequence is used.

The default value is $MEP3=2.
Smoothing methods for sparse minimax problems use parameters specified by macrovariables $ETA4,

$ETA5, $ETA6. The macrovariable $ETA4 determines the reduction of the smoothing parameter. The
default value is $ETA4=0.95. The macrovariable $ETA5 specifies the minimum value of the smoothing
parameter. The default value is $ETA5=10−8. The macrovariable $ETA6 determines the threshold value
of the gradient norm for the switching in the computation of the smoothing parameter. The default value
is $ETA6=10−4, if $MEP3=5, or $ETA6=1, otherwise. Another important parameter is the maximum
stepsize defined by the macrovariable $XMAX. The maximum stepsize is a safeguard, which guarantees
that the new point lies in the region where the minimax function is well defined. The default value is
$XMAX=1000.

Smoothing methods for sparse minimax problems use a line search strategy. A possible specification
(type-decomposition-number) is L-G-2.

3.31 Recursive quadratic programming methods for dense nonlinear programming problems

Recursive quadratic programming methods for dense general nonlinear programming problems are specified
by the statement $FORM=’SQ’. These methods belong to two following classes:

$CLASS=’VM’ - Recursive quadratic programming variable metric methods generated from the driver
template U1FDN1. An approximation of the Hessian matrix of the Lagrangian func-
tion is updated in each iteration by using variable metric updates.

$CLASS=’MN’ - Recursive quadratic programming modified Newton methods generated from the
driver template U2FDN1. The Hessian matrix of the Lagrangian function is computed
in each iteration either analytically or numerically.

The default value is $CLASS=’VM’.
Recursive quadratic programming variable metric methods use the same variable metric updates as

methods with the choices $DECOMP=’G’ and $UPDATE=’B’ described in Section 3.8.1 (values from
$MET=1,2,. . .,12 can be used). Similarly, recursive quadratic programming modified Newton methods
correspond to the methods with the choice $DECOMP=’G’ described in Section 3.7 (the Gill-Murray
decomposition is used).

Recursive quadratic programming methods for dense general nonlinear programming problems are
realized as line search methods ($TYPE=’L’) with the l1-exact penalty function. They are like the methods
proposed in [288]. The special line search method ($MES=5) for l1-exact penalty function can be used
successfully. The quadratic programming subproblem can be solved by using the two different methods:

$NUMBER=1 - Dual projected gradient (range-space) method (like the method proposed in [128]).

$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [102]),
which is a special implementation of the Newton projected gradient method.
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Possible specifications (type-number) for recursive quadratic programming methods for dense general
nonlinear programming problems are L-1 and L-2. The default choice is L-1.

Recursive quadratic programming methods can be used for dense nonlinear programming problems
with various objective functions. If we set $MODEL=’AA’ (sum of absolute values) or $MODEL=’AM’
(minimax), then an extended nonlinear programming problem containing extra variables is defined and
solved.

3.32 Recursive quadratic programming methods for sparse equality constrained problems

Recursive quadratic programming methods for sparse equality constrained nonlinear programming prob-
lems are specified by the statement $FORM=’SE’. These methods, which are intended for large problems,
belong to the following classes:

$CLASS=’VM’ - Recursive quadratic programming variable metric methods generated from the driver
template U1FSE1. An approximation of the Hessian matrix of the Lagrangian func-
tion is updated in each iteration by using variable metric updates.

$CLASS=’VL’ - Recursive quadratic programming variable metric methods with limited memory
based on compact representations of variable metric updates generated from the driver
template U1FSE2. The number of VM steps is specified by the macrovariable $MF
(the default value is $MF=5). Variable metric methods with limited memory use
several small-size matrices which are updated in each iteration in such a way that their
product approximates the Hessian matrix of the Lagrangian function as precisely as
possible [39].

$CLASS=’MN’ - Recursive quadratic programming modified Newton methods generated from the
driver template U2FSE1. The Hessian matrix of the Lagrangian function is computed
in each iteration either analytically or numerically. The sparsity pattern is required.

$CLASS=’TN’ - Recursive quadratic programming truncated Newton methods generated from the
driver template U1FSE3. These methods differ from modified Newton methods in that
the directional derivatives are determined by the numerical differentiation instead of
the sparse Hessian matrix multiplication. The sparsity pattern is not required.

The default value is $CLASS=’MN’.
If $CLASS=’VM’ and $HESF=’D’, dense variable metric updates are used. Macrovariable $MET

determines the variable metric update.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.
If $CLASS=’VM’ and $HESF=’S’, the individual variable metric updates are specified by using the

macrovariable $UPDATE:

$UPDATE=’M’ - The simple Marwil projection update [248].

$UPDATE=’B’ - The partitioned variable metric updates from the Broyden family [134]. These
updates can only be used if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’.

The default values are $UPDATE=’B’ if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’ and
$UPDATE=’M’ in the remaining cases. If $UPDATE=’B’, the particular variable metric method is speci-
fied by using macrovariables $MET, $MET1, $MET5. Macrovariable $MET determines the variable metric
update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.
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$MET=2 - The partitioned DFP method [83], [110] is used.

$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.

$MET5=0 - The updates concern approximating functions.

$MET5=1 - The updates concern approximating functions multiplied by the signs of the La-
grange multipliers.

$MET5=2 - The updates concern the terms of the Lagrangian function.

The default value is $MET5=1.
Recursive quadratic programming methods for sparse equality constrained nonlinear programming

problems are realized in two different ways which are specified by using the macrovariable $TYPE:

$TYPE=’L’ - Line search methods based on various merit functions or filter structures.

$TYPE=’G’ - Trust region methods. These methods use two direction determination subproblems
[94], [166], [225]. The vertical subproblem, solved by using the dog-leg method, serves
for a sufficient decrease of constraint violations. The horizontal subproblem, solved
by a special realization of the conjugate gradient method, serves for minimization of
a quadratic approximation of a particular merit function.

The default value is $TYPE=’L’.
If $TYPE=’L’, various penalty functions or filter structures can be used for stepsize selection. The

corresponding choice is determined by the macrovariable $MERIT:

$MERIT=’P’ - The penalty function is used.

$MERIT=’M’ - The Markov filter [340], [208] is used.

$MERIT=’F’ - The Fletcher-Leyffer filter [109], [340] is used.

The default value is $MERIT=’P’. If $MERIT=’P’, additional choices specified by macrovariables $MEP,
$MEP1, $MEP2 are possible.

Macrovariable $MEP determines the particular merit function:

$MEP=0 - No merit function is used. In this case, the line search option $KTERS=6 is implic-
itly assumed.

$MEP=1 - The Powell l1 exact penalty function is used.

$MEP=2 - The l2 augmented Lagrangian function is used.

$MEP=3 - The l1 augmented Lagrangian function is used.

$MEP=4 - The Han l1 exact penalty function is used.

$MEP=5 - The Schittkowski augmented Lagrangian function is used.

The default value is $MEP=2.
Macrovariable $MEP1 specifies the second order correction for overcoming the Maratos effect.

$MEP1=1 - The second order correction is suppressed.

$MEP1=2 - The second order correction is determined as a least squares solution of the shifted
constraint system.
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The default value is $MEP1=1.
Macrovariable $MEP2 specifies estimates of Lagrange multipliers at the beginning of each iteration.

$MEP2=1 - The initial estimate is taken from the previous iteration.

$MEP2=2 - The initial estimate is determined as a least squares solution of the first part of the
Karush-Kuhn-Tucker system.

The default value is $MEP2=1.
If $TYPE=’G’, only the default specification $MERIT=’P’ is possible (with penalty functions deter-

mined by macrovariable $MEP as above). However, default values $MEP1=1 and $MEP2=1 are used in
this case.

If $TYPE=’L’, the direction vector can be computed in the three different ways which are specified by
using the macrovariable $DECOMP:

$DECOMP=’K’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [228].

$DECOMP=’Z’ - The direction vector is decomposed into two parts. The vertical part is computed
directly from the constraint violation. The horizontal part, lying in the null-space, is
computed iteratively by using a special realization of the conjugate gradient method.
Instead of projecting into the null-space, either the augmented system or an orthog-
onal projection matrix, both determined from a range-space basis, are used [154].

$DECOMP=’G’ - The direction vector is determined directly from the Lagrangian multipliers which
are determined iteratively by using the conjugate gradient method in the range space
using the Schur complement. This choice can be used only if $CLASS=’MN’ or
$CLASS=’VM’ and $HESF=’S’ (if a sparsity pattern is available).

The default value is $DECOMP=’K’.
If $DECOMP=’K’, five realizations are possible which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [99] of the indefinite Karush-
Kuhn-Tucker system is used. This choice can be used only if $CLASS=’MN’ or
$CLASS=’VM’ and $HESF=’S’ (if a sparsity pattern is available).

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system, which uses a special determination of the required pre-
cision, is applied. The particular realization of this method depends on specifications
given by the macrovariables $MOS1, $MOS2, $MOS3 and $MOS4.

$NUMBER=4 - An inexact preconditioned conjugate residual (PCR) method for the indefinite
Karush-Kuhn-Tucker system, which uses a special determination of the required pre-
cision, is applied. The particular realization of this method depends on specifications
given by the macrovariables $MOS1 and $MOS2.

$NUMBER=5 - An inexact symmetric preconditioned quasi-minimum residual (PQMR) method for
the indefinite Karush-Kuhn-Tucker system, which uses a special determination of the
required precision, is applied. The particular realization of this method depends on
specifications given by the macrovariables $MOS1 and $MOS2.

$NUMBER=6 - An inexact nonsymmetric preconditioned conjugate gradient squared (PCGS)
method for the indefinite Karush-Kuhn-Tucker system, which uses a special determi-
nation of the required precision, is applied. The particular realization of this method
depends on specifications given by the macrovariables $MOS1, $MOS2 and $MOS3.

The default value is $NUMBER=3.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

92



$MOS1=1 - The precision guaranteeing descent direction is used together with the basic choice
of the penalty parameter.

$MOS1=2 - The precision guaranteeing descent direction is used together with the extended
choice of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.

$MOS2=±1 - The indefinite preconditioner [228] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form.

$MOS2=2 - The indefinite preconditioner [228] based on a diagonal approximation of the Hessian
matrix is used in the augmented system form.

$MOS2=±3 - The indefinite preconditioner [228] based on a diagonal perturbation of the Schur
complement is used.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.

$MOS3=1 - The simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.

Macrovariable $MOS4 specifies the choice of the initial direction.

$MOS4=0 - The zero initial direction is used.

$MOS4=1 - The vertical initial direction is used.

The default value is $MOS4=0.
If $DECOMP=’Z’, only one realization is possible, which is specified by the macrovariable $NUMBER:

$NUMBER=3 - An inexact null-space preconditioned conjugate gradient (NPCG) method for the
determination of the horizontal direction, which uses a special determination of the
required precision, is applied. A particular realization of this method depends on the
specifications given by the macrovariables $MOS1 and $MOS2.

Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - The precision guaranteeing descent direction is used together with the basic choice
of the penalty parameter.

$MOS1=2 - The precision guaranteeing descent direction is used together with the extended
choice of the penalty parameter.

The default value is $MOS1=0.

Macrovariable $MOS2 specifies a way for computing the preconditioner.

$MOS2=±1 - The preconditioner is computed by using the orthogonal projection matrix deter-
mined from a range-space basis.

$MOS2=±2 - The preconditioner is computed by using the augmented system determined from a
range-space basis.

If $MOS2>0, the diagonal approximation of the Hessian matrix is used. If $MOS2<0, the unit approxi-
mation of the Hessian matrix is used. The default value is $MOS2=1.
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If $DECOMP=’G’, two realizations are possible which are specified by the macrovariable $NUMBER:

$NUMBER=3 - The sparse Gill-Murray decomposition of the Hessian matrix of the Lagrangian
function followed by a range-space smoothed conjugate gradient (RSCG) method for
a positive definite range space system, which uses a special determination of the
required precision, is applied. The particular realization of this method depends on
specifications given by the macrovariables $MOS1, $MOS2 and $MOS3.

$NUMBER=4 - The sparse Bunch-Parlett decomposition of the Hessian matrix of the Lagrangian
function followed by a range-space smoothed conjugate gradient (RSCG) method for
an indefinite range space system, which uses a special determination of the required
precision, is applied. The particular realization of this method depends on specifica-
tions given by the macrovariables $MOS1 and $MOS3.

The default value is $NUMBER=3.

Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - The precision guaranteeing descent direction is used.

The default value is $MOS1=1.

Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - The preconditioning is suppressed.

$MOS2=±1 - The positive definite preconditioner [228] based on a diagonal approximation of the
Hessian matrix is used.

$MOS2=±2 - The polynomial preconditioner [263] based on a decomposition of the normal equa-
tion is used.

If $MOS2>0, The complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.

$MOS3=1 - The simple one-dimensional residual smoothing is used.

The default value is $MOS3=1.
If $TYPE=’G’, only the default specifications $DECOMP=’Z’ and $NUMBER=’3’ are possible which

correspond to the trust region conjugate gradient (TRCG) method. Macrovariable $MOS2 specifies a way
for computing the projection step.

$MOS2=1 - The projection step is computed by using the orthogonal projection matrix deter-
mined from a range-space basis.

$MOS2=2 - The projection step is computed by using the augmented system determined from
a range-space basis.

The default value is $MOS2=1.
Possible specifications (type-decomposition-number) for recursive quadratic programming methods for

sparse equality constrained nonlinear programming problems are these:

L-K-1,
L-K-3, L-Z-3, L-G-3,
L-K-4, L-G-4,
L-K-5,
L-K-6,

G-Z-3.

94



The default choice is L-K-3. The choices L-K-1, L-G-3, and L-G-4 can be used only if $CLASS=’MN’ or
$CLASS=’VM’ and $HESF=’S’ (if a sparsity pattern is available).

3.33 Primal-dual interior point methods for sparse nonlinear programming problems

Primal-dual interior point methods for sparse nonlinear programming problems [205] are specified by the
statement $FORM=’SI’. These methods, which are intended for large problems, belong to the following
classes:

$CLASS=’VM’ - Primal-dual interior point variable metric methods generated from the driver tem-
plate U1FSI1. An approximation of the Hessian matrix of the Lagrangian function is
updated in each iteration by using variable metric updates.

$CLASS=’VL’ - Primal-dual interior point variable metric methods with limited memory based on
compact representations of variable metric updates generated from the driver template
U1FSI2. The number of VM steps is specified by the macrovariable $MF (the default
value is $MF=5). Variable metric methods with limited memory use several small-
size matrices which are updated in each iteration in such a way that their product
approximates the Hessian matrix of the Lagrangian function as precisely as possible
[39].

$CLASS=’MN’ - Primal-dual interior point modified Newton methods generated from the driver
template U2FSI1. The Hessian matrix of the Lagrangian function is computed in
each iteration either analytically or numerically. The sparsity pattern is required.

$CLASS=’TN’ - Primal-dual interior point truncated Newton methods generated from the driver
template U1FSI3. These methods differ from modified Newton methods in that the
directional derivatives are determined by the numerical differentiation instead of the
sparse Hessian matrix multiplication. The sparsity pattern is not required.

The default value is $CLASS=’MN’.
If $CLASS=’VM’ and $HESF=’D’, dense variable metric updates are used. Macrovariable $MET

determines the variable metric update.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.
If $CLASS=’VM’ and $HESF=’S’, the individual variable metric updates are specified by using the

macrovariable $UPDATE:

$UPDATE=’M’ - The simple Marwil projection update [248].

$UPDATE=’B’ - The partitioned variable metric updates from the Broyden family [134]. These
updates can only be used if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’.

The default values are $UPDATE=’B’ if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’ and
$UPDATE=’M’ in the remaining cases. If $UPDATE=’B’, the particular variable metric method is speci-
fied by using macrovariables $MET, $MET1, $MET5. Macrovariable $MET determines the variable metric
update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.

$MET=2 - The partitioned DFP method [83], [110] is used.

$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

95



The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.

$MET5=0 - The updates concern approximating functions.

$MET5=1 - The updates concern approximating functions multiplied by the signs of the La-
grange multipliers.

$MET5=2 - The updates concern active terms of the Lagrangian function.

$MET5=3 - The updates concern all terms of the Lagrangian function.

The default value is $MET5=1.
If $CLASS=’VL’, two variable metric updates with limited memory, belonging to the Broyden family,

can be used. These updates are specified by using the macrovariable $MET.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.
Primal-dual interior point methods for sparse nonlinear programming problems are realized in the way

which is specified by using the macrovariable $TYPE:

$TYPE=’L’ - Line search methods based on various merit functions or filter structures.

$TYPE=’G’ - Trust region methods. These methods use two direction determination subproblems
[94], [166]. The vertical subproblem, solved by using the dog-leg method, serves for
a sufficient decrease of constraint violations. The horizontal subproblem, solved by
a special realization of the conjugate gradient method, serves for minimization of a
quadratic approximation of a particular merit function.

The default value is $TYPE=’L’.

If $TYPE=’L’, various penalty functions or filter structures can be used for stepsize selection. The
corresponding choice is determined by the macrovariable $MERIT:

$MERIT=’P’ - The penalty function is used.

$MERIT=’M’ - The Markov filter [340], [208] is used.

$MERIT=’F’ - The Fletcher-Leyffer filter [109], [340] is used.

$MERIT=’B’ - The barrier filter [340] is used.

The default value is $MERIT=’P’.

If $MERIT=’P’, then macrovariable $MEP determines the particular merit function:

$MEP=0 - No merit function is used. In this case, the line search option $KTERS=6 is implic-
itly assumed.

$MEP=1 - The augmented logarithmic barrier function is used.

$MEP=2 - The augmented Lagrangian function is used.

The default value is $MEP=1.

If $TYPE=’G’, only the default specification $MERIT=’P’ is possible. In this case, macrovariable
$MEP determines the particular merit function:
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$MEP=1 - The augmented logarithmic barrier function is used.

$MEP=2 - The simplified augmented logarithmic barrier function is used.

The default value is $MEP=1.

Other important specifications can be determined by using macrovariables $MEP1, $MEP2, $MEP3,
$MEP4, $MEP5 and $MOP1, $MOP2.

Macrovariable $MEP1 determines an approach to the KKT-equations formulation.

$MEP1=1 - The primal formulation is used

$MEP1=2 - The primal-dual formulation is used.

The default value is $MEP1=2.
Macrovariable $MEP2 determines a strategy for computation of primal and dual stepsizes.

$MEP2=0 - Individual components of primal and dual stepsizes are handled separately.

$MEP2=±1 - Primal and dual stepsizes are not greater than their maximum values.

$MEP2=±2 - Primal and dual stepsizes are not greater than their maximum values, but the dual
stepsize is not greater than the primal stepsize.

If $MEP2>0, the basic stepsize does not depend on the primal stepsize. If $MEP2<0, the basic stepsize
is not greater than the primal stepsize (this is implicitly assumed when $MEP=1). The default value is
$MEP2=0.

Macrovariable $MEP3 determines a strategy for computation of the barrier parameter.

$MEP3=±1 - The Shanno-Vanderbei formula [339] is used.

$MEP3=±2 - The El Bakry formula [101] is used.

If $MEP3>0, the basic strategy is used. If $MEP3<0, the monotone decreasing strategy is used. The
default value is $MEP3=1.

Macrovariable $MEP4 determines a regularization strategy if gradients of constraint functions are
nearly linearly dependent.

$MEP4=0 - Regularization is not used.

$MEP4=1 - Regularization described in [205] is used.

The default value is $MEP4=0. Macrovariable $MEP4 is used only if $TYPE=’L’.
Macrovariable $MEP5 determines a regularization strategy for the ill-conditioned Hessian matrix.

$MEP5=0 - Regularization is not used.

$MEP5=1 - Regularization by the scaled unit matrix is used.

$MEP5=2 - Regularization by an inexact differentiation is used.

The default value is $MEP5=0. Macrovariable $MEP5 is used only if $TYPE=’L’.
Macrovariable $MOP1 determines a strategy for the slack variable updates.

$MOP1=1 - Slack variables are determined by the line search.

$MOP1=2 - Slack variables are determined to satisfy constraints.

The default value is $MOP1=1.
Macrovariable $MOP2 determines a strategy for box constraint updates.

$MOP2=1 - Box constraints are determined by the line search.

$MOP2=2 - Initial box constraints are feasible.

$MOP2=3 - Box constraints are always feasible.
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The default value is $MOP2=1.

The direction vector can be computed in the way specified by using the macrovariable $DECOMP:

$DECOMP=’I’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [228].

If $TYPE=’L’, two realizations are possible, which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [99] of the indefinite Karush-
Kuhn-Tucker system is used. This choice can be used only if $CLASS=’MN’ or
$CLASS=’VM’ and $HESF=’S’ (if a sparsity pattern is available).

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system, which uses a special determination of the required pre-
cision, is applied. The particular realization of this method depends on specifications
given by the macrovariables $MOS1, $MOS2 and $MOS3.

The default value is $NUMBER=3.

If $TYPE=’L’, other important specifications can be determined by using macrovariables $MES4,
$MES5 and $MOS1, $MOS2, $MOS3.

Macrovariable $MES4 determines the KKT norm increasing strategy.

$MES4=0 - The KKT norm increasing is suppressed.

$MES4=1 - The KKT norm increases in the MES4 iterations.

The default value is $MES4=0.
Macrovariable $MES5 determines a restart strategy.

$MES5=0 - The restart is suppressed.

$MES5=1 - The uniform descent is assured.

The default value is $MES5=0. The value $MES5=1 is used only if $MERIT=’P’ and $MEP=0.

Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - The precision guaranteeing descent direction is used together with the basic choice
of the penalty parameter.

$MOS1=2 - The precision guaranteeing descent direction is used together with the extended
choice of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.

$MOS2=±1 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form.

$MOS2=2 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the augmented system form.

$MOS2=±3 - The indefinite preconditioner [205] based on the Gill-Murray decomposition of the
approximation of the Hessian matrix is used.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.
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$MOS3=0 - The residual smoothing is suppressed.

$MOS3=1 - The simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.

If $TYPE=’G’, only one realization is possible which is specified by the macrovariable $NUMBER:

$NUMBER=3 - The trust region method that uses two direction determination subproblems [36],
[37]. The vertical subproblem, solved by using the dog-leg method, serves for a
sufficient decrease of constraint violations. The horizontal subproblem, solved by a
special realization of the conjugate gradient method, serves for minimization of a
quadratic approximation of a particular merit function. A realization of the inexact
preconditioned conjugate gradient method depends on specifications given by the
macrovariables $MOS1, $MOS2, $MOS3 and $MOS4.

Macrovariable $MOS1 specifies the choice of the penalty parameter.

$MOS1=1 - The constant penalty parameter is used.

$MOS1=2 - The penalty parameter is determined from the quadratic model.

The default value is $MOS1=1.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=1 - The preconditioner is computed by using the orthogonal projection matrix deter-
mined from a range-space basis.

Macrovariable $MOS3 determines a decision in case a negative curvature is detected.

$MOS3=1 - Additional conjugate gradient iterations are performed.

$MOS3=2 - A boundary step is determined.

The default value is $MOS3=1.
Macrovariable $MOS4 determines a norm for the trust region definition.

$MOS4=0 - The trust region is defined by slack variables.

$MOS4=1 - The trust region is defined by the Chebyshev l∞ norm.

$MOS4=2 - The trust region is defined by the Euclidean l2 norm.

The default value is $MOS4=2.
Possible specifications (type-decomposition-number) for primal-dual interior point methods for sparse

equality and inequality constrained nonlinear programming problems are these:

L-I-1,
L-I-3,
G-I-3.

The default choice is L-I-3. The choice L-I-1 can be used only if $CLASS=’MN’ or $CLASS=’VM’ and
$HESF=’S’ (if a sparsity pattern is available).

Primal-dual interior point methods can be used for sparse nonlinear programming problems with various
objective functions. If we set $MODEL=’AA’ (sum of absolute values) or $MODEL=’AM’ (minimax),
then an extended nonlinear programming problem containing extra variables is defined and solved.

3.34 Nonsmooth equation methods for sparse nonlinear programming problems

Nonsmooth equation methods for sparse nonlinear programming problems [207] are specified by the state-
ment $FORM=’SF’. These methods, which are intended for large problems, belong to the following classes:
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$CLASS=’VM’ - Nonsmooth equation variable metric methods generated from the driver template
U1FSF1. An approximation of the Hessian matrix of the Lagrangian function is
updated in each iteration by using variable metric updates.

$CLASS=’VL’ - Nonsmooth equation variable metric methods with limited memory based on com-
pact representations of variable metric updates generated from the driver template
U1FSF2. The number of VM steps is specified by the macrovariable $MF (the default
value is $MF=5). Variable metric methods with limited memory use several small-
size matrices which are updated in each iteration in such a way that their product
approximates the Hessian matrix of the Lagrangian function as precisely as possible
[39].

$CLASS=’MN’ - Nonsmooth equation modified Newton methods generated from the driver template
U2FSF1. The Hessian matrix of the Lagrangian function is computed in each iteration
either analytically or numerically. The sparsity pattern is required.

$CLASS=’TN’ - Nonsmooth equation truncated Newton methods generated from the driver tem-
plate U1FSF3. These methods differ from modified Newton methods in that the
directional derivatives are determined by the numerical differentiation instead of the
sparse Hessian matrix multiplication. The sparsity pattern is not required.

The default value is $CLASS=’MN’.
If $CLASS=’VM’ and $HESF=’D’, dense variable metric updates are used. Macrovariable $MET

determines the variable metric update.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.
If $CLASS=’VM’ and $HESF=’S’, the individual variable metric updates are specified by using the

macrovariable $UPDATE:

$UPDATE=’M’ - The simple Marwil projection update [248].

$UPDATE=’B’ - The partitioned variable metric updates from the Broyden family [134]. These
updates can only be used if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’.

The default values are $UPDATE=’B’ if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’ and
$UPDATE=’M’ in the remaining cases. If $UPDATE=’B’, the particular variable metric method is speci-
fied by using macrovariables $MET, $MET1, $MET5. Macrovariable $MET determines the variable metric
update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.

$MET=2 - The partitioned DFP method [83], [110] is used.

$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.
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$MET5=0 - The updates concern approximating functions.

$MET5=1 - Updates concerns approximating functions multiplied by the signs of the Lagrange
multipliers.

$MET5=2 - The updates concern active terms of the Lagrangian function.

$MET5=3 - The updates concern all terms of the Lagrangian function.

The default value is $MET5=1.
If $CLASS=’VL’, two variable metric updates with limited memory, belonging to the Broyden family,

can be used. These updates are specified by using the macrovariable $MET.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.
Nonsmooth equation methods for sparse nonlinear programming problems are realized only in the line

search framework ($TYPE=’L’). Various penalty functions or filter structures can be used for stepsize
selection. The corresponding choice is determined by the macrovariable $MERIT:

$MERIT=’P’ - The penalty function is used.

$MERIT=’M’ - The Markov filter [340], [208] is used.

$MERIT=’F’ - The Fletcher-Leyffer filter [109], [340] is used.

The default value is $MERIT=’P’.

If $MERIT=’P’, then macrovariable $MEP determines the particular merit function:

$MEP=0 - No merit function is used. In this case, the line search option $KTERS=6 is implic-
itly assumed.

$MEP=2 - The augmented Lagrangian function is used together with the residual function.

The default value is $MEP=2.

Other important specifications can be determined by using macrovariables $MEP2, $MEP3, $MEP4,
$MEP5 and $MOP1, $MOP2.

Macrovariable $MEP2 determines the restriction on the Lagrange multipliers.

$MEP2=0 - Lagrange multipliers are not restricted.

$MEP2=1 - Lagrange multipliers are positive in all iterations.

The default value is $MEP2=0.

Macrovariable $MEP3, used only if $MERIT=’P’, determines a strategy for the use of the residual
function.

$MEP3=0 - The augmented Lagrangian function is used as the merit function (the residual
function is not used).

$MEP3=1 - The combination of the augmented Lagrangian function and the residual function
is used as the merit function.

$MEP3=2 - The residual function is used as the merit function (with the exception of restarted
iterations).

The default value is $MEP3=0.

Macrovariable $MEP4 determines a regularization strategy if gradients of constraint functions are
nearly linearly dependent.

$MEP4=0 - Regularization is not used.

$MEP4=1 - Regularization described in [205] is used.
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The default value is $MEP4=0.

Macrovariable $MEP5 determines a regularization strategy for the ill-conditioned Hessian matrix.

$MEP5=0 - Regularization is not used.

$MEP5=1 - Regularization by the scaled unit matrix is used.

$MEP5=2 - Regularization by an inexact differentiation is used.

The default value is $MEP5=0.

Macrovariable $MOP1 determines a strategy for the slack variable updates.

$MOP1=1 - Slack variables are determined by the line search.

$MOP1=2 - Slack variables are determined to satisfy constraints.

The default value is $MOP1=1.
Macrovariable $MOP2 determines a strategy for box constraint updates.

$MOP2=1 - Box constraints are determined by the line search.

$MOP2=2 - Initial box constraints are feasible.

$MOP2=3 - Box constraints are always feasible.

The default value is $MOP2=1.

The direction vector can be computed in the way specified by using the macrovariable $DECOMP:

$DECOMP=’F’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [228].

Two realizations are possible which are specified by the macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [99] of the indefinite Karush-
Kuhn-Tucker system is used. This choice can be used only if $CLASS=’MN’ or
$CLASS=’VM’ and $HESF=’S’ (if a sparsity pattern is available).

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system, which uses a special determination of the required pre-
cision, is applied. The particular realization of this method depends on specifications
given by the macrovariables $MOS1, $MOS2 and $MOS3.

The default value is $NUMBER=3.
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - The precision guaranteeing descent direction is used together with the basic choice
of the penalty parameter.

$MOS1=2 - Yhe precision guaranteeing descent direction is used together with the extended
choice of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.

$MOS2=±1 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form.

$MOS2=2 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the augmented system form.

$MOS2=±3 - The indefinite preconditioner [205] based on the Gill-Murray decomposition of the
approximation of the Hessian matrix is used.
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If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.

$MOS3=1 - The simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Possible specifications (type-decomposition-number) for nonsmooth equation methods for sparse equal-

ity and inequality constrained nonlinear programming problems are these:

L-F-1,
L-F-3.

The default choice is L-F-3. The choice L-F-1 can be used only if $CLASS=’MN’ or $CLASS=’VM’ and
$HESF=’S’ (if a sparsity pattern is available).

Nonsmooth equation methods can be used for sparse nonlinear programming problems with various
objective functions. If we set $MODEL=’AA’ (sum of absolute values) or $MODEL=’AM’ (minimax),
then an extended nonlinear programming problem containing extra variables is defined and solved.

3.35 Primal-dual interior point methods for sparse problems with complementarity constraints

Primal-dual interior point methods for sparse problems with complementarity constraints [215] are specified
by the statement $FORM=’SI’ (when $NCC>0). These methods, which are intended for large problems,
belong to the following classes:

$CLASS=’VM’ - Primal-dual interior point variable metric methods. An approximation of the Hessian
matrix of the Lagrangian function is updated in each iteration by using variable metric
updates.

$CLASS=’VL’ - Primal-dual interior point variable metric methods with limited memory based on
compact representations of variable metric updates. The number of VM steps is
specified by the macrovariable $MF (the default value is $MF=5). Variable metric
methods with limited memory use several small-size matrices which are updated in
each iteration in such a way that their product approximates the Hessian matrix of
the Lagrangian function as precisely as possible [39].

$CLASS=’MN’ - Primal-dual interior point modified Newton methods. The Hessian matrix of the
Lagrangian function is computed in each iteration either analytically or numerically.
The sparsity pattern is required.

$CLASS=’TN’ - Primal-dual interior point truncated Newton methods. These methods differ from
modified Newton methods in that the directional derivatives are determined by the
numerical differentiation instead of the sparse Hessian matrix multiplication. The
sparsity pattern is not required.

The default value is $CLASS=’MN’.
If $CLASS=’VM’ and $HESF=’D’, dense variable metric updates are used. Macrovariable $MET

determines the variable metric update.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=2 - The DFP method [83], [110] is used.

$MET=3 - The Hoshino method [153] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.
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If $CLASS=’VM’ and $HESF=’S’, the individual variable metric updates are specified by using the
macrovariable $UPDATE:

$UPDATE=’M’ - The simple Marwil projection update [248].

$UPDATE=’B’ - The partitioned variable metric updates from the Broyden family [134]. These
updates can only be used if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’.

The default values are $UPDATE=’B’ if $MODEL=’AF’ or $MODEL=’AQ’ or $MODEL=’AP’ and
$UPDATE=’M’ in the remaining cases. If $UPDATE=’B’, the particular variable metric method is speci-
fied by using macrovariables $MET, $MET1, $MET5. Macrovariable $MET determines the variable metric
update.

$MET=1 - The partitioned BFGS method [29], [105], [127], [306] is used.

$MET=2 - The partitioned DFP method [83], [110] is used.

$MET=3 - The partitioned Hoshino method [153] is used.

$MET=4 - The partitioned safeguarded rank-one method [190] is used.

The default value is $MET=1. Macrovariable $MET1 determines scaling of variable metric updates [277].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [310] is used.

$MET1=3 - The controlled scaling [194] is used.

$MET1=4 - The interval scaling [221] is used.

$MET1=5 - The scaling in each iteration is used.

The default value is $MET1=3. Macrovariable $MET5 determines subjects of variable metric updates.

$MET5=0 - The updates concern approximating functions.

$MET5=1 - The updates concern approximating functions multiplied by the signs of the La-
grange multipliers.

$MET5=2 - The updates concern active terms of the Lagrangian function.

$MET5=3 - The updates concern all terms of the Lagrangian function.

The default value is $MET5=1.

If $CLASS=’VL’, two variable metric updates with limited memory, belonging to the Broyden family,
can be used. These updates are specified by using the macrovariable $MET.

$MET=1 - The BFGS method [29], [105], [127], [306] is used.

$MET=4 - The safeguarded rank-one method [190] is used.

The default value is $MET=1.

Primal-dual interior point methods for sparse problems with complementarity constraints are realized
only in the line search framework ($TYPE=’L’). Various penalty functions or filter structures can be used
for stepsize selection. The corresponding choice is determined by the macrovariable $MERIT:

$MERIT=’P’ - The penalty function is used.

$MERIT=’M’ - The Markov filter [340], [208] is used.

$MERIT=’F’ - The Fletcher-Leyffer filter [109], [340] is used.

$MERIT=’B’ - The barrier filter [340] is used.

If $MERIT=’P’, then macrovariable $MEP determines the particular merit function:

$MEP=0 - No merit function is used. In this case, the line search option $KTERS=6 is implic-
itly assumed.

$MEP=1 - The augmented logarithmic barrier function is used.
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The default value is $MEP=0.

Other important specifications can be determined by using macrovariables $MEP3, $MEP4 and $MEP5.

Macrovariable $MEP3 determines a strategy for computation of the barrier parameter.

$MEP3<0 - The standard Shanno-Vanderbei formula [339] is used.

$MEP3>0 - The special Shanno-Vanderbei formula [339] is used.

The default value is $MEP3=1.

Macrovariable $MEP4 determines a regularization strategy if gradients of constraint functions are
approximately linearly dependent.

$MEP4=0 - Regularization is not used.

$MEP4=1 - Regularization described in [205] is used.

The default value is $MEP4=0.

Macrovariable $MEP5 determines a restart strategy.

$MEP5=0 - The restart is suppressed.

$MEP5=1 - The uniform descent is assured.

The default value is $MEP5=0. The value $MEP5=1 is used only if $MERIT=’P’ and $MEP=0.

There are two linear algebra approaches for the direction determination which are specified by the
macrovariable $NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [99] of the indefinite Karush-
Kuhn-Tucker system is used. This choice can be used only if $CLASS=’MN’ or
$CLASS=’VM’ and $HESF=’S’ (if a sparsity pattern is available).

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system, which uses a special determination of the required pre-
cision, is applied. The particular realization of this method depends on specifications
given by the macrovariables $MOS1, $MOS2 and $MOS3.

The default value is $NUMBER=3.

Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - The precision guaranteeing descent direction is used together with the basic choice
of the penalty parameter.

$MOS1=2 - The precision guaranteeing descent direction is used together with the extended
choice of the penalty parameter.

The default value is $MOS1=0.

Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.

$MOS2=±1 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form.

$MOS2=2 - The indefinite preconditioner [215] based on a diagonal approximation of the Hessian
matrix is used in the augmented system form.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.

Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.
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$MOS3=0 - The residual smoothing is suppressed.

$MOS3=1 - The simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Possible specifications (type-decomposition-number) for primal-dual interior point methods for sparse

problems with complementarity constraints are these:

L-I-1,
L-I-3.

The default choice is L-I-3. The choice L-I-1 can be used only if $CLASS=’MN’ or $CLASS=’VM’ and
$HESF=’S’ (if a sparsity pattern is available).

3.36 Methods for initial value problems for ordinary differential equations

Methods for initial value problems for ordinary differential equations are specified by using the macrovari-
able $SOLVER. The UFO system contains five types of integration methods:

$SOLVER=’DP5’ - The Dormand and Prince method of the fifth order with a stepsize control for nonstiff
problems.

$SOLVER=’DP8’ - The Dormand and Prince method of the eighth order with a stepsize control for
nonstiff problems.

$SOLVER=’EX1’ - The extrapolation method with a stepsize control, based on the midpoint rule, for
nonstiff problems.

$SOLVER=’RD5’ - The Radau method of the fifth order with a stepsize control for stiff problems.

$SOLVER=’RS4’ - The Rosenbrock method of the fourth order with a stepsize control for stiff problems.

The default value is $SOLVER=’DP8’. These methods, described in [137], use a stepsize control based on
a local truncation error.

A solution to the initial value problem for ordinary differential equations can be stored for subsequent
processing. The extent of the data stored is determined by using the macrovariable $MED.

$MED=0 - No data are stored.

$MED=1 - The data in all solution steps are stored.

$MED=2 - The data in equidistant mesh points are stored. The number of mesh points is
specified by using the statement $NA=number of mesh points in this case.

3.37 Methods for direction determination

Optimization methods, contained in the UFO system, are usually implemented in such a way that they
use the same modules for direction determination. These modules, realized with different kinds of matrix
decomposition, are distinguished by using the macrovariables $TYPE and $NUMBER. The macrovariable
$TYPE specifies the following types of methods (which have been already mentioned at the begining of
Section 3):

$TYPE=’L’ - Line search methods.

$TYPE=’G’ - General trust region methods.

$TYPE=’T’ - Special trust region methods for nonlinear least squares problems.

$TYPE=’M’ - Modified Marquardt methods for nonlinear least squares problems.

$TYPE=’R’ - Cubic regularization methods.

Now we will explain the specification $NUMBER. This explanation concerns only methods described in
Sections 3.8 – 3.14.
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3.37.1 Line search methods for direction determination

If $TYPE=’L’, then line search methods are supposed. In this case, relatively simple procedures are used
for direction determination. There are five possibilities:

$NUMBER=1 - Direct methods for solving linear systems utilizing various matrix decompositions. In
the sparse case, symbolic decomposition is determined before the optimization process
is started. Thus numerical computations with known factors are carried out in the
subsequent iterations.

$NUMBER=2 - Direct methods for solving linear systems are combined with the conjugate gradient
method if $HESF=’D’. The sparse Bunch-Parlett decomposition of the augmented
system describing the linear least squares problem if $JACA=’S’.

$NUMBER=3 - Inexact iterative methods for solving linear systems (specified below). The preci-
sion control is specified by the macrovariable $MOS. The preconditioning technique is
specified by the macrovariable $MOS2.

$NUMBER=4 - Inexact iterative methods for solving linear systems (specified below). The preci-
sion control is specified by the macrovariable $MOS. The preconditioning technique is
specified by the macrovariable $MOS2.

$NUMBER=5 - Inexact iterative methods for solving linear systems (specified below). The preci-
sion control is specified by the macrovariable $MOS. The preconditioning technique is
specified by the macrovariable $MOS2.

If $NUMBER=1 and $HESF=’D’, the following matrix decompositions are possible:

$DECOMP=’M’ - The Gill-Murray decomposition [123] of a symmetric matrix if $MOS2=0. The
Schnabel-Eskow decomposition [304] of a symmetric matrix with numerical permu-
tations if $MOS2=1. The Schnabel-Eskow decomposition [304] of a symmetric matrix
with double indexing if $MOS2=2.

$DECOMP=’G’ - The Gill-Murray decomposition [123] of a symmetric matrix.

$DECOMP=’S’ - The Schnabel-Eskow decomposition [304] of a symmetric matrix with numerical per-
mutations if $MOS2=1. The Schnabel-Eskow decomposition [304] of a symmetric
matrix with double indexing if $MOS2=2.

$DECOMP=’R’ - The Choleski decomposition of a symmetric positive definite matrix obtained from
the sequential QR decomposition [147].

$DECOMP=’B’ - The Bunch-Parlett decomposition [34] or the Bunch-Kaufman decomposition [35] of
a symmetric indefinite matrix.

$DECOMP=’I’ - The inverse of a symmetric matrix.

If $DECOMP=’B’, the macrovariable $MOS2 determines the method for indefinite symmetric matrix
decomposition:

$MOS2=1 - The Bunch-Parlett decomposition with numerical permutations is used.

$MOS2=2 - The Bunch-Kaufman decomposition with numerical permutations is used.

$MOS2=3 - The Bunch-Parlett decomposition with double indexing is used.

The default value is $MOS2=1.

If $NUMBER=1 and $HESF=’S’, the following matrix decompositions are possible:

$DECOMP=’M’ - The sparse Gill-Murray decomposition of a symmetric matrix.

$DECOMP=’G’ - The sparse Gill-Murray decomposition of a symmetric matrix.

$DECOMP=’B’ - The sparse Bunch-Parlett decomposition [99], [100].

If $NUMBER=1 and $JACA=’D’, the following matrix decompositions are possible:
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$DECOMP=’A’ - The orthogonal QR decomposition with permutations of a rectangular matrix.
$DECOMP=’Q’ - The orthogonal QR decomposition without permutations of a rectangular matrix.

$DECOMP=’E’ - The complete LU decomposition of a general square matrix.

The Jacobian matrix can be stored either rowwise (if $JASA=’R’) or columnwise (if $JASA=’C’). The
default values are $JASA=’C’ if $DECOMP=’A’ or $DECOMP=’Q’ and $JASA=’R’ if $DECOMP=’E’
(the specification $JASA=’C’ cannot be used for problems with linear approximating functions if $NAL>0).
The macrovariable $MOS2 determines the technique of column permutations:

$MOS2=1 - The numerical permutations are used.

$MOS2=2 - The double indexing is used.

The default value is $MOS2=1. If $DECOMP=’A’, the macrovariable $MOS3 determines the type of QR
decomposition:

$MOS3=1 - The incomplete QR decomposition is used.

$MOS3=2 - The complete QR decomposition [19] is used.

The default value is $MOS3=1. If $DECOMP=’A’, the macrovariable $MOS4 determines the strategy of
pivoting:

$MOS4=1 - The basic pivoting is used.

$MOS4=2 - The basic pivoting with the incremental rank determinantion [17] is used.

$MOS4=3 - The rank revealing pivoting is used.

The default value is $MOS4=1. If $DECOMP=’Q’, the macrovariable $MOS3 determines the technique
of the quasi-Newton update:

$MOS3=1 - The orthogonal matrix is not explicitly constructed. The unit matrix is updated.

$MOS3=2 - The orthogonal matrix is explicitly constructed and updated [82].

The default value is $MOS3=1.

If $NUMBER=1 and $JACA=’S’, the following matrix decompositions are possible:

$DECOMP=’A’ - The sparse orthogonal QR decomposition [336] of a rectangular matrix.

$DECOMP=’E’ - The sparse LU decomposition [85] of a general square matrix.

If $NUMBER=2 and $HESF=’D’, the following matrix decompositions are possible:

$DECOMP=’M’ - The Gill-Murray decomposition [123] of a symmetric matrix if $MOS2=0. The
Schnabel-Eskow decomposition [304] of a symmetric matrix with numerical permu-
tations if $MOS2=1. The Schnabel-Eskow decomposition [304] of a symmetric matrix
with double indexing if $MOS2=2.

$DECOMP=’G’ - The Gill-Murray decomposition [123] of a symmetric matrix.

$DECOMP=’S’ - The Schnabel-Eskow decomposition [304] of a symmetric matrix with numerical per-
mutations if $MOS2=1. The Schnabel-Eskow decomposition [304] of a symmetric
matrix with double indexing if $MOS2=2.

$DECOMP=’B’ - The Bunch-Parlett decomposition [34] or the Bunch-Kaufman decomposition [35]
of a symmetric indefinite matrix specified by the macrovariable $MOS2 as in case
$NUMBER=1.

If $NUMBER=2 and $JACA=’S’, the following matrix decomposition is possible:

$DECOMP=’A’ - The sparse Bunch-Parlett decomposition of the augmented system describing the
linear least squares problem [19], [99].
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If $NUMBER=3 and $HESF=’S’, the following iterative method is used:

$DECOMP=’M’ - The conjugate gradient method [88] for solving symmetric linear systems.

If $NUMBER=3 and $JACA=’S’, the following iterative methods are used:

$DECOMP=’A’ - The CGLS method [279] for solving linear least squares problems.

$DECOMP=’E’ - The smoothed CGS method [333] for solving nonsymmetric linear systems.

If $NUMBER=4 and $JACA=’S’, the following iterative methods are used:

$DECOMP=’A’ - The LSQR method [279] for solving linear least squares problems.

$DECOMP=’E’ - The GMRES method [300] for solving nonsymmetric linear systems.

If $NUMBER=5 and $JACA=’S’, the following iterative method is used:

$DECOMP=’E’ - The smoothed BICGSTAB method [338] for solving nonsymmetric linear systems.

The iterative methods with $NUMBER=3,4,5 use macrovariables $MOS and $MOS2. The macrovari-
able $MOS determines the precision control strategy and has the following meaning:

$MOS=1 - The simple strategy is used for precision control.

$MOS=2 - The geometric decreasing strategy is used for precision control.

$MOS=3 - The harmonic decreasing strategy is used for precision control.

The default value is $MOS=3. The macrovariable $MOS2 determines the choice of a suitable preconditioner
in the sparse case. If $MOS2<0, only the preconditioning is applied. If $MOS2>0, the preliminary
solution obtained by the preconditioner is tested. If the preliminary solution is not sufficiently accurate,
the preconditioned iterations follow. If $DECOMP=’M’ and $HESF=’S’, the following preconditioning
techniques for the conjugate gradient method are possible:

$MOS2=0 - Preconditioning is suppressed.

$MOS2=±1 - The incomplete Gill-Murray decomposition (full implementation) is used.

$MOS2=±2 - The ILUT type decomposition (the first type) is used.

$MOS2=±3 - The ILUT type decomposition (the second type) is used.

$MOS2=±4 - The ILUT type decomposition (the third type) is used.

$MOS2=±5 - The incomplete Gill-Murray decomposition (simplified implementation) is used.

$MOS2=±6 - The SSOR preconditioner is used.

The default value is $MOS2=-1. If $DECOMP=’E’ and $JACA=’S’, the following preconditioning tech-
niques for the CGS, GMRES and BICGSTAB methods are possible:

$MOS2=0 - Preconditioning is suppressed.

$MOS2=±1 - The incomplete LU decomposition is used.

$MOS2=±2 - The SSOR preconditioner is used.

The default value is $MOS2=-1.

If the line search method is used, then a descent property of the computed direction is tested. If

−sT g ≥ ε0 ∥ s ∥∥ g ∥,

where sT g is the directional derivative, s is the direction, and g is the objective function gradient, then the
direction is accepted. In the opposite case the optimization method is restarted. The value ε0 is specified
by using the macrovariable $EPS0.
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3.37.2 Trust region methods for direction determination

If $TYPE=’G’, then trust region methods are supposed. The initial trust region radius can be specified by
the statement $XDEL=trust region radius, but the default automatically derived value (with $XDEL=0)
is recommended. The trust region methods can be internally scaled. This way is very advantageous
for nonlinear regression problems containing exponentials. The trust region scaling is specified by the
macrovariable $MOS1.

$MOS1=1 - No scaling is performed.

$MOS1=2 - The scaling coefficients are derived from diagonal elements of the normal equation
matrix [199].

The default value is $MOS1=1.

There are nine trust region methods:

$NUMBER=1 - The dog-leg methods utilizing various matrix decompositions. The individual dog-
leg methods are specified by the macrovariable $MOS. If $MOS=1, the single dog-leg
method [284] is used. If $MOS=2, the double dog-leg method [92] is used. If $MOS=3,
the optimum dog-leg method [41] is used. The default value is $MOS=2. In the sparse
case, the symbolic decomposition is determined before the iterative process is started.
Thus numerical computations with known factors are carried out in the subsequent
iterations.

$NUMBER=2 - The multiple dog-leg methods (combinations of dog-leg methods and conjugate gra-
dient methods) [198] are supposed. The number of dog-leg steps is specified by the
statement $MOS=number of steps. The default value is $MOS=5.

$NUMBER=3 - The inexact iterative trust region methods (specified below). The precision control is
specified by the macrovariable $MOS in the same way as in line search methods. The
preconditioning technique is specified by the macrovariable $MOS2 in the same way as
in line search methods.

$NUMBER=4 - The inexact iterative trust region methods (specified below). The precision control is
specified by the macrovariable $MOS in the same way as in line search methods. The
preconditioning technique is specified by the macrovariable $MOS2 in the same way as
in line search methods.

$NUMBER=5 - The inexact iterative trust region methods (specified below). The precision control is
specified by the macrovariable $MOS in the same way as in line search methods. The
preconditioning technique is specified by the macrovariable $MOS2 in the same way as
in line search methods.

$NUMBER=6 - The Gould-Lucidi-Roma-Toint iterative trust region method [132] that uses the Lanc-
zos process to obtain an approximation to the optimum locally constrained step (per-
mitted only for $DECOMP=’M’). The number of Lanczos steps is specified by the
macrovariable $MOS3. The default value is $MOS3=100. If $HESF=’S’, the method
can be preconditioned by using the incomplete Gill-Murray decomposition. This pos-
sibility is specified by the macrovariable $MOS2 in the same way as in line search
methods.

$NUMBER=7 - The More-Sorensen optimum locally constrained trust region method [258].

$NUMBER=8 - The sequential subspace method [139] (permitted only for $DECOMP=’M’ and
$HESF=’S’). The quadratic function is minimized over a subspace which is adjusted
in successive iterations to ensure convergence to an optimum. The subspace contains
one step of SQP method [23]. This iteration is obtained by solving a linear system
whose preconditioner is specified by the macrovariable $MOS2. If $MOS2=1, then
the diagonal preconditioning is used, if $MOS2=2, then the incomplete Gill-Murray
decompostition is used, and if $MOS2=3, then the SSOR preconditioning is used. The
default velue is $MOS2=2.
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$NUMBER=9 - The Sorensen trust region method [299] (permitted only for $DECOMP=’M’ and
$HESF=’S’). The trust region subproblem is recast as a parametrized eigenvalue prob-
lem. An optimal value of the parameter is computed and the optimal solution of the
trust-region subproblem is found from the eigenvectors associated with the two small-
est eigenvalues of the parameterized eigenvalue problem corresponding to the optimal
parameter. The eigenpairs are computed using ARPACK Implicitly Restarted Lanc-
zos Method [168]. The number of Lanczos steps is determined by the macrovariable
$MOS3. The default value is $MOS3=100.

If $NUMBER=1 or $NUMBER=2 and $HESF=’D’, the following matrix decompositions are possible:

$DECOMP=’M’ - The Gill-Murray decomposition [123] of a symmetric matrix if $MOS2=0 or
$HESF=’S’. The Schnabel-Eskow decomposition [304] of a symmetric matrix with nu-
merical permutations if $MOS2=1 and $HESF=’D’. The Schnabel-Eskow decomposi-
tion [304] of a symmetric matrix with double indexing if $MOS2=2 and $HESF=’D’.

$DECOMP=’G’ - The Gill-Murray decomposition [123] of a symmetric matrix.

$DECOMP=’S’ - The Schnabel-Eskow decomposition [304] of a symmetric matrix with numerical per-
mutations if $MOS2=1. The Schnabel-Eskow decomposition [304] of a symmetric
matrix with double indexing if $MOS2=2.

$DECOMP=’B’ - The Bunch-Parlett decomposition [34] or the Bunch-Kaufman decomposition [35] of
a symmetric indefinite matrix.

If $DECOMP=’B’, the macrovariable $MOS2 determines the method for indefinite symmetric matrix
decomposition in the same way as in line search methods.

If $NUMBER=1 or $NUMBER=2 and $HESF=’S’, the following matrix decompositions are possible:

$DECOMP=’M’ - The sparse Gill-Murray decomposition of a symmetric matrix.

$DECOMP=’G’ - The sparse Gill-Murray decomposition of a symmetric matrix (this possibility cannot
be used if $NUMBER=2).

$DECOMP=’B’ - The sparse Bunch-Parlett decomposition [99], [100] (this possibility cannot be used
if $NUMBER=2).

If $NUMBER=1 or $NUMBER=2 and $JACA=’D’, the following matrix decompositions are possible:

$DECOMP=’A’ - The orthogonal QR decomposition with permutations of a rectangular matrix (this
possibility cannot be used if $NUMBER=2).

$DECOMP=’Q’ - The orthogonal QR decomposition without permutations of a rectangular matrix.

$DECOMP=’E’ - The complete LU decomposition of a general square matrix.

The Jacobian matrix can be stored either rowwise (if $JASA=’R’) or columnwise (if $JASA=’C’) in the
same way as in line search methods. The macrovariables $MOS2, $MOS3, $MOS4 have the same meaning
as in line search methods.

If $NUMBER=1 or $NUMBER=2 and $JACA=’S’, the following matrix decompositions are possible:

$DECOMP=’A’ - The sparse orthogonal QR decomposition [336] of a rectangular matrix.

$DECOMP=’E’ - The sparse LU decomposition [85] of a general square matrix.

There is an exception. If $CLASS=’QN’, then the sparse Bunch-Parlett decomposition of the augmented
system describing the linear least squares problem [19], [99] is used if $DECOMP=’A’.

If $NUMBER=3 and $HESF=’D’ or $HESF=’S’, the following iterative method is used:

$DECOMP=’M’ - The Steihaug [323] and Toint [331] iterative trust region method.

If $NUMBER=3 and $JACA=’S’, the following iterative methods are used:
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$DECOMP=’A’ - The CGLS trust region method [195].

$DECOMP=’E’ - The smoothed CGS trust region method [224].

If $NUMBER=4 and $HESF=’D’ or $HESF=’S’, the following iterative method is used:

$DECOMP=’M’ - The shifted Steihaug-Toint iterative trust region method [198], [204]. The number of
Lanczos steps is specified by the macrovariable $MOS3. The default value is $MOS3=5.

If $NUMBER=4 and $JACA=’S’, the following iterative methods are used:

$DECOMP=’A’ - The LSQR trust region method [195].

$DECOMP=’E’ - The GMRES trust region method [224].

If $NUMBER=5 and $HESF=’D’ or $HESF=’S’, the following iterative method is used:

$DECOMP=’M’ - The combined conjugate gradient and Lanczos iterative trust region method [198].
The number of Lanczos steps is specified by the macrovariable $MOS3. The default
value is $MOS3=5.

If $NUMBER=5 and $JACA=’S’, the following iterative method is used:

$DECOMP=’E’ - The smoothed BICGSTAB trust region method [224].

The method specified by the choice $NUMBER=6 (with $DECOMP=’M’) is described above.

The method specified by the choice $NUMBER=6 with $DECOMP=’M’ is described above. The
iterative methods with $NUMBER=3,4,5,6 use macrovariables $MOS, $MOS2, $MOS4 and $MOS5. The
macrovariable $MOS specifies the precision control as in line search methods. The macrovariable $MOS2
specifies the preconditioning technique as in line search methods. If $HESF=’S’, the macrovariable $MOS4
specifies the rejecting the preconditioner after the incomplete Gill-Murray decomposition.

$MOS4=0 - Preconditioning in both the ill-conditioned and the indefinite cases is suppressed.

$MOS4=1 - Preconditioning in the ill-conditioned case is suppressed.

$MOS4=2 - Preconditioning is always used.

The default value is $MOS4=0. The macrovariable $MOS5 specifies the realization of the incomplete
Gill-Murray decomposition.

$MOS5=1 - The basic incomplete Gill-Murray decomposition is used.

$MOS5=2 - The modified incomplete Gill-Murray decomposition that uses an artificial vector is
used.

The default value is $MOS5=1.

If $NUMBER=7, the following matrix decompositions are possible:

$DECOMP=’M’ - The Gill-Murray decomposition [123] of a symmetric matrix if $MOS2=0 and
$HESF=’D’. The Schnabel-Eskow decomposition [304] of a symmetric matrix with
numerical permutations if $MOS2=1 and $HESF=’D’. The Schnabel-Eskow decompo-
sition [304] of a symmetric matrix with double indexing if $MOS2=2 and $HESF=’D’.
The sparse Gill-Murray decomposition of a symmetric matrix if $HESF=’S’.

$DECOMP=’A’ - The special augmented rectangular matrix is used.

The methods specified by the choices $NUMBER=8 and $NUMBER=9 (with $DECOMP=’M’) are
described above.
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3.37.3 Other methods for direction determination

Except for the line search and the trust region methods, the UFO system contains three special methods
suitable especially for nonlinear least-squares problems:

$TYPE=’T’ - Special trust region methods for nonlinear least squares problems.

$TYPE=’M’ - Modified Marquardt methods for nonlinear least squares problems.

$TYPE=’R’ - Cubic regularization methods.

If $TYPE=’T’, only specifications $NUMBER=1, $NUMBER=2 and $NUMBER=7 can be used.
These specifications have the same meaning as in case $TYPE=’G’, but the implementation is simpler (if
$NUMBER=7, the simplified optimum locally constrained trust region method [199] is used).

If $TYPE=’M’, only specification $NUMBER=1 can be used. In this case, the modified Marquardt
method proposed by Fletcher [103] is applied.

If $TYPE=’R’, only specification $NUMBER=7 can be used. In this case, the optimum variant of the
cubic regularization method described in [42], [43] is applied.

3.38 Methods for stepsize selection

Stepsize selection is a very important part of optimization methods. The UFO system contains two types
of stepsize selection procedures: line search methods and trust region methods.

Line search methods are realized in four modifications specified by the macrovariable $SEARCH:

$SEARCH=’B’ - Basic line search methods based on various interpolation and extrapolation formulas.

$SEARCH=’M’ - Mixed line search methods which control the maximum stepsize like the trust region
methods.

$SEARCH=’N’ - Special nonmonotone line search methods.

$SEARCH=’H’ - Special line search methods described in [141], which are suitable for conjugate gra-
dient methods.

The choice of individual line search procedures is influenced by the order of directional derivatives
being used. This order can be specified by the macrovariable $KDS. The value of the macrovariable $KDS
is usually derived internally from the order of analytically supplied partial derivatives. If this order is
zero, then always $KDS=0. In the opposite case, the value of the macrovariable $KDS can be specified by
the user. If $KDS=0, only the function values are used during the line search. If $KDS=1, the function
values and the first directional derivatives are used. If $KDS=2, then, in addition, the Hessian matrices
or their approximations are computed during the line search (this case is very useful for a line search
implementation of modified Gauss-Newton methods).

The particular interpolation and extrapolation rules are specified by the macrovariable $MES. If
$KDS=0, we have the following possibilities:

$MES=1 - The uniformly increasing extrapolation or bisection interpolation is used.

$MES=2 - Two point quadratic extrapolation or interpolation is used.

$MES=3 - Three point quadratic extrapolation or interpolation is used.

$MES=4 - Three point cubic extrapolation or interpolation is used.

$MES=5 - Special extrapolation or interpolation is used based on the special form of the objective
function.

The default value is $MES=4.

If $KDS=1 or $KDS=2, the following possibilities, based on the first directional derivatives, can be used:

$MES=1 - The uniformly increasing extrapolation or bisection interpolation is used.

$MES=2 - Quadratic extrapolation or interpolation (with one directional derivative) is used.

$MES=3 - Quadratic extrapolation or interpolation (with two directional derivatives) is used.
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$MES=4 - Cubic extrapolation or interpolation [83] is used.

$MES=5 - Homogeneous extrapolation or interpolation [19] is used.

$MES=6 - Conic extrapolation or interpolation [19] is used.

The default value is $MES=4.

More detailed specifications concerning the line search selection can be chosen by using macrovariables
$MES1, $MES2, $MES3:

$MES1=1 - Constant extrapolation is used.

$MES1=2 - Extrapolation specified by the macrovariable $MES is used.

$MES1=3 - Extrapolation is suppressed.

$MES2=1 - Standard line search termination criterion is used.

$MES2=2 - Special termination criterion for nonconvex functions is used.

$MES2=3 - Line search is terminated after at least two function evaluations.

$MES3=1 - Safeguard against rounding errors is suppressed.

$MES3=2 - The first level of safeguard is used.

$MES3=3 - The second level of safeguard is used.

The default values are $MES1=2, $MES2=2, $MES3=2.

Another useful specification for the line search selection is a termination criterion which is determined
by using the macrovariable $KTERS:

$KTERS<0 - The nonmonotone line search procedure proposed in [135] is used. The absolute value
of the macrovariable $KTERS, which cannot be greater than 10, gives the number of
nonmonotone steps.

$KTERS=1 - The perfect stepsize. The relative precision of the stepsize parameter is given by the
value $EPS3 .

$KTERS=2 - The Goldstein stepsize [129]. The termination precision is given by the value $EPS1.

$KTERS=3 - The weak Wolfe stepsize [55]. The termination precision is given by the values $EPS1
and $EPS2.

$KTERS=4 - The strong Wolfe stepsize [107]. The termination precision is given by the values
$EPS1 and $EPS2.

$KTERS=5 - The Armijo stepsize [10]. The termination precision is given by the value $EPS1.

$KTERS=6 - The first stepsize. The stepsize selection is terminated after the first function evalu-
ation.

The default values are $KTERS=5 if $KDS=0 or $KTERS=3 if $KDS=1.

The last useful specification for the line search methods is the initial stepsize choice which is determined
by the macrovariable $INITS. The initial stepsize is usually computed by the rule

α = min(c1,−c2(∆F/sT g)),

where sT g is the initial directional derivative and ∆F = F − Fmin or ∆F = Fold − F if the value of the
macrovariable $INITS is positive or negative respectively. The absolute value of the macrovariable $INITS
determines coefficients c1 and c2.

$INITS=±1 - Values c1 = 1 and c2 = 0 are used.

$INITS=±2 - Values c1 = 1 and c2 = 4 are used.

$INITS=±3 - Values c1 = 1 and c2 = 2 are used.

$INITS=±4 - Values c1 = 0 and c2 = 2 are used.

The default value depends on the optimization method used. Usually $INITS=-3 for the nonlinear conju-
gate gradient methods and $INITS=2 for the variable metric or the modified Newton methods.

Trust region methods are realized in two modifications specified by the macrovariable $SEARCH:
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$SEARCH=’B’ - Basic trust region methods with stepsize control based on the comparison of both the
actual and the predicted function decreases.

$SEARCH=’M’ - Mixed trust region methods which use interpolation formulas for stepsize reduction
like the line search methods [276].

Trust region methods are also influenced by using the macrovariable $KTERS. If $KTERS<0, then
the nonmonotone trust region procedure proposed in [89] is used. The absolute value of the macrovariable
$KTERS, which cannot be greater than 10, gives the number of nonmonotone steps.

3.39 Methods for numerical differentiation

The UFO system computes derivatives of the model function (approximating functions, constraint func-
tions) numerically whenever they are not given analytically. In this case, the UFO preprocessor generates
a corresponding part of the UFO source program. The main problem of a numerical differentiation is a
difference determination which has to be chosen in such a way that the total influence of both the can-
cellation and the roundoff error is as small as possible. There are three possibilities in the UFO system
which are distinguished by using the macrovariable $MCG:

$MCG=0 - The simple difference determination described in [93] is used.

$MCG=1 - The optimum difference determination proposed in [126] is used.

$MCG=2 - The optimum difference determination proposed in [324] is used.

The default option is $MCG=2. The above possibilities are used for a computation of the model function
first order derivatives. The others (second order derivatives or derivatives of the approximating functions
and constraint functions) are always computed with the simple difference determination.

3.40 Methods for objective function evaluation in the case of dynamical systems optimization

If either $MODEL=’DF’ or $MODEL=’DQ’, the objective function is computed from the solution of an
initial value problem for ordinary differential equations. The initial value problem is solved and the integral
criterion is evaluated by using integration methods specified by the macrovariable $SOLVER as described
in Section 3.36. If the partial derivatives of all the functions used are given analytically, the gradient of
the objective function is computed by integration methods. There are two possibilities specified by the
macrovariable $SYSTEM:

$SYSTEM=’F’ - Forward integration using an augmented system of ordinary differential equations.

$SYSTEM=’B’ - Backward integration using the adjoint system of ordinary differential equations.

The default value is $SYSTEM=’F’. In case of modified Gauss-Newton methods ($CLASS=’GN’), an
approximation of the Hessian matrix is also computed by using forward integration of an augmented
system.

3.41 Global optimization methods

Global optimization methods are used if $EXTREM=’G’ is specified. The global optimization methods use
local optimization methods for finding local minima. Therefore, the particular local optimization method
has to be chosen by using the macrovariables $CLASS, $TYPE and others. Individual global optimization
methods are specified by using the macrovariables $GCLASS and $GTYPE. The UFO system contains
four classes of global optimization methods:

$GCLASS=1 - Random search methods. These methods are simple and robust but less efficient.

$GCLASS=2 - Continuation methods. These methods use some penalty functions which are ad-
justed after reaching an arbitrary local minimum so that another local minimum is
found.
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$GCLASS=3 - Clustering methods. These methods are based on randomly generated sample points
which are processed by using clustering algorithms to determine basins of attraction
(clusters) of the individual minima. The basins of attraction (clusters) obtained are
not searched repeatedly.

$GCLASS=4 - Multi-level methods. Modern stochastic methods which involve a combination of
sampling and local search techniques. These methods combine strong theoretical
properties with an attractive computational behavior. These methods are simpler
but more efficient than the clustering methods.

The default value is $GCLASS=4.

If $GCLASS=1, we can choose four types of global optimization methods:

$GTYPE=1 - Single-start methods. Random points, uniformly distributed in a given region, are
generated and a local minimization method is started from the point with the lowest
function value.

$GTYPE=2 - Multi-start methods. Random points, uniformly distributed in a given region, are
generated and local minimization is started from every point. The local minima
obtained are compared and selected.

$GTYPE=3 - Modified multi-start methods. Random points, distributed uniformly in a given
region, are generated and local minimization is started whenever a point with a lower
function value than that just obtained is found.

$GTYPE=4 - Bayesian reduced multi-start methods [20]. Random samples of points are repeatedly
generated. Every random sample is reduced and local minimization is started from
all points belonging to the reduced sample. The local minima obtained are compared
and selected. This process is repeated while the Bayesian termination criterion is not
satisfied.

The default value is $GTYPE=4.

If $GCLASS=2, we can choose three types of global optimization methods:

$GTYPE=1 - Tunneling function methods [169]. These methods consist of two phases: a local
minimization phase and a tunneling phase. The starting point for the second phase
is the local minimum. At the end of the tunneling phase a new point with a function
value equal to or lower than the starting point is found.

$GTYPE=2 - Combined tunneling function and random search methods. In this case a random
search is used in the tunneling phase if the minimization of a tunneling function has
failed to find a new starting point.

$GTYPE=3 - Filled function methods [117], [118]. The idea of these methods is based on a filled
function. This function has a maximum in the point of a known minimum of the
objective function. On the other hand, this function does not have minimizers nor
saddle points in any basin of a higher minimizer of the objective function, but it does
have a minimizer or a saddle point in a basin of a lower minimizer of the objective
function.

The default value is $GTYPE=2.

If $GCLASS=3, we can choose two types of global optimization methods:

$GTYPE=1 - Density clustering method [21]. Density clustering refers to a class of clustering
techniques by using nonparametric probability density estimates to form clusters. All
unclustered points from a reduced sample, which are within the threshold distance
from the seen point, are added to the cluster.
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$GTYPE=2 - Single linkage clustering method [21]. In this case, the next two clusters to be merged
are those for which the distance between the nearest points is the smallest. When
this distance becomes larger than the threshold distance, the procedure is stopped.
Starting with each point in a separate cluster, the points at distances smaller than
the threshold distance are linked. A cluster is recognized as a set of points linked
together.

The default value is $GTYPE=2.

If $GCLASS=4, we can choose three types of global optimization methods:

$GTYPE=1 - Multi-level single linkage method [298]. In this case, the function values of the
sample points are used in a very simple manner to obtain a very powerful method.
The local search procedure is applied to every sample point, except if there is another
sample point within the critical distance which has a smaller function value. Clusters
can be constructed by associating a point with a local minimum if there exists a chain
of points linking it to that minimum. This is done so that the distance between each
successive pair is, at most, equal to the critical distance and the function value is
decreasing along the chain. A point in this way could be assigned to more than one
minimum.

$GTYPE=2 - Multi-level mode analysis method [298]. This method is a generalization of the mode
analysis method. The region is partitioned into cells. After the sample reduction, it
is determined which cells contain enough points to be ”full”. For each full cell the
function value of the cell is defined to be equal to the smallest function value of any of
the sample points in the cell. Finally, for every full cell, local minimization is applied
except if a cell has a neighboring cell which is full and has a smaller function value.

$GTYPE=3 - Modified multi-level single linkage method. This is a multi level single linkage
method with some modifications which are described in [298].

The default value is $GTYPE=3.

The number of points randomly generated in the given region can be specified by using the macrovari-
able $MNRND. The default value is usually 100+20*NF. Since it depends on the number of variables and
for NF>20 it is too large we recommend to use global optimization methods up to 20 variables only. If
we use clustering or multi level single linkage methods ($GCLASS=3 or $GCLASS=4), we can specify
additional parameters.

$MNLMIN - Maximum considered number of local minima. The default value is 50+20*NF.

$GAMA - Reduction of random sample (typically 0.1 – 0.2). A greater value of GAMA usually
leads to a greater number of local minima, but it requires a greater amount of work.

$SIGMA - Parameter of cluster or single linkage termination (typically 1 – 8).
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4 Input possibilities in the UFO system

The UFO system has many input possibilities including interactive dialogues. These input possibilities
can be divided into three basic groups which are batch mode, text dialogue mode and graphic dialogue
mode. Batch and dialogue modes can be combined. The basic means for the batch and combined modes
is the UFO control language.

4.1 The UFO control language

The form of the UFO source program can be determined by using the statements of the UFO control
language. The UFO control language is based on the batch editing language (BEL) [327] described in
Appendix B. The UFO control language contains four types of instructions:

1. Standard Fortran 77 instructions which can be written in the free format.

2. Fortran 77 instructions containing macrovariables. These instructions get a final form after the first
pass of the UFO preprocessor.

3. Substitutions and directives. These macroinstructions control the UFO preprocessor execution.

4. Special substitutions. These macroinstructions are special tools of the UFO control language that
realize the most useful sets of single instructions.

Standard Fortran 77 instructions used in the UFO control language have some extensions and limita-
tions. The main extension is the free format. The instructions need not have a limited length, they can
be written everywhere in the input file and if they are written in the same line, the character ’;’ is used
to separate the instructions. The continuation of an instruction is specified by the character ’& ’. The
main limitation concerns the application of instructions in the UFO source program. Therefore, statement
numbers greater than 9999 cannot be used, comments can be introduced by the character ′∗′ only and the
only continuation character can be ’& ’. At the same time, it is recommended to use identifiers beginning
with the character ’W’ which are not used in the UFO system.

Macrovariables used in the UFO system begin with the character ’$’ and are supposed to be of the
type character. Their values are always in the form of a string of characters which can be sometimes
interpreted as an integer or a real or a logical constant. The chief significance of the macrovariables is
their use in substituting their values for their names in the Fortran 77 statements. In this case, we place
the macrovariable (beginning with ’$’) in the text, but if it is followed by a letter or a digit we have to use
brackets. For example if we write

$FLOAT W(100)
or

CALL UD$HESF$TYPE$DECOMP$NUMBER
or

X(1)=1.0$(P)0

and if the values of $FLOAT, $HESF, $TYPE, $DECOMP, $NUMBER and $P are ’REAL∗8’ (this is de-
fault), ’D’, ’L’, ’G’, ’1’ and ’D’ (this is default), we get REAL∗8 W(100) or CALL UDDLG1 or X(1)=1.0D0
respectively, after the UFO preprocessor application. The values of macrovariables can be defined and
changed by assignments or by special directives as will be shown later.

Substitutions and directives are very important for the UFO control language since they make the
substitutions of texts, definitions and changes of macrovariables, branching, loops, etc., possible. We
briefly describe the most useful of them. A more detailed description is given in Appendix B.

1. Assignment: The assignment of a string of characters for a macrovariable is specified by the macroin-
struction $MACRO=’value’. For example, in order to obtain the result given above, we have to set
$HESF=’D’, $TYPE=’L’, $DECOMP=’G’, $NUMBER=1 (the integers do not need to be substi-
tuted as strings).
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2. Text insertion: If we write

$SET(MACRO) or $ADD(MACRO)

text text

$ENDSET $ENDADD

then a given text (that can contain a large number of Fortran 77 statements) is inserted into the
macrovariable $MACRO. The macroinstruction $SET is used for the definition of a new macrovari-
able. The macroinstruction $ADD appends a new text into the old macrovariable so that it can be
used repeatedly.

3. Logical substitutions: The macrovariables $INT, $REAL, $LOG and $DEF have logical values. If
we write $INT(MACRO) (or $REAL(MACRO) or $LOG(MACRO)), the resulting value is either
.TRUE., if the value of the macrovariable $MACRO is an integer constant (or a real constant or
a logical constant), or .FALSE. in the opposite case. If we write $DEF(MACRO), the value of
$DEF is either .TRUE., if the macrovariable $MACRO was previously defined (by the substitution
$MACRO=’value’ or by using macroinstructions $SET and $ADD), or .FALSE. in the opposite case.
This possibility can be used for branching. If we use the directive $ERASE(MACRO), the previously
defined macrovariable $MACRO becomes undefined (so that $DEF(MACRO)=.FALSE.).

4. List of items macrovariables: Values of macrovariables can be lists of items, i.e. they can have a
more complicated form $MACRO=’item 1 \item 2\...\item n’ where every item corresponds to one
value. The list of items macrovariables use pointers which point out the current items. The current
item can be obtained by the substitution $DATA(MACRO) which also moves the pointer to the next
item. The directive $RESTORE(MACRO) returns the pointer to the first item.

5. Branching: This possibility is very similar to the branching in the Fortran 77 language:

$IF(condition)

statements

$ELSEIF(condition)

statements

$ELSE

statements

$ENDIF

Conditions can be logical constants .TRUE., .FALSE., or logical macrovariables $INT(MACRO),
$REAL(MACRO), $LOG(MACRO), $DEF(MACRO), or they can have a form of comparisons
MACRO=MACRO1, MACRO=’value’ etc. (besides the relation =, we can also use other rela-
tions < or > or <= or >= or <>). Branching is used in the UFO preprocessor stage and has an
influence on the form of the UFO source program.

6. Loops: The basic looping directives have the following form (similarly as in the Fortran 77 or Pascal
languages):

$DO(MACRO=INDEX1,INDEX2,INDEX3)

statements

$ENDDO

or
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$REPEAT

statements

$UNTIL(condition)

For example, if we set $NF=2, $NC=3 and write

$DO(I=1,NF,1)

$DO(J=1,NC,1)

CALL SUB($I,$J,$I.0D2+$J.0D0)

$ENDDO

$ENDDO

then the UFO preprocessor generates the sequence

CALL SUB(1,1,1.0D2+1.0D0)

CALL SUB(1,2,1.0D2+2.0D0)

CALL SUB(1,3,1.0D2+3.0D0)

CALL SUB(2,1,2.0D2+1.0D0)

CALL SUB(2,2,2.0D2+2.0D0)

CALL SUB(2,3,2.0D2+3.0D0)

Similarly, if we set $FLOAT=’REAL*8’, $N=20, $MACRO=’X($N)\G($N)\H($N,$N)\.END.’, and
write

$REPEAT

$I=’$DATA(MACRO)’

$IF(I<>’.END.’) $FLOAT $I

$UNTIL(I=’.END.’)

then the UFO preprocessor generates the sequence

REAL*8 X(20)

REAL*8 G(20)

REAL*8 H(20,20)

7. File substitutions: Suppose we have a file with a name file name.extension. Then, we can include it
into the UFO source program by using the macroinstructions

$INCLUDE(’file name.extension’)

or

$SUBST(’file name.extension’)

The main difference between these possibilities is that the directive $INCLUDE includes a text
without change (it has to be a regular Fortran 77 text with a fixed format) while the directive
$SUBST substitutes a text executed consecutively by the UFO preprocessor (so that it can contain
the macrovariables and macroinstructions and can be written in the free format). Moreover, the
directives $SUBST can be nested. This possibility is widely used for the UFO source program
generation by using nested templates. If the included file has the name file name.I, we can use a
simpler form without extension. For example, the file UZLINS.I can be substituted by using the
macroinstruction $SUBST(’UZLINS’).
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8. Special substitutions: Besides macroinstructions of the batch editing language BEL, the UFO control
language contains special substitutions which realize sets of instructions and are useful for controlling
the UFO preprocessor:

$BATCH - Switch to the batch mode.

$DIALOGUE - Switch to the default dialogue mode (text or graphic).

$TDIALOGUE - Switch to the text dialogue mode.

$GDIALOGUE - Switch to the graphic dialogue mode.

$GLOBAL - Global declarations.

$INITIATION - Initiation of the global variables.

$INPUT - User supplied input.

$OUTPUT - User supplied output.

$METHOD - Generation of the optimization method.

$MODERASE - Cancellation of the current model and the current system settings.

$METERASE - Cancellation of the current method.

$RUNERASE - Cancellation of the current method and the current system settings.

$VARERASE - Clearing the common variables.

$TSTART - Start of the time measurement.

$TSTOP - Termination of the time measurement and print of the measured time.

$END - End of the optimization block.

$STANDARD - Standard optimization block: The macroinstruction $STANDARD substi-
tutes the sequence of macroinstructions $GLOBAL, $INITIATION, $INPUT,
$TSTART, $METHOD, $TSTOP, $OUTPUT.

9. Comments: Every line beginning with $REM is a comment line, which is ignored by the macropro-
cessor.

Moreover $UYTES1, $UYTES2, $UYTES3, $UOTES4, $UKMAI1, $UKMCI1, $UKMCI2 are simplified
substitutions of subroutines UYTES1, UYTES2, UYTES3, UOTES4, UKMAI1, UKMCI1, UKMCI2,
respectively, and $SETAG, $SETCG are simplified calling statements (Sections 2.6 and 2.14).

We have described basic possibilities of the UFO control language that are sufficient for preparing the
batch input file. More details are given in subsequent chapters and especially in Appendix B. Usually, the
macrovariable $STANDARD is used if one optimization problem is solved by one optimization method.
The following three examples show possibilities how to use various methods for solving various optimization
problems. The first example demonstrates the use of the UFO control language for solving one optimization
problem by using two different optimization methods: the robust but less efficient pattern-search method
($CLASS=’HM’, $TYPE=’P’) and the superlinearly convergent variable metric method with numerical
computation of gradients ($CLASS=’VM’). The input template has the form:

$REM +---------------------------------------------------------------+

$REM + MODEL DESCRIPTION +

$REM +---------------------------------------------------------------+

$SET(INPUT)

X(1)=-1.2D0; X(2)= 1.0D0

$ENDSET

$SET(FMODELF)

FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET
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$NF=2

$REM : output specifications

$LOUT=2

$MOUT=1

$NOUT=1

$REM +---------------------------------------------------------------+

$REM + START OF THE PROGRAM GENERATION +

$REM +---------------------------------------------------------------+

$BATCH; $REM : the batch mode

$GLOBAL; $REM : global declarations

$TSTART; $REM : start of time measurement

$REM +---------------------------------------------------------------+

$REM + THE FIRST METHOD +

$REM +---------------------------------------------------------------+

$REM : parameters of the first method

$XDEL=’1.0$P-2’

$TOLB=’1.0$P-2’

$MIT=800

$MFV=800

$CLASS=’HM’

$TYPE=’P’

$INITIATION; $REM : model specification and generation

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$METERASE; $REM : clearing parameters of the first method

$REM +---------------------------------------------------------------+

$REM + THE SECOND METHOD +

$REM +---------------------------------------------------------------+

$REM : parameters of the second method

$HESF=’D’

$TOLX=’1.0$P-16’

$TOLF=’1.0$P-16’

$TOLG=’1.0$P-8’

$TOLB=’1.0$P-16’

$MIT=800

$MFV=800

$CLASS=’VM’

$TYPE=’L’

$DECOMP=’I’

$NUMBER=1

$METHOD; $REM : method specification and generation

$TSTOP; $REM : print of the CPU time

$END; $REM : end of the program generation

The text output file follows:

CLASS = HM - PN1 UPDATE = N MODEL = FF HESF = N NF = 2

0 NIT= 53 NFV= 222 NDC= 0 FV BOUND F= 0.5266202783E-02

FF = 0.5266202783D-02
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X = 0.9322729460D+00 0.8717390863D+00

CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 2

0 NIT= 12 NFV= 42 NFG= 0 FV BOUND F= 0.1936407754E-20 G=0.607D-09

FF = 0.1936407754D-20

X = 0.1000000000D+01 0.1000000000D+01

TIME= 0:00:00.00

The second example demonstrates the use of the UFO control language for solving three similar opti-
mization problems by the same optimization method. All problems concern nonlinear approximation (sum
of values and sum of squares) with the same number of variables. The input template has the form:

$REM +---------------------------------------------------------------+

$REM + GLOBAL PARAMETERS +

$REM +---------------------------------------------------------------+

$NF=100

$NA=500

$MA=2000

$M=9000

$REM : output specifications

$LOUT=2

$MOUT=1

$NOUT=0

$REM +---------------------------------------------------------------+

$REM + METHOD SELECTION +

$REM +---------------------------------------------------------------+

$REM : parameters of the method

$TOLX=’1.0$P-10’

$TOLF=’1.0$P-15’

$TOLG=’1.0$P-5’

$JACA=’S’

$HESF=’S’

$MIT=800

$MFV=1200

$CLASS=’VM’

$TYPE=’L’

$DECOMP=’M’

$NUMBER=3

$UPDATE=’B’

$MOS2=0

$NEXT=1

$REM +---------------------------------------------------------------+

$REM + START OF THE PROGRAM GENERATION +

$REM +---------------------------------------------------------------+

$BATCH; $REM : the batch mode $GLOBAL; $REM : global declarations

$REM +---------------------------------------------------------------+

$REM + THE FIRST MODEL +

$REM +---------------------------------------------------------------+
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$MODEL=’AF’

$SET(INPUT)

CALL EIUB14(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET

$SET(FMODELA)

CALL EAFU14(NF,KA,X,FA,NEXT)

$ENDSET

$SET(GMODELA)

CALL EAGU14(NF,KA,X,GA,NEXT)

$ENDSET

$COLLECTION=’Y’; $REM : cycle for testing

$NEXT=3; $REM : number of steps in the cycle

$INITIATION; $REM : model specification and generation

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$MODERASE; $REM : clearing parameters of the first model

$REM +---------------------------------------------------------------+

$REM + THE SECOND MODEL +

$REM +---------------------------------------------------------------+

$MODEL=’AQ’

$SET(INPUT)

CALL EIUB15(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET

$SET(FMODELA)

CALL EAFU15(NF,KA,X,FA,NEXT)

$ENDSET

$SET(GMODELA)

CALL EAGU15(NF,KA,X,GA,NEXT)

$ENDSET

$NEXT=1; $REM : THE PROBLEM NUMBER

$INITIATION; $REM : model specification and generation

$INPUT; $REM : the user input

$TSTART; $REM : start of time measurement

$METHOD; $REM : method specification and generation

$TSTOP; $REM : print of the CPU time

$MODERASE; $REM : clearing parameters of the second model

$REM +---------------------------------------------------------------+

$REM + THE THIRD MODEL +

$REM +---------------------------------------------------------------+

$SET(INPUT)

CALL EIUB18(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET

$SET(FMODELA)

CALL EAFU18(NF,KA,X,FA,NEXT)

$ENDSET

$SET(GMODELA)

CALL EAGU18(NF,KA,X,GA,NEXT)

$ENDSET
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$COLLECTION=’Y’; $REM : cycle for testing

$NEXT=5; $REM : number of steps in the cycle

$INITIATION; $REM : model specification and generation

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$END; $REM : end of the program generation

The text output file follows:

CLASS = VM - LM3 UPDATE = B MODEL = AF HESF = S NF = 100

1 NIT= 303 NFV= 364 NFG= 364 GRAD TOL F= 0.3916196246E-14 G=0.229D-05

2 NIT= 104 NFV= 168 NFG= 168 GRAD TOL F= 10.69009184 G=0.993D-06

3 NIT= 35 NFV= 38 NFG= 38 GRAD TOL F= 0.5708941253E-10 G=0.567D-05

TOTAL NIT= 442 NFV= 570 NFG= 570 NDC= 0 * 3

NCG= 9078 NLS= 125 NSC= 0 NUP= 25779

NRS= 3 NMX= 0 NAD= 0 NRM= 0

TIME= 0:00:00.09

CLASS = VM - LM3 UPDATE = B MODEL = AQ HESF = S NF = 100

1 NIT= 306 NFV= 389 NFG= 389 GRAD TOL F= 0.5452508290E-14 G=0.161D-05

TIME= 0:00:00.08

CLASS = VM - LM3 UPDATE = B MODEL = AQ HESF = S NF = 100

1 NIT= 38 NFV= 40 NFG= 40 GRAD TOL F= 0.3359765546E-10 G=0.268D-05

2 NIT= 34 NFV= 36 NFG= 36 GRAD TOL F= 0.4552663103E-12 G=0.919D-06

3 NIT= 4 NFV= 5 NFG= 5 GRAD TOL F= 0.8693979881E-14 G=0.375D-07

4 NIT= 12 NFV= 16 NFG= 16 GRAD TOL F= 7.086281648 G=0.655D-06

5 NIT= 69 NFV= 132 NFG= 132 GRAD TOL F= 320.3198802 G=0.940D-05

TOTAL NIT= 157 NFV= 229 NFG= 229 NDC= 0 * 5

NCG= 2517 NLS= 67 NSC= 0 NUP= 8284

NRS= 5 NMX= 0 NAD= 0 NRM= 0

The third example demonstrates the use of the UFO control language for solving one optimization
problem by using two different models: general objective function and sum of squares. Three optimization
methods: the robust but less efficient heuristic pattern-search method ($CLASS=’HM’, $TYPE=’P’), the
variable metric method with numerical computation of gradients ($CLASS=’VM’) and the modified Gauss-
Newton method with numerical computation of Jacobian matrices ($CLASS=’GN’, $UPDATE=’F’) are
used. The input template has the form:

$REM +---------------------------------------------------------------+

$REM + GLOBAL PARAMETERS +

$REM +---------------------------------------------------------------+

$REM : declaration of the user variables

$FLOAT W,WA,WB,WC,WM

$REM : output specifications

$LOUT=2

$MOUT=1

$NOUT=1

$REM +---------------------------------------------------------------+

$REM + START OF THE PROGRAM GENERATION +

$REM +---------------------------------------------------------------+
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$BATCH; $REM : the batch mode

$GLOBAL; $REM : global declarations

$REM +---------------------------------------------------------------+

$REM + THE FIRST MODEL +

$REM +---------------------------------------------------------------+

$SET(INPUT)

X(1)=ONE ; X(2)=TWO ; X(3)=ONE

X(4)=ONE ; X(5)=ONE ; X(6)=ONE

XMAX=TEN

FMIN=ZERO

$ENDSET

$SET(FMODELF)

FF=ZERO

DO 2 KA=1,20

W=$DBLE(KA)/TEN

WA=EXP(-W*X(1))

WB=EXP(-W*X(2))

WC=EXP(-W*X(3))

WM=EXP(-W)-FIVE*EXP(-TEN*W)+THREE*EXP(-FOUR*W)

FF=FF+(X(4)*WA-X(5)*WB+X(6)*WC-WM)**2

2 CONTINUE

FF=HALF*FF

$ENDSET

$NF=6

$REM +---------------------------------------------------------------+

$REM + THE FIRST METHOD +

$REM +---------------------------------------------------------------+

$XDEL=’1.0$P-2’

$TOLB=’1.0$P-1’

$MIT=800

$MFV=8000

$CLASS=’HM’

$TYPE=’P’

$INITIATION; $REM : model specification and generation

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$METERASE; $REM : clearing parameters of the first method

$REM +---------------------------------------------------------------+

$REM + THE SECOND METHOD +

$REM +---------------------------------------------------------------+

$TOLX=’1.0$P-8’

$TOLF=’1.0$P-8’

$TOLG=’1.0$P-2’

$TOLB=’1.0$P-2’

$MIT=800

$MFV=8000

$HESF=’D’

$CLASS=’VM’

$TYPE=’L’
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$DECOMP=’I’

$NUMBER=1

$METHOD; $REM : method specification and generation

$METERASE; $REM : clearing parameters of the second method

$MODERASE; $REM : clearing parameters of the first model

$REM +---------------------------------------------------------------+

$REM + THE SECOND MODEL +

$REM +---------------------------------------------------------------+

$SET(INPUT)

DO 3 KA=1,NA

W=$DBLE(KA)/TEN

AM(KA)=EXP(-W)-FIVE*EXP(-TEN*W)+THREE*EXP(-FOUR*W)

3 CONTINUE

$ENDSET

$SET(FMODELA)

W=$DBLE(KA)/TEN

WA=EXP(-W*X(1))

WB=EXP(-W*X(2))

WC=EXP(-W*X(3))

FA=X(4)*WA-X(5)*WB+X(6)*WC

$ENDSET

$NA=20

$NAL=0

$KBA=1

$MODEL=’AQ’

$REM +---------------------------------------------------------------+

$REM + THE THIRD METHOD +

$REM +---------------------------------------------------------------+

$TOLX=’1.0$P-16’

$TOLF=’1.0$P-16’

$TOLG=’1.0$P-8’

$TOLB=’1.0$P-16’

$MIT=800

$MFV=8000

$CLASS=’GN’

$TYPE=’G’

$DECOMP=’M’

$NUMBER=7

$UPDATE=’F’

$JACA=’D’

$HESF=’D’

$INITIATION; $REM : model specification and generation

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$END; $REM : end of the program generation

The text output file follows:

CLASS = HM - PN1 UPDATE = N MODEL = FF HESF = N NF = 6

0 NIT= 18 NFV= 176 NDC= 0 FV BOUND F= 0.9758203329E-01
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FF = 0.9758203329D-01

X = 0.1577350877D+01 0.3818216079D+01 0.1711759499D+01 0.1324516197D+01

0.1282806727D+01 0.1275838294D+01

CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 6

0 NIT= 9 NFV= 72 NFG= 0 GRAD TOL F= 0.5384948810E-01 G=0.740D-02

FF = 0.5384948810D-01

X = 0.2184135468D+01 0.5676842761D+01 0.1972958227D+01 0.1753256141D+01

0.2957973274D+01 0.1724924127D+01

CLASS = GN - GM7 UPDATE = F MODEL = AQ HESF = D NF = 6

0 NIT= 14 NFV= 105 NFG= 0 FV BOUND F= 0.3963563826E-30 G=0.171D-14

F = 0.3963563826D-30

X = 0.4000000000D+01 0.1000000000D+02 0.1000000000D+01 0.3000000000D+01

0.5000000000D+01 0.1000000000D+01

4.2 The batch mode

A switch to the batch mode is realized by using the special substitution $BATCH. If we want to process
either the batch mode or the mixed mode, we have to prepare a batch input file written in the UFO
control language. This input file prescribes the structure of the UFO source program. If a macrovariable
is used, it has to be the one defined previously. Therefore, definitions of macrovariables usually lie at the
beginning of the input file. Many macrovariables serve for defining a given optimization problem. The most
important among them are the macrovariable $INPUT which determines initial input values (user supplied
input) and macrovariables which define problem functions, specifically the model (or objective) function,
approximating functions for nonlinear approximation, constraint functions for nonlinear programming,
state functions, initial functions and the terminal function for optimization of dynamical systems. These
functions are specified by using special macrovariables whose names consist of three parts. The first part
can contain letters F, G, D, H or their combinations:

F - Function value.

G - Gradient with respect to basic variables.

D - Gradient with respect to state variables.

H - Hessian matrix with respect to basic variables.

FG - Function value and gradient with respect to basic variables.

FD - Function value and gradient with respect to state variables.

GD - Gradient with respect to basic variables and gradient with respect to state variables.

FGD - Function value, gradient with respect to basic variables and gradient with respect to state
variables.

FGH - Function value, gradient with respect to basic variables and Hessian matrix with respect to
basic variables.

The second part always has the form MODEL. The third part can contain letters F, A, C, E, Y and also
an additional letter S:

F - The model function or the terminal function.

A - The selected approximating function.

AS - All approximating functions.

C - The selected constraint function.

CS - All constraint functions.

E - The selected state function.

ES - All state functions.

Y - The selected initial function.

YS - All initial functions.
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The following combinations are possible:

$FMODELF $FMODELA $FMODELC $FMODELE $FMODELY
$FMODELAS $FMODELCS $FMODELES $FMODELYS

$GMODELF $GMODELA $GMODELC $GMODELE $GMODELY
$GMODELAS $GMODELCS $GMODELES $GMODELYS

$DMODELF $DMODELA $DMODELE
$DMODELES

$HMODELF $HMODELA $HMODELC
$HMODELAS $HMODELCS

$FGMODELF $FGMODELA $FGMODELC $FGMODELE $FGMODELY
$FGMODELAS $FGMODELCS $FGMODELES $FGMODELYS

$FDMODELF $FDMODELA $FDMODELE
$FDMODELES

$GDMODELF $GDMODELA $GDMODELE
$GDMODELES

$FGDMODELF $FGDMODELA $FGDMODELE
$FGDMODELES

$FGHMODELF $FGHMODELA $FGHMODELC
$FGHMODELAS $FGHMODELCS

The choice of a suitable way for problem function definitions is ambiguous and problem dependent.
We can only give several remarks:

1. The basic and most general way is the use of different macrovariables for different quantities (values,
gradients, Hessian matrices) together with an independent evaluation of individual functions (the last
letter is different from S). This way saves the computer storage and frequently also the computational
time.

2. Sometimes, evaluations of gradients require function values. In this case, it can be advantageous to
compute values and gradients simultaneously. A similar consideration also holds for Hessian matrices.

3. Even if simultaneous evaluations of all approximating (constraint, state, initial) functions increase
storage requirements, it can be advantageous if there are complicated computations common for all
such functions, and also if a problem has a low dimension or a sparse structure. It is frequently
advantageous for the evaluation of state and initial functions when the dynamical systems are opti-
mized.

4. If the gradients of approximating (constraint, state, initial) functions are computed simultaneously
(the last letter is equal to S), then also function values have to be computed simultaneously. Similarly,
if the Hessian matrices are computed simultaneously, then also function values and gradients have
to be computed simultaneously.

A simple example of a batch input file was shown in Section 1.4. We repeat it here with some explanations:

$REM : model specifications

$SET(INPUT)

X(1)=-1.2D0; X(2)= 1.0D0

$ENDSET

$SET(FMODELF)

FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET

$NF=2

$REM : the default method is used

$REM : print specifications
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$MOUT=1

$NOUT=1

$REM : the batch mode is used

$BATCH

$REM : the standard form of the source program is used

$STANDARD

By using the macrovariable $INPUT, we specify the initial values of variables x1 = −1.2 and x2 = 1.0. By
using the macrovariable $FMODELF, we specify the model function value (the model function gradient
is not specified, it will be computed numerically). The macrovariable $NF defines the number of variables
and $MOUT, $NOUT are print specifications. The macroinstruction $BATCH switches the mode to the
batch mode. The macroinstruction $STANDARD defines the standard form of the UFO source program.
Descriptions of more complicated problems are shown in Chapter 7.

In the above example, a direct definition of a model function value is used. We can also use indirect
specifications by means of the Fortran 77 subroutines or the files prepared beforehand. Suppose that the
model function value is defined by using the subroutine EFFU01 or is specified in the file FVAL.FOR. Then,
we can write:

$SET(FMODELF)
CALL EFFU01(NF,X,FF,NEXT)

$ENDSET
or

$SET(FMODELF)
$INCLUDE(’FVAL.FOR’)

$ENDSET
or

$SET(FMODELF)
$SUBST(’FVAL.FOR’)

$ENDSET

The last possibility is useful if the model function value specification is written in a free format or it
contains the BEL macroinstructions.

If we need to utilize user supplied subroutines, we can include them into the UFO source program by
using the macrovariable $SUBROUTINES:

$SET(SUBROUTINES)
user supplied subroutines

$ENDSET

In this case, some exceptions laid on the text of user supplied subroutines forced by the UFO preprocessor
have to be satisfied. All comments have to begin with the character ’*’, the continuation line has to begin
with the character ’&’, the character ’$’ has to be replaced by ’$$’ and the character ’;’ does not have to
be present.

The batch input file should also contain optimization method selection. Fortunately, this selection is not
critical since the optimization method can be chosen automatically by using knowledge bases contained in
the UFO system templates. Here we will only demonstrate some possibilities. The following macrovariables
have the greatest influence on the optimization method selection (see Chapter 3):

$FORM - Form of optimization methods (recursive quadratic programming, primal interior
point, primal-dual interior point, nonsmooth equarions).

$CLASS - Class of optimization methods (heuristic, conjugate gradient, variable metric, vari-
able metric with limited storage, modified Newton, truncated Newton, Gauss-Newton,
quasi-Newton, quasi-Newton with limited storage, proximal bundle, bundle-Newton).

$TYPE - Type of optimization methods (line search, trust region, Levenberg-Marquardt).
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$DECOMP - Type of matrix decomposition (original matrix, Choleski decomposition, inversion).

$NUMBER - Individual methods for direction determination (various direct, various iterative).

$UPDATE - Type of variable metric or quasi-Newton update.

$MERIT - Type of line search merit function (penalty, exact penalty, filter).

A more detailed description of these choices together with other choices ($MET, $MET1, $MET2, $MET3,
$MES, $MES1, $MES2, $MES3, $MOS, $MOS1, $MOS2, $MOS3) is given in Section 3.

4.3 The text dialogue mode

A switch to the text dialogue mode is realized by using the special substitution $TDIALOGUE. This is
equivalent to the substitution $DIALOGUE in the UNIX version of the UFO system. If this is the case,
a sequence of questions appear on the screen in the text form. Each question, which is placed in its own
frame, consists of the macrovariable description usually followed by the list of its possible values. The
name of a macrovariable together with its default value is written on the top of the frame. We have two
possibilities for an answer. First, the required value can be entered from the keyboard. Secondly, we can
press ENTER to choose the default value. After the assignment of a value to the macrovariable, a new
question immediately appears on the screen until the last one is exhausted. The dialogue mode can be
terminated by entering the character ’ !’ from the keyboard. We demonstrate four questions as an example:

AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,

HERE THE STARTING POINT, BOUNDS FOR VARIABLES,

USER SUPPLIED INPUT:

? INPUT ( ) ?

Here a user supplied input is expected. This is a text which should be entered from the keyboard.

? MODEL (FF) ?

TYPE OF OBJECTIVE FUNCTION

FF - GENERAL FUNCTION

FL - LINEAR FUNCTION
FQ - QUADRATIC FUNCTION

AF - SUM OF FUNCTIONS
AQ - SUM OF SQUARES

AP - SUM OF POWERS

AM - MINIMAX

DF - DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION
DQ - DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO - MODEL IS NOT SPECIFIED

Here an optimization model, i.e. a type of the objective function, is chosen. We have 10 possibilities, FF,
FL, FQ, AF, AQ, AP, AM, DF, DQ, NO. The default value of the macrovariable $MODEL corresponding
to the general objective function is FF. By pressing ENTER, the default value FF is accepted.
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? NF (0) ?

NUMBER OF VARIABLES

Here the number of variables is expected. This is a positive integer. No default value is offered, i.e. we
have to set a value. If this value is not a positive integer, the answer is ignored and the same question
appears on the screen.

? FMIN (-1.0D 60) ?

LOWER BOUND FOR FUNCTION VALUE

Here a real constant is expected. By pressing ENTER the default value -1.0D 60 is accepted.
More details concerning a text dialogue mode are given in Appendix A, where a complete text dialogue

concerning unconstrained minimization of the Rosenbrock function is shown.

4.4 The graphic dialogue mode

The graphic dialogue mode can be used only on PC computers under the MS DOS operating system
using the Fortran Power Station compiler version 1, if $GRAPHICS=1, and under the MS (32 bit) Win-
dows operating system using the Visual Fortran compiler version 4, if $GRAPHICS=4, or version 6, if
$GRAPHICS=6 (macrovariable $GRAPHICS is defined in template UZDCLP.I, see Section B.7). For any
other compiler, this possibility is not implemented, but we can use the text dialogue mode described in
Section 4.3 A switch to the graphic dialogue mode is realized by using the special substitution $GDIA-
LOGUE. This is an equivalent to the substitution $DIALOGUE in the PC version of the UFO system. If
this is the case, a sequence of screens follows. Each screen realizes one question which is, in fact, the same
as that in the text dialogue mode. Nevertheless, the graph dialogue mode has several advantages over the
text one:

1. Information is better arranged on the screen.

2. The window for typing answers is in fact a simple editor. Therefore, the text can be easily corrected
and a movement controlled by arrows is possible.

3. Application of the special UFO editor is possible for realizing more complicated answers. The UFO
editor works with multiple windows so that an answer can be set up from several sources. Therefore
a convenient utility of the batch mode can also be used in the dialogue mode.

To compare text and graphic dialogue modes, we again demonstrate the above four questions:
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Here a user supplied input is expected. This is a text which should be written into the window displayed on
the screen (followed by pressing ENTER). If this text is more complicated, we can use the UFO editor by
typing the character ’E’ and pressing ENTER. The return from the UFO editor to the graphic dialogue is
realized by pressing <alt-5> (Section 1.2). The dialogue mode can be terminated by typing the character
’ !’ and pressing ENTER.

Here an optimization model, i.e. a type of the objective function, is chosen. We have 10 possibilities, FF,
FL, FQ, AF, AQ, AP, AM, DF, DQ, NO. The default value of the macrovariable $MODEL, corresponding
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to the general objective function, is FF. By pressing ENTER, the default value FF is accepted. If we want
to choose a different possibility, it has to be written into the two-character window, followed by pressing
ENTER. The dialogue mode can be terminated by typing the character ’ !’ and pressing ENTER.

Here the number of variables is expected. This is a positive integer. No default value is offered, i.e. we
have to enter a value. If this value is not a positive integer, the answer is ignored and another answer is
expected. The dialogue mode can be terminated by typing the character ’ !’ and pressing ENTER.

Here a real constant is expected. By pressing ENTER the default value -1.0D 60 is accepted. If we want
to choose a different value, it has to be written into the twenty-character window, followed by pressing
ENTER. The dialogue mode can be terminated by typing the character ’ !’ and pressing ENTER.
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5 Output possibilities in the UFO system

The UFO system has many output possibilities including graphic pictures. These output possibilities can
be divided into five basic groups.

5.1 Basic screen output

The basic screen output can be used only if $GRAPH=’N’ and $DISPLAY=’N’. In this case, individual
rows corresponding to the iterations and the final results are printed on the screen consequently. A
print level of the screen output is determined by using the macrovariables $MOUT and $NOUT. The
macrovariable $MOUT can have the following values:

$MOUT= 0 - Screen output is suppressed.

$MOUT=± 1 - Standard output. The final results appear on the screen.

$MOUT=± 2 - Extended output. Additional information from every iteration appears on the screen.

$MOUT=± 3 - Extended output. Additional final results of linear or quadratic programming sub-
problems appear on the screen.

$MOUT=± 4 - Extended output. Additional information from every iteration of linear or quadratic
programming subproblems appears on the screen.

If $MOUT>0, printed results have the standard form while if $MOUT<0, additional information contain-
ing various method specifications and optimization options is printed.

The macrovariable $NOUT can have the following values:

$NOUT= 0 - Short final results (scalar variables) appear on the screen.

$NOUT= 1 - Extended final results (vectors) appear on the screen.

The basic screen output can be copied into file P.OUT (text file output) if $KOUT=0 and $LOUT>0
(see Section 5.7. In this case, macrovariable $LOUT can have the following values:

$LOUT= 0 - Basic screen output is not copied into text file P.OUT.

$LOUT= 1 - Basic screen output is copied into text file P.OUT. Standard line of the final results is
printed.

$LOUT= 2 - Basic screen output is copied into text file P.OUT. Modified line of the final results,
containing the termination criterion, is printed.

Typical basic screen outputs are shown in Section 7. If we use values $LOUT=2, $MOUT=-2,
$NOUT=2 in the problem specification introduced in Section 7.1, then text file P.OUT contains the follow-
ing information.

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5

NIT= 0 NFV= 1 NFG= 1 F= 1.866666667 G=0.667D-01

NIT= 1 NFV= 4 NFG= 4 F= 1.550000000 G=0.150D+00

NIT= 2 NFV= 7 NFG= 7 F= 1.200000000 G=0.200D+00

NIT= 3 NFV= 9 NFG= 9 F= 1.000000000 G=0.000D+00

0 NIT= 3 NFV= 9 NFG= 9 GRAD TOL F= 1.000000000 G=0.000D+00

FF = -0.1000000000D+01

X = 0.1000000000D+01 0.2000000000D+01 0.3000000000D+01 0.4000000000D+01

0.5000000000D+01

TIME= 0:00:00.00
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OPTIONS:

MET = 8 MET1 = 3 MET2 = 2 MET3 = 1 MET4 = 3 MET5 = 0

MOT = 2 MOT1 = 0 MOT2 = 0 MOT3 = 0 MOT4 = 0 MOT5 = 0

MES = 4 MES1 = 2 MES2 = 2 MES3 = 2 MES4 = 0 MES5 = 0

MOS = 0 MOS1 = 0 MOS2 = 0 MOS3 = 0 MOS4 = 0 MOS5 = 0

MEP = 0 MEP1 = 0 MEP2 = 0 MEP3 = 0 MEP4 = 0 MEP5 = 0

MED = 0 MED1 = 0 MED2 = 0 MED3 = 0 MED4 = 0 MED5 = 0

MEG = 0 MEG1 = 0 MEX = 0 MEX1 = 0 MEQ = 0 MEQ1 = 0

MFP = 0 MFP1 = 0 MLP = 0 MLP1 = 0 MQP = 0 MQP1 = 0

KTERS = 3 INITD = 1 INITS = 2 INITH = 1 IREM = 0 IADD = 0

MIT = 500 MIC = 0 MRED = 10 MF = 0

MFV = 1000 MCG = 0 IRES1 = 999 MA = 0

MFG = 10000 MSTP = 0 IRES2 = 0 MB = 0

TOLX = 0.100D-11 EPS0 = 0.100D-05 ETA0 = 0.100D-14 ALF1 = 0.100D-09

TOLF = 0.100D-13 EPS1 = 0.100D-03 ETA1 = 0.100D-12 ALF2 = 0.100D+11

TOLG = 0.100D-05 EPS2 = 0.900D+00 ETA2 = 0.100D-14 ALF3 = 0.000D+00

TOLB =-0.100D+61 EPS3 = 0.000D+00 ETA3 = 0.000D+00 BET1 = 0.000D+00

TOLC = 0.000D+00 EPS4 = 0.000D+00 ETA4 = 0.000D+00 BET2 = 0.000D+00

TOLA = 0.000D+00 EPS5 = 0.000D+00 ETA5 = 0.000D+00 BET3 = 0.000D+00

TOLR = 0.000D+00 EPS6 = 0.000D+00 ETA6 = 0.000D+00 GAM1 = 0.000D+00

XDEL = 0.000D+00 EPS7 = 0.000D+00 ETA7 = 0.000D+00 GAM2 = 0.000D+00

XMAX = 0.100D+04 EPS8 = 0.500D+00 ETA8 = 0.000D+00 GAM3 = 0.000D+00

RPF1 = 0.000D+00 EPS9 = 0.100D-07 ETA9 = 0.100D+61 DEL1 = 0.000D+00

RPF2 = 0.000D+00 FMIN =-0.100D+61 FMAX = 0.100D+21 DEL1 = 0.000D+00

RPF3 = 0.000D+00 DEL3 = 0.000D+00

The first line contains specifications of the method used ($CLASS=’VM’, $TYPE=’L’, $DECOMP=’G’,
$NUMBER=1, $UPDATE=’B’) and the problem characteristics ($MODEL=’FF’, $HESF=’D’, $NF=5).
Then, information concerning individual iterations and the final results are printed (0 corresponds to
$NEXT=0 and GRAD TOL is the cause of termination). Since $MOUT<0, the options (parameters of the
method) follows.

5.2 Extended screen output

If we want to use an extended screen output, we have to set $DISPLAY=’Y’ (the default value is $DIS-
PLAY=’N’). This type of screen output consists of text pages which correspond to individual iterations
and the final results. The final results are divided into several groups which can be displayed successively.
We can change the displayed group by typing particular characters from the keyboard.

Change of the displayed group of the final results:

F - (function) : Value of the objective function and statistics.
V - (variables) : Values of variables if NF>0 (with their bounds if KBF>0).
A - (approximation) : Values of approximating functions if NA>0 (with their prescribed values if

KBA>0). Values of selected components of a solution of the set of ordinary dif-
ferential equations at the prescribed mesh points if NE>0.

C - (constraints) : Values of constraint functions if NC>0 (with their bounds if KBC>0).
D - (data) : Data which specify the problem solved (sizes of problem and additional specifica-

tions).

O - (options) : Options which specify the method used.
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Exit:

Q - (quit) : Exit from the extended screen output.

After typing each character we must use ENTER.
Besides these possibilities we can stop every iteration for scanning the iterative process. It is specified if

we set $SCAN=’Y’ (the default value is $SCAN=’N’). If $SCAN=’N’, the output of iterations is suppressed.
Scanning of the iterative process can be terminated by using the character ’ !’ from the keyboard.

5.3 Internal FORTRAN graphic environment

The internal graphic screen output can be used only on PC computers under the MS DOS operating
system using the Fortran Power Station compiler version 1, if $GRAPHICS=1, and under the MS (32 bit)
Windows operating system using the Visual Fortran compiler version 4, if $GRAPHICS=4, or version 6, if
$GRAPHICS=6 (macrovariable $GRAPHICS is defined in template UZDCLP.I, see Section B.7). For any
other compiler, this possibility is not implemented, but we can use the external screen output described in
Section 5.4. If we want to use the internal graphic screen output, we have to set $GRAPH=’Y’ (the default
value is $GRAPH=’N’). In this case, both iterations and the final results appear in the graphic mode. In
general, the internal graphic screen output is a sequence of screens which can be examined successively in
a required order. A change of the screen is carried out by using the menu given on the top of this screen.
We have three possibilities. First, the character displayed as a capital at the menu item can immediately
be typed from the keyboard. Secondly, we can use arrows → and ← (or keys + and - in MS (32 bit)
Windows versions) which realize movement in the top menu. The underlined menu item is then selected
by pressing ENTER. Finally, we can apply a mouse click to the menu item when DOS graphics is used.
In the subsequent description, we focus our attention on the first possibility without a loss of generality.

The graphic form of the final results can be specified in detail by using macrovariables $PATH (’N’-
no, ’Y’- yes, ’E’- extended), $MAP (’N’- no, ’Y’- yes, ’E’- extended), $HIL (’N’- no, ’Y’- yes) and $ISO
(’N’- no, ’Y’- yes). The final results are divided into several groups which can be displayed successively.
We can change the displayed group by typing the particular characters from the keyboard.

Change of the displayed group of the final results:

F - (function) : Value of the objective function and statistics.
V - (variables) : Values of variables if NF>0 (with their bounds if KBF>0).
A - (approximation) : Values of approximating functions if NA>0 (with their prescribed values if

KBA>0). Values of selected components of a solution of the set of ordinary dif-
ferential equations at the prescribed mesh points if NE>0.

C - (constraints) : Values of constraint functions if NC>0 (with their bounds if KBC>0).
D - (data) : Data which specify the problem solved (sizes of problem and additional specifica-

tions).

O - (options) : Options which specify the method used.
T - (path) : Values of the objective function and selected variables (we can change these vari-

ables during the graphic output, if we have specified $PATH=’E’) in the last NPA
iterations (only if $PATH=’Y’ or $PATH=’E’).

Exit:

Q - (quit) : Exit from the graphic output.
X - (exit) : Exit from the UFO system.

Besides these possibilities we can stop every iteration for scanning the iterative process. It is specified
if we set $SCAN=’Y’ (the default value is $SCAN=’N’). In every iteration, we can choose one of the possi-
bilities F, V, A, C, D, O as in the case above. If we have chosen either V (variables) or A (approximation)
or C (constraints), the intermediate results can be displayed graphically by typing G (graph) from the
keyboard. In all these cases, we can execute a single iteration by typing SPACE merely. We can also
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execute all iterations until the k-th one by typing J (jump) and entering the number k. Finally, by typing
U (automatic), all remaining iterations are executed without scanning.

Besides text representations in the graphic mode, which are essentially like the ones in the extended
screen output (with the choice $DISPLAY=’Y’), we can chose several types of graphic data representation.

a) Graphic picture:

If we have chosen either V (variables) or A (approximation) or C (constraints), the results can be
displayed graphically by typing G (graph) from the keyboard. A graphic picture appears on the screen in
this case. It contains either values of variables with indices I, 1 ≤ I ≤ NF, or values of the approximating
functions with indices KA, 1 ≤ KA ≤ NA, or values of the constraint functions with indices KC, 1 ≤ KC ≤
NC. If we have chosen A (approximation) in the case of NE>0, the graphic picture contains a component
(with the index VAR) of a solution of the set of ordinary differential equations at the mesh points AT(KA),
1 ≤ KA ≤ NA. We have to define the index VAR from the keyboard in this case. The graphic picture can
be changed by typing the particular characters from the keyboard.

Change of representation:

V - (values) : Values are drawn.
O - (ordinates) : Values and ordinates from zero axis are drawn.
C - (curve) : Values are connected by a curve.
M - (mixed) : Curve and ordinates are drawn.

Change of graph (if either KBF>0 or KBA>0 or KBC>0):

F - (functions) : Either values of variables X(I), 1 ≤ I ≤ NF, or values of the approximating func-
tions AF(KA), 1 ≤ KA ≤ NA, or values of the constraint functions CF(KC), 1 ≤
KC ≤ NC, are demonstrated.

A - (approximation) : Either values of variables X(I) together with their bounds XL(I) and XU(I), 1
≤ I ≤ NF, or values of the approximating functions AF(KA) together with their
prescribed values AM(KA) , 1 ≤ KA ≤ NA, or values of the constraint functions
CF(KC) together with their bounds CL(KC) and CU(KC), 1 ≤ KC ≤ NC, are
demonstrated.

D - (differences) : Either the differences between variables and their bounds or the differences be-
tween the approximating functions and their prescribed values or the differences
between the constraint functions and their bounds are demonstrated.

Continuation (if either NF > 200 or NA > 200 or NC > 200):

P - (previous) : Previous set of at most 200 values is drawn.
N - (next) : Next set of at most 200 values is drawn.

Choice of the next displayed iteration (only if $SCAN=’Y’):

J - (jump) : The iterative process is stopped at the k-th iteration. Number k is read from the
keyboard.

U - (automatic) : All remaining iterations are executed without scanning.

New graph or return:

W - (new) : This possibility can be used only if NE>0. Then a new component (with a new
index VAR) of a solution of the set of ordinary differential equations is drawn. We
have to define a new index VAR from the keyboard in this case.

Q - (quit) : Return to the displayed group of final results.

If we have chosen F (function) as a group of final results, we can use additional graphic representations.
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b) Two-dimensional orbit:

If NE>1, we can draw an orbit of two components of a solution of the set of ordinary differential
equations by typing G (graph) from the keyboard. We have to define an index VAR for every selected
component of a solution (according to the text appeared on the screen). The two-dimensional orbit can
be changed by typing the particular characters from the keyboard.

Change of the orbit:

V - (values) : Values are drawn.
C - (curves) : Values are connected by a curve.

New orbit or return:

W - (new) : New components of a solution of the set of ordinary differential equations are
drawn. We have to define new two indices from the keyboard in this case.

Q - (quit) : Return to the displayed group of final results.

c) Three-dimensional orbit:

If NE>2, then we can draw an orbit of three components of a solution of the set of ordinary differential
equations by typing I (picture) from the keyboard. We have to define an index VAR for every selected
component of a solution (according to the text appeared on the screen). The three-dimensional orbit can
be changed by typing the particular characters from the keyboard.

Change of the orbit:

V - (values) : Values are drawn.
C - (curves) : Values are connected by a curve.
O - (rotate) : Rotation of values or curves about a vertical axis by a subsequently entered angle

Dfi.
T - (tilt) : Tilting rotated values or curves by a subsequently entered angle Dtheta.
A - (axes) : Drawing a picture with rotated and tilted axes.
S - (scale) : Scaling of rotated and tilted values or curves to make full use of the screen.

New orbit or return:

W - (new) : New components of a solution of the set of ordinary differential equations are
drawn. We have to define new three indices from the keyboard in this case.

Q - (quit) : Return to the displayed group of final results.

d) Colored map of the objective function:

If we have specified either $MAP=’Y’ or $MAP=’E’ (default value is $MAP=’N’), we can draw a
colored map of the objective function by typing M (map) from the keyboard. This picture can be changed
by typing the particular characters from the keyboard.

Change of the map:

L - (linear) : Linear scale of the colored map.
G - (logarithmic) : Logarithmic scale of the colored map.
R - (refinement) : Refinement of the colored map.
B - (back) : Back refinement of the colored map.
N - (inverse) : Colored map of the objective function negation.

Another type of picture, new map or return:

H - (hills) : Drawing an objective function surface with respect to visibility (only if $HIL=’Y’
is specified).

S - (isolines) : Drawing contours of the objective function (only if $ISO=’Y’ is specified).
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W - (new) : Selection of new variables and drawing a new colored map.
Q - (quit) : Return to the displayed group of final results.

If we set $MAP=’Y’, one picture for two variables is drawn. If we set $MAP=’E’, three pictures for all
combinations of two from three variables are drawn. In both cases we have to define, from the keyboard,
an index VAR and bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared
on the screen). Note that the choice $MAP=’E’ excludes the choices $HIL=’Y’ and $ISO=’Y’ so that the
other pictures cannot be used.

e) Objective function surface:

If we have specified $HIL=’Y’ (default value is $HIL=’N’), we can draw an objective function surface
with respect to visibility by typing H (hills) from the keyboard. This picture can be changed by typing
particular characters from the keyboard.

Change of the surface:

L - (linear) : Linear scale of the surface.
G - (logarithmic) : Logarithmic scale of the surface.
R - (refinement) : Refinement of the surface.
B - (back) : Back refinement of the surface.
O - (rotate) : Rotation of the surface about a vertical axis by a subsequently entered angle Dfi.
T - (tilt) : Tilting the rotated surface by a subsequently entered angle Dtheta.
F - (face) : Facing the rotated surface (drawing the rotated surface without tilting).
N - (inverse) : Surface of the objective function negation.

Another type of picture, new surface or return:

M - (map) : Drawing a colored map of the objective function (only if $MAP=’Y’ is specified).
S - (isolines) : Drawing contours of the objective function (only if $ISO=’Y’ is specified).
W - (new) : Selection of new variables and drawing new surface.
Q - (quit) : Return to the displayed group of final results.

Before drawing the objective function surface we have to define, from the keyboard, an index VAR and
bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared on the screen).

f) Objective function contours:

If we have specified $ISO=’Y’ (default value is $ISO=’N’), we can draw an objective function contours
by typing S (isolines) from the keyboard. This picture can be changed by typing particular characters
from the keyboard.

Change of contours:

L - (linear) : Linear scale of contours.
G - (logarithmic) : Logarithmic scale of contours.
R - (refinement) : Refinement of contours.
B - (back) : Back refinement of contours.
O - (color) : Coloring of contours and used levels.
N - (inverse) : Inverse coloring of contours and used levels.

Another type of picture, new contours or return:

M - (map) : Drawing a colored map of the objective function (only if $MAP=’Y’ is specified).
H - (hills) : Drawing an objective function surface with respect to visibility (only if $HIL=’Y’

is specified).

W - (new) : Selection of new variables and drawing a new surface.
Q - (quit) : Return to the displayed group of final results.
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g) Graphic path of the objective function and selected variables:

If we have chosen T (path), we can display the values of the objective function as a function graph
by typing G (graph) or draw the objective function contours with the path in the last NPA iterations by
typing S (isolines). The graph can be changed in the same way as in a).

Change of contours:

L - (linear) : Linear scale of contours.
G - (logarithmic) : Logarithmic scale of contours.
R - (refinement) : Refinement of contours.
B - (back) : Back refinement of contours.
Z - (zoom) : Zoom of the path for the number of last iterations entered.

Another type of picture, new contours or return:

W - (new) : Selection of new variables and drawing new contours (only if we have specified
$PATH=’E’).

Q - (quit) : Return to the displayed group of final results.

Before drawing the objective function contours we have to define, from the keyboard, an index VAR
and bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared on the screen).

5.4 Data for external graphic utilities

The external graphic screen output can be used in both the MS (32 bit) Windows and the Linux versions
of the UFO system if $GRAPHICS = –1 (macrovariable $GRAPHICS is defined in template UZDCLP.I,
see Section B.7). If we want to use the external graphic output, we have to set $GRAPH=’Y’ (the default
value is $GRAPH=’N’). In this case, the UFO system generates five output files P.PAR, P.GRF, P.DIF,
P.SUR, P.PTH containing data for the external graphic packages (e.g. for the package JUFO [161]).

File P.PAR contains scalar input and output data, which correspond to displayed groups F - (function),
D - (data), O - (options) of the final results used in the internal screen output. The following format is
used for creating file P.PAR:

C

C function

C

WRITE(13,’(16I5)’) NIT,NFV,NFG,NFH,NAV,NAG,NAH,NCV,NCG,NCH,NDECF,

& NCGR,NRES,NREM,NADD,NEXT

WRITE(13,’(4D20.12)’) F,DMAX,GMAX

C

C data

C

WRITE(13,’(16I5)’) NF,NA,NAL,MAL,NC,NCL,MCL,KDF,KBF,KSF,KCF,ISNF,

& NORMF,KDA,KBA,KSA,KCA,ISNA,NORMA,KDC,KBC,KSC,KCC,ISNC,NORMC

C

C options

C

WRITE(13,’(16I5)’) MET,MET1,MET2,MET3,MET4,MET5,MES,MES1,MES2,

& MES3,MES4,MES5,MOT,MOT1,MOT2,MOT3,MOT4,MOT5,MOS,MOS1,MOS2,MOS3,

& MOS4,MOS5,MEP,MEP1,MEP2,MEP3,MEP4,MEP5,MED,MED1,MED2,MED3,MED4,

& MED5,MEX,MEX1,MEX2,MEX3,MEX4,MEX5,MEG,MEG1,MEQ,MEQ1,MFP,MFP1,

& MLP,MLP1,MLP2,MQP,MQP1,MQP2,KTERS,INITD,INITS,INITH,IREM,IADD,

& MRED,IRES1,IRES2,MIC,MIT,MFV,MFG,MCGR,MSTP

WRITE(13,’(4D20.14)’) XDEL,XMAX,FMIN,FMAX,RPF1,RPF2,RPF3,RPF4,

& RPF5,EPS0,EPS1,EPS2,EPS3,EPS4,EPS5,EPS6,EPS7,EPS8,EPS9,ETA0,
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& ETA1,ETA2,ETA3,ETA4,ETA5,ETA6,ETA7,ETA8,ETA9,ALF1,ALF2,ALF3,

& BET1,BET2,BET3,GAM1,GAM2,GAM3,DEL1,DEL2,DEL3,TOLX,TOLF,TOLG,

& TOLB,TOLC,TOLA,TOLR

File P.GRF contains values of variables X(I) together with their bounds XL(I) and XU(I), 1 ≤ I ≤ NF,
values of the approximating functions AF(KA) together with their prescribed values AM(KA), 1 ≤ KA ≤
NA, and values of the constraint functions CF(KC) together with their bounds CL(KC) and CU(KC), 1
≤ KC ≤ NC. This corresponds to displayed groups V - (variables), A - (approximation), C - (constraints)
of the final results used in the internal screen output. The following format is used for creating file P.GRF:

C

C variables

C

WRITE(11,’(2I5)’) NF,KBF

IF (NF.GT.0) THEN

WRITE(11,’(4D20.12)’)(X(I),I=1,NF)

IF (KBF.GT.0) THEN

WRITE(11,’(16I5)’) (IX(I),I=1,NF)

WRITE(11,’(4D20.12)’)(XL(I),I=1,NF)

WRITE(11,’(4D20.12)’)(XU(I),I=1,NF)

ENDIF

ENDIF

C

C approximation

C

WRITE(11,’(2I5)’) NA,KBA

IF (NA.GT.0) THEN

WRITE(11,’(4D20.12)’)(AF(KA),KA=1,NA)

IF (KBA.GT.0) THEN

WRITE(11,’(4D20.12)’)(AM(KA),KA=1,NA)

ENDIF

ENDIF

C

C constraints

C

WRITE(11,’(2I5)’) NC,KBC

IF (NC.GT.0) THEN

WRITE(11,’(4D20.12)’)(CF(KC),KC=1,NC)

IF (KBC.GT.0) THEN

WRITE(11,’(16I5)’) (IC(KC),KC=1,NC)

WRITE(11,’(4D20.12)’)(CL(KC),KC=1,NC)

WRITE(11,’(4D20.12)’)(CU(KC),KC=1,NC)

ENDIF

ENDIF

More details about these quantities are given in Section 1.8.
File P.DIF contains data for drawing NED = min(NE, 3) curves and orbits corresponding to selected

functions which are solutions of a system of NE ordinary differential equations. If NE > 3, we have to
specify indices of the selected functions from the keyboard. The following format is used for creating file
P.DIF:
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C

C differential equations

C

WRITE(14,’(2I5)’) NED,NA

IF (NA.GE.1.AND.NED.GE.1) THEN

WRITE(14,’(4D20.12)’) (AT(KA),KA=1,NA)

WRITE(14,’(2I5)’) 1,IG

WRITE(14,’(4D20.12)’) (AY(IG,KA),KA=1,NA)

IF (NED.GE.2) THEN

WRITE(14,’(2I5)’) 2,JG

WRITE(14,’(4D20.12)’) (AY(JG,KA),KA=1,NA)

ENDIF

IF (NED.GE.3) THEN

WRITE(14,’(2I5)’) 3,KG

WRITE(14,’(4D20.12)’) (AY(KG,KA),KA=1,NA)

ENDIF

ENDIF

Here NED = min(NE, 3) is the number of drawing curves or orbits, NA is the number of nodes (values
of the independent variable), AT(KA) are values of the independent variable, IG is the index of the first
drawn function, AY(IG,KA) are values of the first drawn function, JG is the index of the second drawn
function, AY(JG,KA) are values of the second drawn function, KG is the index of the third drawn function
and AY(KG,KA) are values of the third drawn function.

The generation of the remaining output files depends on values of macrovariables $MAP (’N’- no, ’Y’-
yes, ’E’- extended) and $PATH (’N’- no, ’Y’- yes, ’E’- extended). File P.SUR, generated if $MAP<>’N’,
contains data for drawing one surface (if $MAP = ’Y’) or three surfaces (if $MAP = ’E’) corresponding to
selected pair or pairs of variables. If $MAP<>’N’, we have to specify indices of the selected variables and
their lower and upper bounds from the keyboard. The following format is used for creating file P.SUR:

C

C surface

C

WRITE(12,’(2I5)’) NCD,NGR

IF (NGR.GE.1.AND.NCD.EQ.1) THEN

WRITE(12,’(I5,I5,3D20.12)’) 1,NGR,F,VALMIN,VALMAX

WRITE(12,’(I5,I5,3D20.12)’) IRE,IMIN,XIGR,XLIGR,XUIGR

WRITE(12,’(I5,I5,3D20.12)’) JRE,JMIN,XJGR,XLJGR,XUJGR

WRITE(12,’(4D20.12)’)((FL(IVAR,JVAR),IVAR=1,NGR),JVAR=1,NGR)

ENDIF

IF (NGR.GE.1.AND.NCD.EQ.3) THEN

WRITE(12,’(I5,I5,3D20.12)’) 2,NGR,F,VALMIN,VALMAX

WRITE(12,’(I5,I5,3D20.12)’) IRE,IMIN,XIGR,XLIGR,XUIGR

WRITE(12,’(I5,I5,3D20.12)’) KRE,JMIN,XJGR,XLJGR,XUJGR

WRITE(12,’(4D20.12)’)((FL(IVAR,JVAR),IVAR=1,NGR),JVAR=1,NGR)

WRITE(12,’(I5,I5,3D20.12)’) 3,NGR,F,VALMIN,VALMAX

WRITE(12,’(I5,I5,3D20.12)’) JRE,IMIN,XIGR,XLIGR,XUIGR

WRITE(12,’(I5,I5,3D20.12)’) KRE,JMIN,XJGR,XLJGR,XUJGR

WRITE(12,’(4D20.12)’)((FL(IVAR,JVAR),IVAR=1,NGR),JVAR=1,NGR)

ENDIF

Here NCD is the number of drawn surfaces (1 if $MAP = ’Y’ or 3 if $MAP = ’E’), NGR is the number of
nodes corresponding to every selected variable (NGR*NGR is the number of drawn function values), IRE is
the index of the first selected variable, JRE is the index of the second selected variable, KRE is the index of
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the third selected variable, F is the final function value (usually an approximation of the minimum value),
VALMIN is the minimum function value of the selected surface, VALMAX is the maximum function value
of the selected surface, IMIN is the first coordinate of the minimum in the selected surface, XLIGR is
the minimum value of the first variable of the selected surface, XUIGR is the maximum value of the first
variable of the selected surface, JMIN is the second coordinate of the minimum in the selected surface,
XLJGR is the minimum value of the second variable of the selected surface, XUJGR is the maximum value
of the second variable of the selected surface, and FL contains NGR*NGR drawn function values.

File P.PTH, generated if $PATH<>’N’, contains data for drawing one path (if $PATH = ’Y’) or three
paths (if $PATH = ’E’) corresponding to selected pair or pairs of variables. If $PATH<>’N’, we have to
specify indices of the selected variables from the keyboard. The following format is used for creating file
P.PTH:

C

C path

C

WRITE(15,’(2I5)’) NPD,NPA

IF (NPA.GE.1.AND.NPD.GE.1) THEN

WRITE(15,’(4D20.12)’)(FPA(I),I=1,NPA)

WRITE(15,’(2I5)’) IGR,NPA

WRITE(15,’(4D20.12)’)(XIPA(I),I=1,NPA)

ENDIF

IF (NPA.GE.1.AND.NPD.GE.2) THEN

WRITE(15,’(2I5)’) JGR,NPA

WRITE(15,’(4D20.12)’)(XJPA(I),I=1,NPA)

ENDIF

IF (NPA.GE.1.AND.NPD.GE.3) THEN

WRITE(15,’(2I5)’) KGR,NPA

WRITE(15,’(4D20.12)’)(XKPA(I),I=1,NPA)

ENDIF

WRITE(15,’(2I5)’) NCD,NGR

IF (NGR.GE.1.AND.NCD.EQ.1) THEN

WRITE(15,’(I5,I5,3D20.12)’) 1,NGR,F,VALMIN,VALMAX

WRITE(15,’(I5,I5,3D20.12)’) IPA,IMIN,XIGR,XLIGR,XUIGR

WRITE(15,’(I5,I5,3D20.12)’) JPA,JMIN,XJGR,XLJGR,XUJGR

WRITE(15,’(4D20.12)’)((FL(IVAR,JVAR),IVAR=1,NGR),JVAR=1,NGR)

ENDIF

IF (NGR.GE.1.AND.NCD.EQ.3) THEN

WRITE(15,’(I5,I5,3D20.12)’) 2,NGR,F,VALMIN,VALMAX

WRITE(15,’(I5,I5,3D20.12)’) IPA,IMIN,XIGR,XLIGR,XUIGR

WRITE(15,’(I5,I5,3D20.12)’) KPA,JMIN,XJGR,XLJGR,XUJGR

WRITE(15,’(4D20.12)’)((FL(IVAR,JVAR),IVAR=1,NGR),JVAR=1,NGR)

WRITE(15,’(I5,I5,3D20.12)’) 3,NGR,F,VALMIN,VALMAX

WRITE(15,’(I5,I5,3D20.12)’) JPA,IMIN,XIGR,XLIGR,XUIGR

WRITE(15,’(I5,I5,3D20.12)’) KPA,JMIN,XJGR,XLJGR,XUJGR

WRITE(15,’(4D20.12)’)((FL(IVAR,JVAR),IVAR=1,NGR),JVAR=1,NGR)

ENDIF

Here NPD is the number of drawn paths (1 if $PATH = ’Y’ or 3 if $PATH = ’E’), NPA is the number of
drawn points of every path (usually the number of iterations), FPA are function values in drawn points,
IPA is the index of the first selected variable, XIPA are values of the first selected variable in drawn points,
JPA is the index of the second selected variable, XJPA are values of the second selected variable in drawn
points, KPA is the index of the third selected variable, XKPA are values of the third selected variable in
drawn points. The other quantities have the same meaning as in the file P.SUR.
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5.5 Interface to the MATLAB graphic environment

The MATLAB graphic output can be used in both the MS (32 bit) Windows and the Linux versions of
the UFO system if $GRAPHICS = –2 (macrovariable $GRAPHICS is defined in template UZDCLP.I, see
Section B.7). If we want to use the MATLAB graphic output, we have two possibilities.

The first possibility is the use of internal graphic ($GRAPH=’I’ or, equivalently, $GRAPH=’Y’).
In this case, the MATLAB environment is used interactively in a similar way as the internal Fortran
environment, but the graphic screen and control statements are different. The answers on the queries
concerning particular type of the graph are summarized. After confirming generating the graph, the
Matlab Command Window will appear together with the corresponding generated figure. This window
can be closed by pressing the Enter key.

The second possibility is the use of external graphic ($GRAPH=’E’). In this case, the UFO system
generates an output file P.m serving as an input file for the MATLAB graphic environment. Based on
the screen interface, the user is asked to specify several parameters in form of answers on the system
queries. The parameters are then summarized and after confirming generating the graph, the corresponding
MATLAB code is generated.

Note that the default value is $GRAPH=’N’.

If INTERNAL GRAPHIC is selected, i.e. $GRAPH=’I’ or $GRAPH=’Y’, a list of all possible queries
appearing on the screen follows. Depending on the values of variables NF, NA, NC, NGR, NE, the following
main menu appears on the screen (see below the main menu for differential equations):

V = VARIABLES

A = APPROXIMATIONS

C = CONSTRAINTS

S = ISOLINES/MAP/SURFACE

P = PATH WITH ISOLINES/MAP

X = PATH OF VARIABLES

F = PATH OF FUNCTION VALUES

E = EXIT

The choices P, X, F concern drawing paths if $PATH<>’N’. If $PATH=’Y’, then, at first, we have to
specify indexes of visualized variables using the queries

INDEX OF THE 1-ST VISUALIZED VARIABLE: IGR =

INDEX OF THE 2-ND VISUALIZED VARIABLE: JGR =

If V is specified in the main menu, the following queries concerning the values of variables X(I) together
with their bounds XL(I) and XU(I), 1 ≤ I ≤ NF, appear on the screen:

GRAPH OF VARIABLES:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]

NF = [number_of_variables_NF]

START INDEX (1..[NF]): [ENTER = 1]

STOP INDEX ([start_index]..[NF]): [ENTER = [NF]]

VARIABLES: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

When KBF=0, the statements corresponding the box constraints are omitted.
If A is specified in the main menu, the following queries concerning the values of approximating functions

AF(KA) together with their prescribed values AM(KA), 1 ≤ KA ≤ NA, appear on the screen:

GRAPH OF APPROXIMATIONS:

F = AF, M = AF,AM, D = AF-AM, R = RETURN [ENTER = R]
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TYPE OF GRAPH FOR AF:

P = POINTS, C = CURVE, L = LINES [ENTER = L]

NA = [number_of_approximating_functions_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

APPROXIMATIONS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

When KBA=0, the statements corresponding the array AM are omitted.
If C is specified in the main menu, the following queries concerning the values of constraint functions

CF(KC) together with their bounds CL(KC) and CU(KC), 1 ≤ KC ≤ NC, appear on the screen:

GRAPH OF CONSTRAINTS:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]

NC = [number_of_constraints_NC]

START INDEX (1..[NC]): [ENTER = 1]

STOP INDEX ([start_index]..[NC]): [ENTER = [NC]]

CONSTRAINTS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If S is specified in the main menu, the following queries concerning the reliefs appear on the screen:

INDEX OF THE 1-ST VARIABLE:

X(IGR) = the_value_of_X(IGR)

XL(IGR) =

XU(IGR) =

INDEX OF THE 2-ND VARIABLE:

X(JGR) = the_value_of_X(JGR)

XL(JGR) =

XU(JGR) =

GRAPH OF: I = ISOLINES, M = MAP, S = SURFACE,

N = NEW INDEXES, R = RETURN [ENTER = R]

Here IGR, JGR are indexes of the visualized variables and XL(IGR), XU(IGR), XL(JGR), XU(JGR) are
bounds which specify the domain of the drawn relief. If N is specified, new indexes IGR, JGR can be
selected. If I or M or S is specified, the following queries appear:

NUMBER OF CONTOUR LEVELS: [ENTER = 64]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]

GRAPH OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

Note that in case of S, the query concerning the number of contour levels is omitted.
If P is specified in the main menu, the queries concerning the path with isolines or map appearing on

the screen depend on macrovariable $PATH:

INDEX OF THE 1-ST VARIABLE:

INDEX OF THE 2-ND VARIABLE:

PATH WITH: I = ISOLINES, M = MAP, N = NEW INDEXES, R = RETURN [ENTER = R]

If $PATH=’E’, the user must specify the indexes of variables while if $PATH=’Y’, the queries concerning
indexes are omitted because they were specified before. If I or M is specified, the following queries appear:
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TYPE OF PATH: P = POINTS, C = CURVE, B = BOTH [ENTER = B]

NUMBER OF CONTOUR LEVELS: [ENTER = 64]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]

NUMBER OF POINTS: (MAX max_number_of_points) [ENTER = max_number_of_points]

PATH WITH [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If X is specified in the main menu, the following queries concerning the path of iterations appear on
the screen:

INDEX OF THE 1-ST VISUALIZED VARIABLE: IGR =

INDEX OF THE 2-ND VISUALIZED VARIABLE: JGR =

INDEX OF THE 3-RD VISUALIZED VARIABLE: KGR =

GRAPH OF ITERATIONS:

1 = ITERATIONS OF X(IGR)

2 = ITERATIONS OF X(JGR)

3 = ITERATIONS OF X(KGR)

4 = ITERATIONS OF X(IGR), X(JGR)

5 = ITERATIONS OF X(IGR), X(KGR)

6 = ITERATIONS OF X(JGR), X(KGR)

7 = ITERATIONS OF X(IGR), X(JGR), X(KGR)

0 = RETURN [ENTER = 0]

Here IGR, JGR, KGR are indexes of the visualized variables. If $PATH=’Y’, the queries concerning
indexes are omitted because they were specified before and only options concerning indexes IGR,JGR
appear. If 1-7 is specified, the following queries appear:

TYPE OF GRAPH: P = POINTS, C = CURVE [ENTER = C]

ITERATIONS OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If F is specified in the main menu, the following queries concerning the path of function values appear
on the screen:

GRAPH OF ITERATIONS:

1 = ITERATIONS OF F, 0 = RETURN [ENTER = 0]

If 1 is specified, the following queries appear:

TYPE OF GRAPH: 1 = POINTS, 2 = CURVE [ENTER = 2]

VALUES OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If E is specified in the main menu, the program is terminated. Note that if RETURN (R or 0) is
specified in particular submenus, then a return to the main menu is performed.

In case of differential equations, the main menu depends on the value of variable NE. One can draw
trajectories, corresponding orbits (if NE > 1) and the picture (if NE > 2). If NE > 3, the user must also
specify indexes IE, JE, KE of the selected solution functions. The following main menu appears on the
screen:

INDEX OF THE 1-ST VISUALIZED DIFFERENTIAL EQUATION: IE =

INDEX OF THE 2-ND VISUALIZED DIFFERENTIAL EQUATION: JE =

INDEX OF THE 3-RD VISUALIZED DIFFERENTIAL EQUATION: KE =

T = 1D TRAJECTORY
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O = 2D ORBIT

P = 3D PICTURE

N = NEW INDEXES

E = EXIT

Note that depending on the value of NE, only the corresponding possible options appear. If N is specified,
new indexes can be chosen.

If T is specified in the main menu, the following queries concerning 1D trajectories appear on the
screen:

DIFFERENTIAL EQUATIONS:

1 = TRAJECTORY OF YA(IE)

2 = TRAJECTORY OF YA(JE)

3 = TRAJECTORY OF YA(KE)

4 = TRAJECTORIES OF YA(IE), YA(JE)

5 = TRAJECTORIES OF YA(IE), YA(KE)

6 = TRAJECTORIES OF YA(JE), YA(KE)

7 = TRAJECTORIES OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE < 3, only trajectories of YA with a corresponding number of indexes are considered. If
1-7 is specified, the following queries appear:

NA = [number_of_mesh_points_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

TRAJECTORIES OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If O is specified in the main menu, the following queries concerning 2D orbits appear on the screen:

DIFFERENTIAL EQUATIONS:

1 = ORBIT OF YA(IE), YA(JE)

2 = ORBIT OF YA(IE), YA(KE)

3 = ORBIT OF YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE = 2, only the first option is possible. If 1-3 is specified, the following query appears:

ORBIT OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If P is specified in the main menu, the following queries concerning 3D picture appear on the screen:

DIFFERENTIAL EQUATIONS:

1 = PICTURE OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

If 1 is specified, the following query appears:

PICTURE OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]
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If E is specified in the main menu, the program is terminated. Note that if RETURN (0) is specified
in particular submenus, then a return to the main menu is performed.

If EXTERNAL GRAPHIC is selected, i.e. $GRAPH=’E’, a list of all possible queries appearing on
the screen follows.

If $PATH=’Y’ (two variables IGR,JGR) or $PATH=’E’ (three variables IGR,JGR,KGR), then at first
the user is asked to specify the visualized variables for the paths:

INDEX OF THE 1-ST VISUALIZED VARIABLE: IGR =

INDEX OF THE 2-ND VISUALIZED VARIABLE: JGR =

INDEX OF THE 3-RD VISUALIZED VARIABLE: KGR =

Now, depending on the values of variables NF, NA, NC, NGR, NE, the user is asked to specified
the types of graphs and their parameters that will be generated into the file P.m. Note that the choice
RETURN (R or 0, see below) from the main menu will cause a switch to the main menu of the next graph
and from the submenu will cause a return to the main menu of the current graph.

If NF > 0, the query

GRAPH OF VARIABLES:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]

concerning the values of variables X(I) together with their bounds XL(I) and XU(I), 1 ≤ I ≤ NF, appears.
If the answer is P or C, the following queries concerning the parameters of the graph will appear:

NF = [number_of_variables_NF]

START INDEX (1..[NF]): [ENTER = 1]

STOP INDEX ([start_index]..[NF]): [ENTER = [NF]]

VARIABLES: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in case of [P = POINTS]):

figure;

il=[ indices_of_lower_bounds_for_variables ];

xl=[ values_of_lower_bounds_for_variables ];

iu=[ indices_of_upper_bounds_for_variables ];

xu=[ values_of_upper_bounds_for_variables ];

ix=[ indices_of_variables ];

xi=[ values_of_variables ];

h = plot(il,xl,iu,xu,ix,xi);

set(h,{’LineStyle’},{’none’});

set(h,{’Marker’},{’^’;’v’;’o’});

set(h,{’MarkerSize’},{6;6;6});

set(h,{’MarkerEdgeColor’},{’b’;’b’;’r’});

set(h,{’MarkerFaceColor’},{’b’;’b’;’r’});

for i=1:length(il)

ll=line([il(i) il(i)],[xl(i) xi(il(i))]);

set(ll,{’LineWidth’},{1});

set(ll,{’Color’},{’b’});

end

for i=1:length(iu)

lu=line([iu(i) iu(i)],[xu(i) xi(iu(i))]);
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set(lu,{’LineWidth’},{1});

set(lu,{’Color’},{’b’});

end

axis([0 length(ix)+1 minimum_in_values maximum_in_values]);

tit=title(’Variables’);

xl=xlabel(’Indices of variables’);

yl=ylabel(’Bounds and values of variables’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);

set(yl,’FontSize’,15);

print -depsc PMVAR01;

When KBF=0, the statements corresponding the box constraints are omitted.

If NA > 0, the query

GRAPH OF APPROXIMATIONS:

F = AF, M = AF,AM, D = AF-AM, R = RETURN [ENTER = R]

concerning the values of approximating functions AF(KA) together with their prescribed values AM(KA),
1 ≤ KA ≤ NA, appears. If the answer for the graph is F or M or D, the following queries concerning the
parameters of the graph will appear:

TYPE OF GRAPH FOR AF:

P = POINTS, C = CURVE, L = LINES [ENTER = L]

NA = [number_of_approximating_functions_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

APPROXIMATIONS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in cases of [D = AF-AM] and [L = LINES]):

figure;

ii=1:number_of_drawn_values;

dif=[ values_of_differences_between_AF(KA)_and_AM(KA) ];

h=plot(ii,dif);

set(h,{’LineStyle’},{’none’});

for i=1:length(ii)

hl=line([ii(i) ii(i)],[0 dif(i)]);

set(hl,{’Color’},{’r’});

end

axis([0 length(ii)+1 minimum_in_values maximum_in_values]);

tit=title(’Approximations’);

xl=xlabel(’Indices of approximations’);

yl=ylabel(’Differences of approximations’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);

set(yl,’FontSize’,15);

print -depsc PMAPP09;
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When KBA=0, the statements corresponding the array AM are omitted.

If NC > 0, the query

GRAPH OF CONSTRAINTS:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]

concerning the values of constraint functions CF(KC) together with their bounds CL(KC) and CU(KC),
1 ≤ KC ≤ NC, appears. If the answer is P or C, the following queries concerning the parameters of the
graph will appear:

NC = [number_of_constraints_NC]

START INDEX (1..[NC]): [ENTER = 1]

STOP INDEX ([start_index]..[NC]): [ENTER = [NC]]

CONSTRAINTS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in case of [P = POINTS]):

figure;

il=[ indices_of_lower_bounds_for_constraints ];

cl=[ values_of_lower_bounds_for_constraints ];

iu=[ indices_of_upper_bounds_for_constraints ];

cu=[ values_of_upper_bounds_for_constraints ];

ic=[ indices_of_constraints ];

ci=[ values_of_constraints ];

h = plot(il,cl,iu,cu,ic,ci);

set(h,{’LineStyle’},{’none’});

set(h,{’Marker’},{’^’;’v’;’o’});

set(h,{’MarkerSize’},{6;6;6});

set(h,{’MarkerEdgeColor’},{’b’;’b’;’r’});

set(h,{’MarkerFaceColor’},{’b’;’b’;’r’});

for i=1:length(il)

ll=line([il(i) il(i)],[cl(i) ci(il(i))]);

set(ll,{’LineWidth’},{1});

set(ll,{’Color’},{’b’});

end

for i=1:length(iu)

lu=line([iu(i) iu(i)],[cu(i) ci(iu(i))]);

set(lu,{’LineWidth’},{1});

set(lu,{’Color’},{’b’});

end

axis([0 length(ic)+1 minimum_in_values maximum_in_values]);

tit=title(’Constraints’);

xl=xlabel(’Indices of constraints’);

yl=ylabel(’Bounds and values of constraints’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);

set(yl,’FontSize’,15);

print -depsc PMCON01;
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Generation of reliefs depends on the value of macrovariable $MAP (’N’- no, ’Y’- yes, ’E’- extended).
If $MAP=’Y’, then one relief (isolines, color map or surface) is generated, while if $MAP=’E’, then three
reliefs are generated as is specified by the following queries:

GRAPH OF MAPS:

S = ISOLINES/MAP/SURFACE, R = RETURN [ENTER = R]

If S is specified, then these queries follow:

INDEX OF THE 1-ST VARIABLE:

X(IGR) = the_value_of_X(IGR)

XL(IGR) =

XU(IGR) =

INDEX OF THE 2-ND VARIABLE:

X(JGR) = the_value_of_X(JGR)

XL(JGR) =

XU(JGR) =

INDEX OF THE 3-RD VARIABLE:

X(KGR) = the_value_of_X(KGR)

XL(KGR) =

XU(KGR) =

GRAPH OF: 1 = ISOLINES, 2 = MAP, 3 = SURFACE, 9 = NEW INDEXES, 0 = RETURN

[ 1 2 3 12 13 23 123 9, ENTER = 0 ]

Here IGR, JGR, KGR are indexes of the visualized variables and XL(IGR), XU(IGR), XL(JGR), XU(JGR),
XL(KGR), XU(KGR) are bounds which specify the domain of the drawn relief. If 9 is specified, new in-
dexes IGR, JGR, KGR can be chosen. If 1 or 2 or 3 or 12 or 13 or 23 or 123 is specified, the following
queries will appear:

NUMBER OF CONTOUR LEVELS: [ENTER = 64]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]

GRAPH OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated. If the answer for
the graph contains 1 (isolines), the code has the form (e.g. in case of [IGR=1], [JGR=2]):

figure;

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

level=64;

contour(x,y,f,level);

mn=min(f(:));

mx=max(f(:));
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set(gca, ’CLim’, [mn, mx]);

colorbar;

hold on;

pi=plot(xm,ym);

set(pi,{’Marker’},{’s’});

set(pi,{’MarkerSize’},{10});

set(pi,{’MarkerEdgeColor’},{’k’});

set(pi,{’MarkerFaceColor’},{’k’});

axis([xligr xuigr xljgr xujgr]);

tit=title(’Isolines’);

xl=xlabel(’X(1)’);

yl=ylabel(’X(2)’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);

set(yl,’FontSize’,15);

print -depsc PMISO01;

If the answer for the graph contains 2 (color map), the code has the form (e.g. in case of [IGR=1],
[JGR=2]):

figure;

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

level=64;

contourf(x,y,f,level);

mn=min(f(:));

mx=max(f(:));

set(gca, ’CLim’, [mn, mx]);

colorbar;

hold on;

pm=plot(xm,ym);

set(pm,{’Marker’},{’s’});

set(pm,{’MarkerSize’},{10});

set(pm,{’MarkerEdgeColor’},{’w’});

set(pm,{’MarkerFaceColor’},{’w’});

axis([xligr xuigr xljgr xujgr]);

tit=title(’Map’);

xl=xlabel(’X(1)’);

yl=ylabel(’X(2)’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);
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set(yl,’FontSize’,15);

print -depsc PMMAP01;

If the answer for the graph contains 3 (surface), the code has the form (e.g. in case of [IGR=1], [JGR=2]):

figure;

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values ];

surfc(x,y,f);

mn=min(f(:));

mx=max(f(:));

set(gca, ’CLim’, [mn, mx]);

colorbar;

xlim([xligr xuigr]);

ylim([xljgr xujgr]);

zlim(’auto’);

tit=title(’Surface’);

xl=xlabel(’X(1)’);

yl=ylabel(’X(2)’);

zl=zlabel(’F’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);

set(yl,’FontSize’,15);

set(zl,’FontSize’,15,’Rotation’,0);

pos = get(zl,’Position’);

set(zl,’Position’, pos + [-0.1, 0, 0]);

print -depsc PMSUR01;

Here NGR is the number of nodes corresponding to every selected variable (NGR*NGR is the number of
drawn function values), XLIGR is the lower bound of the first variable of the selected surface specified
by the user, XUIGR is the upper bound of the first variable of the selected surface specified by the user,
XLJGR is the lower bound of the second variable of the selected surface specified by the user, XUJGR is
the upper bound of the second variable of the selected surface specified by the user, F contains NGR*NGR
drawn function values, XM is the value of the solution point whose index is the same as the index of
the first variable and YM is the value of the solution point whose index is the same as the index of the
second variable. The solution point [XM,YM] is drawn only if it is contained in the box defined by the
values XLIGR, XUIGR, XLJGR, XUJGR and is marked as a black square in case of isolines and as a
white square in case of the color map. Note that if $MAP=’E’, then isolines, color map, and/or surface
(if requested) with indices IGR, KGR and JGR, KGR are concurrently generated.

The last part of the code concerns drawing paths if $PATH<>’N’. We can draw iterations of up to
three variables X(IGR), X(JGR), X(KGR) and the function value F (depending on the variable $PATH)
starting from the initial point and going to the solution point.

The following query concerning iterations will appear on the screen:
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GRAPH OF ITERATIONS:

1 = ITERATIONS OF X(IGR)

2 = ITERATIONS OF X(JGR)

3 = ITERATIONS OF X(KGR)

4 = ITERATIONS OF X(IGR), X(JGR)

5 = ITERATIONS OF X(IGR), X(KGR)

6 = ITERATIONS OF X(JGR), X(KGR)

7 = ITERATIONS OF X(IGR), X(JGR), X(KGR)

0 = RETURN [ENTER = 0]

If the answer for the graph of iterations of X(.) is 1-7, the following query concerning the parameter of
the graph will appear:

TYPE OF GRAPH: P = POINTS, C = CURVE [ENTER = C]

ITERATIONS OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in case of [IGR=1], [JGR=2], [KGR=3], [7 = ITERATIONS OF X(1), X(2), X(3)], [2 = CURVE]):

figure;

x=1:number_of_drawn_values;

x1=[ values_of_the_first_plotting_variable_X(1)_in_each_iteration ];

x2=[ values_of_the_second_plotting_variable_X(2)_in_each_iteration ];

x3=[ values_of_the_third_plotting_variable_X(3)_in_each_iteration ];

h=plot(x,x1,x,x2,x,x3);

set(h,{’LineStyle’},{’-’;’--’;’-.’});

set(h,{’LineWidth’},{2;2;2});

set(h,{’Color’},{’b’;’r’;[0 0.5 0]});

tit=title(’Iterations of {\color{blue}X(1)}, {\color{red}X(2)},

{\color[rgb]{0 0.5 0}X(3)}’);

xl=xlabel(’Iteration’);

yl=ylabel(’Values’);

set(gca,’FontSize’,20);

set(tit,’FontSize’,25);

set(xl,’FontSize’,20);

set(yl,’FontSize’,20);

axis([1 number_of_drawn_values minimum_in_values maximum_in_values]);

grid on;

print -depsc PMPTH72;

The following query concerning function values will appear on the screen:

GRAPH OF FUNCTION VALUES:

1 = VALUES OF F, 0 = RETURN [ENTER = 0]

If the answer for the graph of function values F is 1, the following query concerning the parameter of the
graph will appear:

TYPE OF GRAPH: P = POINTS, C = CURVE [ENTER = C]

VALUES OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in case of [2 = CURVE]):
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figure;

x=1:number_of_drawn_values;

f=[ function_values_F_in_each_iteration ];

h=plot(x,f);

set(h,{’LineStyle’},{’-’});

set(h,{’LineWidth’},{2});

set(h,{’Color’},{’b’});

tit=title(’Iterations of F’);

xl=xlabel(’Iteration’);

yl=ylabel(’Values’);

set(gca,’FontSize’,20);

set(tit,’FontSize’,25);

set(xl,’FontSize’,20);

set(yl,’FontSize’,20);

axis([1 number_of_drawn_values minimum_in_values maximum_in_values]);

grid on;

print -depsc PMPTH02;

Moreover, we can draw one path (if $PATH = ’Y’) or three paths (if $PATH = ’E’) of iterations
together with isolines or the color map that correspond to selected pairs of variables. If $PATH<>’N’, we
have to specify indexes of the selected variables from the keyboard (the very first query, see above). Lower
and upper bounds are determined automatically. The following queries appear on the screen:

GRAPH OF PATH WITH:

1 = ISOLINES, 2 = MAP, 0 = RETURN [ 1 2 12, ENTER = 0 ]

If the answer is 1 or 2 or 12, the following queries concerning the parameters of the graph will appear:

TYPE OF PATH: P = POINTS, C = CURVE, B = BOTH [ENTER = B]

NUMBER OF CONTOUR LEVELS: [ENTER = 64]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]

NUMBER OF POINTS: (MAX max_number_of_points) [ENTER = max_number_of_points]

PATH WITH [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated. If the answer for the
graph of path with contains 1 (isolines), the code has the form (e.g. in case of [IGR=1], [JGR=2], and the
default values):

figure;

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values_F ];

x1=[ values_of_the_first_plotting_variable_X(1) ];

x2=[ values_of_the_second_plotting_variable_X(2) ];

xm=value_of_the_first_component_of_the_solution;
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ym=value_of_the_second_component_of_the_solution;

level=64;

contour(x,y,f,level);

mn=min(f(:));

mx=max(f(:));

set(gca, ’CLim’, [mn, mx]);

colorbar;

hold on;

h=plot(x1,x2);

set(h,{’LineStyle’},{’-’});

set(h,{’LineWidth’},{1});

set(h,{’Color’},{’k’});

set(h,{’Marker’},{’o’});

set(h,{’MarkerSize’},{4});

set(h,{’MarkerEdgeColor’},{’k’});

set(h,{’MarkerFaceColor’},{’k’});

hold on;

p=plot(xm,ym);

set(p,{’Marker’},{’s’});

set(p,{’MarkerSize’},{10});

set(p,{’MarkerEdgeColor’},{’k’});

set(p,{’MarkerFaceColor’},{’k’});

axis([xligr xuigr xljgr xujgr]);

tit=title(’Path with isolines (number_of_points)’);

xl=xlabel(’X(1)’);

yl=ylabel(’X(2)’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);

set(yl,’FontSize’,15);

print -depsc PMPWI13;

If the answer for the graph of path with contains 2 (color map), the code has the form (e.g. in case of
[IGR=1], [JGR=2], and the default values):

figure;

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values_F ];

x1=[ values_of_the_first_plotting_variable_X(1) ];

x2=[ values_of_the_second_plotting_variable_X(2) ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

level=64;

contourf(x,y,f,level);

mn=min(f(:));
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mx=max(f(:));

set(gca, ’CLim’, [mn, mx]);

colorbar;

hold on;

h=plot(x1,x2);

set(h,{’LineStyle’},{’-’});

set(h,{’LineWidth’},{1});

set(h,{’Color’},{’w’});

set(h,{’Marker’},{’o’});

set(h,{’MarkerSize’},{4});

set(h,{’MarkerEdgeColor’},{’w’});

set(h,{’MarkerFaceColor’},{’w’});

hold on;

p=plot(xm,ym);

set(p,{’Marker’},{’s’});

set(p,{’MarkerSize’},{10});

set(p,{’MarkerEdgeColor’},{’w’});

set(p,{’MarkerFaceColor’},{’w’});

axis([xligr xuigr xljgr xujgr]);

tit=title(’Path with map (number_of_points)’);

xl=xlabel(’X(1)’);

yl=ylabel(’X(2)’);

set(gca,’FontSize’,15);

set(tit,’FontSize’,25);

set(xl,’FontSize’,15);

set(yl,’FontSize’,15);

print -depsc PMPWM13;

Here NGR is the number of nodes corresponding to every selected variable (NGR*NGR is the number of
drawn function values), XLIGR is the lower bound of the first variable of the selected surface, XUIGR
is the upper bound of the first variable of the selected surface, XLJGR is the lower bound of the second
variable of the selected surface, XUJGR is the upper bound of the second variable of the selected surface,
F contains NGR*NGR drawn function values, X1 are the values of the first selected variable in drawn
points, X2 are the values of the second selected variable in drawn points, XM is the value of the solution
point whose index is the same as the index of the first variable and YM is the value of the solution point
whose index is the same as the index of the second variable. The path is drawn in black in case of isolines
and in white in case of the color map. Note that if $PATH=’E’, then path with isolines and/or color map
(if requested) with indices IGR, KGR and JGR, KGR are concurrently generated.

If a system of NE ordinary differential equations is solved, then NED = min(NE, 3) trajectories,
corresponding orbits (if NE > 1) and the picture (if NE > 2) can be drawn. If NE > 3, the user must
specify indexes IE, JE, KE of the selected solution functions:

INDEX OF THE 1-ST VISUALIZED DIFFERENTIAL EQUATION: IE =

INDEX OF THE 2-ND VISUALIZED DIFFERENTIAL EQUATION: JE =

INDEX OF THE 3-RD VISUALIZED DIFFERENTIAL EQUATION: KE =

Now, first, the queries concerning the trajectories will appear:

DIFFERENTIAL EQUATIONS:

1 = TRAJECTORY OF YA(IE)

2 = TRAJECTORY OF YA(JE)

3 = TRAJECTORY OF YA(KE)

4 = TRAJECTORIES OF YA(IE), YA(JE)

158



5 = TRAJECTORIES OF YA(IE), YA(KE)

6 = TRAJECTORIES OF YA(JE), YA(KE)

7 = TRAJECTORIES OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE < 3, the options of trajectories of YA with missing indexes are omitted. If the answer is
1-7, the following queries concerning the parameters of the graph will appear:

NA = [number_of_mesh_points_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

TRAJECTORY OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in case of [IE=1], [JE=2], [KE=3] and [7 = TRAJECTORIES OF YA(1), YA(2), YA(3)]):

figure;

x=[ values_of_the_independent_variable_AT_mesh_points ];

y1=[ values_of_the_first_drawn_function_YA(1) ];

y2=[ values_of_the_second_drawn_function_YA(2) ];

y3=[ values_of_the_third_drawn_function_YA(3) ];

h = plot(x,y1,x,y2,x,y3);

set(h,{’LineWidth’},{2;2;2});

set(h,{’LineStyle’},{’-’;’--’;’-.’});

set(h,{’Color’},{’b’;’r’;[0 0.5 0]});

tit=title(’Trajectories of {\color{blue}YA(1)}, {\color{red}YA(2)},

{\color[rgb]{0 0.5 0}YA(3)}’);

xl=xlabel(’Time’);

yl=ylabel(’Values of YA’);

set(gca,’FontSize’,20);

set(tit,’FontSize’,25);

set(xl,’FontSize’,20);

set(yl,’FontSize’,20);

axis([minimum_in_x maximum_in_x minimum_in_y’s maximum_in_y’s]);

grid on;

print -depsc PMTRA07;

Here AT are the values of the independent variable (mesh points).

Further, the queries concerning the orbits will appear:

DIFFERENTIAL EQUATIONS:

1 = ORBIT OF YA(IE), YA(JE)

2 = ORBIT OF YA(IE), YA(KE)

3 = ORBIT OF YA(JE), YA(KE)

4 = ORBITS OF YA(IE), YA(JE); YA(IE), YA(KE)

5 = ORBITS OF YA(IE), YA(JE); YA(JE), YA(KE)

6 = ORBITS OF YA(IE), YA(KE); YA(JE), YA(KE)

7 = ORBITS OF YA(IE), YA(JE); YA(IE), YA(KE); YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE = 2, only the option of orbit of YA(IE), YA(JE) is considered. If the answer is 1-7, the
following query concerning only confirmation of generating the graph will appear:
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ORBIT OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in case of [IE=1], [JE=2] and [1 = ORBIT OF YA(1), YA(2)]):

figure;

y1=[ values_of_the_first_drawn_function_YA(1) ];

y2=[ values_of_the_second_drawn_function_YA(2) ];

h = plot(y1,y2);

set(h,{’LineWidth’},{2});

set(h,{’LineStyle’},{’-’});

set(h,{’Color’},{’b’});

tit=title(’Orbit of YA(1), YA(2)’);

xl=xlabel(’YA(1)’);

yl=ylabel(’YA(2)’);

set(gca,’FontSize’,20);

set(tit,’FontSize’,25);

set(xl,’FontSize’,20);

set(yl,’FontSize’,20);

grid on;

axis([minimum_in_y1 maximum_in_y1 minimum_in_y2 maximum_in_y2]);

print -depsc PMORB01;

Finally, the queries concerning the picture will appear:

DIFFERENTIAL EQUATIONS:

1 = PICTURE OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

If the answer is 1, the following query concerning only confirmation of generating the graph will appear:

PICTURE OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.m is generated and has the form (e.g.
in case of [IE=1], [JE=2], [KE=3]:

figure;

y1=[ values_of_the_first_drawn_function_YA(1) ];

y2=[ values_of_the_second_drawn_function_YA(2) ];

y3=[ values_of_the_third_drawn_function_YA(3) ];

h = plot3(y1,y2,y3);

set(h,{’LineWidth’},{2});

set(h,{’LineStyle’},{’-’});

set(h,{’Color’},{’b’});

tit=title(’Picture of YA(1), YA(2), YA(3)’);

xl=xlabel(’YA(1)’);

yl=ylabel(’YA(2)’);

zl=zlabel(’YA(3)’);

set(gca,’FontSize’,20);

set(tit,’FontSize’,25);

set(xl,’FontSize’,20);

set(yl,’FontSize’,20);
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set(zl,’FontSize’,20);

grid on;

box on;

axis([minimum_in_y1 maximum_in_y1 minimum_in_y2 maximum_in_y2

minimum_in_y3 maximum_in_y3]);

print -depsc PMPIC01;

When the file P.m is prepared, we can type MATGO to start the MATLAB system. Procedure
MATGO.BAT assures that graphic pictures P*.eps (or P*.png in case $OBR=2) are generated using
the instructions written in the file P.m.

5.6 Interface to the SCILAB graphic environment

The SCILAB graphic output can be used in both the MS (32 bit) Windows and the Linux versions of
the UFO system if $GRAPHICS = –3 (macrovariable $GRAPHICS is defined in template UZDCLP.I, see
Section B.7). If we want to use the SCILAB graphic output, we have two possibilities.

The first possibility is the use of internal graphic ($GRAPH=’I’ or, equivalently, $GRAPH=’Y’).
In this case, the SCILAB environment is used interactively in a similar way as the internal Fortran
environment, but the graphic screen and control statements are different. The answers on the queries
concerning particular type of the graph are summarized. After confirming generating the graph, the Scilab
Command Window will appear together with the corresponding generated figure. This window can be
closed by pressing the Enter key.

The second possibility is the use of external graphic ($GRAPH=’E’). In this case, the UFO system
generates an output file P.sci serving as an input file for the SCILAB graphic environment. Based
on the screen interface, the user is asked to specify several parameters in form of answers on the system
queries. The parameters are then summarized and after confirming generating the graph, the corresponding
SCILAB code is generated.

Note that the default value is $GRAPH=’N’.

If INTERNAL GRAPHIC is selected, i.e. $GRAPH=’I’ or $GRAPH=’Y’, a list of all possible queries
appearing on the screen follows. Depending on the values of variables NF, NA, NC, NGR, NE, the following
main menu appears on the screen (see below the main menu for differential equations):

V = VARIABLES

A = APPROXIMATIONS

C = CONSTRAINTS

S = ISOLINES/MAP/SURFACE

P = PATH WITH ISOLINES/MAP

X = PATH OF VARIABLES

F = PATH OF FUNCTION VALUES

E = EXIT

The choices P, X, F concern drawing paths if $PATH<>’N’. If $PATH=’Y’, then, at first, we have to
specify indexes of visualized variables using the queries

INDEX OF THE 1-ST VISUALIZED VARIABLE: IGR =

INDEX OF THE 2-ND VISUALIZED VARIABLE: JGR =

If V is specified in the main menu, the following queries concerning the values of variables X(I) together
with their bounds XL(I) and XU(I), 1 ≤ I ≤ NF, appear on the screen:

GRAPH OF VARIABLES:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]
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NF = [number_of_variables_NF]

START INDEX (1..[NF]): [ENTER = 1]

STOP INDEX ([start_index]..[NF]): [ENTER = [NF]]

VARIABLES: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

When KBF=0, the statements corresponding the box constraints are omitted.
If A is specified in the main menu, the following queries concerning the values of approximating functions

AF(KA) together with their prescribed values AM(KA), 1 ≤ KA ≤ NA, appear on the screen:

GRAPH OF APPROXIMATIONS:

F = AF, M = AF,AM, D = AF-AM, R = RETURN [ENTER = R]

TYPE OF GRAPH FOR AF:

P = POINTS, C = CURVE, L = LINES [ENTER = L]

NA = [number_of_approximating_functions_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

APPROXIMATIONS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

When KBA=0, the statements corresponding the array AM are omitted.
If C is specified in the main menu, the following queries concerning the values of constraint functions

CF(KC) together with their bounds CL(KC) and CU(KC), 1 ≤ KC ≤ NC, appear on the screen:

GRAPH OF CONSTRAINTS:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]

NC = [number_of_constraints_NC]

START INDEX (1..[NC]): [ENTER = 1]

STOP INDEX ([start_index]..[NC]): [ENTER = [NC]]

CONSTRAINTS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If S is specified in the main menu, the following queries concerning the reliefs appear on the screen:

INDEX OF THE 1-ST VARIABLE:

X(IGR) = the_value_of_X(IGR)

XL(IGR) =

XU(IGR) =

INDEX OF THE 2-ND VARIABLE:

X(JGR) = the_value_of_X(JGR)

XL(JGR) =

XU(JGR) =

GRAPH OF: I = ISOLINES, M = MAP, S = SURFACE,

N = NEW INDEXES, R = RETURN [ENTER = R]

Here IGR, JGR are indexes of the visualized variables and XL(IGR), XU(IGR), XL(JGR), XU(JGR) are
bounds which specify the domain of the drawn relief. If N is specified, new indexes IGR, JGR can be
selected. If I or M or S is specified, the following queries appear:

NUMBER OF CONTOUR LEVELS: [ENTER = 16]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]

GRAPH OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

162



Note that in case of S, the query concerning the number of contour levels is omitted.
If P is specified in the main menu, the queries concerning the path with isolines or map appearing on

the screen depend on macrovariable $PATH:

INDEX OF THE 1-ST VARIABLE:

INDEX OF THE 2-ND VARIABLE:

PATH WITH: I = ISOLINES, M = MAP, N = NEW INDEXES, R = RETURN [ENTER = R]

If $PATH=’E’, the user must specify the indexes of variables while if $PATH=’Y’, the queries concerning
indexes are omitted because they were specified before. If I or M is specified, the following queries appear:

TYPE OF PATH: P = POINTS, C = CURVE, B = BOTH [ENTER = B]

NUMBER OF CONTOUR LEVELS: [ENTER = 16]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]

NUMBER OF POINTS: (MAX max_number_of_points) [ENTER = max_number_of_points]

PATH WITH [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If X is specified in the main menu, the following queries concerning the path of iterations appear on
the screen:

INDEX OF THE 1-ST VISUALIZED VARIABLE: IGR =

INDEX OF THE 2-ND VISUALIZED VARIABLE: JGR =

INDEX OF THE 3-RD VISUALIZED VARIABLE: KGR =

GRAPH OF ITERATIONS:

1 = ITERATIONS OF X(IGR)

2 = ITERATIONS OF X(JGR)

3 = ITERATIONS OF X(KGR)

4 = ITERATIONS OF X(IGR), X(JGR)

5 = ITERATIONS OF X(IGR), X(KGR)

6 = ITERATIONS OF X(JGR), X(KGR)

7 = ITERATIONS OF X(IGR), X(JGR), X(KGR)

0 = RETURN [ENTER = 0]

Here IGR, JGR, KGR are indexes of the visualized variables. If $PATH=’Y’, the queries concerning
indexes are omitted because they were specified before and only options concerning indexes IGR,JGR
appear. If 1-7 is specified, the following queries appear:

TYPE OF GRAPH: P = POINTS, C = CURVE [ENTER = C]

ITERATIONS OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If F is specified in the main menu, the following queries concerning the path of function values appear
on the screen:

GRAPH OF ITERATIONS:

1 = ITERATIONS OF F, 0 = RETURN [ENTER = 0]

If 1 is specified, the following queries appear:

TYPE OF GRAPH: 1 = POINTS, 2 = CURVE [ENTER = 2]

VALUES OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]
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If E is specified in the main menu, the program is terminated. Note that if RETURN (R or 0) is
specified in particular submenus, then a return to the main menu is performed.

In case of differential equations, the main menu depends on the value of variable NE. One can draw
trajectories, corresponding orbits (if NE > 1) and the picture (if NE > 2). If NE > 3, the user must also
specify indexes IE, JE, KE of the selected solution functions. The following main menu appears on the
screen:

INDEX OF THE 1-ST VISUALIZED DIFFERENTIAL EQUATION: IE =

INDEX OF THE 2-ND VISUALIZED DIFFERENTIAL EQUATION: JE =

INDEX OF THE 3-RD VISUALIZED DIFFERENTIAL EQUATION: KE =

T = 1D TRAJECTORY

O = 2D ORBIT

P = 3D PICTURE

N = NEW INDEXES

E = EXIT

Note that depending on the value of NE, only the corresponding possible options appear. If N is specified,
new indexes can be chosen.

If T is specified in the main menu, the following queries concerning 1D trajectories appear on the
screen:

DIFFERENTIAL EQUATIONS:

1 = TRAJECTORY OF YA(IE)

2 = TRAJECTORY OF YA(JE)

3 = TRAJECTORY OF YA(KE)

4 = TRAJECTORIES OF YA(IE), YA(JE)

5 = TRAJECTORIES OF YA(IE), YA(KE)

6 = TRAJECTORIES OF YA(JE), YA(KE)

7 = TRAJECTORIES OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE < 3, only trajectories of YA with a corresponding number of indexes are considered. If
1-7 is specified, the following queries appear:

NA = [number_of_mesh_points_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

TRAJECTORIES OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If O is specified in the main menu, the following queries concerning 2D orbits appear on the screen:

DIFFERENTIAL EQUATIONS:

1 = ORBIT OF YA(IE), YA(JE)

2 = ORBIT OF YA(IE), YA(KE)

3 = ORBIT OF YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE = 2, only the first option is possible. If 1-3 is specified, the following query appears:

ORBIT OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If P is specified in the main menu, the following queries concerning 3D picture appear on the screen:
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DIFFERENTIAL EQUATIONS:

1 = PICTURE OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

If 1 is specified, the following query appears:

PICTURE OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

If E is specified in the main menu, the program is terminated. Note that if RETURN (0) is specified
in particular submenus, then a return to the main menu is performed.

If EXTERNAL GRAPHIC is selected, i.e. $GRAPH=’E’, a list of all possible queries appearing on
the screen follows.

If $PATH=’Y’ (two variables IGR,JGR) or $PATH=’E’ (three variables IGR,JGR,KGR), then at first
the user is asked to specify the visualized variables for the paths:

INDEX OF THE 1-ST VISUALIZED VARIABLE: IGR =

INDEX OF THE 2-ND VISUALIZED VARIABLE: JGR =

INDEX OF THE 3-RD VISUALIZED VARIABLE: KGR =

Now, depending on the values of variables NF, NA, NC, NGR, NE, the user is asked to specified the
types of graphs and their parameters that will be generated into the file P.sci. Note that the choice
RETURN (R or 0, see below) from the main menu will cause a switch to the main menu of the next graph
and from the submenu will cause a return to the main menu of the current graph.

If NF > 0, the query

GRAPH OF VARIABLES:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]

concerning the values of variables X(I) together with their bounds XL(I) and XU(I), 1 ≤ I ≤ NF, appears.
If the answer is P or C, the following queries concerning the parameters of the graph will appear:

NF = [number_of_variables_NF]

START INDEX (1..[NF]): [ENTER = 1]

STOP INDEX ([start_index]..[NF]): [ENTER = [NF]]

VARIABLES: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in case of [P = POINTS]):

ncf=ncf+1;

scf(ncf);

il=[ indices_of_lower_bounds_for_variables ];

xl=[ values_of_lower_bounds_for_variables ];

iu=[ indices_of_upper_bounds_for_variables ];

xu=[ values_of_upper_bounds_for_variables ];

ix=[ indices_of_variables ];

xi=[ values_of_variables ];

plot(iu,xu,il,xl,ix,xi);

p=get("hdl");

p.children(1).line_mode="off";

p.children(1).mark_mode="on";
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p.children(1).mark_size=6;

p.children(1).mark_style=9;

p.children(1).mark_foreground=5;

p.children(1).mark_background=5;

p.children(2).line_mode="off";

p.children(2).mark_mode="on";

p.children(2).mark_size=12;

p.children(2).mark_style=6;

p.children(2).mark_foreground=2;

p.children(2).mark_background=2;

p.children(3).line_mode="off";

p.children(3).mark_mode="on";

p.children(3).mark_size=12;

p.children(3).mark_style=7;

p.children(3).mark_foreground=2;

p.children(3).mark_background=2;

for i=1:length(il)

plot([il(i) il(i)],[xl(i) xi(il(i))]);

pl=get("hdl");

pl.children.line_mode="on";

pl.children.polyline_style=1;

pl.children.line_style=1;

pl.children.thickness=1;

pl.children.foreground=2;

end

for i=1:length(iu)

plot([iu(i) iu(i)],[xu(i) xi(iu(i))]);

pu=get("hdl");

pu.children.line_mode="on";

pu.children.polyline_style=1;

pu.children.line_style=1;

pu.children.thickness=1;

pu.children.foreground=2;

end

a=gca();

a.font_size=3;

a.zoom_box=[0, minimum_in_values, length(ix)+1, maximum_in_values];

title(’Variables’,’fontsize’,5);

xlabel(’Indices of variables’,’fontsize’,3);

ylabel(’Bounds and values of variables’,’fontsize’,3);

xs2eps(ncf,’PSVAR01’);

When KBF=0, the statements corresponding the box constraints are omitted.

If NA > 0, the query

GRAPH OF APPROXIMATIONS:

F = AF, M = AF,AM, D = AF-AM, R = RETURN [ENTER = R]

concerning the values of approximating functions AF(KA) together with their prescribed values AM(KA),
1 ≤ KA ≤ NA, appears. If the answer for the graph is F or M or D, the following queries concerning the
parameters of the graph will appear:

TYPE OF GRAPH FOR AF:
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P = POINTS, C = CURVE, L = LINES [ENTER = L]

NA = [number_of_approximating_functions_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

APPROXIMATIONS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in cases of [D = AF-AM] and [L = LINES]):

ncf=ncf+1;

scf(ncf);

ii=1:number_of_drawn_values;

dif=[ values_of_differences_between_AF(KA)_and_AM(KA) ];

for i=1:length(ii)

plot([ii(i) ii(i)],[0 dif(i)],"Color","red","Thickness",0.5);

end

a=gca();

a.font_size=3;

a.zoom_box=[0, minimum_in_values length(ii)+1, maximum_in_values];

title(’Approximations’,’fontsize’,5);

xlabel(’Indices of approximations’,’fontsize’,3);

ylabel(’Differences of approximations’,’fontsize’,3);

xs2eps(ncf,’PSAPP09’);

When KBA=0, the statements corresponding the array AM are omitted.

If NC > 0, the query

GRAPH OF CONSTRAINTS:

P = POINTS, C = CURVE, R = RETURN [ENTER = R]

concerning the values of constraint functions CF(KC) together with their bounds CL(KC) and CU(KC),
1 ≤ KC ≤ NC, appears. If the answer is P or C, the following queries concerning the parameters of the
graph will appear:

NC = [number_of_constraints_NC]

START INDEX (1..[NC]): [ENTER = 1]

STOP INDEX ([start_index]..[NC]): [ENTER = [NC]]

CONSTRAINTS: [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in case of [P = POINTS]):

ncf=ncf+1;

scf(ncf);

il=[ indices_of_lower_bounds_for_constraints ];

cl=[ values_of_lower_bounds_for_constraints ];

iu=[ indices_of_upper_bounds_for_constraints ];

cu=[ values_of_upper_bounds_for_constraints ];

ic=[ indices_of_constraints ];

ci=[ values_of_constraints ];

plot(iu,cu,il,cl,ic,ci);
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p=get("hdl");

p.children(1).line_mode="off";

p.children(1).mark_mode="on";

p.children(1).mark_size=6;

p.children(1).mark_style=9;

p.children(1).mark_foreground=5;

p.children(1).mark_background=5;

p.children(2).line_mode="off";

p.children(2).mark_mode="on";

p.children(2).mark_size=12;

p.children(2).mark_style=6;

p.children(2).mark_foreground=2;

p.children(2).mark_background=2;

p.children(3).line_mode="off";

p.children(3).mark_mode="on";

p.children(3).mark_size=12;

p.children(3).mark_style=7;

p.children(3).mark_foreground=2;

p.children(3).mark_background=2;

for i=1:length(il)

plot([il(i) il(i)],[cl(i) ci(il(i))]);

pl=get("hdl");

pl.children.line_mode="on";

pl.children.polyline_style=1;

pl.children.line_style=1;

pl.children.thickness=1;

pl.children.foreground=2;

end

for i=1:length(iu)

plot([iu(i) iu(i)],[cu(i) ci(iu(i))]);

pu=get("hdl");

pu.children.line_mode="on";

pu.children.polyline_style=1;

pu.children.line_style=1;

pu.children.thickness=1;

pu.children.foreground=2;

end

a=gca();

a.font_size=3;

a.zoom_box=[0, minimum_in_values, length(ic)+1, maximum_in_values];

title(’Constraints’,’fontsize’,5);

xlabel(’Indices of constraints’,’fontsize’,3) ;

ylabel(’Bounds and values of constraints’,’fontsize’,3);

xs2eps(ncf,’PSCON1’);

Generation of reliefs depends on the value of macrovariable $MAP (’N’- no, ’Y’- yes, ’E’- extended).
If $MAP=’Y’, then one relief (isolines, color map or surface) is generated, while if $MAP=’E’, then three
reliefs are generated as is specified by the following queries:

GRAPH OF MAPS:

S = ISOLINES/MAP/SURFACE, R = RETURN [ENTER = R]

If S is specified, then these queries follow:
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INDEX OF THE 1-ST VARIABLE:

X(IGR) = the_value_of_X(IGR)

XL(IGR) =

XU(IGR) =

INDEX OF THE 2-ND VARIABLE:

X(JGR) = the_value_of_X(JGR)

XL(JGR) =

XU(JGR) =

INDEX OF THE 3-RD VARIABLE:

X(KGR) = the_value_of_X(KGR)

XL(KGR) =

XU(KGR) =

GRAPH OF: 1 = ISOLINES, 2 = MAP, 3 = SURFACE, 9 = NEW INDEXES, 0 = RETURN

[ 1 2 3 12 13 23 123 9, ENTER = 0 ]

Here IGR, JGR, KGR are indexes of the visualized variables and XL(IGR), XU(IGR), XL(JGR), XU(JGR),
XL(KGR), XU(KGR) are bounds which specify the domain of the drawn relief. If 9 is specified, new in-
dexes IGR, JGR, KGR can be chosen. If 1 or 2 or 3 or 12 or 13 or 23 or 123 is specified, the following
queries will appear:

NUMBER OF CONTOUR LEVELS: [ENTER = 16]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]

GRAPH OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated. If the answer
for the graph contains 1 (isolines), the code has the form (e.g. in case of [IGR=1], [JGR=2]):

ncf=ncf+1;

scf(ncf);

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

level=16;

xset("fpf"," ");

ff=f’;

contour(x,y,ff,level);

plot(xm,ym);

pi=get("hdl");

pi.children.line_mode="off";

pi.children.mark_mode="on";

pi.children.mark_style=11;

pi.children.mark_size=10;

pi.children.mark_foreground=-1;
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pi.children.mark_background=-1;

fi=gcf();

fi.color_map=jetcolormap(level);

mn=min(f);

mx=max(f);

colorbar(mn,mx);

ai=gca();

ai.font_size=3;

ai.box="on";

ai.zoom_box=[xligr, xljgr, xuigr, xujgr];

tit=title(’Isolines’,’fontsize’,5);

xlabel(’X(1)’,’fontsize’,3);

ylabel(’X(2)’,’fontsize’,3);

xs2eps(ncf,’PSISO01’);

If the answer for the graph contains 2 (color map), the code has the form (e.g. in case of [IGR=1],
[JGR=2]):

ncf=ncf+1;

scf(ncf);

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_X(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

level=16;

xset("fpf"," ");

ff=f’;

Sgrayplot(x,y,ff);

plot(xm,ym);

pm=get("hdl");

pm.children.line_mode="off";

pm.children.mark_mode="on";

pm.children.mark_style=11;

pm.children.mark_size=10;

pm.children.mark_foreground=-2;

pm.children.mark_background=-2;

fm=gcf();

fm.color_map=jetcolormap(level);

mn=min(f);

mx=max(f);

colorbar(mn,mx);

am=gca();

am.font_size=3;

am.auto_ticks="on";

am.box="on";
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am.zoom_box=[xligr, xljgr, xuigr, xujgr];

tit=title(’Map’,’fontsize’,5);

xlabel(’X(1)’,’fontsize’,3);

ylabel(’X(2)’,’fontsize’,3);

xs2eps(ncf,’PSMAP01’);

If the answer for the graph contains 3 (surface), the code has the form (e.g. in case of [IGR=1], [JGR=2]):

ncf=ncf+1;

scf(ncf);

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable;

xuigr=upper_bound_of_the_first_variable;

xljgr=lower_bound_of_the_second_variable;

xujgr=upper_bound_of_the_second_variable;

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

xset("fpf"," ");

surf(x,y,f);

fs=gcf();

fs.color_map=jetcolormap(16);

mn=min(f);

mx=max(f);

colorbar(mn,mx);

as=gca();

as.font_size=3;

as.zoom_box=[xligr, xljgr, xuigr, xujgr, mn, mx];

tit=title(’Surface’,’fontsize’,5);

xlabel(’X(1)’,’fontsize’,3);

ylabel(’X(2)’,’fontsize’,3);

zlabel(’F’,’fontsize’,3);

xs2eps(ncf,’PSSUR01’);

Here NGR is the number of nodes corresponding to every selected variable (NGR*NGR is the number of
drawn function values), XLIGR is the lower bound of the first variable of the selected surface specified
by the user, XUIGR is the upper bound of the first variable of the selected surface specified by the user,
XLJGR is the lower bound of the second variable of the selected surface specified by the user, XUJGR is
the upper bound of the second variable of the selected surface specified by the user, F contains NGR*NGR
drawn function values, XM is the value of the solution point whose index is the same as the index of
the first variable and YM is the value of the solution point whose index is the same as the index of the
second variable. The solution point [XM,YM] is drawn only if it is contained in the box defined by the
values XLIGR, XUIGR, XLJGR, XUJGR and is marked as a black square in case of isolines and as a
white square in case of the color map. Note that if $MAP=’E’, then isolines, color map, and/or surface
(if requested) with indices IGR, KGR and JGR, KGR are concurrently generated.

The last part of the code concerns drawing paths if $PATH<>’N’. We can draw iterations of up to
three variables X(IGR), X(JGR), X(KGR) and the function value F (depending on the variable $PATH)
starting from the initial point and going to the solution point.

The following query concerning iterations will appear on the screen:
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GRAPH OF ITERATIONS:

1 = ITERATIONS OF X(IGR)

2 = ITERATIONS OF X(JGR)

3 = ITERATIONS OF X(KGR)

4 = ITERATIONS OF X(IGR), X(JGR)

5 = ITERATIONS OF X(IGR), X(KGR)

6 = ITERATIONS OF X(JGR), X(KGR)

7 = ITERATIONS OF X(IGR), X(JGR), X(KGR)

0 = RETURN [ENTER = 0]

If the answer for the graph of iterations of X(.) is 1-7, the following query concerning the parameter of
the graph will appear:

TYPE OF GRAPH: P = POINTS, C = CURVE [ENTER = C]

ITERATIONS OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in case of [IGR=1], [JGR=2], [KGR=3], [7 = ITERATIONS OF X(1), X(2), X(3)], [2 = CURVE]):

ncf=ncf+1;

scf(ncf);

x=1:number_of_drawn_values;

x1=[ values_of_the_first_plotting_variable_X(1)_in_each_iteration ];

x2=[ values_of_the_first_plotting_variable_X(2)_in_each_iteration ];

x3=[ values_of_the_first_plotting_variable_X(3)_in_each_iteration ];

plot(x,x1,x,x2,x,x3);

e=gce();

e.children(1).line_mode="on";

e.children(1).mark_mode="off";

e.children(1).polyline_style=1;

e.children(1).line_style=4;

e.children(1).thickness=2;

e.children(1).foreground=13;

e.children(2).line_mode="on";

e.children(2).mark_mode="off";

e.children(2).polyline_style=1;

e.children(2).line_style=3;

e.children(2).thickness=2;

e.children(2).foreground=5;

e.children(3).line_mode="on";

e.children(3).mark_mode="off";

e.children(3).polyline_style=1;

e.children(3).line_style=1;

e.children(3).thickness=2;

e.children(3).foreground=2;

title(’$\textrm{Iterations of \textcolor{blue}{X(1)}, \textcolor{red}{X(2)},

\textcolor{0,0.5,0}{X(3)}}$’,’fontsize’,5);

set(gca(),"grid",[1 1]);

a=gca();

a.font_size=4;

a.zoom_box=[1 minimum_in_values number_of_drawn_values maximum_in_values];

a.thickness=0.5;
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xlabel(’Iteration’,’fontsize’,4);

ylabel(’Values’,’fontsize’,4);

xs2eps(ncf,’PSPTH72’);

The following query concerning function values will appear on the screen:

GRAPH OF FUNCTION VALUES:

1 = VALUES OF F, 0 = RETURN [ENTER = 0]

If the answer for the graph of function values F is 1, the following query concerning the parameter of the
graph will appear:

TYPE OF GRAPH: P = POINTS, C = CURVE [ENTER = C]

VALUES OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in case of [2 = CURVE]):

ncf=ncf+1;

scf(ncf);

x=1:number_of_drawn_values;

f=[ function_values_F_in_each_iteration ];

plot(x,f);

e=gce();

e.children.line_mode="on";

e.children.mark_mode="off";

e.children.polyline_style=1;

e.children.line_style=1;

e.children.thickness=2;

e.children.foreground=2;

title(’Iterations of F’,’fontsize’,5);

set(gca(),"grid",[1 1]);

a=gca();

a.font_size=4;

a.zoom_box=[1 minimum_in_values number_of_drawn_values maximum_in_values];

a.thickness=0.5;

xlabel(’Iteration’,’fontsize’,4);

ylabel(’Values’,’fontsize’,4);

xs2eps(ncf,’PSPTH02’);

Moreover, we can draw one path (if $PATH = ’Y’) or three paths (if $PATH = ’E’) of iterations
together with isolines or the color map that correspond to selected pairs of variables. If $PATH<>’N’, we
have to specify indexes of the selected variables from the keyboard (the very first query, see above). Lower
and upper bounds are determined automatically. The following queries appear on the screen:

GRAPH OF PATH WITH:

1 = ISOLINES, 2 = MAP, 0 = RETURN [ 1 2 12, ENTER = 0 ]

If the answer is 1 or 2 or 12, the following queries concerning the parameters of the graph will appear:

TYPE OF PATH: P = POINTS, C = CURVE, B = BOTH [ENTER = B]

NUMBER OF CONTOUR LEVELS: [ENTER = 16]

SCALE: 1 = LINEAR, 2 = LOGARITHMIC [ENTER = 1]
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NUMBER OF POINTS: (MAX max_number_of_points) [ENTER = max_number_of_points]

PATH WITH [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated. If the answer for
the graph of path with contains 1 (isolines), the code has the form (e.g. in case of [IGR=1], [JGR=2], and
the default values):

ncf=ncf+1;

scf(ncf);

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values_F ];

x1=[ values_of_the_first_plotting_variable_X(1) ];

x2=[ values_of_the_second_plotting_variable_X(2) ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

level=16;

xset("fpf"," ");

ff=f’;

contour(x,y,ff,level);

plot(xm,ym);

p=get("hdl");

p.children.line_mode="off";

p.children.mark_mode="on";

p.children.mark_style=11;

p.children.mark_size=10;

p.children.mark_foreground=-1;

p.children.mark_background=-1;

plot(x1,x2);

e=gce();

e.children.line_mode="on";

e.children.mark_mode="on";

e.children.polyline_style=1;

e.children.line_style=1;

e.children.thickness=2;

e.children.foreground=-1;

e.children.mark_style=9;

e.children.mark_size=4;

e.children.mark_foreground=-1;

e.children.mark_background=-1;

fw=gcf();

fw.color_map=jetcolormap(level);

mn=min(f);

mx=max(f);

colorbar(mn,mx);
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a=gca();

a.font_size=3;

a.box="on";

a.zoom_box=[xligr, xljgr, xuigr, xujgr];

title(’Path with isolines (number_of_points)’,’fontsize’,5);

xlabel(’X(1)’,’fontsize’,4);

ylabel(’X(2)’,’fontsize’,4);

xs2eps(ncf,’PSPWI13’);

If the answer for the graph of path with contains 2 (color map), the code has the form (e.g. in case of
[IGR=1], [JGR=2], and the default values):

ncf=ncf+1;

scf(ncf);

ngr=number_of_nodes;

xligr=lower_bound_of_the_first_variable_XL(1);

xuigr=upper_bound_of_the_first_variable_XU(1);

xljgr=lower_bound_of_the_second_variable_XL(2);

xujgr=upper_bound_of_the_second_variable_XU(2);

stx=(xuigr-xligr)/(ngr-1);

sty=(xujgr-xljgr)/(ngr-1);

x=xligr:stx:xuigr;

y=xljgr:sty:xujgr;

f=[ drawn_function_values_F ];

x1=[ values_of_the_first_plotting_variable_X(1) ];

x2=[ values_of_the_second_plotting_variable_X(2) ];

xm=value_of_the_first_component_of_the_solution;

ym=value_of_the_second_component_of_the_solution;

level=16;

xset("fpf"," ");

ff=f’;

Sgrayplot(x,y,ff);

plot(xm,ym);

p=get("hdl");

p.children.line_mode="off";

p.children.mark_mode="on";

p.children.mark_style=11;

p.children.mark_size=10;

p.children.mark_foreground=-2;

p.children.mark_background=-2;

plot(x1,x2);

e=gce();

e.children.line_mode="on";

e.children.mark_mode="on";

e.children.polyline_style=1;

e.children.line_style=1;

e.children.thickness=2;

e.children.foreground=-2;

e.children.mark_style=9;

e.children.mark_size=4;

e.children.mark_foreground=-2;

e.children.mark_background=-2;

fw=gcf();
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fw.color_map=jetcolormap(level);

mn=min(f);

mx=max(f);

colorbar(mn,mx);

a=gca();

a.font_size=3;

a.auto_ticks="on";

a.box="on";

a.zoom_box=[xligr, xljgr, xuigr, xujgr];

title(’Path with map (number_of_points)’,’fontsize’,5);

xlabel(’X(1)’,’fontsize’,4);

ylabel(’X(2)’,’fontsize’,4);

xs2eps(ncf,’PSPWM13’);

Here NGR is the number of nodes corresponding to every selected variable (NGR*NGR is the number of
drawn function values), XLIGR is the lower bound of the first variable of the selected surface, XUIGR
is the upper bound of the first variable of the selected surface, XLJGR is the lower bound of the second
variable of the selected surface, XUJGR is the upper bound of the second variable of the selected surface,
F contains NGR*NGR drawn function values, X1 are the values of the first selected variable in drawn
points, X2 are the values of the second selected variable in drawn points, XM is the value of the solution
point whose index is the same as the index of the first variable and YM is the value of the solution point
whose index is the same as the index of the second variable. The path is drawn in black in case of isolines
and in white in case of the color map. Note that if $PATH=’E’, then path with isolines and/or color map
(if requested) with indices IGR, KGR and JGR, KGR are concurrently generated.

If a system of NE ordinary differential equations is solved, then NED = min(NE, 3) trajectories,
corresponding orbits (if NE > 1) and the picture (if NE > 2) can be drawn. If NE > 3, the user must
specify indexes IE, JE, KE of the selected solution functions:

INDEX OF THE 1-ST VISUALIZED DIFFERENTIAL EQUATION: IE =

INDEX OF THE 2-ND VISUALIZED DIFFERENTIAL EQUATION: JE =

INDEX OF THE 3-RD VISUALIZED DIFFERENTIAL EQUATION: KE =

Now, first, the queries concerning the trajectories will appear:

DIFFERENTIAL EQUATIONS:

1 = TRAJECTORY OF YA(IE)

2 = TRAJECTORY OF YA(JE)

3 = TRAJECTORY OF YA(KE)

4 = TRAJECTORIES OF YA(IE), YA(JE)

5 = TRAJECTORIES OF YA(IE), YA(KE)

6 = TRAJECTORIES OF YA(JE), YA(KE)

7 = TRAJECTORIES OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE < 3, the options of trajectories of YA with missing indexes are omitted. If the answer is
1-7, the following queries concerning the parameters of the graph will appear:

NA = [number_of_mesh_points_NA]

START INDEX (1..[NA]): [ENTER = 1]

STOP INDEX ([start_index]..[NA]): [ENTER = [NA]]

TRAJECTORY OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]
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After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in case of [IE=1], [JE=2], [KE=3] and [7 = TRAJECTORIES OF YA(1), YA(2), YA(3)]):

ncf=ncf+1;

scf(ncf);

x=[ values_of_the_independent_variable_AT_mesh_points ];

y1=[ values_of_the_first_drawn_function_YA(1) ];

y2=[ values_of_the_second_drawn_function_YA(2) ];

y3=[ values_of_the_third_drawn_function_YA(3) ];

plot(x,y1,x,y2,x,y3);

set(gca(),"grid",[1 1]);

a=gca();

a.font_size=4;

a.zoom_box=[minimum_in_x minimum_in_y’s maximum_in_x maximum_in_y’s];

a.thickness=0.5;

e=gce();

e.children(1).polyline_style=1;

e.children(1).line_style=4;

e.children(1).thickness=2;

e.children(1).foreground=13;

e.children(2).polyline_style=1;

e.children(2).line_style=3;

e.children(2).thickness=2;

e.children(2).foreground=5;

e.children(3).polyline_style=1;

e.children(3).line_style=1;

e.children(3).thickness=2;

e.children(3).foreground=2;

title(’$\textrm{Trajectories of \textcolor{blue}{YA(1)}, \textcolor{red}{YA(2)},

\textcolor{0,0.5,0}{YA(3)}}$’,’fontsize’,5);

xlabel(’Time’,’fontsize’,4);

ylabel(’Values of YA’,’fontsize’,4);

xs2eps(ncf,’PSTRA07’);

Here AT are the values of the independent variable (mesh points).

Further, the queries concerning the orbits will appear:

DIFFERENTIAL EQUATIONS:

1 = ORBIT OF YA(IE), YA(JE)

2 = ORBIT OF YA(IE), YA(KE)

3 = ORBIT OF YA(JE), YA(KE)

4 = ORBITS OF YA(IE), YA(JE); YA(IE), YA(KE)

5 = ORBITS OF YA(IE), YA(JE); YA(JE), YA(KE)

6 = ORBITS OF YA(IE), YA(KE); YA(JE), YA(KE)

7 = ORBITS OF YA(IE), YA(JE); YA(IE), YA(KE); YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

Note that if NE = 2, only the option of orbit of YA(IE), YA(JE) is considered. If the answer is 1-7, the
following query concerning only confirmation of generating the graph will appear:

ORBIT OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]
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After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in case of [IE=1], [JE=2] and [1 = ORBIT OF YA(1), YA(2)]):

ncf=ncf+1;

scf(ncf);

y1=[ values_of_the_first_drawn_function_YA(1) ];

y2=[ values_of_the_second_drawn_function_YA(2) ];

plot(y1,y2);

set(gca(),"grid",[1 1]);

a=gca();

a.font_size=4;

a.zoom_box=[minimum_in_y1 minimum_in_y2 maximum_in_y1 maximum_in_y2];

a.thickness=0.5;

e=gce();

e.children(1).polyline_style=1;

e.children(1).line_style=1;

e.children(1).thickness=2;

e.children(1).foreground=2;

title(’Orbit of YA(1), YA(2)’,’fontsize’,5);

xlabel(’YA(1)’,’fontsize’,4);

ylabel(’YA(2)’,’fontsize’,4);

xs2eps(ncf,’PSORB01’);

Finally, the queries concerning the picture will appear:

DIFFERENTIAL EQUATIONS:

1 = PICTURE OF YA(IE), YA(JE), YA(KE)

0 = RETURN [ENTER = 0]

If the answer is 1, the following query concerning only confirmation of generating the graph will appear:

PICTURE OF [parameters_of_the_graph_specified_by_the_user]

GENERATE GRAPH? ’N’ = NO [ENTER = YES]

After confirming generating the graph, a corresponding part of file P.sci is generated and has the form
(e.g. in case of [IE=1], [JE=2], [KE=3]:

ncf=ncf+1;

scf(ncf);

y1=[ values_of_the_first_drawn_function_YA(1) ];

y2=[ values_of_the_second_drawn_function_YA(2) ];

y3=[ values_of_the_third_drawn_function_YA(3) ];

param3d(y1,y2,y3);

set(gca(),"grid",[1 1]);

a=gca();

a.font_size=4;

a.zoom_box=[minimum_in_y1 minimum_in_y2 maximum_in_y1 maximum_in_y2

minimum_in_y3 maximum_in_y3];

a.thickness=0.5;

e=gce();

e.polyline_style=1;

e.line_style=1;

e.thickness=2;

e.foreground=color(’blue’);
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title(’Picture of YA(1), YA(2), YA(3)’,’fontsize’,5);

xlabel(’YA(1)’,’fontsize’,4);

ylabel(’YA(2)’,’fontsize’,4);

zlabel(’YA(3)’,’fontsize’,4);

xs2eps(ncf,’PSPIC01’);

When the file P.sci is prepared, we can type SCIGO to start the SCILAB system. Procedure SCIGO.BAT
assures that graphic pictures P*.eps (or P*.png in case $OBR=2) are generated using the instructions writ-
ten in the file P.sci.

5.7 Text file output

The UFO system contains a great number of text file output procedures which are controlled by using
the macrovariables $KOUT, $KOUT1, $KOUT2, $KOUT3 and $LOUT. These text file output procedures
are useful especially for debugging new optimization methods. The UFO system works with the output
file P.OUT. The Fortran number of this output file defines the common variable IWR. The macrovariables
$KOUT, $KOUT1, $KOUT2, $KOUT3 determine what is printed and the macrovariable $LOUT has an
influence on the extent of the print.

The macrovariable $KOUT can have the following values:

$KOUT= 0 - Text file output is suppressed (the file P.OUT is empty) .

$KOUT= ± 1 - Standard output. The heading and the final results are printed together with selected
information in each accepted iteration.

$KOUT= ± 2 - Extended output. Additional information, obtained from stepsize selection, is printed.

$KOUT= ± 3 - Extended output. Additional information, obtained from direction determination and
variable metric update, is printed.

$KOUT= ± 4 - Extended output. Additional information, obtained from linear constraint addition
and deletion, is printed.

$KOUT= ± 5 - Extended output. Additional information, obtained from numerical differentiation, is
printed.

If $KOUT>0, the standard heading is printed while if $KOUT<0, the extended heading, containing
problem specifications and optimization options, is printed.

The selection of iterations accepted for print is controlled by the contents of the macrovariables
$KOUT1, $KOUT2, $KOUT3. If $KOUT1≤$KOUT2, only the iterations whose numbers are between
$KOUT1 and $KOUT2 are assumed, but the $KOUT3−1 ones are always omitted ($KOUT1 is a lower
bound, $KOUT2 is an upper bound and $KOUT3 is a step). Similarly, if $KOUT1>$KOUT2, only
the iterations whose numbers are smaller than $KOUT2 or greater than $KOUT1 are assumed, but the
$KOUT3−1 ones are always omitted. If $KOUT3=0, no iterations are assumed.

While the macrovariable $KOUT specifies what information is printed, the macrovariable $LOUT
specifies how much information is printed:

$LOUT= 0 - Basic output. The basic information (one row if $KOUT=1) is printed in each ac-
cepted iteration.

$LOUT=± 1 - Extended output. Additional scalars, together with the vector of variables, are
printed.

$LOUT=± 2 - Extended output. Additional vectors (usually gradients) are printed.

$LOUT=± 3 - Extended output. Additional matrices (usually Hessian matrices) are printed.

$LOUT=± 4 - The most extended output. All useful data are printed.

If $LOUT>0, the basic part of the information is printed. If $LOUT<0, a more extensive part of the
information is printed.
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The macrovariable $LOUT has an additional significance. If $KOUT=0 and $LOUT>0, a copy of the
basic screen output is performed (see Section 5.1). If $KOUT=0 and $LOUT<0, paper saving print for
line printers is assumed. In the last case, only several rows are printed for every solution. This type of
output is useful for simultaneous tests of optimization methods.

To show a typical text file output, we use values $KOUT=5, $LOUT=0 in the problem specification
introduced in Section 7.1. In this case, text file P.OUT contains the following information.
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UNCONSTRAINED MAXIMIZATION USING UFO SYSTEM

-------------------------------------------

OPTIMIZATION SUBROUTINE : U1FDU1

DIRECTION DETERMINATION : UDDLG1

STEP SIZE DETERMINATION : US1L01

FUNCTION DETERMINATION : UF1F01

GRADIENT DETERMINATION :

H MATRIX DETERMINATION :

VARIABLE METRIC UPDATE : UUDBG1

PROBLEM

-------

NF= 5 KDF= 1 KSF= 1 KCF= 2 KBF= 2 ISNF= 1 NORMF= 0

NA= 0 NAL= 0 MAL= 0 KDA= -1 KSA= 0 KCA= 0 KBA= 0 ISNA= 0 NORMA= 0

NC= 0 NCL= 0 MCL= 0 KDC= -1 KSC= 0 KCC= 0 KBC= 0 ISNC= 0 NORMC= 0

NIT= 0 NFV= 1 NFG= 1 F=0.187D+01 G=0.667D-01 D=0.000D+00

-------------------------------------------

DIRECTION DETERMINATION USING UDDLG1

0 ALF=0.000D+00 SIG=0.000D+00

END OF DIRECTION DETERMINATION : G.M. POS

G = 0.11547D+00 S = 0.11547D+00 P = -0.13333D-01

STEPSIZE SELECTION USING US1L01 : P/(G*S) = -.100D+01

R=0.000D+00 S=0.115D+00 F=0.186666666667D+01 P=-.133D-01 B=0.150D+02

0 0 R=0.100D+01 D=0.115D+00 F=0.185288395062D+01 P=-.142D-01 INIT-1

1 -1 R=0.400D+01 D=0.462D+00 F=0.180590617284D+01 P=-.171D-01 BISECT.

1 -2 R=0.150D+02 D=0.173D+01 F=0.155000000000D+01 P=-.300D-01 BISECT.

R=0.150D+02 D=0.173D+01 F=0.155000000000D+01

END OF STEPSIZE SELECTION : R BOUND

VARIABLE METRIC UPDATE USING UUDBG1

GAM=0.000D+00 RHO=0.000D+00 PAR=0.000D+00 BET=0.000D+00

A =0.000D+00 B =-.250D+00 C =0.000D+00

END OF VARIABLE METRIC UPDATE : B - NEG.

CONSTRAINT ADDITION USING UYADS1

NEW= -3 N= 2

END OF CONSTRAINT ADDITION : N = 2 IER = 0

NIT= 1 NFV= 4 NFG= 4 F=0.155D+01 G=0.150D+00 D=0.333D+00

UNIT G.M. POS R BOUND NORMAL

-------------------------------------------

DIRECTION DETERMINATION USING UDDLG1

0 ALF=0.000D+00 SIG=0.000D+00

END OF DIRECTION DETERMINATION : G.M. POS

G = 0.21213D+00 S = 0.21213D+00 P = -0.45000D-01

STEPSIZE SELECTION USING US1L01 : P/(G*S) = -.100D+01

R=0.000D+00 S=0.212D+00 F=0.155000000000D+01 P=-.450D-01 B=0.667D+01

0 0 R=0.100D+01 D=0.212D+00 F=0.150387500000D+01 P=-.473D-01 INIT-1

1 -1 R=0.400D+01 D=0.849D+00 F=0.135200000000D+01 P=-.540D-01 BISECT.

1 -2 R=0.667D+01 D=0.141D+01 F=0.120000000000D+01 P=-.600D-01 CUBIC

R=0.667D+01 D=0.141D+01 F=0.120000000000D+01
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END OF STEPSIZE SELECTION : R BOUND

VARIABLE METRIC UPDATE USING UUDBG1

GAM=0.000D+00 RHO=0.000D+00 PAR=0.000D+00 BET=0.000D+00

A =0.000D+00 B =-.100D+00 C =0.000D+00

END OF VARIABLE METRIC UPDATE : B - NEG.

CONSTRAINT ADDITION USING UYADS1

NEW= -4 N= 1

END OF CONSTRAINT ADDITION : N = 1 IER = 0

NIT= 2 NFV= 7 NFG= 7 F=0.120D+01 G=0.200D+00 D=0.250D+00

UNIT G.M. POS R BOUND UPDATE

-------------------------------------------

DIRECTION DETERMINATION USING UDDLG1

0 ALF=0.000D+00 SIG=0.000D+00

END OF DIRECTION DETERMINATION : G.M. POS

G = 0.20000D+00 S = 0.20000D+00 P = -0.40000D-01

STEPSIZE SELECTION USING US1L01 : P/(G*S) = -.100D+01

R=0.000D+00 S=0.200D+00 F=0.120000000000D+01 P=-.400D-01 B=0.500D+01

0 0 R=0.100D+01 D=0.200D+00 F=0.116000000000D+01 P=-.400D-01 INIT-1

1 -1 R=0.500D+01 D=0.100D+01 F=0.100000000000D+01 P=-.400D-01 CUBIC

R=0.500D+01 D=0.100D+01 F=0.100000000000D+01

END OF STEPSIZE SELECTION : R BOUND

VARIABLE METRIC UPDATE USING UUDBG1

GAM=0.000D+00 RHO=0.000D+00 PAR=0.000D+00 BET=0.000D+00

A =0.000D+00 B =0.000D+00 C =0.000D+00

END OF VARIABLE METRIC UPDATE : B - NEG.

CONSTRAINT ADDITION USING UYADS1

NEW= -5 N= 0

END OF CONSTRAINT ADDITION : N = 0 IER = 0

NIT= 3 NFV= 9 NFG= 9 F=0.100D+01 G=0.000D+00 D=0.200D+00

UNIT G.M. POS R BOUND UPDATE

-------------------------------------------

FINAL RESULTS

-------------

FF= -0.1000000000D+01

X = 0.1000000000D+01 0.2000000000D+01 0.3000000000D+01 0.4000000000D+01

0.5000000000D+01

TERMINATION: 4 GRAD TOL F=0.100D+01 G=0.000D+00 D=0.200D+00

STATISTICS

----------

NIT = 3 NDEC = 0

NFV = 9 NAV = 0 NCV = 0 NRES = 3

NFG = 9 NAG = 0 NCG = 0 NREM = 0

NFH = 0 NAH = 0 NCH = 0 NADD = 0

Here the optimization subroutines used are listed on the top followed by problem specifications. After the
line containing the starting function value and gradient norm (zero iteration), results of individual iterations
follow. Since $KOUT=5, information concerning direction determination, step-size selection, variable
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metric update and constraint handling is printed. The last two lines describing every iteration contain
the current number of iterations NIT, function evaluations NFV, gradient evaluations NFG, the function
value F, the gradient norm G, the step-size D and the information concerning the status of the current
iteration (UNIT, G.M. POS, R BOUND, UPDATE). After results of individual iterations, the final results are
printed. They contain the cause of termination ITERM=4 (GRAD TOL) corresponding to the attainment
of the required gradient norm. Furthermore, F is the objective function value, G is the maximum absolute
value of gradient elements and D is the maximum relative change of variables. The statistics contain
the final number of iterations NIT, (objective, particular, constraint) function evaluations (NFV, NAV,
NCV), (objective, particular, constraint) gradient evaluations (NFG, NAG, NCG), (objective, particular,
constraint) Hessian matrix evaluations (NFH, NAH, NCH), the number of decompositions NDEC, the
number of restarts NRES, and the numbers of constraint deletions NREM and additions NADD.

5.8 User supplied output

The UFO system allows utilizing both the user supplied output subroutines and the post-processing sub-
routines. These subroutines can be inserted in the UFO source program by using the macrovariable
$OUTPUT:

$SET(OUTPUT)
Calling the user supplied output subroutines.
Calling the post-processing subroutines.

$ENDSET

The parameters of the user supplied output subroutines and the post-processing subroutines must satisfy
the UFO conventions. For example, the vector of variables, the model function value and the model
function gradient must be denoted by X, FF and GF, respectively (see Chapter 2).

5.9 Storing final results

If we set $OUTPUTDATA=’Y’, the final values of variables X(I), 1≤ I≤ NF, are stored in file P.DAT.
Similarly, if we set $INPUTDATA=’Y’, the values of variables X(I), 1≤ I≤ NF, from file P.DAT are used
as input data for a new optimization process.

5.10 Other output files

The UFO system uses three other output files P.DIM, P.SIF and P.PAT which contain additional information
about the problem solved. File P.DIM shows us the problem dimension. It contains the numbers of variables,
approximating functions, constraints and also the numbers of nonzero elements in sparse structures. For
example, if we apply the UFO system to the input file TSIF21.UFO, then the file P.DIM contains the
following text:

PROBLEM: NEXT = 0

NUMBER OF VARIABLES: NF = 450

NUMBER OF CONSTRAINTS: NC = 360

NUMBER OF NONZERO ELEMENTS: MC = 1576

NUMBER OF NONZERO ELEMENTS: MHC = 55

NUMBER OF NONZERO ELEMENTS: MCH = 4736

NUMBER OF NONZERO ELEMENTS: M = 2779

File P.SIF contains information concerning SIF files of the CUTE environment (Section 6.6). This file is
generated by the SIF decoder. For example, if we apply the UFO system to the input file TSIF21.UFO,
the file P.SIF contains the following text:
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Problem name: BRITGAS

The objective function uses 1 nonlinear group

There are 360 nonlinear equality constraints

There are 426 variables bounded only from below

There are 24 variables bounded from below and above

File P.PAT is a text file containing graphical expressions of sparsity patterns of the Hessian and the Jacobian
matrices (Section 6.5).

5.11 Error messages

If we use the specification $MOUT>0 (basic screen output), then nonstandard terminations are indicated.
The message consists of the three parts: the name of a critical subroutine, the number of a message, and
an explanation text. For example, if the number of iterations is exceeded, we obtain the following message:

0 NIT= 500 NFV=2545 NFG= 0 NDC=1556 NCG= 0 F= .122D+06 G= .112D+05

UYFUT1: (-2) MAXIMUM NUMBER OF ITERATIONS

Error messages are very useful especially in case the problem dimension is invalid. For example, if the
number of nonzero elements in the Jacobian matrix is specified incorrectly, then we obtain the message:

0 NIT= 0 NFV= 0 NFG= 0 NDC= 0 NCG= 0 F= .000D+00 G= .000D+00

UZLMIN: (78) LACK OF SPACE : MA TOO SMALL

ACTUAL VALUE: 298 - DECLARED VALUE: 250

Here UZLMIN is the subroutine where the error was detected, 78 is the error number and MA TOO SMALL is
the explanation. In this case, additional information (ACTUAL VALUE and DECLARED VALUE) is given.

The following table presents all UFO error messages (error numbers and explanations):

-1 - MAXIMUM NUMBER OF FUNCTION EVALUATIONS : MFV TOO SMALL

-2 - MAXIMUM NUMBER OF ITERATIONS : MIT TOO SMALL

-3 - MAXIMUM NUMBER OF CYCLES : MIC TOO SMALL

1 - BAD DECOMPOSITION

2 - BAD INTERVAL IN THE OLC DIRECTION DETERMINATION

3 - MAXIMUM NUMBER OF STEPS IN THE OLC DIRECTION DETERMINATION

4 - BREAKDOWN IN THE ITERATIVE METHOD

5 - BREAKDOWN IN THE ITERATIVE METHOD

6 - MAXIMUM NUMBER OF REDUCTIONS

7 - NEGATIVE DIRECTIONAL DERIVATIVE

8 - BAD INTERVAL FOR INTERPOLATION

9 - BAD PREDICTION IN THE TRUST REGION METHOD

10 - RESTART

11 - FEASIBLE SOLUTION DOES NOT EXIST

12 - BOUNDED SOLUTION DOES NOT EXIST

13 - FEASIBLE SOLUTION DOES NOT EXIST

14 - FEASIBLE TRUST REGION DOES NOT EXIST

15 - INVALID SITUATION IN CONSTRAINT HANDLING

16 - INVALID SITUATION IN CONSTRAINT HANDLING

17 - LACK OF SPACE IN CONSTRAINT HANDLING : MMAX TOO SMALL

18 - LACK OF SPACE IN CONSTRAINT HANDLING : MMAX TOO SMALL

19 - BAD INPUT DATA
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20 - BAD INPUT DATA

21 - UXSGFD: NAU IS DECLARED TOO SMALL

22 - UXSGFD: NZ IS DECLARED TOO SMALL

23 - UXSGFD: JACOBIAN MATRIX IS TOO UNSTABLE

24 - UXSGFD: JACOBIAN MATRIX IS SINGULAR

25 - UXSGFD: NZ IS TOO SMALL FOR THE FACTOR

26 - UXSGFD: NAU IS TOO SMALL FOR THE FACTOR

27 - UXSGFD: NZ IS TOO SMALL FOR DATA MANIPULATIONS AFTER FACTORIZATION

28 - UXSGFD: COLUMN SCHEME FOR THE FACTOR IS NOT CREATED: LACK OF SPACE

29 - BAD INPUT DATA

30 - BAD INPUT DATA

31 - UXSGUM: NAU IS DECLARED TOO SMALL

32 - UXSGUM: JACOBIAN MATRIX IS SINGULAR

33 - UXSGUM: FACTOR IS BADLY CONDITIONED

34 - UXSGUM: LITTLE SPACE FOR L-UPDATES

35 - UXSGUM: JACOBIAN MATRIX SINGULARITY IS FACED

36 - UNBOUNDENESS IS FACED

37 - UKLTS3: ROWS ARE NOT SPECIFIED

38 - UKLTS3: COLUMNS ARE NOT SPECIFIED

39 - UKLTS3: TYPE IS NOT SPECIFIED

40 - UKLTS3: TYPC IS NOT DEFINED

41 - LACK OF SPACE FOR THE CHOLESKI FACTOR : MMAX TOO SMALL

42 - LACK OF SPACE FOR A SYMBOLIC FACTORIZATION : MMAX TOO SMALL

43 - LACK OF SPACE FOR THE FILL-IN

44 - LACK OF SPACE FOR NUMERICAL DIFFERENTIATION : M TOO SMALL

45 - STRUCTURAL SINGULARITY DURING INCOMPLETE LU FACTORIZATION

46 - INVALID STRUCTURE FOR INCOMPLETE LU FACTORIZATION

47 - LACK OF SPACE IN NUMERICAL DIFFERENTIATION : NVAR TOO SMALL

48 - LACK OF SPACE IN THE INCOMPLETE DECOMPOSITION : MMAX TOO SMALL

49 - LACK OF SPACE IN THE SCHUR COMPLEMENT : MMAX TOO SMALL

50 - LACK OF SPACE FOR THE FACTOR

51 - INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS

52 - LACK OF SPACE IN THE FRONTAL SCHEME

53 - ERROR IN THE FRONTAL SCHEME

54 - LACK OF SPACE IN THE FRONTAL SCHEME

55 - ERROR IN THE FRONTAL SCHEME

56 - LACK OF SPACE IN THE INTEGER FIELD

57 - LACK OF SPACE IN THE REAL FIELD

58 - ZERO INDEX

59 - DIMENSION ERROR

60 - LACK OF SPACE IN THE WORKING FIELD

61 - INVALID MATRIX ORDER

62 - NUMBER OF NONZEROS SMALLER THAN ZERO

63 - INVALID ENTRIES IN THE INPUT MATRIX

64 - INCONSISTENT MEMORY

65 - LACK OF SPACE IN THE INTEGER FIELD : MMAX TOO SMALL

66 - LACK OF SPACE IN THE REAL FIELD : MMAX TOO SMALL

67 - INVALID LU FACTORS

68 - MAXIMUM INTEGER TOO SMALL

69 - INVALID INPUTS

70 - ZERO PIVOT WHEN DEFINITENESS IS DECLARED

71 - CHANGE IN SIGN OF PIVOT ENCOUNTERED
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72 - SINGULARITY DETECTED

73 - NONZERO ELEMENT IGNORED

74 - PIVOT HAS DIFFERENT SIGN FROM THE PREVIOUS ONE

75 - LACK OF SPACE : M TOO SMALL

76 - LACK OF SPACE : MAH TOO SMALL

77 - LACK OF SPACE : MCH TOO SMALL

78 - LACK OF SPACE : MA TOO SMALL

79 - LACK OF SPACE : MC TOO SMALL

80 - LACK OF SPACE : NF TOO SMALL

81 - LACK OF SPACE : NA TOO SMALL

82 - LACK OF SPACE : NC TOO SMALL

83 - SIMPLE BOUNDS ARE NOT PERMITTED

84 - INEQUALITY CONSTRAINTS ARE NOT PERMITTED

85 - TOO MANY DENSE ROWS : ND TOO SMALL

86 - LACK OF SPACE : MHA TOO SMALL

87 - LACK OF SPACE : MHC TOO SMALL

88 - LINEAR DEPENDENCE OF ACTIVE CONSTRAINTS

89 - INFEASIBLE SOLUTION

90 - MAXIMUM NUMBER OF SIMPLEX ITERATIONS : MIS TOO SMALL

91 - DIFFERENTIAL EQUATION IS UNSTABLE

92 - MAXIMUM NUMBER OF INTEGRATION STEPS EXCEEDED

93 - TOO SMALL INTEGRATION STEP

94 - DIFFERENTIAL EQUATION IS STIFF

95 - SINGULAR JACOBIAN IN IMPLICIT INTEGRATION METHOD

96 - LACK OF SPACE IN DIFFERENTIAL EQUATION SOLVER

97 - LACK OF SPACE : MMAX TOO SMALL

98 - MAXIMUM NUMBER OF MINOR CYCLES : MIQ TOO SMALL

99 - MAXIMUM NUMBER OF MAJOR CYCLES : MAQ TOO SMALL

100 - LACK OF SPACE : MF TOO SMALL

101 - LARGE LAGRANGIAN FUNCTION RETURN

102 - INVALID TERMINATION: EPS9 TOO SMALL

103 - FEASIBILITY RESTORATION PHASE IS EXPECTED

104 - LACK OF SPACE FOR THE HESSIAN MATRIX : MMAX TOO SMALL

105 - LACK OF SPACE FOR THE PRECONDITIONER : MMAX TOO SMALL

106 - EQUATION SOLVER FAILS

107 - EIGENPROBLEM WAS NOT SOLVED

108 - ARPACK: INPUT ERROR

109 - ARPACK: NO EIGENVALUE CONVERGED

110 - LACK OF SPACE : NCC TOO SMALL

111 - TWO-SIDE BOX CONSTRAINT OCCURED

112 - TWO-SIDE GENERAL CONSTRAINT OCCURED

113 - EQUALITY IN COMPLEMENTARITY CONSTRAINT OCCURED

114 - COUPLED COMPLEMENTARITY CONSTRAINT IS MISSING

115 - WRONG INDEX IN COMPLEMENTARITY BOX CONSTRAIN

116 - WRONG INDEX IN COMPLEMENTARITY GENERAL CONSTRAINT

117 - DUPLICATE INDEX IN COMPLEMENTARITY BOX CONSTRAINT

118 - DUPLICATE INDEX IN COMPLEMENTARITY GENERAL CONSTRAINT

119 - EQUALITY CONSTRAINTS ARE NOT PERMITTED
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6 Special tools of the UFO system

The UFO system allows to use automatic differentiation and contains special tools that facilitate the user’s
activity. There are special tools for checking problem descriptions, collections of problems for testing
optimization methods, subroutines for printing sparsity patterns and modules realizing the interface to the
CUTE environment.

6.1 Automatic differentiation

If derivatives of the model function FF are not given, i.e., if only macrovariable $FMODELF is defined, then
either numerical or automatic differentiation is used if is necessary. The choice of the kind of differentiation
is specified by the macrovariable $IADF:

$IADF=0 - Derivatives of the model function are computed by numerical differentiation.

$IADF=1 - The first order derivatives of the model function are computed by using the reverse mode
of automatic differentiation. New macrovariable $FGMODELF, which defines the value
FF and the gradient GF of the model function is created and the original macrovariable
$FMODELF is canceled. The second order derivatives are computed numerically, if they
are required.

$IADF=2 - The first order derivatives of the model function are computed by using the reverse mode
of automatic differentiation. New macrovariable $FGMODELF, which defines the value
FF and the gradient GF of the model function is created. The reverse mode is followed
by the forward mode for computation of the second order derivatives. New macrovariable
$HMODELF, which defines the Hessian matrix HF of the model function is created. Finally,
the original macrovariable $FMODELF is canceled.

Automatic differentiation is realized in the first phase by the UFO control language preprocessor. All
variables contained in macrovariable $FMODELF are redefined and all expressions are transformed in the
way that also the sequence of elementary operations and their parameters are stored. The list of elementary
operations is used in the reverse mode of automatic differentiation by the subroutine RVRSWP (if $IADF=1)
or RVRSWPH (if $IADF=2). The subroutines which realize elementary operations are included to the UFO
source program.

If the automatic differentiation is chosen ($IADF>0), there are limitations concerning Fortran 77
expressions in the macrovariable $FMODELF:

• If an expression contains array $FLOAT W(100), say, with elements depending on the vector of
variables, then the user has to declare corresponding array INTEGER IAD W(100) in the input file
*.UFO (before statements $GLOBAL or $STANDARD).

• Calls of functions and subroutines (with exceptions of intrinsic Fortran 77 functions in the generic
form, i.e., SQRT, EXP, LOG, LOG10, SIN, COS, TAN, ASIN, ACOS, ATAN, SINH, COSH, TANH) are not
permitted.

• Names of variables cannot contain digits.

• Statements containing scalar variables, e.g., W = W * X(I), cannot be used in a cycle. It is necessary
to declare array W(*) and write W(I+1) = W(I) * X(I) instead.

• Blanks cannot be used in WRITE statement. Arguments of functions are not replaced by transformed
variables in WRITE statement.

• Blanks cannot be used in IF and ELSE IF statements. Only comparisons of numbers and variables
are permitted (expressions are forbidden). Arguments of functions and indices of arrays are not
replaced by transformed variables in IF and ELSE IF statements.

• Computed GO TO statement cannot be used.

Automatic differentiation can also be used for computation of derivatives of approximating functions
and constraint functions described by macrovariables $FMODELA and $FMODELC, respectively. In these
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cases, the kind of differentiation is specified by macrovariables $IADA and $IADC. The meaning of these
macrovariables and the limitations concerning Fortran 77 expressions in macrovariables $FMODELA and
$FMODELC are the same as those for macrovariables $IADF and $FMODELF described above.

Automatic differentiation can be used for dense problems at present, i.e., it does not work if $JACA=’S’,
$JACC=’S’, $HESF=’S’, $HESF=’B’.

6.2 Checking external subroutines

The values, gradients, Hessian matrices of the model function or the approximating functions or the
constraint functions are specified by using the macrovariables $FMODELF, $GMODELF, $HMODELF
or $FMODELA, $GMODELA, $HMODELA or $FMODELC, $GMODELC, $HMODELC, respectively.
Sometimes the correctness of these models needs to be checked up. If this is the case, then both the
analytical and the numerical differentiation can be compared. The checking of optimization problems can
be specified by using the macrovariable $TEST. If $TEST=’N’, no checking is performed. If $TEST=’Y’,
both the analytical and the numerical differentiation are executed before optimization is started (at the
initial starting point) and the derivatives obtained are printed. Only the derivatives that are analytically
specified (the first, the second) are checked. If $TEST=’A’, the checking is performed after the opti-
mization is finished (at the final optimum point). Finally, if $TEST=’O’, only checking is performed and
optimization is not started. The output of checking an optimization problem has the following form:

STANDARD TEST OF EXTERNAL SUBROUTINES

-------------------------------------

PROBLEM NO 1

PROBLEM

-------

NF = 2 KDF = 2 KSF = 1 KCF = 2 NORMF = 0

NA = 0 NAL = 0 MAL = 0 KDA = -1 KSA = 0 KCA = 0 NORMA = 0

NC = 3 NCL = 0 MCL = 0 KDC = 1 KSC = 0 KCC = 2 NORMC = 0

PARAMETERS

----------

X = -.2000000000D+01 .1000000000D+01

DERIVATIVES

-----------

FF A = .9090000000D+03

GF N = -.2405999822D+04 -.6000004263D+03

GF A = -.2406000000D+04 -.6000000000D+03

HF N = .4402000148D+04 .8000000070D+03 .2000000002D+03

HF A = .4402000000D+04 .8000000000D+03 .2000000000D+03

FC A = -.1000000000D+01

GC N = .1000000000D+01 .2000000032D+01

GC A = .1000000000D+01 .2000000000D+01

FC A = .5000000000D+01

GC N = -.4000000070D+01 .9999999930D+00

GC A = -.4000000000D+01 .1000000000D+01

FC A = .5000000000D+01

GC N = -.4000000070D+01 .2000000042D+01

GC A = -.4000000000D+01 .2000000000D+01
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Here the letter ’N’ indicates a numerical differentiation and the letter ’A’ indicates an analytical dif-
ferentiation.

6.3 Testing optimization methods

The UFO system contains a great number of subroutines (collections of test problems) which serve for
testing optimization methods. All of these subroutines begin with the letter ’E’ (external). The input
subroutines (containing starting points, types of constraints, sparsity patterns, etc.) have the second letter
’I’, the third letter ’U’ or ’L’ or ’N’ for unconstrained or linearly constrained or nonlinearly constrained
problems, respectively, and the fourth letter ’D’ or ’S’ or ’B’ for dense or sparse or partially separable
problems, respectively. The model specification subroutines have the second letter ’F’ or ’A’ or ’C’ or
’E’ or ’Y’ for model functions or approximating functions or constraint functions or state functions or
initial functions, respectively, the third letter ’F’ or ’G’ or ’B’ or ’H’ for values or gradients or values
together with gradients or Hessian matrices, respectively, and the fourth letter ’U’ or ’D’ or ’S’ or ’B’ for
universal or dense or sparse or partitioned problems, respectively. The last two digits specify individual
test problem collections. When we want to carry out a test of the method selected, we define macrovariable
$COLLECTION and set $NEXT=number of test problems. The following specifications can be used:

$COLLECTION=’N’ - test is suppressed.

$COLLECTION=’Y’ - test is performed and basic output is printed.

$COLLECTION=’E’ - test is performed and extended output is printed.

$COLLECTION=’P’ - test is performed, basic output is printed and data for performance profiles are
prepared.

The default value is $COLLECTION=’N’.
Tests corresponding to individual test problems collections are realized by using the following batch

input files (asterisks denote possible additional letters):

TEST01∗.UFO - tests for unconstrained optimization (25 dense problems from [53], [190]). External
subroutines EIUD01, EFFU01, EFGU01, EFHD01 are used.

TEST02∗.UFO - tests for the sum of squares minimization (30 dense problems from [257]). External
subroutines EIUD02, EAFU02, EAGU02, EAHD02 are used.

TEST03∗.UFO - tests for linearly constrained optimization (15 dense problems from [151]). External
subroutines EILD03, EFFU03, EFGU03 are used.

TEST04∗.UFO - tests for medium-size linear programming (6 dense problems). External subroutine
EILD04 is used.

TEST05∗.UFO - tests for medium-size quadratic programming (5 dense problems). External subrou-
tine EILD05 is used.

TEST06∗.UFO - tests for minimax (25 dense problems from [233]). External subroutines EIUD06,
EAFU06, EAGU06, EAHD06 are used.

TEST07∗.UFO - tests for inequality constrained nonlinear programming (34 dense problems from
[151]). External subroutines EIND07, EFFU07, EFGU07, ECFU07, ECGU07 are used.

TEST08∗.UFO - tests for equality constrained nonlinear programming (31 dense problems from [151]).
External subroutines EIND08, EFFU08, EFGU08, ECFU08, ECGU08 are used.

TEST09∗.UFO - tests for unconstrained global optimization (13 problems from [384]). External
subroutines EIUD09, EFFU09, EFGU09 are used.

TEST10∗.UFO - tests for unconstrained optimization (15 sparse problems from [225]). External
subroutines EIUS10, EFFU10, EFGU10, EFHS10 are used.

TEST11∗.UFO - tests for unconstrained optimization (58 sparse problems from the CUTE collection
[25], see also [218]). External subroutines EIUD11, EIUX11, EFBU11, EFFU11, EFGU11
are used.
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TEST12∗.UFO - tests for unconstrained optimization (73 sparse problems from [7]). External sub-
routines EIUD12, EFBU12, EFFU12, EFGU12 are used.

TEST13∗.UFO - tests for linearly constrained optimization (6 sparse problems). External subroutines
EILS13, EINS13, EFFU13, EFGU13 are used.

TEST14∗.UFO - tests for the sum of functions minimization (22 sparse problems from [225]). Exter-
nal subroutines EIUD14, EIUS14, EIUB14, EFFU14, EFGU14, EAFU14, EAGU14, EAHB14,
EBFU14, EBGU14 are used.

TEST15∗.UFO - tests for the sum of squares minimization (24 sparse problems from [225]). External
subroutines EIUD15, EIUB15, EAFU15, EAGU15, EABU15, EAHB15, EBFU15, EBGU15 are
used.

TEST16∗.UFO - tests for nonlinear equations solutions (32 dense problems). External subroutines
EIUD16, EAFU16, EAGU16 are used.

TEST17∗.UFO - tests for nonlinear equations solutions (30 dense problems). External subroutines
EIUD17, EAFU17, EAGU17 are used.

TEST18∗.UFO - tests for nonlinear equations (44 sparse problems from [225]). External subroutines
EIUD18, EIUB18, EAFU18, EAGU18 are used.

TEST19∗.UFO - tests for nonsmooth unconstrained optimization (25 dense problems from [233]).
External subroutines EIUD19, EFFU19, EFGU19, EFHD19 are used.

TEST20∗.UFO - tests for equality constrained sparse nonlinear programming (18 sparse problems
from [225]). External subroutines EIUD20, EIUB20, EIUS20, EIND20, EINS20, EFFU20,
EFGU20, EAFU20, EAGU20, ECFU20, ECGU20 are used.

TEST21∗.UFO - tests for inequality constrained sparse nonlinear programming (18 sparse problems
from [225]). External subroutines EIUD20, EIUB20, EIUS20, EIND20, EINS20, EFFU20,
EFGU20, EAFU20, EAGU20, ECFU20, ECGU20 are used.

TEST22∗.UFO - tests for linearly constrained minimax optimization (20 dense problems from [233]).
External subroutines EIUD22, EAFU22, EAGU22, EAHD22 are used.

TEST23∗.UFO - extended tests for unconstrained optimization (74 dense problems from [225]). Ex-
ternal subroutines EIUD23, EFFU23, EFGU23 are used.

TEST24∗.UFO - extended tests for the sum of squares minimization (80 dense problems from [53],
[190], [225], [257]). External subroutines EIUD24, EAFU24, EAGU24 are used.

TEST25∗.UFO - extended tests for the sum of functions minimization (82 sparse problems from [216]).
External subroutines EIUD25, EIUB25, EIUS25, EFBU25, EFFU25, EFGU25, EAFU25,
EAGU25 are used.

TEST26∗.UFO - extended tests for the sum of squares minimization (60 sparse problems from [225]).
External subroutines EIUB26, EAFU26, EAGU26 are used.

TEST27∗.UFO - extended tests for the sum of squares minimization (82 dense problems from [225]).
External subroutines EIUD27, EAFU27, EAGU27 are used.

TEST28∗.UFO - extended tests for unconstrained optimization (92 dense problems from [53], [190],
[225], [257]). External subroutines EIUD28, EIUN28, EFFU28, EFGU28, EFBU28 are used.

TEST29∗.UFO - tests for nonsmooth unconstrained optimization (31 dense problems). External
subroutines EIUD29, EFFU29, EFGU29, EFBU29 are used.

TEST30∗.UFO - tests for optimization of dynamical systems (4 dense problems). External subrou-
tines EIUD30, EEFU30, EEGU30, EYFU30, EYGU30 are used.

TEST31∗.UFO - tests for nonstiff differential equations (6 dense problems). External subroutines
EIUD31, EEFU31 are used.

TEST32∗.UFO - tests for large-scale linear programming (18 sparse problems). External subroutine
EILS32, EISS32 are used.

TEST33∗.UFO - tests for large-scale quadratic programming (11 sparse problems). External subrou-
tines EILS33, EIQS33 are used.
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TEST34∗.UFO - tests for large-scale linear programming (18 sparse problems). External subroutine
EINS20 is used.

TEST35∗.UFO - tests for large-scale quadratic programming (30 sparse problems). External subrou-
tine EIQS35 is used.

TEST36∗.UFO - extended tests for nonlinear equations solutions (94 dense problems). External
subroutines EIUD36, EAFU36, EAGU36 are used.

TEST37∗.UFO - extended tests for nonlinear equations solutions (64 dense problems). External
subroutines EIUD37, EAFU37, EAGU37 are used.

TEST38∗.UFO - tests for stiff differential equations (4 dense problems). External subroutines EIUD38,
EEFU38, EEDU38 are used.

In these batch input files, all necessary macrovariables are defined and the external subroutines are called.
The external subroutines with the last two digits 01, . . . , 38 are briefly described in the text files E01.TXT,
. . . , E38.TXT. The external subroutines with the last two digits 01, . . . , 22 and 29, . . . , 35 contain original
test problems. The remaining external subroutines are their various combinations.

To demonstrate the use of the test input file we perform a test of the sum of squares minimization by
using a hybrid method realized as a trust region method. The test input file TEST02.UFO has the following
form:

$REM : model specifications

$SET(INPUT)

CALL EIUD02(NF,NA,NAL,X,FMIN,XMAX,NEXT,IEXT,IERR)

IF(NEXT.EQ.10) XMAX=1.0$P 1

IF(IERR.NE. 0) GO TO $$ENDTEST

$ENDSET

$SET(FMODELA)

CALL EAFU02(NF,KA,X,FA,NEXT)

$ENDSET

$NF=12

$NA=400

$MODEL=’AQ’

$REM : method specifications

$CLASS=’GN’

$TYPE=’G’

$DECOMP=’M’

$NUMBER=7

$UPDATE=’F’

$REM : precision specifications

$TOLX=’1.0$P-16’

$TOLF=’1.0$P-14’

$TOLB=’1.0$P-16’

$TOLG=’1.0$P-6’

$REM : print specifications

$MOUT=1

$REM : the cycle for testing 30 test problems is generated

$COLLECTION=’YES’

$NEXT=30

$REM : the batch mode is used

$BATCH

$REM : the standard form of the source program is used

$STANDARD

The result (screen output) obtained has the following form (each row corresponds to one test problem and
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the last row is the summary):

CLASS = GN - GM7 UPDATE = F MODEL = AQ HESF = D NF = 2

1 NIT= 12 NFV= 41 NFG= 0 FV BOUND F= 0.2465190329E-31 G=0.222D-15

2 NIT= 20 NFV= 69 NFG= 0 GRAD TOL F= 24.49212684 G=0.667D-06

3 NIT= 33 NFV= 102 NFG= 0 FV BOUND F= 0.2035629458E-22 G=0.581D-06

4 NIT= 14 NFV= 47 NFG= 0 FV BOUND F= 0.000000000 G=0.000D+00

5 NIT= 6 NFV= 21 NFG= 0 GRAD TOL F= 0.1422753549E-15 G=0.807D-07

6 NIT= 11 NFV= 41 NFG= 0 GRAD TOL F= 62.18109118 G=0.927D-06

7 NIT= 7 NFV= 32 NFG= 0 FV BOUND F= 0.2748725380E-26 G=0.728D-12

8 NIT= 5 NFV= 24 NFG= 0 GRAD TOL F= 0.4107438653E-02 G=0.293D-08

9 NIT= 1 NFV= 8 NFG= 0 GRAD TOL F= 0.5639663969E-08 G=0.177D-07

10 NIT= 235 NFV= 954 NFG= 0 STEP TOL F= 43.97292759 G=0.178D-03

11 NIT= 80 NFV= 329 NFG= 0 FV BOUND F= 0.7813056212E-24 G=0.350D-08

12 NIT= 12 NFV= 53 NFG= 0 FV BOUND F= 0.3624914786E-20 G=0.107D-09

13 NIT= 10 NFV= 55 NFG= 0 GRAD TOL F= 0.1686647891E-09 G=0.247D-06

14 NIT= 40 NFV= 213 NFG= 0 GRAD TOL F= 0.7422398347E-15 G=0.538D-06

15 NIT= 11 NFV= 62 NFG= 0 GRAD TOL F= 0.1537528024E-03 G=0.511D-06

16 NIT= 24 NFV= 134 NFG= 0 FV TOL F= 42911.10081 G=0.108D-03

17 NIT= 22 NFV= 139 NFG= 0 GRAD TOL F= 0.2732447349E-04 G=0.127D-06

18 NIT= 17 NFV= 128 NFG= 0 GRAD TOL F= 0.1023149745E-15 G=0.273D-07

19 NIT= 13 NFV= 169 NFG= 0 GRAD TOL F= 0.2192388901E-01 G=0.379D-07

20 NIT= 9 NFV= 130 NFG= 0 GRAD TOL F= 0.2361205389E-09 G=0.138D-06

21 NIT= 12 NFV= 171 NFG= 0 FV BOUND F= 0.1479114197E-30 G=0.222D-15

22 NIT= 10 NFV= 143 NFG= 0 GRAD TOL F= 0.5059943643E-09 G=0.247D-06

23 NIT= 19 NFV= 264 NFG= 0 GRAD TOL F= 0.4393003951E-04 G=0.361D-06

24 NIT= 17 NFV= 244 NFG= 0 GRAD TOL F= 0.3081274513E-03 G=0.820D-06

25 NIT= 10 NFV= 143 NFG= 0 FV BOUND F= 0.1248755103E-25 G=0.190D-11

26 NIT= 9 NFV= 133 NFG= 0 GRAD TOL F= 0.1376154725E-06 G=0.491D-07

27 NIT= 6 NFV= 91 NFG= 0 FV BOUND F= 0.9458284017E-18 G=0.142D-08

28 NIT= 7 NFV= 104 NFG= 0 GRAD TOL F= 0.2107337939E-10 G=0.379D-06

29 NIT= 2 NFV= 39 NFG= 0 GRAD TOL F= 0.7987932563E-13 G=0.203D-06

30 NIT= 5 NFV= 78 NFG= 0 FV BOUND F= 0.2322757795E-26 G=0.181D-12

TOTAL NIT= 679 NFV= 4161 NFG= 0 NDC= 1549 * 29

NCG= 0 NLS= 0 NSC= 0 NUP= 670

NRS= 0 NMX= 0 NAD= 0 NRM= 0

If $COLLECTION=’Y’ or $COLLECTION=’E’, we can define values of various parameters depending
on the value of NEXT, where 1 ≤ NEXT ≤ $NEXT is the variable of the cycle. This can be realized using
macrovariable $INITCYCLE by setting

$SET(INITCYCLE)

Here the Fortran statements are written defining values of

method parameters using the current value of variable NEXT.

$ENDSET

To demonstrate the use of the macrovariable $INITCYCLE, we test the performance of a limited memory
variable metric method for five values of the parameter $ETA3 using the CUTE problem BDQRTIC
(section 6.6). The batch input file CYCLE.UFO has the following form:

$SIF=’BDQRTIC’

$CLASS=’CD’

$TYPE=’L’
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$DECOMP=’V’

$NUMBER=5

$COLLECTION=’Y’

$NEXT=5

$SET(INITCYCLE)

ETA3=-$DBLE(NEXT)*8.0D-2

$ENDSET

$SET(OUTPUT)

WRITE(2,*)’ ETA3 = ’, ETA3

$ENDSET

$MOUT=1

$BATCH

$STANDARD

The result (screen output) obtained has the following form:

CLASS = CD - LV5 UPDATE = N MODEL = FF HESF = N NF = 5000

1 NIT= 308 NFV= 458 NFG= 458 MAX INT F= 20006.25688 G=0.173D-03

ETA3 = -8.000000000000000E-002

TIME= 0:00:00.82

2 NIT= 183 NFV= 269 NFG= 269 MAX INT F= 20006.25688 G=0.537D-03

ETA3 = -0.160000000000000

TIME= 0:00:00.51

3 NIT= 263 NFV= 360 NFG= 360 FV TOL F= 20006.25688 G=0.376D-03

ETA3 = -0.240000000000000

TIME= 0:00:00.67

4 NIT= 252 NFV= 327 NFG= 327 FV TOL F= 20006.25688 G=0.247D-02

ETA3 = -0.320000000000000

TIME= 0:00:00.62

5 NIT= 258 NFV= 351 NFG= 351 FV TOL F= 20006.25688 G=0.486D-02

ETA3 = -0.400000000000000

TIME= 0:00:00.65

TOTAL NIT= 1264 NFV= 1765 NFG= 1765 NDC= 0 * 5

NCG= 0 NLS= 490 NSC= 0 NUP= 0

NRS= 6 NMX= 0 NAD= 0 NRM= 0

TIME= 0:00:03.29

6.4 Computation of performance profiles

Performance profiles introduced in [97] are a very suitable way for comparison of optimization method,
since they take into account results corresponding to individual problems. The performance profile ρm(τ)
is defined by the formula

ρm(τ) =
number of problems where log2(τp,m) ≤ τ

total number of problems

with 0 ≤ τ ≤ τ , where τp,m is the performance ratio of the number of function evaluations (or the time)
required to solve problem p by method m to the lowest number of function evaluations (or the time)
required to solve problem p. The ratio τp,m is set to infinity (or some large number) if method m fails to
solve problem p. The value of ρm(τ) at τ = 0 gives the percentage of test problems for which the method
m is the best and the value for τ large enough is the percentage of test problems that method m can solve.
The relative efficiency and reliability of each method can be directly seen from the performance profiles:
the higher is the particular curve the better is the corresponding method.
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Data for performance profiles are prepared if we set $COLLECTION=’P’. In this case, values of NIT
(numbers of iterations), NFV (numbers of function evaluations), NFG (numbers of gradient evaluations), NCGR
(numbers of inner iterations), TIME (CPU time in hundredths of seconds) are saved for individual problems
in file P.PER. We can specify a name of the method tested by the statement $NAME=’name of the method’.
Before tests are carried out, the old file P.PER is automatically deleted. This deletion can be suppressed
by setting $APPEND=’Y’. Then the new results of individual tests are appended to the old file P.PER.
The file P.PER is a source for the computation of performance profiles contained in the file P.PRO. This file
can be generated immediately or created by special procedures. The corresponding choice is specified by
the macrovariable $PROFILE, which can have the following values:

$PROFILE=’NO’ - performance profiles (file P.PRO) are not generated immediately.

$PROFILE=’NIT’ - performance profiles for NIT are generated immediately.

$PROFILE=’NFV’ - performance profiles for NFV are generated immediately.

$PROFILE=’NFG’ - performance profiles for NFG are generated immediately.

$PROFILE=’NCGR’ - performance profiles for NCGR are generated immediately.

$PROFILE=’TIME’ - performance profiles for TIME are generated immediately.

The default value is $PROFILE=’NO’. If macrovariable $PROFILE has one of the values NIT, NFV, NFG,
NCGR, TIME, performance profiles for this quantity are computed immediately and we can specify the upper
bound τ of the parameter τ by the statement $BOUND=’upper bound’ (e.g., $BOUND=’3.0D0’). The
default value is $BOUND=’2.0D0’ and the maximum value is $BOUND=’5.0D0’ (this value is used if we
set $BOUND>’5.0D0’). The resulting profiles are saved in file P.PRO. More advantageous possibility is
to set $PROFILE=’NO’ and compute performance profiles by special procedures from data saved in file
P.PER (prepared by the UFO system if $COLLECTION=’P’). In this case, we use a DOS command line
(in the UFO directory) and type

PROFILE quantity upper bound,

where parameter quantity is one of the values NIT, NFV, NFG, NCGR, TIME and upper bound is a real number
(upper bound for τ). Then, procedure PROFILE is called, which generates file P.PRO from data contained
in file P.PER.

File P.PER can be also used for preparing the graphical representations of performance profiles. File
P.TEX, containing data for the environment picture in the typesetting language LATEX, is generated if we
type

PROFTEX quantity upper bound size,

where parameters quantity and upper bound have the same meaning as in the procedure PROFILE and
size is either 1 (one picture per a page width) or 2 (two pictures per a page width). Then procedure
PROFTEX is called to generate files P.PRO and P.tex from data contained in file P.PER. Furthermore, file
P.m, containing data for the MATLAB plotter, is generated if we type

PROFMAT quantity upper bound,

where parameters quantity and upper bound have the same meaning as in the procedure PROFILE. Then
procedure PROFMAT is called, to generate files P.PRO and P.m from data contained in P.PER. Subsequently,
calling P in the MATLAB environment, the graphic file P.eps is created. Finally, file P.sci, containing
data for the SCILAB plotter, is generated if we type

PROFSCI quantity upper bound,

where parameters quantity and upper bound have the same meaning as in the procedure PROFILE. Then
procedure PROFSCI is called, to generate files P.PRO and P.sci from data contained in P.PER. Subsequently,
calling exec P.sci in the SCILAB environment, the graphic file P.eps is created. Procedures PROFILE,

194



PROFTEX, PROFMAT and PROFSCI, written in Fortran language, are parts of the UFO system.
The following example demonstrates the computation of performance profiles for three limited-memory

variable metric methods: LV1 - M1 [272], LV6 - M1 [351] and LV8 - M1 [352]. The input template P.UFO
has the form:

$REM +---------------------------------------------------------------+

$REM + MODEL DESCRIPTION +

$REM +---------------------------------------------------------------+

$SET(INPUT)

INITS=2

IF (NEXT.EQ. 2) INITS=1

IF (NEXT.EQ. 3) INITS=1

IF (NEXT.EQ. 4) INITS=1

IF (NEXT.EQ.12) INITS=1

IF (NEXT.EQ.30) INITS=1

IF (NEXT.EQ.35) INITS=1

IF (NEXT.EQ.46) INITS=1

IF (NEXT.EQ.56) INITS=1

IF (NEXT.EQ.65) INITS=1

IF (NEXT.EQ.75) INITS=1

CALL EIUD25(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)

IF (NEXT.EQ.57) GO TO $$ENDTEST

IF (NEXT.EQ.58) GO TO $$ENDTEST

IF (NEXT.EQ.60) GO TO $$ENDTEST

IF (NEXT.EQ.61) GO TO $$ENDTEST

IF (NEXT.EQ.67) GO TO $$ENDTEST

IF (NEXT.EQ.68) GO TO $$ENDTEST

IF (NEXT.EQ.69) GO TO $$ENDTEST

IF (NEXT.EQ.70) GO TO $$ENDTEST

IF (NEXT.EQ.79) GO TO $$ENDTEST

IF (IERR.NE. 0) GO TO $$ENDTEST

$ENDSET

$SET(FGMODELF)

CALL EFBU25(NF,X,FF,GF,NEXT)

$ENDSET

$MF=5

$NF=1000

$COLLECTION=’P’; $REM : computation of performance profiles

$NEXT=82; $REM : number of test problems

$PROFILE=’NO’; $REM : performance profiles are not computed immediately

$BOUND=’2.0$P 0’; $REM : upper bound for performance ratio

$DELETION=’Y’; $REM : preliminary deletion of P.PER

$REM +---------------------------------------------------------------+

$REM + START OF THE PROGRAM GENERATION +

$REM +---------------------------------------------------------------+

$BATCH; $REM : the batch mode

$GLOBAL; $REM : global declarations
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$REM +---------------------------------------------------------------+

$REM + THE FIRST METHOD +

$REM +---------------------------------------------------------------+

$REM : parameters of the first method

$CLASS=’CD’

$TYPE=’L’

$DECOMP=’V’

$NUMBER=1

$MIT=20000

$MFV=20000

$MFG=20000

$SET(CONST)

IF (NEXT.EQ.40) XMAX=8.0$P 0

IF (NEXT.EQ.45) XMAX=5.0$P 0

IF (NEXT.EQ.48) XMAX=2.8$P 0

IF (NEXT.EQ.50) XMAX=1.0$P 1

IF (NEXT.EQ.51) XMAX=7.5$P 0

IF (NEXT.EQ.52) XMAX=2.3$P 0

$ENDSET

$NAME=’LV1 - M1’; $REM : name of the first method

$INITIATION; $REM : model specification and generation

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$RUNERASE; $REM : clearing parameters of the first run

$REM +---------------------------------------------------------------+

$REM + THE SECOND METHOD +

$REM +---------------------------------------------------------------+

$REM : parameters of the third method

$CLASS=’CD’

$TYPE=’L’

$DECOMP=’V’

$NUMBER=6

$MET3=1

$MIT=20000

$MFV=20000

$MFG=20000

$SET(CONST)

IF (NEXT.EQ.40) XMAX=8.0$P 0

IF (NEXT.EQ.45) XMAX=1.2$P 0

IF (NEXT.EQ.48) XMAX=9.0$P 0

IF (NEXT.EQ.51) XMAX=1.0$P 0

IF (NEXT.EQ.52) XMAX=2.3$P 0

$ENDSET

$NAME=’LV6 - M1’; $REM : name of the third method

$INITIATION; $REM : run specification

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$RUNERASE; $REM : clearing parameters of the second run
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$REM +---------------------------------------------------------------+

$REM + THE THIRD METHOD +

$REM +---------------------------------------------------------------+

$REM : parameters of the third method

$CLASS=’CD’

$TYPE=’L’

$DECOMP=’V’

$NUMBER=8

$MIT=20000

$MFV=20000

$MFG=20000

$SET(CONST)

IF (NEXT.EQ.40) XMAX=1.0$P 1

IF (NEXT.EQ.45) XMAX=2.0$P 0

IF (NEXT.EQ.48) XMAX=6.0$P 0

IF (NEXT.EQ.51) XMAX=1.0$P 0

IF (NEXT.EQ.52) XMAX=3.4$P 0

$ENDSET

$NAME=’LV8 - M1’; $REM : name of the third method

$INITIATION; $REM : run specification

$INPUT; $REM : the user input

$METHOD; $REM : method specification and generation

$END; $REM : end of the program generation

$REM CALL PROFILE NTM 3.0D0

Here $COLLECTION=’P’ specifies computation of performance profiles, $NEXT=82 determines the num-
ber of test problems and $PROFILE=’NO’ specifies that performance profiles (file P.PRO) is not generated
immediately. Other specifications are explained in Section 4. Using the above template, the UFO system
creates file P.PER. Each row of this file contain (for a given method and a given test problem) five integer
numbers NIT, NFV, NFG, NCGR, TIME written in the format ’(20X,5I10)’. The file P.PRO generated using
procedures PROFILE (or PROFTEX, PROFMAT, PROFSCI) has the form:

PERFORMANCE PROFILES: NFV BOUND = 2.0000 STEP = 0.1000 NMETH = 3

METHOD 1 LV1 - M1 MEAN VALUE = 0.8206 EFFICIENCY = 0.1764

0.1781 0.3836 0.5753 0.6438 0.7260 0.8082 0.8493 0.8630

0.8767 0.8767 0.8904 0.9178 0.9315 0.9452 0.9589 0.9589

0.9589 0.9589 0.9726 0.9726 0.9863

METHOD 2 LV6 - M1 MEAN VALUE = 0.9165 EFFICIENCY = 0.4505

0.4658 0.6438 0.6986 0.8082 0.8493 0.8767 0.9452 0.9863

0.9863 0.9863 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000

METHOD 3 LV8 - M1 MEAN VALUE = 0.9615 EFFICIENCY = 1.0000

0.6164 0.8356 0.9041 0.9452 0.9589 0.9589 0.9726 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000

197



The file P.TEX, generated by the procedure PROFTEX, contains the following statements:

\documentclass{article}

\usepackage{epsfig,color}

\def\plinr#1#2#3{{\linethickness{.8pt}\color{red}

\multiput(#1,#2)(.4,#3){20}{\line(1,0){.4}\line(0,1){#3}}}}

\def\plinc#1#2#3{{\linethickness{.4pt}\color{cyan}

\multiput(#1,#2)(.4,#3){20}{\line(1,0){.4}\line(0,1){#3}}}}

\def\plinb#1#2#3{{\linethickness{2pt}\color{blue}

\multiput(#1,#2)(.4,#3){20}{\line(1,0){.4}\line(0,1){#3}}}}

\def\pling#1#2#3{{\linethickness{2pt}\color{green}

\multiput(#1,#2)(.4,#3){20}{\line(1,0){.4}\line(0,1){#3}}}}

\begin{document}

\setlength{\unitlength}{0.70mm}

\begin{picture}(200,80)(0,0)

\put(20,20){\framebox(160,100)}{ }

\put(104,24.5){\framebox(66,19){ }}

\plinb{107}{39.5}{0}\plinb{115}{39.5}{0}%

\plinc{107}{34.0}{0}\plinc{115}{34.0}{0}%

\plinr{107}{28.5}{0}\plinr{115}{28.5}{0}%

\put(55,0){\large \bf Performance profile for NFV }

\multiput(52, 20)(32,0){4}{\line(0, 1){2}}

\multiput(52,120)(32,0){4}{\line(0,-1){2}}

\put(19,13){\footnotesize 0}

\put( 48,13){\footnotesize 0.4}

\put( 80,13){\footnotesize 0.8}

\put(112,13){\footnotesize 1.2}

\put(144,13){\footnotesize 1.6}

\put(174,13){\footnotesize 2.0}

\put(184,17.5){\small $\tau$}

\multiput( 20,30)(0,10){9}{\line( 1,0){2}}

\multiput(180,30)(0,10){9}{\line(-1,0){2}}

\put(4,119){\small $\pi$}

\put(15,17.5){\footnotesize 0}\put(15,117.5){\footnotesize 1}

\put(9,28){\footnotesize 0.1}\put(9,38){\footnotesize 0.2}

\put(9,48){\footnotesize 0.3}\put(9,58){\footnotesize 0.4}

\put(9,68){\footnotesize 0.5}\put(9,78){\footnotesize 0.6}

\put(9,88){\footnotesize 0.7}\put(9,98){\footnotesize 0.8}

\put(9,108){\footnotesize 0.9}

\put(132,37.0){\footnotesize LV1 - M1 }

\plinb{ 20.}{ 37.8}{1.0}%

\plinb{ 28.}{ 58.4}{1.0}%

\plinb{ 36.}{ 77.5}{0.3}%

\plinb{ 44.}{ 84.4}{0.4}%

\plinb{ 52.}{ 92.6}{0.4}%

\plinb{ 60.}{100.8}{0.2}%

\plinb{ 68.}{104.9}{0.1}%

\plinb{ 76.}{106.3}{0.1}%

\plinb{ 84.}{107.7}{0.0}%

\plinb{ 92.}{107.7}{0.1}%

\plinb{100.}{109.0}{0.1}%

\plinb{108.}{111.8}{0.1}%
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\plinb{116.}{113.2}{0.1}%

\plinb{124.}{114.5}{0.1}%

\plinb{132.}{115.9}{0.0}%

\plinb{140.}{115.9}{0.0}%

\plinb{148.}{115.9}{0.0}%

\plinb{156.}{115.9}{0.1}%

\plinb{164.}{117.3}{0.0}%

\plinb{172.}{117.3}{0.1}%

\put(132,31.5){\footnotesize LV6 - M1 }

\plinc{ 20.}{ 66.6}{0.9}%

\plinc{ 28.}{ 84.4}{0.3}%

\plinc{ 36.}{ 89.9}{0.5}%

\plinc{ 44.}{100.8}{0.2}%

\plinc{ 52.}{104.9}{0.1}%

\plinc{ 60.}{107.7}{0.3}%

\plinc{ 68.}{114.5}{0.2}%

\plinc{ 76.}{118.6}{0.0}%

\plinc{ 84.}{118.6}{0.0}%

\plinc{ 92.}{118.6}{0.1}%

\plinc{100.}{120.0}{0.0}%

\plinc{108.}{120.0}{0.0}%

\plinc{116.}{120.0}{0.0}%

\plinc{124.}{120.0}{0.0}%

\plinc{132.}{120.0}{0.0}%

\plinc{140.}{120.0}{0.0}%

\plinc{148.}{120.0}{0.0}%

\plinc{156.}{120.0}{0.0}%

\plinc{164.}{120.0}{0.0}%

\plinc{172.}{120.0}{0.0}%

\put(132,26.0){\footnotesize LV8 - M1 }

\plinr{ 20.}{ 81.6}{1.1}%

\plinr{ 28.}{103.6}{0.3}%

\plinr{ 36.}{110.4}{0.2}%

\plinr{ 44.}{114.5}{0.1}%

\plinr{ 52.}{115.9}{0.0}%

\plinr{ 60.}{115.9}{0.1}%

\plinr{ 68.}{117.3}{0.1}%

\plinr{ 76.}{120.0}{0.0}%

\plinr{ 84.}{120.0}{0.0}%

\plinr{ 92.}{120.0}{0.0}%

\plinr{100.}{120.0}{0.0}%

\plinr{108.}{120.0}{0.0}%

\plinr{116.}{120.0}{0.0}%

\plinr{124.}{120.0}{0.0}%

\plinr{132.}{120.0}{0.0}%

\plinr{140.}{120.0}{0.0}%

\plinr{148.}{120.0}{0.0}%

\plinr{156.}{120.0}{0.0}%

\plinr{164.}{120.0}{0.0}%

\plinr{172.}{120.0}{0.0}%

\end{picture}

\end{document}
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The picture obtained by the LATEX environment has the following graphical form:

Performance profile for NFV
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The file P.m, generated by the procedure PROFMAT, contains the following statements:

x=0: 0.10000: 2.00000;

y1=[ ...

0.17810 0.38360 0.57530 0.64380 0.72600 0.80820 0.84930 0.86300 0.87670 0.87670 ...

0.89040 0.91780 0.93150 0.94520 0.95890 0.95890 0.95890 0.95890 0.97260 0.97260 ...

0.98630 ...

];

y2=[ ...

0.46580 0.64380 0.69860 0.80820 0.84930 0.87670 0.94520 0.98630 0.98630 0.98630 ...

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 ...

1.00000 ...

];

y3=[ ...

0.61640 0.83560 0.90410 0.94520 0.95890 0.95890 0.97260 1.00000 1.00000 1.00000 ...

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 ...

1.00000 ...

];

h = plot(x,y1,x,y2,x,y3);

set(h,{’LineWidth’},{3;3;3});

set(h,{’LineStyle’}, {’-’;’--’;’-.’});

set(h,{’color’},{’b’;’r’;’g’});

leg=legend(h,’LV1 - M1 ’,’LV6 - M1 ’,’LV8 - M1 ’,’location’,’SouthEast’);

tit=title(’Performance profile for NFV ’);

set(gca,’FontSize’,20);

set(leg,’FontSize’,20);

set(tit,’FontSize’,25);

print -depsc P

The picture obtained by the MATLAB plotter has the following graphical form:
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The file P.sci, generated by the procedure PROFSCI, contains the following statements:

x=0: 0.10000: 2.00000;

y1=[ ...

0.17810 0.38360 0.57530 0.64380 0.72600 0.80820 0.84930 0.86300 0.87670 0.87670 ...

0.89040 0.91780 0.93150 0.94520 0.95890 0.95890 0.95890 0.95890 0.97260 0.97260 ...

0.98630 ...

];

y2=[ ...

0.46580 0.64380 0.69860 0.80820 0.84930 0.87670 0.94520 0.98630 0.98630 0.98630 ...

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 ...

1.00000 ...

];

y3=[ ...

0.61640 0.83560 0.90410 0.94520 0.95890 0.95890 0.97260 1.00000 1.00000 1.00000 ...

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 ...

1.00000 ...

];

plot(x,y1,’-b’,x,y2,’--r’,x,y3,’-.g’);

a=gca();

a.font_size=5;

e=gce();

e.children(1).thickness=3;

e.children(2).thickness=3;

e.children(3).thickness=3;

leg=legend([’LV1 - M1 ’;’LV6 - M1 ’;’LV8 - M1 ’],4);

leg.font_size=5;

title(’Performance profile for NFV ’,’fontsize’,5);

xs2eps(0,’P’);
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The picture obtained by the SCILAB plotter has the following graphical form:
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6.5 Printing sparsity patterns

If the sparsity patterns of the Hessian matrix or the Jacobian matrices are specified (section 2.3, 2.6, 2.14),
then these sparsity patterns can be represented in the text file P.PAT. In this case we set $PATTERN=’Y’
(the default value is $PATTERN=’N’). The zero elements of sparse metrices are expressed by points and
the nonzero elements by asterisks. If we use the batch input file P.UFO of the form

$SET(INPUT)

CALL EIUB25(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET

$SET(FMODELA)

CALL EAFU25(NF,KA,X,FA,NEXT)

$ENDSET

$SET(GMODELA)

CALL EAGU25(NF,IAG,JAG,KA,X,GA,NEXT)

$ENDSET

$MODEL=’AF’

$NF=40

$NA=400

$MA=4000

$JACA=’S’

$HESF=’S’

$CLASS=’VM’

$TYPE=’L’
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$DECOMP=’M’

$NUMBER=1

$UPDATE=’B’

$NEXT=63

$PATTERN=’Y’

$BATCH

$STANDARD

then the output file P.PAT contains the following text

HESSIAN MATRIX HF NEXT = 63

***...**....*.......................

****..***....*......................

*****..***....*.....................

.*****..***....*....................

..****...***....*...................

...***....**.....*..................

**....***...**....*.................

***...****..***....*................

.***..*****..***....*...............

..***..*****..***....*..............

...***..****...***....*.............

....**...***....**.....*............

*.....**....***...**....*...........

.*....***...****..***....*..........

..*....***..*****..***....*.........

...*....***..*****..***....*........

....*....***..****...***....*.......

.....*....**...***....**.....*......

......*.....**....***...**....*.....

.......*....***...****..***....*....

........*....***..*****..***....*...

.........*....***..*****..***....*..

..........*....***..****...***....*.

...........*....**...***....**.....*

............*.....**....***...**....

.............*....***...****..***...

..............*....***..*****..***..

...............*....***..*****..***.

................*....***..****...***

.................*....**...***....**

..................*.....**....***...

...................*....***...****..

....................*....***..*****.

.....................*....***..*****

......................*....***..****

.......................*....**...***
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JACOBIAN MATRIX AG NEXT = 63

**....*.............................

***....*............................

.***....*...........................

..***....*..........................

...***....*.........................

....**.....*........................

*.....**....*.......................

.*....***....*......................

..*....***....*.....................

...*....***....*....................

....*....***....*...................

.....*....**.....*..................

......*.....**....*.................

.......*....***....*................

........*....***....*...............

.........*....***....*..............

..........*....***....*.............

...........*....**.....*............

............*.....**....*...........

.............*....***....*..........

..............*....***....*.........

...............*....***....*........

................*....***....*.......

.................*....**.....*......

..................*.....**....*.....

...................*....***....*....

....................*....***....*...

.....................*....***....*..

......................*....***....*.

.......................*....**.....*

........................*.....**....

.........................*....***...

..........................*....***..

...........................*....***.

............................*....***

.............................*....**

6.6 Interface to the CUTE environment

The CUTE environment [25] contains the most famous collection of problems for testing optimization
methods. The individual test problems are described by the special so-called SIF format. Therefore, a SIF
decoder is necessary. Such a decoder is part of the CUTE collection, but this version can only be used for a
relatively small set of optimization codes (e.g. for the LANCELOT [52] code). Since the UFO system has
a special nature the original SIF decoder had to be modified. This modification consists in replacing the
subroutine SDLANC by the subroutine SDUFO and in preparing new interface subroutines SIUBXX, SIUDXX,
SIUSXX, SINBXX, SINDXX, SINSXX, SFFUXX, SFGUXX, SFFGUX, SCFUXX, SCGUXX, SCFGUX, SAFUXX, SAGUXX,
SAFGUX (instead of USETUP, UFN, UGR, CSETUP, CFN, CGR etc.).

The CUTE collection is not distributed with the UFO system. The SIF files together with SIF decoder
subroutines can to be obtained from their authors (they are also available on the INTERNET address
http://www.cuter.rl.ac.uk/). The special interface subroutines listed above are exceptions (they are
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contained in the library CUTELIB.LIB). The SIF files should be stored in the subdirectory SIF of the main
UFO directory.

If we want to use a SIF file for testing the UFO system methods, it suffices to write the macroinstruction
$SIF=’SIF file name’ in the input batch file. For example, if we want to use problem BRITGAS for testing
interior point methods for sparse inequality constrained nonlinear programming problems, then the problem
specification (input batch file) has the following form.

$SIF=’BRITGAS’

$JACC=’S’

$FORM=’SI’

$XMAX=’5.0D0’

$BATCH

$STANDARD

Here BRITGAS is a name of the SIF file, $JACC=’S’ means that the sparse Jacobian matrix is considered
and SI is the form of recursive quadratic programming methods (Section 3.32). Statement XMAX=’5.0D0’
serves for bounding the stepsize. The problem solution (basic screen output) has the following form:

CLASS = MN - LI3 UPDATE = N MODEL = FF HESF = S NF = 450

NIC= 0 NIT= 0 NFV= 1 NFG= 19 F=0.240D+00 C=0.200D+01 G=0.220D+00

NIC= 0 NIT= 1 NFV= 2 NFG= 38 F=-.521D+01 C=0.196D+01 G=0.257D+00

NIC= 0 NIT= 2 NFV= 3 NFG= 57 F=0.296D+02 C=0.153D+01 G=0.196D+00

NIC= 0 NIT= 3 NFV= 4 NFG= 76 F=0.123D+02 C=0.120D+01 G=0.156D+00

NIC= 0 NIT= 4 NFV= 5 NFG= 95 F=0.571D+01 C=0.912D+00 G=0.125D+00

NIC= 0 NIT= 5 NFV= 6 NFG= 114 F=0.255D+01 C=0.651D+00 G=0.915D-01

NIC= 0 NIT= 6 NFV= 7 NFG= 133 F=0.102D+01 C=0.406D+00 G=0.574D-01

NIC= 0 NIT= 7 NFV= 8 NFG= 152 F=0.352D+00 C=0.187D+00 G=0.240D-01

NIC= 0 NIT= 8 NFV= 9 NFG= 171 F=0.730D-01 C=0.533D-01 G=0.100D-01

NIC= 0 NIT= 9 NFV= 10 NFG= 190 F=0.392D-02 C=0.108D-01 G=0.378D-01

NIC= 0 NIT= 10 NFV= 11 NFG= 209 F=0.534D-03 C=0.306D-03 G=0.899D-02

NIC= 0 NIT= 11 NFV= 12 NFG= 228 F=0.283D-04 C=0.147D-05 G=0.403D-03

NIC= 0 NIT= 12 NFV= 13 NFG= 247 F=0.149D-05 C=0.562D-03 G=0.215D-04

NIC= 0 NIT= 13 NFV= 14 NFG= 266 F=0.783D-07 C=0.113D-07 G=0.106D-05

NIC= 0 NIT= 14 NFV= 15 NFG= 285 F=0.412D-08 C=0.776D-06 G=0.538D-07

NIC= 0 NIT= 15 NFV= 16 NFG= 304 F=0.216D-09 C=0.752D-06 G=0.269D-08

NIC= 0 NIT= 16 NFV= 17 NFG= 323 F=0.113D-10 C=0.549D-06 G=0.134D-09

0 NIC= 0 NIT= 17 NFV= 17 NFG= 323 F=0.984D-13 C=0.549D-06 G=0.134D-09

TIME= 0:00:00.17

The additional output file P.SIF has the following form:

Problem name: BRITGAS

The objective function uses 1 nonlinear group

There are 360 nonlinear equality constraints

There are 426 variables bounded only from below

There are 24 variables bounded from below and above

If the sparsity pattern contains a relatively great number of nonzero elements, then default dimensions
(e.g. $M, $MA, $MAH, $MHA, $MC, $MCH, $MHC) might be too small and therefore they must be
specified in the input batch file.
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7 Application of the UFO system (examples)

Before the solution of a given problem, the input file containing the problem description and other speci-
fications for the macroprocessor must be usually prepared. This input file can contain only the macroin-
struction $STANDARD (input file STANDARD.UFO). Then, a full dialogue is processed. However, a more
advantageous possibility is to prepare an input file containing the problem description while a method
selection is left to the dialogue. Moreover, since a method selection can be made automatically by using
knowledge bases coded in UFO templates, the batch mode is recommended.

When writing input file instructions, we have to observe some conventions. Since the UFO source
program contains a great number of common variables we recommend using variables beginning with the
letter ’W’ for the problem description to avoid their double use. Real variables of this type should be
declared at the beginning of the UFO source program by the statement $FLOAT (for example $FLOAT
W,W1,W2). Simple integers I, J, K, L need not be declared. We recommend using statement numbers
smaller than 10000 for the problem description to avoid their double use.

The basic implementation of the UFO system is in a double precision arithmetic. Therefore, usually
$FLOAT=’REAL*8’ and $P=’D’. We recommend writing real constants always in the form of $P or D
specification (for example 1.0$P 2, 4.0$P-1 or 1.0D2, 4.0D-1) since the conversions from a single precision,
which depend on a compiler, can be incorrect. Instead of constants 0.0D0, 0.5D0, 1.0D0, 2.0D0, 3.0D0,
4.0D0, 5.0D0, 1.0D1, we can use the common variables ZERO, HALF, ONE, TWO, THREE, FOUR,
FIVE, TEN, which contain corresponding values.

In the following text, we demonstrate the application of the UFO system to 36 typical problems.
Every example consists of the problem description, the problem specification (input file), comments on
the problem specification and the problem solution (basic screen output) obtained on a PC computer. All
input files contain the necessary data and can be used in the batch mode. These input files are included
into the UFO system as the demo-files PROB01.UFO,. . . ,PROB36.UFO.

7.1 Optimization with simple bounds

a) Problem description:

Suppose we have to find a local maximum of the objective function

F (x) =
1

n!

( n∏
i=1

xi

)
− 2

with simple bounds 0 ≤ xi ≤ i for 1 ≤ i ≤ n, where n = 5. The starting point is xi = 2 for 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE BOX CONSTRAINED MAXIMIZATION +

$REM +---------------------------------------------------------------+

$FLOAT W

$SET(INPUT)

DO 1 I=1,NF

X(I)=2.0D0; XL(I)=0.0D0; XU(I)=DBLE(I); IX(I)=3

1 CONTINUE

$ENDSET

$SET(FGMODELF)

W=1.0D0

DO 2 I=1,NF

W=W*X(I)/DBLE(I)

2 CONTINUE

FF=W-2.0D0
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DO 3 I=1,NF

GF(I)=W/X(I)

3 CONTINUE

$ENDSET

$IEXT=1

$NF=5

$NX=5

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values and the simple bounds for variables.
By using the macrovariable $FGMODELF we specify analytically the value and the gradient of the model
function. Because we look for a maximum, we set $IEXT=1.

d) Problem solution (basic screen output):

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5

NIT= 0 NFV= 1 NFG= 1 F= 1.866666667 G=0.667D-01

NIT= 1 NFV= 4 NFG= 4 F= 1.550000000 G=0.150D+00

NIT= 2 NFV= 7 NFG= 7 F= 1.200000000 G=0.200D+00

NIT= 3 NFV= 9 NFG= 9 F= 1.000000000 G=0.000D+00

0 NIT= 3 NFV= 9 NFG= 9 GRAD TOL F= 1.000000000 G=0.000D+00

FF = -0.1000000000D+01

X = 0.1000000000D+01 0.2000000000D+01 0.3000000000D+01 0.4000000000D+01

0.5000000000D+01

TIME= 0:00:00.00

7.2 Unconstrained least squares optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1

2

m∑
i=1

(
x4e

−x1ti − x5e
−x2ti + x6e

−x3ti − yi
)2
,

where m = 20, ti = i/10 and yi = e−ti − 5e−10ti + 3e−4ti for 1 ≤ i ≤ m. The starting point is
x1 = 1, x2 = 2, x3 = 1, x4 = 1, x5 = 1, x6 = 1.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE UNCONSTRAINED LEAST SQUARES +

$REM +---------------------------------------------------------------+

$FLOAT W,WA,WB,WC

$SET(INPUT)

X(1)=1.0D0; X(2)=2.0D0; X(3)=1.0D0

X(4)=1.0D0; X(5)=1.0D0; X(6)=1.0D0

DO 1 KA=1,NA

W=0.1D0*DBLE(KA)

AM(KA)=EXP(-W)-5.0D0*EXP(-1.0D1*W)+3.0D0*EXP(-4.0D0*W)

1 CONTINUE

$ENDSET
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$SET(FMODELA)

W=0.1D0*DBLE(KA)

WA=EXP(-W*X(1))

WB=EXP(-W*X(2))

WC=EXP(-W*X(3))

FA=X(4)*WA-X(5)*WB+X(6)*WC

$ENDSET

$NF=6

$NA=20

$MODEL=’AQ’

$KBA=1

$MOS1=1

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the vector AM
containing values yi, 1 ≤ i ≤ m. By using the macrovariable $FMODELA we specify analytically the values
of the approximating function. The gradients of the approximating functions are computed numerically.
For the sum of squares minimization we set $MODEL=’AQ’. The specification $KBA=1 indicates that
the vector AM is used.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = N MODEL = AQ HESF = D NF = 6

NIT= 0 NFV= 7 NFG= 0 F= 0.4652437783 G=0.675D+00

NIT= 1 NFV= 14 NFG= 0 F= 0.1755707488 G=0.172D+00

NIT= 2 NFV= 22 NFG= 0 F= 0.1310718542 G=0.103D+00

NIT= 3 NFV= 30 NFG= 0 F= 0.1014547191 G=0.987D-01

NIT= 4 NFV= 37 NFG= 0 F= 0.8325110963E-01 G=0.315D+00

NIT= 5 NFV= 44 NFG= 0 F= 0.5149743622E-01 G=0.225D+00

NIT= 6 NFV= 52 NFG= 0 F= 0.1248663022E-01 G=0.964D-01

NIT= 7 NFV= 59 NFG= 0 F= 0.4692732603E-02 G=0.479D-01

NIT= 8 NFV= 66 NFG= 0 F= 0.2350712826E-02 G=0.292D-01

NIT= 9 NFV= 73 NFG= 0 F= 0.1276233060E-02 G=0.420D-01

NIT= 10 NFV= 80 NFG= 0 F= 0.7512378805E-03 G=0.482D-01

NIT= 11 NFV= 87 NFG= 0 F= 0.3065852206E-03 G=0.395D-01

NIT= 12 NFV= 95 NFG= 0 F= 0.3583746062E-04 G=0.409D-02

NIT= 13 NFV= 103 NFG= 0 F= 0.2339698105E-04 G=0.374D-03

NIT= 14 NFV= 110 NFG= 0 F= 0.1221490232E-04 G=0.272D-02

NIT= 15 NFV= 117 NFG= 0 F= 0.7308108434E-05 G=0.287D-02

NIT= 16 NFV= 124 NFG= 0 F= 0.3876069070E-05 G=0.202D-02

NIT= 17 NFV= 131 NFG= 0 F= 0.2023584146E-05 G=0.190D-02

NIT= 18 NFV= 138 NFG= 0 F= 0.1029329293E-05 G=0.193D-02

NIT= 19 NFV= 145 NFG= 0 F= 0.6760021848E-06 G=0.196D-02

NIT= 20 NFV= 152 NFG= 0 F= 0.5022053254E-09 G=0.553D-04

NIT= 21 NFV= 159 NFG= 0 F= 0.4846290353E-19 G=0.610D-09

0 NIT= 21 NFV= 159 NFG= 0 FV BOUND F= 0.4846290353E-19 G=0.610D-09

F = 0.4846290353D-19

X = 0.1000000000D+01 0.1000000000D+02 0.4000000000D+01 0.1000000000D+01

0.5000000000D+01 0.3000000000D+01

TIME= 0:00:00.00
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7.3 Unconstrained least powers optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1

4

m∑
i=1

(
x4e

−x1ti − x5e
−x2ti + x6e

−x3ti − yi
)4
,

where m = 20, ti = i/10 and yi = e−ti − 5e−10ti + 3e−4ti for 1 ≤ i ≤ m. The starting point is
x1 = 1, x2 = 2, x3 = 1, x4 = 1, x5 = 1, x6 = 1.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE UNCONSTRAINED LEAST POWERS +

$REM +---------------------------------------------------------------+

$FLOAT W,WA,WB,WC

$SET(INPUT)

X(1)=1.0D0; X(2)=2.0D0; X(3)=1.0D0

X(4)=1.0D0; X(5)=1.0D0; X(6)=1.0D0

DO 1 KA=1,NA

W=0.1D0*DBLE(KA)

AM(KA)=EXP(-W)-5.0D0*EXP(-1.0D1*W)+3.0D0*EXP(-4.0D0*W)

1 CONTINUE

$ENDSET

$SET(FMODELA)

W=0.1D0*DBLE(KA)

WA=EXP(-W*X(1))

WB=EXP(-W*X(2))

WC=EXP(-W*X(3))

FA=X(4)*WA-X(5)*WB+X(6)*WC

$ENDSET

$NF=6

$NA=20

$MODEL=’AP’

$REXP=’4.0D0’

$KBA=1

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the vector AM
containing values yi, 1 ≤ i ≤ m. By using the macrovariable $FMODELA we specify analytically the values
of the approximating function. The gradients of the approximating functions are computed numerically.
For the sum of fourth powers minimization we set $MODEL=’AP’ and $REXP=’4.0D0’ (macrovariable
$REXP defines a corresponding power). The specification $KBA=1 indicates that the vector AM is used.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = N MODEL = AP HESF = D NF = 6

NIT= 0 NFV= 7 NFG= 0 F= 0.3430916991E-01 G=0.194D+00

NIT= 1 NFV= 14 NFG= 0 F= 0.1419887081E-01 G=0.665D-01

NIT= 2 NFV= 21 NFG= 0 F= 0.4944922455E-02 G=0.111D-01
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NIT= 3 NFV= 28 NFG= 0 F= 0.3678302435E-02 G=0.124D-02

NIT= 4 NFV= 35 NFG= 0 F= 0.2424810434E-02 G=0.624D-02

NIT= 5 NFV= 42 NFG= 0 F= 0.9409619052E-03 G=0.294D-02

NIT= 6 NFV= 50 NFG= 0 F= 0.6512073068E-03 G=0.111D-02

NIT= 7 NFV= 57 NFG= 0 F= 0.4137478404E-03 G=0.615D-03

NIT= 8 NFV= 64 NFG= 0 F= 0.2198851619E-03 G=0.505D-03

NIT= 9 NFV= 72 NFG= 0 F= 0.1728982452E-03 G=0.122D-03

NIT= 10 NFV= 79 NFG= 0 F= 0.1213304154E-03 G=0.272D-03

NIT= 11 NFV= 86 NFG= 0 F= 0.6351299654E-04 G=0.679D-03

NIT= 12 NFV= 93 NFG= 0 F= 0.1567466646E-04 G=0.685D-04

NIT= 13 NFV= 100 NFG= 0 F= 0.4367175375E-05 G=0.121D-03

NIT= 14 NFV= 107 NFG= 0 F= 0.9045737965E-06 G=0.307D-04

NIT= 15 NFV= 114 NFG= 0 F= 0.2000673033E-06 G=0.119D-04

NIT= 16 NFV= 121 NFG= 0 F= 0.4446122812E-07 G=0.463D-05

NIT= 17 NFV= 128 NFG= 0 F= 0.9700186794E-08 G=0.167D-05

NIT= 18 NFV= 135 NFG= 0 F= 0.2066473108E-08 G=0.561D-06

0 NIT= 18 NFV= 135 NFG= 0 GRAD TOL F= 0.2066473108E-08 G=0.561D-06

F = 0.2066473108D-08

X = 0.1014994274D+01 0.9976207912D+01 0.3907664874D+01 0.1011751654D+01

0.4777298750D+01 0.2851199655D+01

TIME= 0:00:00.00

7.4 Unconstrained minimax optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max
1≤i≤m

∣∣∣∣ x1 + tix2

1 + tix3 + t2ix4 + t3ix5
− yi

∣∣∣∣ ,
where m = 21, ti = (i−1)/10−1 and yi = eti for 1 ≤ i ≤ m. The starting point is x1 = 0.5, x2 = 0, x3 =
0, x4 = 0, x5 = 0.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE UNCONSTRAINED MINIMAX OPTIMIZATION +

$REM +---------------------------------------------------------------+

$FLOAT W

$SET(INPUT)

X(1)=0.5D0; X(2)=0.0D0; X(3)=0.0D0; X(4)=0.0D0; X(5)=0.0D0

$ENDSET

$SET(FMODELA)

W=0.1D0*DBLE(KA-1)-1.0D0

FA=(X(1)+W*X(2))/(1.0D0+W*(X(3)+W*(X(4)+W*X(5))))-EXP(W)

$ENDSET

$MODEL=’AM’

$NF=5

$NA=21

$BATCH

$STANDARD
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c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables. By using the macrovari-
able $FMODELA we specify analytically the values of the approximating functions. The gradients of the
approximating functions are computed numerically. For minimax approximation we set $MODEL=’AM’.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AM HESF = D NF = 5

NIT= 0 NFV= 6 NFG= 0 F= 2.218281828 G=0.100+121

NIT= 1 NFV= 13 NFG= 0 F= 0.4253776661 G=0.783D+00

NIT= 2 NFV= 19 NFG= 0 F= 0.8271278131E-01 G=0.223D+00

NIT= 3 NFV= 25 NFG= 0 F= 0.1256835525E-01 G=0.114D+00

NIT= 4 NFV= 31 NFG= 0 F= 0.6693249048E-02 G=0.290D-01

NIT= 5 NFV= 37 NFG= 0 F= 0.6121578248E-02 G=0.140D-01

NIT= 6 NFV= 43 NFG= 0 F= 0.1771793241E-02 G=0.550D-01

NIT= 7 NFV= 49 NFG= 0 F= 0.2044251553E-03 G=0.208D-01

NIT= 8 NFV= 55 NFG= 0 F= 0.1225222546E-03 G=0.833D-04

NIT= 9 NFV= 61 NFG= 0 F= 0.1223712525E-03 G=0.240D-07

0 NIT= 9 NFV= 61 NFG= 0 GRAD TOL F= 0.1223712525E-03 G=0.240D-07

F = 0.1223712525D-03

X = 0.9998776287D+00 0.2535884404D+00 -0.7466075717D+00 0.2452015019D+00

-0.3749029100D-01

TIME= 0:00:00.00

7.5 Unconstrained nonsmooth optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = −x1 + 2 ∗ (x2
1 + x2

2 − 1) +
7

4

∣∣x2
1 + x2

2 − 1
∣∣ .

The starting point is x1 = −1, x2 = −1.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE UNCONSTRAINED NONSMOOTH OPTIMIZATION +

$REM +---------------------------------------------------------------+

$FLOAT W

$SET(INPUT)

X(1)=-1.0D0

X(2)=-1.0D0

$ENDSET

$SET(FGMODELF)

W=X(1)**2+X(2)**2-1.0D0

FF=-X(1)+2.0D0*W+1.75D0*ABS(W)

W=SIGN(3.5D0,W)+4.0D0

GF(1)=W*X(1)-1.0D0

GF(2)=W*X(2)

$ENDSET

$NF=2

$KSF=3

$BATCH

$STANDARD
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c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables. By using the macrovari-
able $FGMODELF we specify analytically the value and the gradient of the objective function. Since the
objective function is nonsmooth, we set $KSF=3.

d) Problem solution (basic screen output):

CLASS = BM - L11 UPDATE = N MODEL = FF HESF = N NF = 2

NIT= 0 NFV= 1 NFG= 1 F= 4.750000000 G=0.100+121

NIT= 1 NFV= 3 NFG= 3 F=-0.3788888889 G=0.850D+01

NIT= 2 NFV= 4 NFG= 4 F=-0.6061514369 G=0.933D+00

NIT= 3 NFV= 5 NFG= 5 F= 9.250000000 G=0.802D+00

NIT= 4 NFV= 6 NFG= 6 F=-0.7284826639 G=0.802D+00

NIT= 5 NFV= 7 NFG= 7 F= 0.8708184712 G=0.348D+00

NIT= 6 NFV= 8 NFG= 8 F=-0.8275709577 G=0.722D+00

NIT= 7 NFV= 9 NFG= 9 F=-0.8436035754 G=0.162D+00

NIT= 8 NFV= 10 NFG= 10 F=-0.9986081259 G=0.984D-01

NIT= 9 NFV= 11 NFG= 11 F=-0.9980886265 G=0.114D+00

NIT= 10 NFV= 12 NFG= 12 F=-0.9992851884 G=0.501D+00

NIT= 11 NFV= 13 NFG= 13 F=-0.9999999867 G=0.530D-01

NIT= 12 NFV= 14 NFG= 14 F=-0.9999922205 G=0.454D-05

NIT= 13 NFV= 15 NFG= 15 F= -1.000000000 G=0.986D-07

0 NIT= 13 NFV= 15 NFG= 15 GRAD TOL F= -1.000000000 G=0.986D-07

FF = -0.1000000000D+01

X = 0.1000000000D+01 0.0000000000D+00

TIME= 0:00:00.00

7.6 Optimization with linear constraints

a) Problem specification:

Suppose we have to find a local minimum of the objective function

F (x) = (x1 − x2)
2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6

over the set given by the linear constraints

x1 + x2 + x3 + 4x4 = 7,

x3 + 5x5 = 6.

The starting point is x1 = 10, x2 = 7, x3 = 2, x4 = −3, x5 = 0.8.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE MINIMIZATION WITH LINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$SET(INPUT)

X(1)= 1.0D1; X(2)=7.0D0; X(3)= 2.0D0

X(4)=-3.0D0; X(5)=0.8D0

IC(1)=5; CL(1)=7.0D0

CG(1)=1.0D0; CG(2)=1.0D0; CG(3)=1.0D0

CG(4)=4.0D0; CG(5)=0.0D0

IC(2)=5; CL(2)=6.0D0
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CG(6)=0.0D0; CG(7)=0.0D0; CG(8)=1.0D0

CG(9)=0.0D0; CG(10)=5.0D0

$ENDSET

$SET(FMODELF)

FF=(X(1)-X(2))**2+(X(3)-1.0D0)**2+(X(4)-1.0D0)**4+(X(5)-1.0D0)**6

$ENDSET

$SET(GMODELF)

GF(1)= 2.0D0*(X(1)-X(2))

GF(2)=-2.0D0*(X(1)-X(2))

GF(3)= 2.0D0*(X(3)-1.0D0)

GF(4)= 4.0D0*(X(4)-1.0D0)**3

GF(5)= 6.0D0*(X(5)-1.0D0)**5

$ENDSET

$NF=5

$NC=2

$NCL=2

$FMIN=’0.0D0’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the types and values
of the linear constraints. By using the macrovariable $FMODELF we specify analytically the value of the
model function. By using the macrovariable $GMODELF we specify analytically the gradient of the model
function. The specification $FMIN=’0.0D0’ is used, since the objective function value cannot be smaller
then zero.

d) Problem solution (basic screen output):

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5

NIT= 0 NFV= 1 NFG= 1 F= 266.0000640 G=0.853D+02

NIT= 1 NFV= 2 NFG= 2 F= 23.36590202 G=0.911D+01

NIT= 2 NFV= 3 NFG= 3 F= 5.067974228 G=0.427D+01

NIT= 3 NFV= 4 NFG= 4 F= 0.5961395170 G=0.936D+00

NIT= 4 NFV= 5 NFG= 5 F= 0.2531886542 G=0.439D+00

NIT= 5 NFV= 6 NFG= 6 F= 0.1507495393 G=0.284D+00

NIT= 6 NFV= 7 NFG= 7 F= 0.6239641368E-01 G=0.383D+00

NIT= 7 NFV= 8 NFG= 8 F= 0.1334510618E-01 G=0.516D-01

NIT= 8 NFV= 9 NFG= 9 F= 0.6238174366E-02 G=0.619D-01

NIT= 9 NFV= 10 NFG= 10 F= 0.2151107202E-02 G=0.810D-01

NIT= 10 NFV= 11 NFG= 11 F= 0.4055819437E-03 G=0.130D-01

NIT= 11 NFV= 12 NFG= 12 F= 0.1934974160E-03 G=0.430D-02

NIT= 12 NFV= 13 NFG= 13 F= 0.4675914285E-04 G=0.724D-02

NIT= 13 NFV= 14 NFG= 14 F= 0.1498471817E-04 G=0.640D-02

NIT= 14 NFV= 15 NFG= 15 F= 0.5645336646E-05 G=0.927D-03

NIT= 15 NFV= 16 NFG= 16 F= 0.2238555954E-05 G=0.919D-03

NIT= 16 NFV= 17 NFG= 17 F= 0.7049245994E-06 G=0.124D-02

NIT= 17 NFV= 18 NFG= 18 F= 0.1667236198E-06 G=0.118D-03

NIT= 18 NFV= 19 NFG= 19 F= 0.6896628295E-07 G=0.117D-03

NIT= 19 NFV= 20 NFG= 20 F= 0.1898543896E-07 G=0.120D-03

NIT= 20 NFV= 21 NFG= 21 F= 0.5414841480E-08 G=0.871D-04

NIT= 21 NFV= 22 NFG= 22 F= 0.1679481945E-08 G=0.217D-04

NIT= 22 NFV= 23 NFG= 23 F= 0.6418583139E-09 G=0.303D-04
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NIT= 23 NFV= 24 NFG= 24 F= 0.2757671243E-09 G=0.231D-04

NIT= 24 NFV= 25 NFG= 25 F= 0.7610163021E-10 G=0.472D-05

NIT= 25 NFV= 26 NFG= 26 F= 0.3874868646E-10 G=0.797D-07

0 NIT= 25 NFV= 26 NFG= 26 GRAD TOL F= 0.3874868646E-10 G=0.797D-07

FF = 0.3874868646D-10

X = 0.1004989839D+01 0.1004989867D+01 0.9999999525D+00 0.9975050854D+00

0.1000000010D+01

TIME= 0:00:00.00

7.7 Least squares optimization with linear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
163∑
i=1

 1

15
+

2

15

7∑
j=1

cos(2πxj sinϑi)

2

,

where ϑi = π(8.5 + i0.5)/180 for 1 ≤ i ≤ 163, over set given by the simple constraints x1 ≥ 0.4, x7 = 3.5
and by the linear constraints

−x1 + x2 ≥ 0.4,

−x2 + x3 ≥ 0.4,

−x3 + x4 ≥ 0.4,

−x4 + x5 ≥ 0.4,

−x5 + x6 ≥ 0.4,

−x6 + x7 ≥ 0.4,

−x4 + x6 = 1.0.

The starting point is x1 = 0.5, x2 = 1.0, x3 = 1.5, x4 = 2.0, x5 = 2.5, x6 = 3.0. x7 = 3.5.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE LEAST SQUARES WITH LINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$FLOAT W(163),WA,WPI

$SET(INPUT)

WPI=3.1415926535897932D0

DO 1 I=1,NF

X(I)=DBLE(I)*0.5D0; IX(I)=0

1 CONTINUE

XL(1)=0.4D0; IX(1)=1; IX(7)=5

DO 2 I=1,NA

W(I)=2.0D0*WPI*SIN(WPI*(8.5D0+DBLE(I)*0.5D0)/1.8D2)

2 CONTINUE

DO 3 I=1,6

CL(I)=0.4D0; IC(I)=1

3 CONTINUE

CL(7)=1.0D0; CU(7)=1.0D0; IC(7)=5

DO 4 I=1,NF*NC

CG(I)=0.0D0
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4 CONTINUE

K=0

DO 5 I=1,6

CG(K+I)=-1.0D0; CG(K+I+1)=1.0D0

K=K+NF

5 CONTINUE

CG(46)=-1.0D0; CG(48)= 1.0D0

$ENDSET

$SET(FMODELA)

WA=0.0D0

DO 6 I=1,NF

WA=WA+COS(W(KA)*X(I))

6 CONTINUE

FA=(1.0D0+2.0D0*WA)/1.5D1

$ENDSET

$MODEL=’AQ’

$NF=7

$NX=7

$NA=163

$NC=7

$NCL=7

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, types and values of the
simple bounds and types and values of the linear constraints. By using the macrovariable $FMODELA
we specify analytically the values of the approximating function. The gradients of the approximating
functions are computed numerically. For the sum of squares minimization we set $MODEL=’AQ’.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = N MODEL = AQ HESF = D NF = 7

NIT= 0 NFV= 7 NFG= 0 F= 0.4638565295 G=0.114D+01

NIT= 1 NFV= 14 NFG= 0 F= 0.4461088576 G=0.327D+00

NIT= 2 NFV= 21 NFG= 0 F= 0.4348755804 G=0.383D+00

NIT= 3 NFV= 28 NFG= 0 F= 0.4117773441 G=0.557D+00

NIT= 4 NFV= 35 NFG= 0 F= 0.3640897673 G=0.831D+00

NIT= 5 NFV= 42 NFG= 0 F= 0.2855278593 G=0.118D+01

NIT= 6 NFV= 49 NFG= 0 F= 0.2459276580 G=0.145D+01

NIT= 7 NFV= 56 NFG= 0 F= 0.2428262783 G=0.805D+00

NIT= 8 NFV= 63 NFG= 0 F= 0.2346115275 G=0.263D-01

NIT= 9 NFV= 70 NFG= 0 F= 0.2345064740 G=0.623D-02

NIT= 10 NFV= 77 NFG= 0 F= 0.2345039665 G=0.752D-03

NIT= 11 NFV= 84 NFG= 0 F= 0.2345039533 G=0.837D-04

NIT= 12 NFV= 91 NFG= 0 F= 0.2345039531 G=0.966D-05

NIT= 13 NFV= 98 NFG= 0 F= 0.2345039531 G=0.111D-05

NIT= 14 NFV= 105 NFG= 0 F= 0.2345039531 G=0.128D-06

0 NIT= 14 NFV= 105 NFG= 0 GRAD TOL F= 0.2345039531 G=0.128D-06

F = 0.2345039531D+00

X = 0.4000000000D+00 0.8399686447D+00 0.1239968645D+01 0.1761071079D+01

0.2161071079D+01 0.2761071079D+01 0.3500000000D+01

215



TIME= 0:00:00.00

7.8 Minimax optimization with linear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max(− exp(x1 − x2), sinh(x1 − 1)− 1, − log(x2)− 1)

over the set given by the simple constraint x2 ≥ 1/100 and by the linear constraint

5

100
x1 − x2 +

1

2
≥ 0.

The starting point is x1 = −1, x2 = 1/100.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE MINIMAX OPTIMIZATION WITH LINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$SET(INPUT)

X(1)=-1.0D 0; IX(1)=0

X(2)= 1.0D-2; XL(2)= 1.0D-2; IX(2)=1

CL(1)=-5.0D-1; IC(1)=1

CG(1)=5.0D-2; CG(2)=-1.0D 0

$ENDSET

$SET(FMODELA)

IF (KA.EQ.1) FA=-EXP(X(1)-X(2))

IF (KA.EQ.2) FA= SINH(X(1)-1.0D0)-1.0D0

IF (KA.EQ.3) FA=-LOG(X(2))-1.0D0

$ENDSET

$MODEL=’AM’

$IEXT=-1

$NF=2

$NX=2

$NA=3

$NC=1

$NCL=1

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, types and values of the
simple bounds and types and values of the linear constraints. By using the macrovariable $FMODELA
we specify analytically the values of the approximating functions. The gradients of the approximating
functions are computed numerically. For minimax approximation we set $MODEL=’AM’ and $IEXT=-1.
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d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AM HESF = D NF = 2

NIT= 0 NFV= 3 NFG= 0 F= 3.605170186 G=0.100+121

NIT= 1 NFV= 6 NFG= 0 F= 1.978554385 G=0.363D+00

NIT= 2 NFV= 9 NFG= 0 F= 0.6817245960 G=0.487D+00

NIT= 3 NFV= 12 NFG= 0 F=-0.2766371994 G=0.595D+00

NIT= 4 NFV= 15 NFG= 0 F=-0.3838143331 G=0.344D+00

NIT= 5 NFV= 18 NFG= 0 F=-0.4394007715 G=0.281D-01

NIT= 6 NFV= 21 NFG= 0 F=-0.4488931954 G=0.124D-02

NIT= 7 NFV= 24 NFG= 0 F=-0.4489107860 G=0.215D-05

0 NIT= 8 NFV= 24 NFG= 0 GRAD TOL F=-0.4489107860 G=0.737D-11

F = -0.4489107860D+00

X = 0.1526434615D+01 0.5763217308D+00

TIME= 0:00:00.00

7.9 Nonsmooth optimization with linear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max
(
−
√
(x1 − x3)2 + (x2 − x4)2,−

√
(x3 − x5)2 + (x4 − x6)2,−

√
(x5 − x1)2 + (x6 − x2)2

)
over the set given by the linear constraints

x1 cos(2πi/5) + x2 sin(2πi/5) ≤ 1, 0 ≤ j ≤ 4,

x3 cos(2πi/5) + x4 sin(2πi/5) ≤ 1, 0 ≤ j ≤ 4,

x5 cos(2πi/5) + x5 sin(2πi/5) ≤ 1, 0 ≤ j ≤ 4.

The starting point is x1 = −1, x2 = 0, x3 = 0, x4 = −1, x5 = 1, x6 = 1.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE NONSMOOTH OPTIMIZATION WITH LINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2,W3,WA,WPI

$SET(INPUT)

WPI=3.1415926535897932D0

X(1)=-1.0D0; X(2)= 0.0D0; X(3)= 0.0D0

X(4)=-1.0D0; X(5)= 1.0D0; X(6)= 1.0D0

DO 1 I=1,NC

CU(I)=1.0D0; IC(I)=2

1 CONTINUE

DO 2 I=1,NF*NC

CG(I)=0.0D0

2 CONTINUE

K=1

DO 4 I=1,3

L=2*(I-1)
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DO 3 J=1,5

CG(K+L)=SIN(2.0D0*WPI*DBLE(J-1)/5.0D0)

CG(K+L+1)=COS(2.0D0*WPI*DBLE(J-1)/5.0D0)

K=K+NF

3 CONTINUE

4 CONTINUE

$ENDSET

$SET(FMODELF)

W1=-SQRT((X(1)-X(3))**2+(X(2)-X(4))**2)

W2=-SQRT((X(3)-X(5))**2+(X(4)-X(6))**2)

W3=-SQRT((X(5)-X(1))**2+(X(6)-X(2))**2)

FF=MAX(W1,W2,W3)

$ENDSET

$NF=6

$NX=6

$NC=15

$NCL=15

$KSF=3

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the types and values
of the linear constraints. By using the macrovariable $FMODELF we specify analytically the value of
the objective function. The subgradients of the objective function is computed numerically. Since the
objective function is nonsmooth, we set $KSF=3.

d) Problem solution (basic screen output):

CLASS = BM - L11 UPDATE = N MODEL = FF HESF = N NF = 6

NIT= 0 NFV= 7 NFG= 0 F= -1.414213562 G=0.100+121

NIT= 1 NFV= 14 NFG= 0 F= -1.723937907 G=0.447D+00

NIT= 2 NFV= 21 NFG= 0 F= -1.769198225 G=0.800D-01

NIT= 3 NFV= 28 NFG= 0 F= -1.819486899 G=0.106D+00

NIT= 4 NFV= 35 NFG= 0 F= -1.831224488 G=0.807D-01

NIT= 5 NFV= 42 NFG= 0 F= -1.833047757 G=0.802D-01

NIT= 6 NFV= 49 NFG= 0 F= -1.725011873 G=0.801D-01

NIT= 7 NFV= 56 NFG= 0 F= -1.843442148 G=0.791D-01

NIT= 8 NFV= 63 NFG= 0 F= -1.852803685 G=0.609D-01

NIT= 9 NFV= 70 NFG= 0 F= -1.827414255 G=0.609D-01

NIT= 10 NFV= 77 NFG= 0 F= -1.857698751 G=0.324D-01

NIT= 11 NFV= 84 NFG= 0 F= -1.857554478 G=0.310D-01

NIT= 12 NFV= 91 NFG= 0 F= -1.859265289 G=0.134D+00

NIT= 13 NFV= 98 NFG= 0 F= -1.859548882 G=0.173D-01

NIT= 14 NFV= 105 NFG= 0 F= -1.859596171 G=0.135D-01

NIT= 15 NFV= 112 NFG= 0 F= -1.859614932 G=0.166D-03

NIT= 16 NFV= 119 NFG= 0 F= -1.859617277 G=0.980D-05

NIT= 17 NFV= 126 NFG= 0 F= -1.859615967 G=0.206D-04

NIT= 18 NFV= 133 NFG= 0 F= -1.859618401 G=0.158D-04

NIT= 19 NFV= 140 NFG= 0 F= -1.859618685 G=0.573D-05

NIT= 20 NFV= 147 NFG= 0 F= -1.859618696 G=0.220D-07

0 NIT= 20 NFV= 147 NFG= 0 GRAD TOL F= -1.859618696 G=0.220D-07

218



FF = -0.1859618696D+01

X = -0.9723036844D+00 0.2436249348D+00 0.5321594418D+00 -0.8494315113D+00

0.7265425280D+00 0.1000000000D+01

TIME= 0:00:00.00

7.10 Optimization with nonlinear constraints (nonlinear programming)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = x1x3

over the set given by the simple bounds x1 ≥ 0, x3 ≥ 0, x5 ≥ 1, x7 ≥ 1 and by the nonlinear constraints

(x4 − x6)
2 + (x5 − x7)

2 ≥ 4,

x3x4 − x2x5√
x2
2 + x2

3

≥ 1,

x3x6 − x2x7√
x2
2 + x2

3

≥ 1,

x1x3 + (x2 − x1)x5 − x3x4√
(x2 − x1)2 + x2

3

≥ 1,

x1x3 + (x2 − x1)x7 − x3x6√
(x2 − x1)2 + x2

3

≥ 1.

The starting point is x1 = 3.0, x2 = 0.0, x3 = 2.0, x4 = −1.5, x5 = 1.5, x6 = 5.0, x7 = 0.0.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE MINIMIZATION WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$FLOAT W

$SET(INPUT)

X(1)= 3.0D0; XL(1)= 0.0D0; IX(1)= 1

X(2)= 0.0D0

X(3)= 2.0D0; XL(3)= 0.0D0; IX(3)= 1

X(4)=-1.5D0

X(5)= 1.5D0; XL(5)= 1.0D0; IX(5)= 1

X(6)= 5.0D0

X(7)= 0.0D0; XL(7)= 1.0D0; IX(7)= 1

CL(1)=4.0D0; IC(1)= 1

CL(2)=1.0D0; IC(2)= 1

CL(3)=1.0D0; IC(3)= 1

CL(4)=1.0D0; IC(4)= 1

CL(5)=1.0D0; IC(5)= 1

$ENDSET

$SET(FMODELF)

FF=X(1)*X(3)

$ENDSET
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$SET(FMODELC)

IF(KC.LE.0)THEN

ELSEIF(KC.EQ.1)THEN

FC=(X(4)-X(6))**2+(X(5)-X(7))**2

ELSEIF(KC.EQ.2)THEN

W=SQRT(X(2)**2+X(3)**2)

FC=(X(3)*X(4)-X(2)*X(5))/W

ELSEIF(KC.EQ.3)THEN

W=SQRT(X(2)**2+X(3)**2)

FC=(X(3)*X(6)-X(2)*X(7))/W

ELSEIF(KC.EQ.4)THEN

W=SQRT((X(2)-X(1))**2+X(3)**2)

FC=(X(1)*X(3)+(X(2)-X(1))*X(5)-X(3)*X(4))/W

ELSEIF(KC.EQ.5)THEN

W=SQRT((X(2)-X(1))**2+X(3)**2)

FC=(X(1)*X(3)+(X(2)-X(1))*X(7)-X(3)*X(6))/W

ENDIF

$ENDSET

$IADF=1

$IADC=1

$NF=7

$NX=7

$NC=5

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of the variables, types and values of the
simple bounds and types and values of the nonlinear constraints. By using the macrovariable $FMODELF
we specify the value of the model function analytically. The gradient of the model function is computed
by automatic differentiation, since $IADF=1. By using the macrovariable $FMODELC we specify the
values of the constraint functions analytically. The gradients of the constraint functions are computed by
automatic differentiation, since $IADC=1. Note that statements IF-THEN and ELSEIF-THEN have not
to contain blanks if the automatic differentiation is used.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = FF HESF = D NF = 7

NIC= 0 NIT= 0 NFV= 1 NFG= 1 F=0.600D+01 C=0.294D+01 G=0.000D+00

NIC= 0 NIT= 1 NFV= 3 NFG= 3 F=0.340D+02 C=0.961D+00 G=0.267D+01

NIC= 0 NIT= 2 NFV= 5 NFG= 5 F=0.292D+02 C=0.540D-01 G=0.139D+01

NIC= 0 NIT= 3 NFV= 7 NFG= 7 F=0.247D+02 C=0.156D-01 G=0.105D+01

NIC= 0 NIT= 4 NFV= 9 NFG= 9 F=0.236D+02 C=0.356D-01 G=0.691D+00

NIC= 0 NIT= 5 NFV= 11 NFG= 11 F=0.235D+02 C=0.277D-01 G=0.797D+00

NIC= 0 NIT= 6 NFV= 13 NFG= 13 F=0.233D+02 C=0.171D-02 G=0.127D+00

NIC= 0 NIT= 7 NFV= 15 NFG= 15 F=0.233D+02 C=0.122D-03 G=0.107D+00

NIC= 0 NIT= 8 NFV= 17 NFG= 17 F=0.233D+02 C=0.345D-03 G=0.182D+00

NIC= 0 NIT= 9 NFV= 19 NFG= 19 F=0.233D+02 C=0.122D-04 G=0.101D+00

NIC= 0 NIT= 10 NFV= 21 NFG= 21 F=0.233D+02 C=0.188D-04 G=0.308D-01

NIC= 0 NIT= 11 NFV= 23 NFG= 23 F=0.233D+02 C=0.604D-08 G=0.457D-03

NIC= 0 NIT= 12 NFV= 25 NFG= 25 F=0.233D+02 C=0.701D-10 G=0.707D-04

NIC= 0 NIT= 13 NFV= 27 NFG= 27 F=0.233D+02 C=0.611D-13 G=0.171D-05

0 NIC= 0 NIT= 14 NFV= 27 NFG= 27 F=0.233D+02 C=0.611D-13 G=0.228D-09
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FF = 0.2331370850D+02

X = 0.4828427125D+01 -0.4592416296D-10 0.4828427125D+01 0.1000000000D+01

0.2414213562D+01 0.2414213562D+01 0.1000000000D+01

TIME= 0:00:00.00

7.11 Least squares optimization with nonlinear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = (x1 − x4)
2 + (x2 − x5)

2 + (x3 − x6)
2

over the set given by the simple bound 4 ≤ x6 ≤ 8 and by the nonlinear constraints

x2
1 + x2

2 + x2
3 ≤ 5,

x2
5 + (x4 − 3)2 ≤ 1.

The starting point is x1 = 1, x2 = 1 , x3 = 1, x4 = 3, x5 = 0, x6 = 0.5.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE LEAST SQUARES WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$SET(INPUT)

X(1)=1.0D0; X(2)=1.0D0; X(3)=1.0D0

X(4)=3.0D0; X(5)=0.0D0; X(6)=0.5D0

IX(6)=3; XL(6)=4.0D0; XU(6)=8.0D0

IC(1)=2; CU(1)=5.0D0

IC(2)=2; CU(2)=1.0D0

$ENDSET

$SET(FMODELA)

IF(KA.EQ.1)THEN

FA=X(1)-X(4)

ELSEIF(KA.EQ.2)THEN

FA=X(2)-X(5)

ELSE

FA=X(3)-X(6)

ENDIF

$ENDSET

$SET(FMODELC)

IF(KC.EQ.1)THEN

FC=X(1)**2+X(2)**2+X(3)**2

ELSE

FC=X(5)**2+(X(4)-3.0D0)**2

ENDIF

$ENDSET

$IADA=1

$IADC=1

$NF=6

$NX=6

$NA=3
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$NC=2

$MODEL=’AQ’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, types and values of the
simple bounds and types and values of the nonlinear constraints. By using the macrovariable $FMODELA
we specify values of the approximating function analytically. The gradients of the approximating function
are computed by automatic differentiation, since $IADA=1. By using the macrovariable $FMODELC we
specify the values of the constraint functions analytically. The gradients of the constraint functions are com-
puted by automatic differentiation, since $IADC=1. Note that statements IF-THEN and ELSEIF-THEN
have not to contain blanks if the automatic differentiation is used. For the sum of squares minimization
we set $MODEL=’AQ’.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AQ HESF = D NF = 6

NIC= 0 NIT= 0 NFV= 1 NFG= 1 F=0.700D+01 C=0.000D+00 G=0.000D+00

NIC= 0 NIT= 1 NFV= 4 NFG= 4 F=0.363D+01 C=0.125D+01 G=0.200D+01

NIC= 0 NIT= 2 NFV= 6 NFG= 6 F=0.266D+01 C=0.158D+00 G=0.111D+01

NIC= 0 NIT= 3 NFV= 8 NFG= 8 F=0.254D+01 C=0.315D-01 G=0.357D+00

NIC= 0 NIT= 4 NFV= 10 NFG= 10 F=0.250D+01 C=0.320D-02 G=0.130D+00

NIC= 0 NIT= 5 NFV= 12 NFG= 12 F=0.250D+01 C=0.230D-02 G=0.533D-01

NIC= 0 NIT= 6 NFV= 14 NFG= 14 F=0.250D+01 C=0.798D-05 G=0.529D-02

NIC= 0 NIT= 7 NFV= 16 NFG= 16 F=0.250D+01 C=0.876D-07 G=0.431D-03

NIC= 0 NIT= 8 NFV= 18 NFG= 18 F=0.250D+01 C=0.934D-10 G=0.200D-04

0 NIC= 0 NIT= 9 NFV= 18 NFG= 18 F=0.250D+01 C=0.934D-10 G=0.864D-07

F = 0.2500000000D+01

X = 0.1000000020D+01 -0.6092964516D-08 0.1999999990D+01 0.2000000000D+01

0.4014414082D-07 0.4000000000D+01

TIME= 0:00:00.02

7.12 Minimax optimization with nonlinear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max
(
x1 − 14, x2

1 − 4x1 + x2
2 − 4x2 + x2

3 − 4x3, x
2
1 − 4x1 − 8

)
over the set given by the nonlinear constraints

6x2 + 4x3 − x3
1 ≥ 3,

8x1 + 14x2 + 7x3 = 56,

6x2
1 + x2

2 + x2
3 = 25,

The starting point is x1 = 2, x2 = 3, x3 = 2.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE MINIMAX OPTIMIZATION WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+
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$SET(INPUT)

X(1)=2.0D0; X(2)=3.0D0; X(3)=2.0D0

CL(1)=3.0D0; IC(1)=1

CL(2)=5.6D1; IC(2)=5

CL(3)=2.5D1; IC(3)=5

$ENDSET

$SET(FMODELA)

IF(KA.EQ.1)THEN

FA=X(1)-1.4D1

ELSEIF(KA.EQ.2) THEN

FA=X(1)**2-4.0D0*X(1)+X(2)**2-4.0D0*X(2)+X(3)**2-4.0D0*X(3)

ELSE

FA=X(1)**2-4.0D0*X(1)-8.0D0

ENDIF

$ENDSET

$SET(FMODELC)

IF(KC.EQ.1)THEN

FC=6.0D0*X(2)+4.0D0*X(3)-X(1)**3

ELSEIF(KC.EQ.2) THEN

FC=8.0D0*X(1)+1.4D1*X(2)+7.0D0*X(3)

ELSE

FC=X(1)**2+X(2)**2+X(3)**2

ENDIF

$ENDSET

$MODEL=’AM’

$IEXT=-1

$IADA=1

$IADC=1

$NF=3

$NA=3

$NC=3

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and types and values
of the nonlinear constraints. By using the macrovariable $FMODELA we specify values of the approx-
imating function analytically. The gradients of the approximating function are computed by automatic
differentiation, since $IADA=1. By using the macrovariable $FMODELC we specify the values of the
constraint functions analytically. The gradients of the constraint functions are computed by automatic
differentiation, since $IADC=1. Note that statements IF-THEN and ELSEIF-THEN have not to contain
blanks if the automatic differentiation is used. For minimax approximation we set $MODEL=’AM’ and
$IEXT=-1.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AM HESF = D NF = 4

NIC= 0 NIT= 0 NFV= 1 NFG= 1 F=0.000D+00 C=0.160D+02 G=0.000D+00

NIC= 0 NIT= 1 NFV= 2 NFG= 2 F=0.276D+03 C=0.280D+03 G=0.140D+02

NIC= 0 NIT= 2 NFV= 3 NFG= 3 F=0.745D+02 C=0.664D+02 G=0.701D+01

NIC= 0 NIT= 3 NFV= 4 NFG= 4 F=0.936D+01 C=0.136D+02 G=0.140D+01

NIC= 0 NIT= 4 NFV= 5 NFG= 5 F=0.217D+01 C=0.236D+01 G=0.526D+00

NIC= 0 NIT= 5 NFV= 6 NFG= 6 F=-.374D+01 C=0.853D-01 G=0.168D+00
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NIC= 0 NIT= 6 NFV= 7 NFG= 7 F=-.393D+01 C=0.125D-03 G=0.418D-02

NIC= 0 NIT= 7 NFV= 8 NFG= 8 F=-.393D+01 C=0.262D-09 G=0.514D-05

0 NIC= 0 NIT= 8 NFV= 8 NFG= 8 F=-.393D+01 C=0.262D-09 G=0.107D-10

F = -0.3934510577D+01

X = 0.2548204707D+01 0.4023431118D+00 0.4283079826D+01 -0.3934510577D+01

TIME= 0:00:00.00

7.13 Global optimization

a) Problem description:

Suppose we have to find the global minimum of the objective function

F (x) = (x1 − 3)2(x1 + 5)2 + (x2 − 2)2(x2 + 3)2 − x2
1x

2
2

over the set given by the inequalities −12 ≤ x1 ≤ 10 and −12 ≤ x2 ≤ 10. The starting point is x1 = 0,
x2 = 0.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + DENSE UNCONSTRAINED GLOBAL MINIMIZATION +

$REM +---------------------------------------------------------------+

$SET(INPUT)

XL(1)=-1.2D1; XU(1)=1.0D1

XL(2)=-1.2D1; XU(2)=1.0D1

$ENDSET

$SET(FMODELF)

FF=((X(1)-3.0D0)*(X(1)+5.0D0))**2+((X(2)-2.0D0)*(X(2)+3.0D0))**2&

-(X(1)*X(2))**2

$ENDSET

$NF=2

$MOUT=1

$EXTREM=’G’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds defining the investigated region. By using
the macrovariable $FMODELF we specify analytically the value of the model function. The gradient
of the model function is computed numerically. Since we require to find the global minimum we set
$EXTREM=’G’.

d) Problem solution (basic screen output):

CLASS = VM - LI1 UPDATE = B MODEL = FF HESF = D NF = 2

0 NIT= 64 NFV= 709 NEX= 4 F=-0.806D+03

EXTREM 1 :

F = -0.8060772623D+03

X = -0.7329989920D+01 -0.6447506446D+01
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EXTREM 2 :

F = -0.3072281498D+03

X = -0.6228926454D+01 0.4363683102D+01

EXTREM 3 :

F = -0.1504539067D+03

X = 0.3836710556D+01 -0.4317610574D+01

EXTREM 4 :

F = -0.5795091449D+02

X = 0.3368245192D+01 0.2827173202D+01

TIME= 0:00:00.00

7.14 Large-scale nonlinear equations

a) Problem description:

Suppose we have to solve the system of the nonlinear equations

fA
i (x) = (3− 2xi)xi − xi+1 + 1 = 0 , i = 1

fA
i (x) = (3− 2xi)xi − xi−1 − xi+1 + 1 = 0 , 2 ≤ i ≤ n− 1

fA
i (x) = (3− 2xi)xi − xi−1 + 1 = 0 , i = n

where n = 100. The starting point is xi = −1 for 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + LARGE-SCALE NONLINEAR EQUATIONS +

$REM +---------------------------------------------------------------+

$SET(INPUT)

DO 1 I=1,NF

X(I)=-1.0D0

1 CONTINUE

$ENDSET

$SET(FMODELA)

I=KA

FA=(3.0D0-2.0D0*X(I))*X(I)+1.0D0

IF (I.GT. 1) FA=FA-X(I-1)

IF (I.LT.NA) FA=FA-X(I+1)

$ENDSET

$NF=100

$NA=100

$MODEL=’NE’

$JACA=’N’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables. By using the macrovari-
able $FMODELA we specify analytically the values of functions in the nonlinear equations. For solving
nonlinear equations we set $MODEL=’NE’. Since the Jacobian matrix is not defined, we set $JACA=’N’.
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d) Problem solution (basic screen output):

CLASS = TN - GE3 UPDATE = N MODEL = AQ HESF = N NF = 100

NIT= 0 NFV= 1 F= 205.0000000

NIT= 1 NFV= 5 F= 5.266293104

NIT= 2 NFV= 9 F= 0.1672522970E-01

NIT= 3 NFV= 13 F= 0.1523614858E-05

NIT= 4 NFV= 19 F= 0.9562244762E-11

NIT= 5 NFV= 27 F= 0.3893958431E-18

0 NIT= 5 NFV= 27 NDC= 0 FV BOUND F= 0.3893958431E-18

TIME= 0:00:00.00

7.15 Large scale unconstrained optimization (sparse Hessian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =

n∑
i=1

(
(3− 2xi)xi − xi−1 − xi+1 + 1

)2
, xn+1 = x0 = 0

where n = 100. The starting point is xi = −1 for 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE UNCONSTRAINED MINIMIZATION +

$REM +---------------------------------------------------------------+

$FLOAT W,WF(0:100)

INTEGER IAD_WF(0:100)

$SET(INPUT)

DO 1 I=1,NF

X(I)=-1.0D0

J=2*(I-1)+1

IH(I)=J

JH(J)=I

JH(J+1)=I+1

1 CONTINUE

IH(NF+1)=2*NF

$ENDSET

$SET(FMODELF)

WF(0)=0.0D0

DO 2 J=1,NF

IF(J.EQ.1)THEN

W=(3.0D0-2.0D0*X(J))*X(J)+1.0D0-X(J+1)

ELSEIF(J.EQ.NF)THEN

W=(3.0D0-2.0D0*X(J))*X(J)+1.0D0-X(J-1)

ELSE

W=(3.0D0-2.0D0*X(J))*X(J)+1.0D0-X(J-1)-X(J+1)

ENDIF

WF(J)=WF(J-1)+W*W

2 CONTINUE

FF=WF(NF)

$ENDSET

226



$IADF=1

$NF=100

$HESF=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern
of the Hessian matrix. The sparse Hessian matrix, indicated by the statement $HESF=’S’, is tridiagonal.
By using the macrovariable $FMODELF we specify the value of the model function analytically. The
gradient of the model function is computed by automatic differentiation, since $IADF=1. Since values of
the objective function are counted in the cycle, we have to use real array WF(0:100) and the corresponding
integer array IAD WF(0:100) (see Section 6.1) Note that statements IF-THEN and ELSEIF-THEN have
not to contain blanks if the automatic differentiation is used.

d) Problem solution (basic screen output):

CLASS = MN - GM3 UPDATE = N MODEL = FF HESF = S NF = 100

NIT= 0 NFV= 4 NFG= 4 F= 410.0000000 G=0.380D+02

NIT= 1 NFV= 8 NFG= 8 F= 51.26265782 G=0.123D+02

NIT= 2 NFV= 12 NFG= 12 F= 6.162928967 G=0.694D+01

NIT= 3 NFV= 16 NFG= 16 F= 0.2405291876 G=0.141D+01

NIT= 4 NFV= 20 NFG= 20 F= 0.7598786964E-03 G=0.122D+00

NIT= 5 NFV= 24 NFG= 24 F= 0.2442230554E-05 G=0.636D-02

NIT= 6 NFV= 28 NFG= 28 F= 0.3898601055E-07 G=0.822D-03

NIT= 7 NFV= 32 NFG= 32 F= 0.1062176777E-09 G=0.481D-04

NIT= 8 NFV= 36 NFG= 36 F= 0.5393508095E-12 G=0.401D-05

NIT= 9 NFV= 40 NFG= 40 F= 0.3871096527E-14 G=0.271D-06

0 NIT= 9 NFV= 40 NFG= 40 GRAD TOL F= 0.3871096527E-14 G=0.271D-06

TIME= 0:00:00.00

7.16 Large-scale unconstrained optimization (sparse Jacobian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n∑

i=1

fA
i (x)

where n=100 and

fA
i (x) =

(
(3− 2xi)xi − xi+1 + 1

)2
, i = 1

fA
i (x) =

(
(3− 2xi)xi − xi−1 − xi+1 + 1

)2
, 2 ≤ i ≤ n− 1

fA
i (x) =

(
(3− 2xi)xi − xi−1 + 1

)2
, i = n

The starting point is xi = −1 for 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE PARTIALLY SEPARABLE UNCONSTRAINED MINIMIZATION +

$REM +---------------------------------------------------------------+
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$FLOAT WA

$SET(INPUT)

DO 1 I=1,NF

X(I)=-1.0D0

1 CONTINUE

L=1

DO 2 I=1,NA

IAG(I)=L

IF (I.GT.1) THEN

JAG(L)=I-1

L=L+1

ENDIF

JAG(L)=I

L=L+1

IF (I.LT.NA) THEN

JAG(L)=I+1

L=L+1

ENDIF

2 CONTINUE

IAG(NA+1)=L

$ENDSET

$SET(FMODELA)

IF(KA.EQ.1)THEN

WA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0-X(KA+1)

ELSEIF(KA.EQ.NA)THEN

WA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0-X(KA-1)

ELSE

WA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0-X(KA-1)-X(KA+1)

ENDIF

FA=WA*WA

$ENDSET

$IADA=1

$NF=100

$NA=100

$MODEL=’AF’

$JACA=’S’

$FMIN=’0.0D0’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern of
the Jacobian matrix. The sparse Jacobian matrix, indicated by the statement $JACA=’S’, is tridiagonal.
By using the macrovariable $FMODELA we specify values of the approximating function analytically. The
gradients of the approximating function are computed by automatic differentiation, since $IADA=1. Note
that statements IF-THEN and ELSEIF-THEN have not to contain blanks if the automatic differentiation
is used. For the sum of values minimization we set $MODEL=’AF’.

d) Problem solution (basic screen output):

CLASS = VM - LM3 UPDATE = B MODEL = AF HESF = S NF = 100

NIT= 0 NFV= 1 NFG= 1 F= 410.0000000 G=0.380D+02

NIT= 1 NFV= 2 NFG= 2 F= 56.19847311 G=0.887D+01
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NIT= 2 NFV= 3 NFG= 3 F= 33.21669961 G=0.563D+01

NIT= 3 NFV= 5 NFG= 5 F= 8.034550334 G=0.672D+01

NIT= 4 NFV= 7 NFG= 7 F= 2.498266945 G=0.753D+01

NIT= 5 NFV= 9 NFG= 9 F= 1.126771725 G=0.617D+01

NIT= 6 NFV= 10 NFG= 10 F= 0.2724480160E-01 G=0.730D+00

NIT= 7 NFV= 11 NFG= 11 F= 0.1670056108E-03 G=0.647D-01

NIT= 8 NFV= 12 NFG= 12 F= 0.1033932683E-05 G=0.365D-02

NIT= 9 NFV= 13 NFG= 13 F= 0.1781676012E-07 G=0.834D-03

NIT= 10 NFV= 14 NFG= 14 F= 0.2260632676E-09 G=0.981D-04

NIT= 11 NFV= 15 NFG= 15 F= 0.2888717918E-11 G=0.995D-05

NIT= 12 NFV= 16 NFG= 16 F= 0.1281762413E-12 G=0.216D-05

NIT= 13 NFV= 17 NFG= 17 F= 0.2194981848E-15 G=0.782D-07

0 NIT= 13 NFV= 17 NFG= 17 GRAD TOL F= 0.2194981848E-15 G=0.782D-07

TIME= 0:00:00.00

7.17 Large scale unconstrained least squares optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1

2

2(n−1)∑
i=1

(
fA
i (x)

)2
where n = 100 and

fA
i (x) = x1 − 1 , i = 1,

fA
i (x) = 10(x2

i − xi+1), , k > 1, mod(k, 2) = 0,

fA
i (x) = 2 exp(−(xi − xi+1)

2) + exp(−2(xi+1 − xi+2)
2) , k > 1, mod(k, 2) = 1,

The starting point is xi = −1.2 for mod(i, 2) = 1 and xi = 1.0 for mod(i, 2) = 0, where 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE UNCONSTRAINED LEAST SQUARES +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2

$SET(INPUT)

DO 1 I=1,NF

IF(MOD(I,2).EQ.1) THEN

X(I)=-1.2D0

ELSE

X(I)= 1.0D0

ENDIF

1 CONTINUE

NA=2*(NF-1)

MA=2

IAG(1)=1

IAG(2)=2

JAG(1)=1

DO 2 KA=1,NA-1

I=(KA+1)/2
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IF (MOD(KA,2).EQ.1) THEN

JAG(MA)=I

MA=MA+1

JAG(MA)=I+1

MA=MA+1

ELSE

JAG(MA)=I

MA=MA+1

JAG(MA)=I+1

MA=MA+1

JAG(MA)=I+2

MA=MA+1

ENDIF

IAG(KA+2)=MA

2 CONTINUE

MA=MA-1

$ENDSET

$SET(FMODELA)

I=KA/2

IF(KA.EQ.1)THEN

FA=X(KA)-1.0D0

ELSEIF(MOD(KA,2).EQ.0)THEN

FA=1.0D1*(X(I)**2-X(I+1))

ELSE

FA=2.0D0*EXP(-(X(I)-X(I+1))**2)+EXP(-2.0D0*(X(I+1)-X(I+2))**2)

ENDIF

$ENDSET

$IADA=1

$NF=100

$NA=198

$MODEL=’AQ’

$JACA=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern of
the Jacobian matrix. The sparse Jacobian matrix, indicated by the statement $JACA=’S’, is tridiagonal.
By using the macrovariable $FMODELA we specify values of the approximating function analytically. The
gradients of the approximating function are computed by automatic differentiation, since $IADA=1. Note
that statements IF-THEN and ELSEIF-THEN have not to contain blanks if the automatic differentiation
is used. For the sum-of-squares minimization we set $MODEL=’AQ’.

d) Problem solution (basic screen output):

CLASS = GN - GM3 UPDATE = M MODEL = AQ HESF = S NF = 100

NIT= 0 NFV= 1 NFG= 1 F= 12344.43235 G=0.396D+03

NIT= 1 NFV= 3 NFG= 3 F= 1211.833625 G=0.149D+03

NIT= 2 NFV= 5 NFG= 5 F= 556.3758005 G=0.663D+02

NIT= 3 NFV= 7 NFG= 7 F= 466.7731338 G=0.324D+02

NIT= 4 NFV= 9 NFG= 9 F= 447.6914295 G=0.127D+02

NIT= 5 NFV= 11 NFG= 11 F= 443.4171082 G=0.480D+01

NIT= 6 NFV= 13 NFG= 13 F= 442.2501148 G=0.182D+02
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NIT= 7 NFV= 15 NFG= 15 F= 439.5246294 G=0.283D+01

NIT= 8 NFV= 18 NFG= 18 F= 438.8538272 G=0.285D+01

NIT= 9 NFV= 20 NFG= 20 F= 438.3971433 G=0.325D+01

NIT= 10 NFV= 22 NFG= 22 F= 438.1103835 G=0.101D+01

--------------------------------------------------------------

NIT= 32 NFV= 57 NFG= 57 F= 436.9702388 G=0.342D-03

NIT= 33 NFV= 59 NFG= 59 F= 436.9702388 G=0.161D-03

NIT= 34 NFV= 60 NFG= 60 F= 436.9702388 G=0.115D-03

NIT= 35 NFV= 62 NFG= 62 F= 436.9702388 G=0.499D-04

NIT= 36 NFV= 63 NFG= 63 F= 436.9702388 G=0.552D-04

NIT= 37 NFV= 64 NFG= 64 F= 436.9702388 G=0.140D-04

NIT= 38 NFV= 65 NFG= 65 F= 436.9702388 G=0.116D-04

NIT= 39 NFV= 67 NFG= 67 F= 436.9702388 G=0.745D-05

NIT= 40 NFV= 68 NFG= 68 F= 436.9702388 G=0.380D-05

NIT= 41 NFV= 69 NFG= 69 F= 436.9702388 G=0.131D-05

NIT= 42 NFV= 70 NFG= 70 F= 436.9702388 G=0.569D-06

0 NIT= 42 NFV= 70 NFG= 70 GRAD TOL F= 436.9702388 G=0.569D-06

TIME= 0:00:00.03

7.18 Large-scale unconstrained l1 optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n∑

i=1

∣∣fA
i (x)

∣∣
where n = 100 and

fA
i (x) = x1 − 1 , i = 1,

fA
i (x) = 10(x2

i − xi+1), , k > 1, mod(k, 2) = 0,

fA
i (x) = 2 exp(−(xi − xi+1)

2) + exp(−2(xi+1 − xi+2)
2) , k > 1, mod(k, 2) = 1,

The starting point is xi = −1.2 for mod(i, 2) = 1 and xi = 1.0 for mod(i, 2) = 0, where 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE UNCONSTRAINED L-1 OPTIMIZATION +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2

$SET(INPUT)

DO 1 I=1,NF

IF(MOD(I,2).EQ.1) THEN

X(I)=-1.2D0

ELSE

X(I)= 1.0D0

ENDIF

1 CONTINUE

NA=2*(NF-1)

MA=2

IAG(1)=1

IAG(2)=2
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JAG(1)=1

DO 2 KA=1,NA-1

I=(KA+1)/2

IF (MOD(KA,2).EQ.1) THEN

JAG(MA)=I

MA=MA+1

JAG(MA)=I+1

MA=MA+1

ELSE

JAG(MA)=I

MA=MA+1

JAG(MA)=I+1

MA=MA+1

JAG(MA)=I+2

MA=MA+1

ENDIF

IAG(KA+2)=MA

2 CONTINUE

MA=MA-1

$ENDSET

$SET(FMODELA)

I=KA/2

IF(KA.EQ.1)THEN

FA=X(KA)-1.0D0

ELSEIF(MOD(KA,2).EQ.0)THEN

FA=1.0D1*(X(I)**2-X(I+1))

ELSE

FA=2.0D0*EXP(-(X(I)-X(I+1))**2)+EXP(-2.0D0*(X(I+1)-X(I+2))**2)

ENDIF

$ENDSET

$IADA=1

$NF=100

$NA=198

$MODEL=’AA’

$JACA=’S’

$XMAX=’3.0D0’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern
of the Jacobian matrix and the maximum step-size $XMAX. The sparse Jacobian matrix, indicated by
the statement $JACA=’S’, is tridiagonal. By using the macrovariable $FMODELA we specify values of
the approximating function analytically. The gradients of the approximating function are computed by
automatic differentiation, since $IADA=1. Note that statements IF-THEN and ELSEIF-THEN have not
to contain blanks if the automatic differentiation is used. For the sum-of-absolute-values minimization we
set $MODEL=’AA’.

d) Problem solution (basic screen output):

CLASS = MN - LG1 UPDATE = N MODEL = AA HESF = S NF = 100

NIT= 0 NFV= 3 NFG= 3 F= 1157.710087 G=0.287D+02

NIT= 1 NFV= 6 NFG= 6 F= 666.2461362 G=0.141D+02
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NIT= 2 NFV= 10 NFG= 10 F= 410.6587423 G=0.140D+02

NIT= 3 NFV= 13 NFG= 13 F= 309.3768933 G=0.680D+01

NIT= 4 NFV= 17 NFG= 17 F= 272.4065551 G=0.401D+01

NIT= 5 NFV= 21 NFG= 21 F= 266.4111131 G=0.278D+01

NIT= 6 NFV= 25 NFG= 25 F= 261.4510889 G=0.343D+01

NIT= 7 NFV= 28 NFG= 28 F= 261.1807945 G=0.417D+01

NIT= 8 NFV= 32 NFG= 32 F= 261.0895640 G=0.688D+01

NIT= 9 NFV= 38 NFG= 38 F= 260.9593145 G=0.458D+01

NIT= 10 NFV= 42 NFG= 42 F= 260.7236285 G=0.226D+01

--------------------------------------------------------------

NIT= 44 NFV= 231 NFG= 231 F= 293.3677930 G=0.265D+02

NIT= 45 NFV= 240 NFG= 240 F= 293.3677908 G=0.258D+02

NIT= 46 NFV= 248 NFG= 248 F= 293.3677902 G=0.136D+02

NIT= 47 NFV= 256 NFG= 256 F= 293.3677899 G=0.131D+02

NIT= 48 NFV= 262 NFG= 262 F= 293.3677899 G=0.839D+01

NIT= 49 NFV= 268 NFG= 268 F= 293.3677898 G=0.648D+01

NIT= 50 NFV= 271 NFG= 271 F= 293.3677898 G=0.164D+01

NIT= 51 NFV= 275 NFG= 275 F= 293.3677898 G=0.402D-01

NIT= 52 NFV= 278 NFG= 278 F= 293.3677898 G=0.381D-04

NIT= 53 NFV= 291 NFG= 291 F= 293.3677898 G=0.281D-05

NIT= 54 NFV= 303 NFG= 303 F= 293.3677898 G=0.841D-06

0 NIT= 54 NFV= 303 NFG= 303 GRAD TOL F= 293.3677353 G=0.841D-06

TIME= 0:00:00.17

7.19 Large-scale unconstrained l∞ (minimax) optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max
1≤i≤n

∣∣fA
i (x)

∣∣
where n = 100 and

fA
i (x) = x1 − 1 , i = 1,

fA
i (x) = 10(x2

i − xi+1), , k > 1, mod(k, 2) = 0,

fA
i (x) = 2 exp(−(xi − xi+1)

2) + exp(−2(xi+1 − xi+2)
2) , k > 1, mod(k, 2) = 1,

The starting point is xi = −1.2 for mod(i, 2) = 1 and xi = 1.0 for mod(i, 2) = 0, where 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE UNCONSTRAINED L1-INFINITY (MINIMAX) OPTIMIZATION +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2

$SET(INPUT)

DO 1 I=1,NF

IF(MOD(I,2).EQ.1) THEN

X(I)=-1.2D0

ELSE

X(I)= 1.0D0

ENDIF
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1 CONTINUE

NA=2*(NF-1)

MA=2

IAG(1)=1

IAG(2)=2

JAG(1)=1

DO 2 KA=1,NA-1

I=(KA+1)/2

IF (MOD(KA,2).EQ.1) THEN

JAG(MA)=I

MA=MA+1

JAG(MA)=I+1

MA=MA+1

ELSE

JAG(MA)=I

MA=MA+1

JAG(MA)=I+1

MA=MA+1

JAG(MA)=I+2

MA=MA+1

ENDIF

IAG(KA+2)=MA

2 CONTINUE

MA=MA-1

$ENDSET

$SET(FMODELA)

I=KA/2

IF(KA.EQ.1)THEN

FA=X(KA)-1.0D0

ELSEIF(MOD(KA,2).EQ.0)THEN

FA=1.0D1*(X(I)**2-X(I+1))

ELSE

FA=2.0D0*EXP(-(X(I)-X(I+1))**2)+EXP(-2.0D0*(X(I+1)-X(I+2))**2)

ENDIF

$ENDSET

$IADA=1

$NF=100

$NA=198

$MODEL=’AM’

$JACA=’S’

$CLASS=’VM’

$XMAX=’2.3D0’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern
of the Jacobian matrix and the maximum step-size $XMAX. The sparse Jacobian matrix, indicated by
the statement $JACA=’S’, is tridiagonal. Therefore we set $MA=300. Since we use the sparse Hessian
matrix, we set $HESF=’S’ and specify the number of its nonzero elements $M=3000 (this is a reasonable
upper bound). By using the macrovariable $FMODELA we specify values of the approximating function
analytically. The gradients of the approximating function are computed by automatic differentiation,
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since $IADA=1. Note that statements IF-THEN and ELSEIF-THEN have not to contain blanks if the
automatic differentiation is used. For the sum-of-absolute-values minimization we set $MODEL=’AA’.

d) Problem solution (basic screen output):

CLASS = VM - LG1 UPDATE = B MODEL = AM HESF = S NF = 100

NIT= 0 NFV= 1 NFG= 1 F= -1972.482481 G=0.506D-02

NIT= 1 NFV= 2 NFG= 2 F= 6.388665237 G=0.334D+00

NIT= 2 NFV= 3 NFG= 3 F= 3.933293443 G=0.430D+00

NIT= 3 NFV= 4 NFG= 4 F= 2.058362700 G=0.614D+00

NIT= 4 NFV= 5 NFG= 5 F= 1.155433487 G=0.442D-01

NIT= 5 NFV= 6 NFG= 6 F= 1.464701872 G=0.140D-01

NIT= 6 NFV= 7 NFG= 7 F= 1.749590098 G=0.426D-02

NIT= 7 NFV= 8 NFG= 8 F= 2.658151338 G=0.153D+01

NIT= 8 NFV= 11 NFG= 11 F= 2.578627491 G=0.741D+01

NIT= 9 NFV= 14 NFG= 14 F= 2.484660456 G=0.520D-01

NIT= 10 NFV= 16 NFG= 16 F= 2.472074894 G=0.955D-01

--------------------------------------------------------------

NIT= 48 NFV= 125 NFG= 125 F= 2.354874070 G=0.644D+01

NIT= 49 NFV= 128 NFG= 128 F= 2.354874042 G=0.199D+00

NIT= 50 NFV= 129 NFG= 129 F= 2.354874042 G=0.832D-01

NIT= 51 NFV= 130 NFG= 130 F= 2.354874041 G=0.365D-01

NIT= 52 NFV= 131 NFG= 131 F= 2.354874041 G=0.140D-01

NIT= 53 NFV= 132 NFG= 132 F= 2.354874041 G=0.334D-02

NIT= 54 NFV= 133 NFG= 133 F= 2.354874041 G=0.234D-03

NIT= 55 NFV= 135 NFG= 135 F= 2.354874041 G=0.229D-03

NIT= 56 NFV= 137 NFG= 137 F= 2.354874041 G=0.234D-03

NIT= 57 NFV= 138 NFG= 138 F= 2.354874041 G=0.128D-05

NIT= 58 NFV= 141 NFG= 141 F= 2.354874041 G=0.644D-06

0 NIT= 58 NFV= 141 NFG= 141 GRAD TOL F= 2.354873722 G=0.644D-06

TIME= 0:00:00.09

7.20 Large-scale unconstrained nonsmooth optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n−1∑
i=1

max
(
x2
i + (xi+1 − 1)2 + xi+1 − 1, −x2

i − (xi+1 − 1)2 + xi+1 − 1
)
,

where n = 100. The starting point is xi = −1.5 for mod(i, 2) = 1 and xi = 2.0 for mod(i, 2) = 0, where
1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + LARGE SCALE UNCONSTRAINED NONSMOOTH OPTIMIZATION +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2

$SET(INPUT)

DO 1 I=1,NF

IF(MOD(I,2).EQ.1) THEN

X(I)=-1.5D0
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ELSE

X(I)= 2.0D0

ENDIF

1 CONTINUE

$ENDSET

$SET(FGMODELF)

FF=0.0D0

GF(1)=0.0D0

DO 2 I=1,NF-1

W1= X(I)*X(I)+(X(I+1)-1.0D0)*(X(I+1)-1.0D0)+X(I+1)-1.0D0

W2=-X(I)*X(I)-(X(I+1)-1.0D0)*(X(I+1)-1.0D0)+X(I+1)+1.0D0

IF (W1.GE.W2) THEN

FF=FF+W1

GF(I)=GF(I)+2.0D0*X(I)

GF(I+1)= 2.0D0*(X(I+1)-1.0D0)+1.0D0

ELSE

FF=FF+W2

GF(I)=GF(I)-2.0D0*X(I)

GF(I+1)=-2.0D0*(X(I+1)-1.0D0)+1.0D0

END IF

2 CONTINUE

$ENDSET

$NF=100

$HESF=’N’

$KSF=3

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables. By using the macrovari-
able $FGMODELF we specify analytically the value and the gradient of the objective function. For
nonsmooth optimization we set $KSF=3. Since the pattern of the Hessian matrix is not given, we set
$HESF=’N’.

d) Problem solution (basic screen output):

CLASS = BL - LI1 UPDATE = N MODEL = FF HESF = N NF = 100

NIT= 0 NFV= 1 NFG= 1 F= 592.2500000 G=0.700D+01

NIT= 1 NFV= 2 NFG= 2 F= 592.2500000 G=0.700D+01

NIT= 2 NFV= 3 NFG= 3 F= 61.35842142 G=0.300D+01

NIT= 3 NFV= 4 NFG= 4 F= 61.35842142 G=0.300D+01

NIT= 4 NFV= 5 NFG= 5 F= 8.817561091 G=0.300D+01

NIT= 5 NFV= 6 NFG= 6 F= 4.412558758 G=0.238D+01

NIT= 6 NFV= 7 NFG= 7 F= 3.624278568 G=0.243D+01

NIT= 7 NFV= 8 NFG= 8 F= 2.725409817 G=0.253D+01

NIT= 8 NFV= 9 NFG= 9 F= 0.8653137918 G=0.288D+01

NIT= 9 NFV= 10 NFG= 10 F= 0.8653137918 G=0.300D+01

NIT= 10 NFV= 11 NFG= 11 F= 0.8653137918 G=0.224D+01

--------------------------------------------------------------

NIT= 211 NFV= 212 NFG= 212 F= 0.7717072027E-06 G=0.300D+01

NIT= 212 NFV= 213 NFG= 213 F= 0.7717072027E-06 G=0.300D+01

NIT= 213 NFV= 214 NFG= 214 F= 0.7717072027E-06 G=0.300D+01

NIT= 214 NFV= 215 NFG= 215 F= 0.7717072027E-06 G=0.300D+01
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NIT= 215 NFV= 216 NFG= 216 F= 0.7717072027E-06 G=0.300D+01

NIT= 216 NFV= 217 NFG= 217 F= 0.7717072027E-06 G=0.300D+01

NIT= 217 NFV= 218 NFG= 218 F= 0.7717072027E-06 G=0.300D+01

NIT= 218 NFV= 219 NFG= 219 F= 0.7717072027E-06 G=0.300D+01

0 NIT= 219 NFV= 219 NFG= 219 GRAD TOL F= 0.7717072027E-06 G=0.434D-06

TIME= 0:00:00.02

7.21 Sparse linear programming

a) Problem description:

Suppose we have to find the global maximum of the linear function

F (x) =

n∑
i=1

(−1)ixi

with simple bounds −20 ≤ xi ≤ 20, 1 ≤ i ≤ n, and linear constraints

−xi + xi+1 − xi+2 = i, 1 ≤ i ≤ nC

where n = 20 and nC = 18. The starting point is not given. The maximum value of the linear objective
function is F = 7.0

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE LINEAR PROGRAMMING +

$REM +---------------------------------------------------------------+

$SET(INPUT)

DO 1 I=1,NF

IX(I)=3; XL(I)=-2.0D1; XU(I)=2.0D1

GF(I)=DBLE((-1)**I)

1 CONTINUE

DO 2 KC=1,NC

IC(KC)=5; CL(KC)=DBLE(KC)

$SETCG(KC,KC,-1.0D0)

$SETCG(KC,KC+1, 1.0D0)

$SETCG(KC,KC+2,-1.0D0)

2 CONTINUE

$ENDSET

$IEXT=1

$NF=20

$NX=20

$NC=18

$NCL=18

$MODEL=’FL’

$JACC=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables and the sparsity pattern with
numerical values of the constraint Jacobian matrix. We use the procedure UKMCI1. The sparse Jacobian
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matrix, indicated by the statement $JACC=’S’, is tridiagonal. The option $MODEL=’FL’ indicates the
linear programming problem.

d) Problem solution (basic screen output):

CLASS = LP - LN1 UPDATE = N MODEL = FL HESF = N NF = 20

NUMITR= 1 INEW= 20 IOLD= 15 KINP= 0 IU= 48 F=0.980D+04

NUMITR= 2 INEW= 19 IOLD= 20 KINP= 0 IU= 49 F=0.208D+04

NUMITR= 3 INEW= 0 IOLD= 20 KINP= 0 IU= 49 F=0.000D+00

NUMITR= 3 NEL= 3 NREF= 1 KINP= 0 IU= 49 F=0.000D+00 ITERL= 1

NUMITR= 1 INEW= 15 IOLD= 19 KINP= 0 IU= 49 F=0.900D+01

NUMITR= 2 INEW= 20 IOLD= 18 KINP= 0 IU= 48 F=0.700D+01

NUMITR= 3 INEW= 0 IOLD= 18 KINP= 0 IU= 48 F=0.700D+01

NUMITR= 3 NEL= 3 NREF= 1 KINP= 0 IU= 48 F=0.700D+01 ITERL= 2

0 NIT= 6 NFV= 2 NFG= 0 OPTIMUM F= 7.00000 C=0.0D+00 G=0.0D+00

FF = -0.7000000000D+01

X = -0.2000000000D+01 0.0000000000D+00 0.1000000000D+01 -0.1000000000D+01

-0.5000000000D+01 -0.8000000000D+01 -0.8000000000D+01 -0.6000000000D+01

-0.5000000000D+01 -0.7000000000D+01 -0.1100000000D+02 -0.1400000000D+02

-0.1400000000D+02 -0.1200000000D+02 -0.1100000000D+02 -0.1300000000D+02

-0.1700000000D+02 -0.2000000000D+02 -0.2000000000D+02 -0.1800000000D+02

TIME= 0:00:00.00

7.22 Sparse quadratic programming

a) Problem description:

Suppose we have to find the global minimum of the quadratic function

F (x) =
1

2
(2x2

1 + x2
2 + 2x2

3 + x2
4 − 2x1x3 + 2x3x4)− x1 − 3x2 + x3 − x4

with simple bounds xi ≥ 0 for 1 ≤ i ≤ 4 and linear constraints

x1 + 2x2 + x3 + x4 ≤ 5,

3x1 + x2 + 2x3 − x4 ≤ 4,

2x2 + 8x3 ≥ 3.

The starting point is xi = 1/2 for 1 ≤ i ≤ 4. The minimum value of the quadratic objective function is
F = −4.681818.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE QUADRATIC PROGRAMMING +

$REM +---------------------------------------------------------------+

$SET(INPUT)

DO 1 I=1,NF

X(I)= 0.5D0; XL(I)=0.0D0; IX(I)=1

1 CONTINUE

GF(1)=-1.0D0; GF(2)=-3.0D0; GF(3)= 1.0D0; GF(4)=-1.0D0

IH(1)= 1; IH(2)= 3; IH(3)= 4; IH(4)= 6; IH( 5)= 7

JH(1)= 1; JH(2)= 3; JH(3)= 2; JH(4)= 3; JH( 5)= 4; JH(6)= 4

HF(1)= 2.0D0; HF(2)=-1.0D0; HF(3)= 1.0D0
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HF(4)= 2.0D0; HF(5)= 1.0D0; HF(6)= 1.0D0

IC(1)=2; IC(2)=2; IC(3)=1

CU(1)= 5.0D0; CU(2)= 4.0D0; CL(3)= 3.0D0

ICG(1)=1; ICG(2)=5; ICG(3)=9; ICG(4)=11

JCG(1)=1; JCG(2)=2; JCG(3)=3; JCG(4)=4; JCG( 5)=1

JCG(6)=2; JCG(7)=3; JCG(8)=4; JCG(9)=2; JCG(10)=3

CG(1)= 1.0D0; CG(2)= 2.0D0; CG(3)= 1.0D0; CG(4)= 1.0D0; CG( 5)= 3.0D0

CG(6)= 1.0D0; CG(7)= 2.0D0; CG(8)=-1.0D0; CG(9)= 2.0D0; CG(10)= 8.0D0

$ENDSET

$NF=4

$NX=4

$NC=3

$NCL=3

$MODEL=’FQ’

$JACC=’S’

$HESF=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables, the sparsity pattern with
numerical values of the model Hessian matrix, and the sparsity pattern with numerical values of the
constraint Jacobian matrix. The sparse Hessian matrix is indicated by the statement $HESF=’S’. The
sparse Jacobian matrix is indicated by the statement $JACC=’S’. The option $MODEL=’FQ’ indicates
the quadratic programming problem.

d) Problem solution (basic screen output):

CLASS = QP - LN2 UPDATE = N MODEL = FQ HESF = S NF = 4

MODE = 1 NRED = 0 N = 4 IOLD = 0 INEW = 0

MODE = 1 NRED = 1 N = 3 IOLD = 0 INEW = 3 ADDITION

MODE = 1 NRED = 2 N = 2 IOLD = 0 INEW = -3 ADDITION

MODE = 1 NRED = 3 N = 2 IOLD = 0 INEW = 0

MODE = 1 NRED = 4 N = 2 IOLD = 0 INEW = 0

MODE = 1 NRED = 4 N = 3 IOLD = 1 INEW = 0 DELETION

MODE = 1 NRED = 5 N = 2 IOLD = 0 INEW = 1 ADDITION

MODE = 1 NRED = 6 N = 2 IOLD = 0 INEW = 0

MODE = 1 NRED = 7 N = 2 IOLD = 0 INEW = 0

0 NIT= 7 NFV= 2 NFG= 0 OPTIMUM F= -4.68182 C=0.0D+00 G=0.0D+00

FF = -0.4681818182D+01

X = 0.2727272727D+00 0.2090909091D+01 0.0000000000D+00 0.5454545455D+00

TIME= 0:00:00.00

7.23 Large-scale optimization with linear constraints

a) Problem description:

The problem we have solved is in fact the Hock and Schittkowski problem number 119 (see [44]) which
has 16 variables and 8 linear constraints.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE MINIMIZATION WITH LINEAR CONSTRAINTS +
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$REM +---------------------------------------------------------------+

$FLOAT WI,WJ

$SET(INPUT)

DO 1 I=1,NF

X(I)=10.0D0; XL(I)=0.0D0; XU(I)=5.0D0; IX(I)=3

1 CONTINUE

IH( 1)= 1; IH( 2)= 6; IH( 3)=10; IH( 4)=15; IH( 5)=19

IH( 6)=24; IH( 7)=27; IH( 8)=30; IH( 9)=33; IH(10)=36

IH(11)=38; IH(12)=40; IH(13)=42; IH(14)=44; IH(15)=45

IH(16)=46; IH(17)=47;

JH( 1)= 1; JH( 2)= 4; JH( 3)= 7; JH( 4)= 8; JH( 5)=16

JH( 6)= 2; JH( 7)= 3; JH( 8)= 7; JH( 9)=10;

JH(10)= 3; JH(11)= 7; JH(12)= 9; JH(13)=10; JH(14)=14

JH(15)= 4; JH(16)= 7; JH(17)=11; JH(18)=15;

JH(19)= 5; JH(20)= 6; JH(21)=10; JH(22)=12; JH(23)=16

JH(24)= 6; JH(25)= 8; JH(26)=15;

JH(27)= 7; JH(28)=11; JH(29)=13;

JH(30)= 8; JH(31)=10; JH(32)=15;

JH(33)= 9; JH(34)=12; JH(35)=16;

JH(36)=10; JH(37)=14;

JH(38)=11; JH(39)=13;

JH(40)=12; JH(41)=14;

JH(42)=13; JH(43)=14;

JH(44)=14;

JH(45)=15;

JH(46)=16;

DO 2 I=1,NC

IC(I)=5

2 CONTINUE

CL(1)= 2.5D0; CL(2)= 1.1D0; CL(3)=-3.1D0; CL(4)=-3.5D0

CL(5)= 1.3D0; CL(6)= 2.1D0; CL(7)= 2.3D0; CL(8)=-1.5D0

$SETCG(1, 1, 0.22D0); $SETCG(1, 2, 0.20D0); $SETCG(1, 3, 0.19D0)

$SETCG(1, 4, 0.25D0); $SETCG(1, 5, 0.15D0); $SETCG(1, 6, 0.11D0)

$SETCG(1, 7, 0.12D0); $SETCG(1, 8, 0.13D0); $SETCG(1, 9, 1.00D0)

$SETCG(2, 1,-1.46D0); $SETCG(2, 3,-1.30D0); $SETCG(2, 4, 1.82D0)

$SETCG(2, 5,-1.15D0); $SETCG(2, 7, 0.80D0); $SETCG(2,10, 1.00D0)

$SETCG(3, 1, 1.29D0); $SETCG(3, 2,-0.89D0); $SETCG(3, 5,-1.16D0)

$SETCG(3, 6,-0.96D0); $SETCG(3, 8,-0.49D0); $SETCG(3,11, 1.00D0)

$SETCG(4, 1,-1.10D0); $SETCG(4, 2,-1.06D0); $SETCG(4, 3, 0.95D0)

$SETCG(4, 4,-0.54D0); $SETCG(4, 6,-1.78D0); $SETCG(4, 7,-0.41D0)

$SETCG(4,12, 1.00D0); $SETCG(5, 4,-1.43D0); $SETCG(5, 5, 1.51D0)

$SETCG(5, 6, 0.59D0); $SETCG(5, 7,-0.33D0); $SETCG(5, 8,-0.43D0)

$SETCG(5,13, 1.00D0); $SETCG(6, 2,-1.72D0); $SETCG(6, 3,-0.33D0)

$SETCG(6, 5, 1.62D0); $SETCG(6, 6, 1.24D0); $SETCG(6, 7, 0.21D0)

$SETCG(6, 8,-0.26D0); $SETCG(6,14, 1.00D0); $SETCG(7, 1, 1.12D0)

$SETCG(7, 4, 0.31D0); $SETCG(7, 7, 1.12D0); $SETCG(7, 9,-0.36D0)

$SETCG(7,15, 1.00D0); $SETCG(8, 2, 0.45D0); $SETCG(8, 3, 0.26D0)

$SETCG(8, 4,-1.10D0); $SETCG(8, 5, 0.58D0); $SETCG(8, 7,-1.03D0)

$SETCG(8, 8, 0.10D0); $SETCG(8,16, 1.00D0)

$ENDSET

$SET(FGMODELF)
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FF=0.0D0

DO 3 I=1,NF

GF(I)=0.0D0

3 CONTINUE

DO 5 I=1,NF

WI=X(I)*(X(I)+1.0D0)+1.0D0

K1=IH(I)

K2=IH(I+1)-1

DO 4 K=K1,K2

J=JH(K)

WJ=X(J)*(X(J)+1.0D0)+1.0D0

FF=FF+WI*WJ

GF(I)=GF(I)+(2.0D0*X(I)+1.0D0)*WJ

GF(J)=GF(J)+WI*(2.0D0*X(J)+1.0D0)

4 CONTINUE

5 CONTINUE

$ENDSET

$NF=16

$NX=16

$NC=8

$NCL=8

$JACC=’S’

$HESF=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables, the sparsity pattern with
numerical values of the model Hessian matrix, and the sparsity pattern with numerical values of the
constraint Jacobian matrix. We use the procedure UKMCI1. The sparse Hessian matrix is indicated by
the statement $HESF=’S’. The sparse Jacobian matrix is indicated by the statement $JACC=’S’. The
option $MODEL=’FF’ indicates a general objective function. By using the macrovariable $FGMODELF
we specify analytically the value and the gradient of the model function.

d) Problem solution (basic screen output):

CLASS = VM - LM3 UPDATE = M MODEL = FF HESF = S NF = 16

NIT= 0 NFV= 2 NFG= 2 F= 4528.573861 G=0.100D+01

NIT= 1 NFV= 3 NFG= 3 F= 325.0955478 G=0.000D+00

NIT= 2 NFV= 4 NFG= 4 F= 252.2712344 G=0.000D+00

NIT= 3 NFV= 5 NFG= 5 F= 246.0828245 G=0.185D+02

NIT= 4 NFV= 6 NFG= 6 F= 245.0236003 G=0.887D+01

NIT= 5 NFV= 7 NFG= 7 F= 244.9100700 G=0.161D+01

NIT= 6 NFV= 8 NFG= 8 F= 244.8997060 G=0.351D-01

NIT= 7 NFV= 9 NFG= 9 F= 244.8996978 G=0.130D-01

NIT= 8 NFV= 10 NFG= 10 F= 244.8996975 G=0.124D-02

NIT= 9 NFV= 11 NFG= 11 F= 244.8996975 G=0.159D-03

NIT= 10 NFV= 12 NFG= 12 F= 244.8996975 G=0.322D-06

0 NIT= 10 NFV= 12 NFG= 12 GRAD TOL F= 244.8996975 G=0.322D-06

FF = 0.2448996975D+03

X = 0.3984735060D-01 0.7919831554D+00 0.2028703315D+00 0.8443579157D+00

0.1269906451D+01 0.9347387094D+00 0.1681961969D+01 0.1553008761D+00

0.1567870334D+01 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00
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0.6602040658D+00 0.0000000000D+00 0.6742559281D+00 0.0000000000D+00

TIME= 0:00:00.00

7.24 Large-scale optimization with nonlinear equality constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n∑

i=1

(
fA
i (x)

)2
where n = 100 and

fA
i (x) = (3− 2xi)xi − xi+1 + 1 , i = 1

fA
i (x) = (3− 2xi)xi − xi−1 − xi+1 + 1 , 2 ≤ i ≤ n− 1

fA
i (x) = (3− 2xi)xi − xi−1 + 1 , i = n

over the set given by the nonlinear equality constraints

8xi(x
2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1) + x2
i−1 − xi−2 + xi+1 − x2

i+2 = 0, 3 ≤ i ≤ n− 2.

The starting point is xi = −1, 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE MINIMIZATION WITH NONLINEAR EQUALITY CONSTRAINTS +

$REM +---------------------------------------------------------------+

$FLOAT WA,WB

$SET(INPUT)

DO 1 I=1,NF

X(I)=-1.0D0

1 CONTINUE

M=0

IH(1)=1

DO 2 I=1,NF

M=M+1

JH(M)=I

IF (I.LE.NF-1) THEN

M=M+1

JH(M)=I+1

ENDIF

IF (I.LE.NF-2) THEN

M=M+1

JH(M)=I+2

ENDIF

IH(I+1)=M+1

2 CONTINUE

MC=0

ICG(1)=1

DO 3 I=3,NF-2

MC=MC+1

JCG(MC)=I-2
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MC=MC+1

JCG(MC)=I-1

MC=MC+1

JCG(MC)=I

MC=MC+1

JCG(MC)=I+1

MC=MC+1

JCG(MC)=I+2

ICG(I-1)=MC+1

3 CONTINUE

DO 4 KC=1,NC

IC(KC)=5

CL(KC)=0.0D0

4 CONTINUE

$ENDSET

$SET(FMODELF)

FF=0.0D0

DO 5 J=1,NF

WA=(3.0D0-2.0D0*X(J))*X(J)+1.0D0

IF (J.GT. 1) WA=WA-X(J-1)

IF (J.LT.NF) WA=WA-X(J+1)

FF=FF+WA**2

5 CONTINUE

$ENDSET

$SET(GMODELF)

DO 6 J=1,NF

GF(J)=0.0D0

6 CONTINUE

DO 7 J=1,NF

WA=(3.0D0-2.0D0*X(J))*X(J)+1.0D0

IF (J.GT. 1) WA=WA-X(J-1)

IF (J.LT.NF) WA=WA-X(J+1)

WB=2.0D0*WA

GF(J)=GF(J)+WB*(3.0D0-4.0D0*X(J))

IF (J.GT. 1) GF(J-1)=GF(J-1)-WB

IF (J.LT.NF) GF(J+1)=GF(J+1)-WB

7 CONTINUE

$ENDSET

$SET(FMODELC)

K=KC+2

FC=8.0D0*X(K)*(X(K)**2-X(K-1))-2.0D0*(1.0D0-X(K))&

+4.0D0*(X(K)-X(K+1)**2)+X(K-1)**2-X(K-2)+X(K+1)-X(K+2)**2

$ENDSET

$SET(GMODELC)

K=KC+2

GC(K-2)=-1.0D0

GC(K-1)=-8.0D0*X(K)+2.0D0*X(K-1)

GC(K)=2.4D1*X(K)**2-8.0D0*X(K-1)+6.0D0

GC(K+1)=-8.0D0*X(K+1)+1.0D0

GC(K+2)=-2.0D0*X(K+2)

$ENDSET

$NF=100
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$NC=96

$NCE=NC

$JACC=’S’

$HESF=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Hessian matrix, the sparsity pattern of the constraint Jacobian matrix, and the constraint
specifications. The sparse Hessian matrix, indicated by the statement $HESF=’S’, is tridiagonal. The
sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’. The statement $NCE=NC
specifies that all constraints are equalities (thus the special method for equality constraints can be used).
By using the macrovariable $FMODELF we specify analytically the value of the model function. By using
the macrovariable $GMODELF we specify analytically the gradient of the model function. By using the
macrovariable $FMODELC we specify analytically the values of the constraint functions. By using the
macrovariable $GMODELC we specify analytically the gradients of the constraint functions.

d) Problem solution (basic screen output):

CLASS = MN - LK3 UPDATE = N MODEL = FF HESF = S NF = 100

NIC= 0 NIT= 0 NFV= 1 NFG= 10 F=0.410D+03 C=0.280D+02 G=0.380D+02

NIC= 0 NIT= 1 NFV= 2 NFG= 20 F=0.374D+04 C=0.880D+01 G=0.126D+02

NIC= 0 NIT= 2 NFV= 3 NFG= 30 F=0.587D+03 C=0.285D+01 G=0.489D+01

NIC= 0 NIT= 3 NFV= 4 NFG= 40 F=0.269D+03 C=0.127D+01 G=0.640D+01

NIC= 0 NIT= 4 NFV= 5 NFG= 50 F=0.966D+02 C=0.851D+00 G=0.890D+01

NIC= 0 NIT= 5 NFV= 9 NFG= 60 F=-.557D+02 C=0.731D+00 G=0.776D+01

NIC= 0 NIT= 6 NFV= 11 NFG= 70 F=0.295D+01 C=0.311D+00 G=0.385D+01

NIC= 0 NIT= 7 NFV= 12 NFG= 80 F=0.533D+01 C=0.490D-01 G=0.850D+00

NIC= 0 NIT= 8 NFV= 13 NFG= 90 F=0.530D+01 C=0.252D-02 G=0.189D+00

NIC= 0 NIT= 9 NFV= 14 NFG= 100 F=0.529D+01 C=0.927D-03 G=0.514D-01

NIC= 0 NIT= 10 NFV= 15 NFG= 110 F=0.529D+01 C=0.190D-03 G=0.111D-01

NIC= 0 NIT= 11 NFV= 16 NFG= 120 F=0.529D+01 C=0.238D-04 G=0.117D-02

NIC= 0 NIT= 12 NFV= 17 NFG= 130 F=0.529D+01 C=0.447D-06 G=0.220D-04

NIC= 0 NIT= 13 NFV= 18 NFG= 140 F=0.529D+01 C=0.168D-09 G=0.824D-08

0 NIC= 0 NIT= 14 NFV= 18 NFG= 140 F=0.529D+01 C=0.168D-09 G=0.824D-08

TIME= 0:00:00.00

7.25 Large scale least squares optimization with nonlinear equality constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =

n∑
i=1

(
fA
i (x)

)2
where n = 100 and

fA
i (x) = (3− 2xi)xi − xi+1 + 1 , i = 1

fA
i (x) = (3− 2xi)xi − xi−1 − xi+1 + 1 , 2 ≤ i ≤ n− 1

fA
i (x) = (3− 2xi)xi − xi−1 + 1 , i = n
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over the set given by the nonlinear equality constraints

8xi(x
2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1) + x2
i−1 − xi−2 + xi+1 − x2

i+2 = 0, 3 ≤ i ≤ n− 2.

The starting point is xi = −1, 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE LEAST SQUARES WITH NONLINEAR EQUALITY CONSTRAINTS +

$REM +---------------------------------------------------------------+

$SET(INPUT)

DO 1 I=1,NF

X(I)=-1.0D0

1 CONTINUE

MA=0

IAG(1)=1

DO 2 I=1,NA

IF (I.GT.1) THEN

MA=MA+1

JAG(MA)=I-1

ENDIF

MA=MA+1

JAG(MA)=I

IF (I.LT.NF) THEN

MA=MA+1

JAG(MA)=I+1

ENDIF

IAG(I+1)=MA+1

2 CONTINUE

MC=0

ICG(1)=1

DO 3 I=3,NF-2

MC=MC+1

JCG(MC)=I-2

MC=MC+1

JCG(MC)=I-1

MC=MC+1

JCG(MC)=I

MC=MC+1

JCG(MC)=I+1

MC=MC+1

JCG(MC)=I+2

ICG(I-1)=MC+1

3 CONTINUE

DO 4 KC=1,NC

IC(KC)=5

CL(KC)=0.0D0

4 CONTINUE

$ENDSET

$SET(FMODELA)

IF(KA.EQ.1)THEN

FA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0-X(KA+1)
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ELSEIF(KA.EQ.NF)THEN

FA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0-X(KA-1)

ELSE

FA=(3.0D0-2.0D0*X(KA))*X(KA)+1.0D0-X(KA-1)-X(KA+1)

ENDIF

$ENDSET

$SET(FMODELC)

K=KC+2

FC=8.0D0*X(K)*(X(K)**2-X(K-1))-2.0D0*(1.0D0-X(K))&

+4.0D0*(X(K)-X(K+1)**2)+X(K-1)**2-X(K-2)+X(K+1)-X(K+2)**2

$ENDSET

$IADA=1

$IADC=1

$NF=100

$NA=100

$NC=96

$NCE=NC

$MODEL=’AQ’

$JACA=’S’

$JACC=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Jacobian, matrix the sparsity pattern of the constraint Jacobian matrix, and the constraint
specifications. The sparse Jacobian matrix, indicated by the statement $JACA=’S’ is tridiagonal. The
sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’. The statement $NCE=NC
specifies that all constraints are equalities (thus the special method for equality constraints can be used).
By using the macrovariable $FMODELA we specify values of the approximating function analytically. The
gradients of the approximating function are computed by automatic differentiation, since $IADA=1. By
using the macrovariable $FMODELC we specify the values of the constraint functions analytically. The
gradients of the constraint functions are computed by automatic differentiation, since $IADC=1. Note
that statements IF-THEN and ELSEIF-THEN have not to contain blanks if the automatic differentiation
is used. For the sum-of-squares minimization we set $MODEL=’AQ’.

d) Problem solution (basic screen output):

CLASS = MN - LK3 UPDATE = N MODEL = AQ HESF = S NF = 100

NIC= 0 NIT= 0 NFV= 19 NFG= 19 F=0.205D+03 C=0.280D+02 G=0.190D+02

NIC= 0 NIT= 1 NFV= 39 NFG= 39 F=0.363D+04 C=0.880D+01 G=0.631D+01

NIC= 0 NIT= 2 NFV= 59 NFG= 59 F=0.484D+03 C=0.285D+01 G=0.244D+01

NIC= 0 NIT= 3 NFV= 79 NFG= 79 F=0.169D+03 C=0.127D+01 G=0.320D+01

NIC= 0 NIT= 4 NFV= 99 NFG= 99 F=0.641D+02 C=0.851D+00 G=0.445D+01

NIC= 0 NIT= 5 NFV= 121 NFG= 121 F=-.181D+02 C=0.593D+00 G=0.330D+01

NIC= 0 NIT= 6 NFV= 141 NFG= 141 F=0.465D+01 C=0.307D+00 G=0.765D+00

NIC= 0 NIT= 7 NFV= 161 NFG= 161 F=0.267D+01 C=0.157D-01 G=0.231D+00

NIC= 0 NIT= 8 NFV= 181 NFG= 181 F=0.265D+01 C=0.278D-02 G=0.889D-01

NIC= 0 NIT= 9 NFV= 201 NFG= 201 F=0.265D+01 C=0.107D-02 G=0.257D-01

NIC= 0 NIT= 10 NFV= 221 NFG= 221 F=0.265D+01 C=0.198D-03 G=0.516D-02

NIC= 0 NIT= 11 NFV= 241 NFG= 241 F=0.265D+01 C=0.214D-04 G=0.534D-03

NIC= 0 NIT= 12 NFV= 261 NFG= 261 F=0.265D+01 C=0.373D-06 G=0.918D-05

NIC= 0 NIT= 13 NFV= 281 NFG= 281 F=0.265D+01 C=0.117D-09 G=0.287D-08
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0 NIC= 0 NIT= 14 NFV= 281 NFG= 281 F=0.265D+01 C=0.117D-09 G=0.287D-08

TIME= 0:00:00.24

7.26 Large-scale nonlinear programming (sparse Hessian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
n−3∑
i=1

(
x2
i + x2

i+1 + 2x2
i+2 + x2

i+3 − 5xi − 5xi+1 − 21xi+2 + 7xi+3

)
,

where n = 100, over the set given by the nonlinear constraints

x2
j−1 + x2

j + x2
j+1 + x2

j+2 + xj−1 − xj + xj+1 − xj+2 ≤ 8, mod(k, 3) = 0

x2
j−1 + 2x2

j + x2
j+1 + 2x2

j+2 − xj−1 − xj+2 ≤ 10, mod(k, 3) = 1

2x2
j−1 + x2

j + x2
j+1 + 2xj−1 − xj − xj+2 ≤ 5, mod(k, 3) = 2

where j = 2(div(k − 1, 3) + 1), 1 ≤ k ≤ 3(n − 2)/2 (div(k,l) is the integer division and mod(k, l) is the
remainder after integer division). The starting point is xi = 0, 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE OPTIMIZATION WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$SET(INPUT)

DO 1 I=1,NF

X(I)=0.0D0

1 CONTINUE

DO 2 I=1,NF

IH(I)=I

JH(I)=I

2 CONTINUE

IH(NF+1)=NF+1

MC=0

KC=0

DO 5 J=1,NC/3

CU(KC+1)=8.0D0

CU(KC+2)=1.0D1

CU(KC+3)=5.0D0

I=2*(J-1)

DO 4 K=1,3

IC(KC+K)=2

ICG(KC+K)=MC+1

DO 3 L=1,4

JCG(MC+L)=I+L

3 CONTINUE

MC=MC+4

4 CONTINUE

KC=KC+3

5 CONTINUE

ICG(NC+1)=MC+1
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$ENDSET

$SET(FMODELF)

FF=0.0D0

DO 11 I=1,NF-3

FF=FF+X(I)**2+X(I+1)**2+2.0D0*X(I+2)**2+X(I+3)**2&

-5.0D0*X(I)-5.0D0*X(I+1)-2.1D1*X(I+2)+7.0D0*X(I+3)

11 CONTINUE

$ENDSET

$SET(GMODELF)

DO 12 I=1,NF

GF(I)=0.0D0

12 CONTINUE

DO 13 I=1,NF-3

GF(I)=GF(I)+2.0D0*X(I)-5.0D0

GF(I+1)=GF(I+1)+2.0D0*X(I+1)-5.0D0

GF(I+2)=GF(I+2)+4.0D0*X(I+2)-2.1D1

GF(I+3)=GF(I+3)+2.0D0*X(I+3)+7.0D0

13 CONTINUE

$ENDSET

$SET(FMODELC)

J=2*((KC-1)/3+1)

L=MOD(KC,3)

GO TO (21,22,23), L+1

21 FC=X(J-1)**2+X(J)**2+X(J+1)**2+X(J+2)**2+X(J-1)-X(J)+X(J+1)-X(J+2)

GO TO 24

22 FC=X(J-1)**2+2.0D0*X(J)**2+X(J+1)**2+2.0D0*X(J+2)**2-X(J-1)-X(J+2)

GO TO 24

23 FC=2.0D0*X(J-1)**2+X(J)**2+X(J+1)**2+2.0D0*X(J-1)-X(J)-X(J+2)

24 CONTINUE

$ENDSET

$SET(GMODELC)

J=2*((KC-1)/3+1)

L=MOD(KC,3)

GO TO (25,26,27), L+1

25 GC(J-1)=2.0D0*X(J-1)+1.0D0

GC(J)=2.0D0*X(J)-1.0D0

GC(J+1)=2.0D0*X(J+1)+1.0D0

GC(J+2)=2.0D0*X(J+2)-1.0D0

GO TO 28

26 GC(J-1)=2.0D0*X(J-1)-1.0D0

GC(J)=4.0D0*X(J)

GC(J+1)=2.0D0*X(J+1)

GC(J+2)=4.0D0*X(J+2)-1.0D0

GO TO 28

27 GC(J-1)=4.0D0*X(J-1)+2.0D0

GC(J)=2.0D0*X(J)-1.0D0

GC(J+1)=2.0D0*X(J+1)

GC(J+2)=-1.0D0

28 CONTINUE

$ENDSET

$NF=100

$NC=147
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$JACC=’S’

$HESF=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Hessian matrix, the sparsity pattern of the constraint Jacobian matrix, and the constraint
specifications. The sparse Hessian matrix, indicated by the statement $HESF=’S’, is diagonal. The sparse
constraint Jacobian matrix is indicated by the statement $JACC=’S’. By using the macrovariable $FMOD-
ELF we specify analytically the value of the model function. By using the macrovariable $GMODELF
we specify analytically the gradient of the model function. By using the macrovariable $FMODELC we
specify analytically the values of the constraint functions. By using the macrovariable $GMODELC we
specify analytically the gradients of the constraint functions.

d) Problem solution (basic screen output):

CLASS = MN - LI3 UPDATE = N MODEL = FF HESF = S NF = 100

NIC= 0 NIT= 0 NFV= 1 NFG= 7 F=0.000D+00 C=0.000D+00 G=0.307D+02

NIC= 0 NIT= 1 NFV= 2 NFG= 14 F=-.273D+04 C=0.177D+02 G=0.580D+01

NIC= 0 NIT= 2 NFV= 3 NFG= 21 F=-.238D+04 C=0.107D+02 G=0.402D+01

NIC= 0 NIT= 3 NFV= 4 NFG= 28 F=-.203D+04 C=0.227D+01 G=0.199D+02

NIC= 0 NIT= 4 NFV= 5 NFG= 35 F=-.208D+04 C=0.227D+02 G=0.175D+02

NIC= 0 NIT= 5 NFV= 6 NFG= 42 F=-.207D+04 C=0.573D+01 G=0.206D+02

NIC= 0 NIT= 6 NFV= 7 NFG= 49 F=-.207D+04 C=0.179D+01 G=0.105D+01

NIC= 0 NIT= 7 NFV= 8 NFG= 56 F=-.207D+04 C=0.613D+00 G=0.131D+01

NIC= 0 NIT= 8 NFV= 9 NFG= 63 F=-.207D+04 C=0.189D+00 G=0.169D+01

NIC= 0 NIT= 9 NFV= 10 NFG= 70 F=-.207D+04 C=0.150D-01 G=0.912D-01

NIC= 0 NIT= 10 NFV= 11 NFG= 77 F=-.207D+04 C=0.307D-03 G=0.859D-03

NIC= 0 NIT= 11 NFV= 12 NFG= 84 F=-.207D+04 C=0.178D-07 G=0.123D-05

NIC= 0 NIT= 12 NFV= 13 NFG= 91 F=-.207D+04 C=0.000D+00 G=0.629D-07

NIC= 0 NIT= 13 NFV= 14 NFG= 98 F=-.207D+04 C=0.000D+00 G=0.314D-08

NIC= 0 NIT= 14 NFV= 15 NFG= 105 F=-.207D+04 C=0.888D-15 G=0.157D-09

0 NIC= 0 NIT= 15 NFV= 15 NFG= 105 F=-.207D+04 C=0.888D-15 G=0.157D-09

TIME= 0:00:00.02

7.27 Large-scale nonlinear programming (sparse Jacobian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =

n−3∑
1=1

fA
i (x),

where
fA
i (x) = (x2

i + x2
i+1 + 2x2

i+2 + x2
i+3 − 5xi − 5xi+1 − 21xi+2 + 7xi+3, 1 ≤ i ≤ n− 3,

and n = 100, over the set given by the nonlinear constraints

x2
j−1 + x2

j + x2
j+1 + x2

j+2 + xj−1 − xj + xj+1 − xj+2 ≤ 8, mod(k, 3) = 0

x2
j−1 + 2x2

j + x2
j+1 + 2x2

j+2 − xj−1 − xj+2 ≤ 10, mod(k, 3) = 1

2x2
j−1 + x2

j + x2
j+1 + 2xj−1 − xj − xj+2 ≤ 5, mod(k, 3) = 2
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where j = 2(div(k − 1, 3) + 1), 1 ≤ k ≤ 3(n − 2)/2 (div(k,l) is the integer division and mod(k, l) is the
remainder after integer division). The starting point is xi = 0, 1 ≤ i ≤ n.
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b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + PARTIALLY SEPARABLE OPTIMIZATION WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$SET(INPUT)

DO 1 I=1,NF

X(I)=0.0D0

1 CONTINUE

MA=0

IAG(1)=1

DO 8 KA=1,NA

DO 9 K=1,4

JAG(MA+K)=KA+K-1

9 CONTINUE

MA=MA+4

IAG(KA+1)=MA+1

8 CONTINUE

MC=0

KC=0

DO 5 J=1,NC/3

CU(KC+1)=8.0D0

CU(KC+2)=1.0D1

CU(KC+3)=5.0D0

I=2*(J-1)

DO 4 K=1,3

IC(KC+K)=2

ICG(KC+K)=MC+1

DO 3 L=1,4

JCG(MC+L)=I+L

3 CONTINUE

MC=MC+4

4 CONTINUE

KC=KC+3

5 CONTINUE

ICG(NC+1)=MC+1

$ENDSET

$SET(FMODELA)

FA=X(KA)**2+X(KA+1)**2+2.0D0*X(KA+2)**2+X(KA+3)**2&

-5.0D0*X(KA)-5.0D0*X(KA+1)-2.1D1*X(KA+2)+7.0D0*X(KA+3)

$ENDSET

$SET(FMODELC)

J=2*((KC-1)/3+1)

L=MOD(KC,3)

GO TO (21,22,23), L+1

21 FC=X(J-1)**2+X(J)**2+X(J+1)**2+X(J+2)**2+X(J-1)-X(J)+X(J+1)-X(J+2)

GO TO 24

22 FC=X(J-1)**2+2.0D0*X(J)**2+X(J+1)**2+2.0D0*X(J+2)**2-X(J-1)-X(J+2)

GO TO 24

23 FC=2.0D0*X(J-1)**2+X(J)**2+X(J+1)**2+2.0D0*X(J-1)-X(J)-X(J+2)

24 CONTINUE

$ENDSET
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$IADA=1

$IADC=1

$NF=100

$NA=97

$NC=147

$MODEL=’AF’

$JACA=’S’

$JACC=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Jacobian matrix, the sparsity pattern of the constraint Jacobian matrix and the constraint
specifications. The sparse objective Jacobian matrix is indicated by the statement $JACA=’S’. The
sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’. By using the macrovariable
$FMODELA we specify values of the approximating function analytically. The gradients of the approxi-
mating function are computed by automatic differentiation, since $IADA=1. By using the macrovariable
$FMODELC we specify the values of the constraint functions analytically. The gradients of the constraint
functions are computed by automatic differentiation, since $IADC=1. Note that statements IF-THEN and
ELSEIF-THEN have not to contain blanks if the automatic differentiation is used. For the sum of values
minimization we set $MODEL=’AF’.

d) Problem solution (basic screen output):

CLASS = MN - LI3 UPDATE = N MODEL = AF HESF = S NF = 100

NIC= 0 NIT= 0 NFV= 8 NFG= 8 F=0.000D+00 C=0.000D+00 G=0.304D+02

NIC= 0 NIT= 1 NFV= 17 NFG= 17 F=-.271D+04 C=0.202D+02 G=0.595D+01

NIC= 0 NIT= 2 NFV= 26 NFG= 26 F=-.247D+04 C=0.899D+01 G=0.876D+01

NIC= 0 NIT= 3 NFV= 35 NFG= 35 F=-.218D+04 C=0.239D+01 G=0.224D+02

NIC= 0 NIT= 4 NFV= 44 NFG= 44 F=-.231D+04 C=0.308D+02 G=0.250D+01

NIC= 0 NIT= 5 NFV= 53 NFG= 53 F=-.227D+04 C=0.115D+02 G=0.185D+02

NIC= 0 NIT= 6 NFV= 62 NFG= 62 F=-.228D+04 C=0.296D+01 G=0.497D+02

NIC= 0 NIT= 7 NFV= 71 NFG= 71 F=-.229D+04 C=0.192D+00 G=0.342D+01

NIC= 0 NIT= 8 NFV= 80 NFG= 80 F=-.229D+04 C=0.229D-01 G=0.185D+00

NIC= 0 NIT= 9 NFV= 89 NFG= 89 F=-.229D+04 C=0.240D-02 G=0.147D-02

NIC= 0 NIT= 10 NFV= 98 NFG= 98 F=-.229D+04 C=0.606D-06 G=0.237D-06

NIC= 0 NIT= 11 NFV= 107 NFG= 107 F=-.229D+04 C=0.000D+00 G=0.524D-08

NIC= 0 NIT= 12 NFV= 116 NFG= 116 F=-.229D+04 C=0.000D+00 G=0.262D-09

NIC= 0 NIT= 13 NFV= 125 NFG= 125 F=-.229D+04 C=0.000D+00 G=0.131D-10

0 NIC= 0 NIT= 14 NFV= 125 NFG= 125 F=-.229D+04 C=0.000D+00 G=0.131D-10

TIME= 0:00:00.17

7.28 Large scale least squares optimization with nonlinear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1

2

n−1∑
i=1

(
100(x2

i − xi+1)
2 + (xi − 1)2

)
,

where n = 100, with constraints

3x3
i+1 + 2xi+2 − 5 + sin(xi+1 − xi+2) sin(xi+1 + xi+2) + 4xi+1 − xi exp(xi − xi+1)− 3 ≥ 2
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for 1 ≤ i ≤ n− 2. The starting point is xi = −1.2, mod(i, 2) = 1, xi = 1.0, mod(i, 2) = 0. The minimum
value of the objective function is F = 0.0 (This problem is equivalent to the previous one).

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE LEAST SQUARES WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2,W3

$SET(INPUT)

DO 1 I=1,NF

IF(MOD(I,2).EQ.1) THEN

X(I)=-1.2D0

ELSE

X(I)=1.0D0

ENDIF

1 CONTINUE

DO 2 I=1,NF-1

J=3*(I-1)+1

JAG(J)=I

JAG(J+1)=I+1

JAG(J+2)=I

K=2*(I-1)+1

IAG(K)=J

IAG(K+1)=J+2

2 CONTINUE

IAG(K+2)=J+3

NA=2*(NF-1)

MA=3*(NF-1)

NC=NF-2

MC=0

ICG(1)=1

DO 3 I=2,NF-1

MC=MC+1

JCG(MC)=I-1

MC=MC+1

JCG(MC)=I

MC=MC+1

JCG(MC)=I+1

ICG(I)=MC+1

3 CONTINUE

CALL UXVINS(NC,1,IC)

CALL UXVSET(NC,2.0D0,CL)

$ENDSET

$SET(FMODELA)

I=(KA+1)/2

IF(MOD(KA,2).EQ.1)THEN

FA=1.0D1*(X(I)**2-X(I+1))

ELSE

FA=X(I)-1.0D0

ENDIF

$ENDSET
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$SET(FMODELC)

K=KC+1

FC=3.0D0*X(K)**3+2.0D0*X(K+1)-5.0D0+SIN(X(K)-X(K+1))*SIN(X(K)&

+X(K+1))+4.0D0*X(K)-X(K-1)*EXP(X(K-1)-X(K))-3.0D0

$ENDSET

$IADA=1

$IADC=1

$NF=100

$NA=198

$NC=98

$MODEL=’AQ’

$JACA=’S’

$JACC=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Jacobian matrix, the sparsity pattern of the constraint Jacobian matrix and the constraint
specifications. The sparse objective Jacobian matrix is indicated by the statement $JACA=’S’. The
sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’. By using the macrovariable
$FMODELA we specify values of the approximating function analytically. The gradients of the approxi-
mating function are computed by automatic differentiation, since $IADA=1. By using the macrovariable
$FMODELC we specify the values of the constraint functions analytically. The gradients of the constraint
functions are computed by automatic differentiation, since $IADC=1. Note that statements IF-THEN and
ELSEIF-THEN have not to contain blanks if the automatic differentiation is used. For the sum-of-squares
minimization we set $MODEL=’AQ’.

d) Problem solution (basic screen output):

CLASS = MN - LI3 UPDATE = N MODEL = AQ HESF = S NF = 100

NIC= 0 NIT= 0 NFV= 11 NFG= 11 F=0.126D+05 C=0.268D+02 G=0.396D+03

NIC= 0 NIT= 1 NFV= 23 NFG= 23 F=0.162D+05 C=0.125D+02 G=0.181D+03

NIC= 0 NIT= 2 NFV= 35 NFG= 35 F=-.136D+05 C=0.594D+01 G=0.170D+04

NIC= 0 NIT= 3 NFV= 47 NFG= 47 F=-.694D+03 C=0.379D+00 G=0.196D+03

NIC= 0 NIT= 4 NFV= 59 NFG= 59 F=0.107D+03 C=0.142D-01 G=0.192D+02

NIC= 0 NIT= 5 NFV= 71 NFG= 71 F=0.108D+03 C=0.331D-01 G=0.473D+01

NIC= 0 NIT= 6 NFV= 83 NFG= 83 F=0.108D+03 C=0.000D+00 G=0.134D+02

NIC= 0 NIT= 7 NFV= 95 NFG= 95 F=0.107D+03 C=0.138D-03 G=0.144D+02

NIC= 0 NIT= 8 NFV= 107 NFG= 107 F=0.107D+03 C=0.113D-05 G=0.664D+01

NIC= 0 NIT= 9 NFV= 119 NFG= 119 F=0.106D+03 C=0.431D-09 G=0.889D+01

NIC= 0 NIT= 10 NFV= 131 NFG= 131 F=0.106D+03 C=0.000D+00 G=0.127D+02

NIC= 0 NIT= 11 NFV= 143 NFG= 143 F=0.106D+03 C=0.116D-03 G=0.619D+00

NIC= 0 NIT= 12 NFV= 155 NFG= 155 F=0.106D+03 C=0.000D+00 G=0.717D+01

NIC= 0 NIT= 13 NFV= 167 NFG= 167 F=0.106D+03 C=0.733D-05 G=0.268D+00

NIC= 0 NIT= 14 NFV= 179 NFG= 179 F=0.106D+03 C=0.000D+00 G=0.835D-01

NIC= 0 NIT= 15 NFV= 191 NFG= 191 F=0.106D+03 C=0.433D-07 G=0.296D-02

NIC= 0 NIT= 16 NFV= 203 NFG= 203 F=0.106D+03 C=0.178D-14 G=0.154D-04

NIC= 0 NIT= 17 NFV= 215 NFG= 215 F=0.106D+03 C=0.178D-14 G=0.130D-11

0 NIC= 0 NIT= 18 NFV= 215 NFG= 215 F=0.106D+03 C=0.178D-14 G=0.130D-11

TIME= 0:00:00.22
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7.29 Large-scale l1 optimization with nonlinear constrains

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =

n−1∑
i=1

(
10|x2

i − xi+1|+ |xi − 1|
)
,

where n = 100, with constraints

3x3
i+1 + 2xi+2 − 5 + sin(xi+1 − xi+2) sin(xi+1 + xi+2) + 4xi+1 − xi exp(xi − xi+1)− 3 ≥ 2

for 1 ≤ i ≤ n− 2. The starting point is xi = −1.2, mod(i, 2) = 1, xi = 1.0, mod(i, 2) = 0.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE L-1 OPTIMIZATION WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2,W3

$SET(INPUT)

DO 1 I=1,NF

IF(MOD(I,2).EQ.1) THEN

X(I)=-1.2D0

ELSE

X(I)=1.0D0

ENDIF

1 CONTINUE

DO 2 I=1,NF-1

J=3*(I-1)+1

JAG(J)=I

JAG(J+1)=I+1

JAG(J+2)=I

K=2*(I-1)+1

IAG(K)=J

IAG(K+1)=J+2

2 CONTINUE

IAG(K+2)=J+3

NA=2*(NF-1)

MA=3*(NF-1)

NC=NF-2

MC=0

ICG(1)=1

DO 3 I=2,NF-1

MC=MC+1

JCG(MC)=I-1

MC=MC+1

JCG(MC)=I

MC=MC+1

JCG(MC)=I+1

ICG(I)=MC+1

3 CONTINUE

CALL UXVINS(NC,1,IC)
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CALL UXVSET(NC,2.0D0,CL)

$ENDSET

$SET(FMODELA)

I=(KA+1)/2

IF(MOD(KA,2).EQ.1)THEN

FA=1.0D1*(X(I)**2-X(I+1))

ELSE

FA=X(I)-1.0D0

ENDIF

$ENDSET

$SET(FMODELC)

K=KC+1

FC=3.0D0*X(K)**3+2.0D0*X(K+1)-5.0D0+SIN(X(K)-X(K+1))*SIN(X(K)&

+X(K+1))+4.0D0*X(K)-X(K-1)*EXP(X(K-1)-X(K))-3.0D0

$ENDSET

$IADA=1

$IADC=1

$NF=100

$NA=198

$NC=98

$M=10000

$MODEL=’AA’

$JACA=’S’

$JACC=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Jacobian matrix, the sparsity pattern of the constraint Jacobian matrix and the constraint
specifications. The sparse objective Jacobian matrix is indicated by the statement $JACA=’S’. The
sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’. By using the macrovariable
$FMODELA we specify values of the approximating function analytically. The gradients of the approxi-
mating function are computed by automatic differentiation, since $IADA=1. By using the macrovariable
$FMODELC we specify the values of the constraint functions analytically. The gradients of the constraint
functions are computed by automatic differentiation, since $IADC=1. Note that statements IF-THEN
and ELSEIF-THEN have not to contain blanks if the automatic differentiation is used. For the l1 (sum of
absolute values) minimization we set $MODEL=’AA’.

d) Problem solution (basic screen output):

CLASS = MN - LI3 UPDATE = N MODEL = AA HESF = S NF = 298

NIC= 0 NIT= 0 NFV= 1 NFG= 7 F=0.302D+03 C=0.268D+02 G=0.280D+01

NIC= 0 NIT= 1 NFV= 2 NFG= 14 F=0.908D+04 C=0.110D+02 G=0.302D+03

NIC= 0 NIT= 2 NFV= 3 NFG= 21 F=0.955D+04 C=0.149D+02 G=0.503D+03

NIC= 0 NIT= 3 NFV= 4 NFG= 28 F=0.332D+04 C=0.136D+02 G=0.274D+03

NIC= 0 NIT= 4 NFV= 5 NFG= 35 F=0.204D+03 C=0.783D+02 G=0.157D+04

NIC= 0 NIT= 5 NFV= 6 NFG= 42 F=0.288D+04 C=0.262D+02 G=0.116D+04

NIC= 0 NIT= 6 NFV= 7 NFG= 49 F=0.120D+03 C=0.160D+02 G=0.207D+03

NIC= 0 NIT= 7 NFV= 11 NFG= 56 F=0.151D+03 C=0.141D+02 G=0.181D+03

NIC= 0 NIT= 8 NFV= 15 NFG= 63 F=0.164D+03 C=0.123D+02 G=0.158D+03

NIC= 0 NIT= 9 NFV= 16 NFG= 70 F=0.175D+03 C=0.994D+00 G=0.127D+03

NIC= 0 NIT= 10 NFV= 17 NFG= 77 F=0.156D+03 C=0.186D+01 G=0.143D+02
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NIC= 0 NIT= 11 NFV= 18 NFG= 84 F=0.156D+03 C=0.350D+00 G=0.632D+01

NIC= 0 NIT= 12 NFV= 19 NFG= 91 F=0.155D+03 C=0.173D+01 G=0.830D+01

NIC= 0 NIT= 13 NFV= 21 NFG= 98 F=0.325D+03 C=0.210D+03 G=0.626D+04

NIC= 0 NIT= 14 NFV= 22 NFG= 105 F=0.175D+03 C=0.412D+03 G=0.312D+03

NIC= 0 NIT= 15 NFV= 23 NFG= 112 F=0.155D+03 C=0.304D+02 G=0.530D+01

NIC= 0 NIT= 16 NFV= 24 NFG= 119 F=0.155D+03 C=0.132D-01 G=0.167D+01

NIC= 0 NIT= 17 NFV= 25 NFG= 126 F=0.155D+03 C=0.176D+01 G=0.652D+00

NIC= 0 NIT= 18 NFV= 26 NFG= 133 F=0.155D+03 C=0.951D+00 G=0.115D-01

NIC= 0 NIT= 19 NFV= 27 NFG= 140 F=0.155D+03 C=0.258D-03 G=0.289D-04

NIC= 0 NIT= 20 NFV= 28 NFG= 147 F=0.155D+03 C=0.899D-07 G=0.110D-07

NIC= 0 NIT= 21 NFV= 29 NFG= 154 F=0.155D+03 C=0.888D-15 G=0.449D-09

0 NIC= 0 NIT= 22 NFV= 29 NFG= 154 F=0.155D+03 C=0.888D-15 G=0.449D-09

TIME= 0:00:00.42

7.30 Large-scale l∞ (minimax) optimization with nonlinear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = max
1≤i≤n−1

(
max(10|x2

i − xi+1|, |xi − 1|)
)
,

where n = 100, with constraints

3x3
i+1 + 2xi+2 − 5 + sin(xi+1 − xi+2) sin(xi+1 + xi+2) + 4xi+1 − xi exp(xi − xi+1)− 3 ≥ 2

for 1 ≤ i ≤ n− 2. The starting point is xi = −1.2, mod(i, 2) = 1, xi = 1.0, mod(i, 2) = 0.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE MINIMAX OPTIMIZATION WITH NONLINEAR CONSTRAINTS +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2,W3

$SET(INPUT)

DO 1 I=1,NF

IF(MOD(I,2).EQ.1) THEN

X(I)=-1.2D0

ELSE

X(I)=1.0D0

ENDIF

1 CONTINUE

DO 2 I=1,NF-1

J=3*(I-1)+1

JAG(J)=I

JAG(J+1)=I+1

JAG(J+2)=I

K=2*(I-1)+1

IAG(K)=J

IAG(K+1)=J+2

2 CONTINUE

IAG(K+2)=J+3

NA=2*(NF-1)

MA=3*(NF-1)
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NC=NF-2

MC=0

ICG(1)=1

DO 3 I=2,NF-1

MC=MC+1

JCG(MC)=I-1

MC=MC+1

JCG(MC)=I

MC=MC+1

JCG(MC)=I+1

ICG(I)=MC+1

3 CONTINUE

CALL UXVINS(NC,1,IC)

CALL UXVSET(NC,2.0D0,CL)

$ENDSET

$SET(FMODELA)

I=(KA+1)/2

IF(MOD(KA,2).EQ.1)THEN

FA=1.0D1*(X(I)**2-X(I+1))

ELSE

FA=X(I)-1.0D0

ENDIF

$ENDSET

$SET(FMODELC)

K=KC+1

FC=3.0D0*X(K)**3+2.0D0*X(K+1)-5.0D0+SIN(X(K)-X(K+1))*SIN(X(K)&

+X(K+1))+4.0D0*X(K)-X(K-1)*EXP(X(K-1)-X(K))-3.0D0

$ENDSET

$IADA=1

$IADC=1

$NF=100

$NA=198

$NC=98

$M=10000

$MODEL=’AM’

$JACA=’S’

$JACC=’S’

$EPS6=’1.0D-2’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Jacobian matrix, the sparsity pattern of the constraint Jacobian matrix and the constraint
specifications. The sparse objective Jacobian matrix is indicated by the statement $JACA=’S’. The
sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’. By using the macrovariable
$FMODELA we specify values of the approximating function analytically. The gradients of the approxi-
mating function are computed by automatic differentiation, since $IADA=1. By using the macrovariable
$FMODELC we specify the values of the constraint functions analytically. The gradients of the constraint
functions are computed by automatic differentiation, since $IADC=1. Note that statements IF-THEN and
ELSEIF-THEN have not to contain blanks if the automatic differentiation is used. For the l∞ minimization
(minimax) we set $MODEL=’AM’.
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d) Problem solution (basic screen output):

CLASS = MN - LI3 UPDATE = N MODEL = AM HESF = S NF = 101

NIC= 0 NIT= 0 NFV= 1 NFG= 7 F=0.302D+03 C=0.268D+02 G=0.386D+02

NIC= 0 NIT= 1 NFV= 2 NFG= 14 F=0.924D+04 C=0.118D+02 G=0.475D+03

NIC= 0 NIT= 2 NFV= 3 NFG= 21 F=0.386D+04 C=0.157D+02 G=0.794D+03

NIC= 0 NIT= 3 NFV= 4 NFG= 28 F=-.193D+05 C=0.201D+02 G=0.262D+03

NIC= 0 NIT= 4 NFV= 5 NFG= 35 F=-.387D+03 C=0.711D+00 G=0.633D+02

NIC= 0 NIT= 5 NFV= 6 NFG= 42 F=-.443D+02 C=0.280D+01 G=0.171D+02

NIC= 0 NIT= 6 NFV= 7 NFG= 49 F=0.861D+01 C=0.330D+01 G=0.194D+01

NIC= 0 NIT= 7 NFV= 8 NFG= 56 F=0.220D+01 C=0.291D+01 G=0.357D+00

NIC= 0 NIT= 8 NFV= 9 NFG= 63 F=0.116D+01 C=0.182D+01 G=0.395D-01

NIC= 0 NIT= 9 NFV= 10 NFG= 70 F=0.224D+01 C=0.143D+01 G=0.167D+01

NIC= 0 NIT= 10 NFV= 11 NFG= 77 F=0.695D+00 C=0.831D+01 G=0.262D+01

------------------------------------------------------------------------

NIC= 0 NIT= 61 NFV= 303 NFG= 434 F=0.192D+01 C=0.907D-02 G=0.344D-04

NIC= 0 NIT= 62 NFV= 310 NFG= 441 F=0.192D+01 C=0.893D-02 G=0.338D-04

NIC= 0 NIT= 63 NFV= 315 NFG= 448 F=0.192D+01 C=0.832D-02 G=0.312D-04

NIC= 0 NIT= 64 NFV= 316 NFG= 455 F=0.192D+01 C=0.000D+00 G=0.308D-07

NIC= 0 NIT= 65 NFV= 323 NFG= 462 F=0.192D+01 C=0.000D+00 G=0.303D-07

NIC= 0 NIT= 66 NFV= 329 NFG= 469 F=0.192D+01 C=0.000D+00 G=0.288D-07

NIC= 0 NIT= 67 NFV= 331 NFG= 476 F=0.192D+01 C=0.000D+00 G=0.143D-07

NIC= 0 NIT= 68 NFV= 338 NFG= 483 F=0.192D+01 C=0.000D+00 G=0.141D-07

NIC= 0 NIT= 69 NFV= 345 NFG= 490 F=0.192D+01 C=0.000D+00 G=0.427D-07

0 NIC= 0 NIT= 70 NFV= 345 NFG= 490 F=0.192D+01 C=0.000D+00 G=0.427D-07

TIME= 0:00:01.80

7.31 Optimization of dynamical systems - general integral criterion

a) Problem description:

Suppose we have to find a minimum of the objective function

F (x) =
1

2

∫ T

0

(y21(t) + y22(t))dt+
1

2
(y21(T ) + y22(T ))

where T = 1.5 and where

dy1(t)
dt = y2(t), y1(0) = x1

dy2(t)
dt = (1− y21(t))y2(t)− y1(t), y2(0) = 1

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + OPTIMIZATION OF DYNAMICAL SYSTEMS - GENERAL CRITERION +

$REM +---------------------------------------------------------------+

$SET(INPUT)

X(1)=0.0D0

TA=0.0D0

TAMAX=1.5D0

$ENDSET
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$SET(FMODELF)

FF=0.5D0*(YA(1)**2+YA(2)**2)

$ENDSET

$SET(DMODELF)

DF(1)=YA(1)

DF(2)=YA(2)

$ENDSET

$SET(FMODELA)

FA=HALF*(YA(1)**2+YA(2)**2)

$ENDSET

$SET(DMODELA)

DA(1)=YA(1)

DA(2)=YA(2)

$ENDSET

$SET(FMODELE)

GO TO (1,2) KE

1 FE=YA(2)

GO TO 3

2 FE=-YA(1)+(ONE-YA(1)**2)*YA(2)

3 CONTINUE

$ENDSET

$SET(DMODELE)

GO TO (4,5) KE

4 DE(1)=ZERO

DE(2)=ONE

GO TO 6

5 DE(1)=-ONE-TWO*YA(1)*YA(2)

DE(2)=ONE-YA(1)**2

6 CONTINUE

$ENDSET

$SET(FMODELY)

GO TO (7,8) KE

7 FE=X(1)

GO TO 9

8 FE=ONE

9 CONTINUE

$ENDSET

$SET(GMODELY)

GO TO (10,11) KE

10 GE(1)=ONE

GO TO 12

11 GE(1)=ZERO

12 CONTINUE

$ENDSET

$NF=1

$NE=2

$MODEL=’DF’

$TOLR=’1.0D-9’

$TOLA=’1.0D-9’

$BATCH

$STANDARD

260



c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial value of the variable x1 as well as the initial
and terminal times 0 and T, respectively. By using the macrovariables $FMODELA and $DMODELA
we specify the subintegral function and by using the macrovariables $FMODELF and $DMODELF we
specify the terminal function. The right hand sides of the differential equations are specified by using the
macrovariables $FMODELE and $DMODELE, while the initial values and their derivatives are given by
using the macrovariables $FMODELY and $GMODELY. The option $MODEL=’DF’ indicates a general
integral criterion.

d) Problem solution (basic screen output):

CLASS = VM - LI1 UPDATE = B MODEL = DF HESF = D NF = 1

NIT= 0 NFV= 1 NFG= 0 F= 2.763393900 G=0.242D+01

NIT= 1 NFV= 3 NFG= 0 F= 1.974913643 G=0.513D+00

NIT= 2 NFV= 4 NFG= 0 F= 1.944408382 G=0.398D-01

NIT= 3 NFV= 5 NFG= 0 F= 1.944233193 G=0.478D-03

NIT= 4 NFV= 6 NFG= 0 F= 1.944233168 G=0.338D-06

0 NIT= 4 NFV= 6 NFG= 0 GRAD TOL F= 1.944233168 G=0.338D-06

FF = 0.7671653593D+00

X = 0.6169839176D+00

TIME= 0:00:00.00

7.32 Optimization of dynamical systems - special integral criterion

a) Problem description:

Suppose we have to find a minimum of the objective function

F (x) =
1

2

∫ T

0

(y1(t)− 1/(1 + t))2dt

where T = 1 and where
dy1(t)

dt
= −x1y1(t), y1(0) = x2

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + OPTIMIZATION OF DYNAMICAL SYSTEMS - QUADRATIC CRITERION +

$REM +---------------------------------------------------------------+

$SET(INPUT)

X(1)=2.0D0

X(2)=0.0D0

TA=0.0D0

TAMAX=1.0D0

$ENDSET

$SET(FMODELE)

FE=-X(1)*YA(1)**2

YE=1.0D0/(1.0D0+TA)

WE=1.0D0

$ENDSET

$SET(GDMODELE)

GE(1)=-YA(1)**2

GE(2)= 0.0D0

261



DE(1)=-2.0D0*X(1)*YA(1)

$ENDSET

$SET(FMODELY)

FE=X(2)

$ENDSET

$SET(GMODELY)

GE(1)=0.0D0

GE(2)=1.0D0

$ENDSET

$MODELA=’Y’

$NF=2

$NE=1

$MODEL=’DQ’

$TOLR=’1.0D-9’

$TOLA=’1.0D-9’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of the variables x1 and x2 as well as the
initial and terminal times 0 and T, respectively. The right hand side of the differential equation is specified
by using the macrovariables $FMODELE and $GDMODELE, while the initial values and their derivatives
are given by using the macrovariables $FMODELY and $GMODELY. The option $MODEL=’DQ’ together
with $MODELA=’Y’ indicate a special integral criterion.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = N MODEL = DQ HESF = D NF = 2

NIT= 0 NFV= 1 NFG= 1 F= 0.2500000000 G=0.693D+00

NIT= 1 NFV= 3 NFG= 2 F= 0.3379696559E-01 G=0.114D+00

NIT= 2 NFV= 5 NFG= 3 F= 0.1598937577E-02 G=0.613D-02

NIT= 3 NFV= 7 NFG= 4 F= 0.1195750953E-04 G=0.225D-02

NIT= 4 NFV= 9 NFG= 5 F= 0.1909017677E-08 G=0.300D-04

NIT= 5 NFV= 11 NFG= 6 F= 0.2793082948E-15 G=0.200D-08

0 NIT= 5 NFV= 11 NFG= 6 GRAD TOL F= 0.2793082948E-15 G=0.200D-08

F = 0.2793082948D-15

X = 0.9999999725D+00 0.9999999990D+00

TIME= 0:00:00.00

7.33 Non-stiff initial value problem for ordinary differential equations

a) Problem description:

Suppose we have to find a solution of a three-body problem

dy1(t)
dt = y3(t), y1(0) = 0.9

dy2(t)
dt = y4(t), y2(0) = 0

dy3(t)
dt = y1(t) + 2y4(t)− µ′ y1(t)+µ

D1(t)
− µy1(t)−µ′

D2(t)
, y3(0) = 0

dy4(t)
dt = y2(t)− 2y3(t)− µ′ y2(t)

D1(t)
− µ y2(t)

D2(t)
, y3(0) = −2
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with µ = 0.012, µ′ = 1− µ,

D1 =
(
(y1(t) + µ)2 + y2(t)

2
)3/2

,

D2 =
(
(y1(t)− µ′)2 + y2(t)

2
)3/2

,

in the interval 0 ≤ t ≤ T , where T = 18.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SOLUTION OF NONSTIFF ORDINARY DIFFERENTIAL EQUATIONS +

$REM +---------------------------------------------------------------+

$FLOAT W,W1,W2

$SET(INPUT)

TA=0.0D0

YA(1)= 0.9D0

YA(2)= 0.0D0

YA(3)= 0.0D0

YA(4)=-2.0D0

TAMAX= 1.8D1

$ENDSET

$SET(FMODELE)

W=1.2D-2

W1=(YA(1)+W)**2+YA(2)**2

W1=W1*SQRT(W1)

W2=(YA(1)+W-1.D0)**2+YA(2)**2

W2=W2*SQRT(W2)

GO TO (1,2,3,4) KE

1 FE=YA(3)

GO TO 5

2 FE=YA(4)

GO TO 5

3 FE=YA(1)+2*YA(4)+(W-1.D0)*(YA(1)+W)/W1-W*(YA(1)+W-1.D0)/W2

GO TO 5

4 FE=YA(2)-2*YA(3)+(W-1.D0)*YA(2)/W1-W*YA(2)/W2

5 CONTINUE

$ENDSET

$NA=19

$NE=4

$MODEL=’DE’

$MED=2

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of the variables y1, y2, y3, y4 as well
as the initial and terminal times 0 and T, respectively. The right hand sides of the differential equations
are specified by using the macrovariable $FMODELE. The option $MODEL=’DE’ indicates integration of
a system of ordinary differential equations. Macrovariable $NA denotes the number of time points (nodes)
in which the results are printed.
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d) Problem solution (basic screen output):

CLASS = DE - DP8 UPDATE = N MODEL = NO HESF = N NF = 0

0 NSTP= 129 NACC= 99 NREJ= 29 NEV = 6296 NEG = 0

1 AT= 0.000000000D+00

AY= 0.900000000D+00 0.000000000D+00 0.000000000D+00 -0.200000000D+01

2 AT= 0.100000000D+01

AY= -0.472474065D+00 -0.831552587D+00 -0.169925866D+01 0.933246989D+00

3 AT= 0.200000000D+01

AY= -0.522790604D+00 0.777581853D+00 0.164553511D+01 0.102899578D+01

4 AT= 0.300000000D+01

AY= 0.860391993D+00 -0.437352811D-02 -0.262361582D-01 -0.198574759D+01

5 AT= 0.400000000D+01

AY= -0.545402744D+00 -0.728281933D+00 -0.158624165D+01 0.112488972D+01

6 AT= 0.500000000D+01

AY= -0.361844730D+00 0.857723938D+00 0.179231945D+01 0.743627310D+00

7 AT= 0.600000000D+01

AY= 0.900662074D+00 -0.136996194D+00 -0.190925673D+00 -0.195779058D+01

8 AT= 0.700000000D+01

AY= -0.560957109D+00 -0.823081310D+00 -0.162128701D+01 0.106071764D+01

9 AT= 0.800000000D+01

AY= -0.539311035D+00 0.804263515D+00 0.165764912D+01 0.100452367D+01

10 AT= 0.900000000D+01

AY= 0.852371731D+00 0.255993603D-01 -0.165348326D-01 -0.198405038D+01

11 AT= 0.100000000D+02

AY= -0.552637953D+00 -0.670747471D+00 -0.153518712D+01 0.120708594D+01

12 AT= 0.110000000D+02

AY= -0.236500690D+00 0.877334516D+00 0.186864292D+01 0.531341150D+00

13 AT= 0.120000000D+02

AY= 0.910238785D+00 -0.267656880D+00 -0.360816991D+00 -0.191426158D+01

14 AT= 0.130000000D+02

AY= -0.609930562D+00 -0.895015297D+00 -0.163634493D+01 0.104639816D+01

15 AT= 0.140000000D+02

AY= -0.713359518D+00 0.770343601D+00 0.150308593D+01 0.122606580D+01

16 AT= 0.150000000D+02

AY= 0.822862768D+00 0.266689821D+00 0.396871774D+00 -0.191636216D+01

17 AT= 0.160000000D+02

AY= -0.414633818D+00 -0.671205422D+00 -0.169537478D+01 0.101918630D+01

18 AT= 0.170000000D+02

AY= -0.172307075D+00 0.856357518D+00 0.188430339D+01 0.497722001D+00

19 AT= 0.180000000D+02

AY= 0.101278207D+01 -0.321748683D+00 -0.191710973D-01 -0.194769624D+01

TIME= 0:00:00.02

7.34 Stiff initial value problem for ordinary differential equations

a) Problem description:

Suppose we have to find a solution of the Van der Pol equation

dy1(t)
dt = y2(t), y1(0) = 2

dy1(t)
dt = (1− y21(t))y2(t)− y1(t), y2(0) = 0
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in the interval 0 ≤ t ≤ T where T = 20.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SOLUTION OF STIFF ORDINARY DIFFERENTIAL EQUATIONS +

$REM +---------------------------------------------------------------+

$FLOAT W1,W2,W3,W4

$SET(INPUT)

TA=0.0D0

YA(1)=2.0D0

YA(2)=-6.6D-1

TAMAX=2.0D0

$ENDSET

$SET(FMODELE)

W1=1.0D-6

GO TO (1,2) KE

1 FE=YA(2)

GO TO 3

2 FE=((1.0D0-YA(1)**2)*YA(2)-YA(1))/W1

3 CONTINUE

$ENDSET

$SET(DMODELE)

W1=1.0D-6

GO TO (4,5) KE

4 DE(1)=0.0D0

DE(2)=1.0D0

GO TO 6

5 DE(1)=(-2.0D0*YA(1)*YA(2)-1.0D0)/W1

DE(2)=(1.0D0-YA(1)**2)/W1

6 CONTINUE

$ENDSET

$NA=301

$NE=2

$MODEL=’DE’

$ODE=’STIFF’

$TOLR=’1.0D-4’

$TOLA=’1.0D-8’

$MED=1

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of the variables y1 and y2 as well as
the initial and terminal times 0 and T, respectively. The right hand sides of the differential equations are
specified by using the macrovariable $FMODELE. The option $MODEL=’DE’ indicates integration of a
system of ordinary differential equations. Macrovariable $NA denotes the number of time points (nodes)
in which the results are printed.
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d) Problem solution (basic screen output):

CLASS = DE - RD5 UPDATE = N MODEL = NO HESF = N NF = 0

0 NSTP= 345 NACC= 290 NREJ= 38 NEV = 5532 NEG = 374

1 AT= 0.000000000D+00

AY= 0.200000000D+01 -0.660000000D+00

2 AT= 0.100000000D-06

AY= 0.199999993D+01 -0.661727883D+00

3 AT= 0.200000000D-06

AY= 0.199999987D+01 -0.663007940D+00

4 AT= 0.656175225D-06

AY= 0.199999956D+01 -0.665734985D+00

5 AT= 0.126092836D-05

AY= 0.199999916D+01 -0.666514522D+00

6 AT= 0.218147783D-05

AY= 0.199999855D+01 -0.666657189D+00

7 AT= 0.375735133D-05

AY= 0.199999750D+01 -0.666667678D+00

8 AT= 0.804409324D-05

AY= 0.199999464D+01 -0.666669509D+00

9 AT= 0.292949166D-04

AY= 0.199998047D+01 -0.666677397D+00

10 AT= 0.199301503D-03

AY= 0.199986713D+01 -0.666740383D+00

-----------------------------------------

281 AT= 0.161429359D+01

AY= 0.200007205D+01 -0.666537135D+00

282 AT= 0.161429463D+01

AY= 0.200007136D+01 -0.666622471D+00

283 AT= 0.161429652D+01

AY= 0.200007010D+01 -0.666627481D+00

284 AT= 0.161430239D+01

AY= 0.200006618D+01 -0.666629772D+00

285 AT= 0.161433549D+01

AY= 0.200004412D+01 -0.666642040D+00

286 AT= 0.161460030D+01

AY= 0.199986757D+01 -0.666740131D+00

287 AT= 0.161671877D+01

AY= 0.199845427D+01 -0.667526465D+00

288 AT= 0.163366649D+01

AY= 0.198708726D+01 -0.673925875D+00

289 AT= 0.173214063D+01

AY= 0.191874076D+01 -0.715528198D+00

290 AT= 0.193035891D+01

AY= 0.176619569D+01 -0.833326803D+00

291 AT= 0.200000000D+01

AY= 0.170616796D+01 -0.892808294D+00

TIME= 0:00:00.03
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7.35 Minimization with complementarity constraints (sparse Hessian matrix)

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) = x2
1 − 2x1 + x2

2 − 2x2 + x2
5 + x2

6,

over the set given by the simple constraints x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, nonlinear constraints

2x5 − 2x1 + 2(x5 − 1)x3 = 0

2x6 − 2x2 + 2(x6 − 1)x4 = 0

0.25− (x5 − 1)2 ≥ 0

0.25− (x6 − 1)2 ≥ 0,

and complementrity constraints

x3(0.25− (x5 − 1)2) = 0

x4(0.25− (x6 − 1)2) = 0.

The starting point is xi = 0, 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +-------------------------------------------------------------+

$REM + SPARSE MINIMIZATION WITH COMPLEMENTARITY CONSTRAINTS +

$REM +-------------------------------------------------------------+

$ADD(INTEGER,’\I’)

$SET(INPUT)

IX(1)=1; XL(1)=0.0D0

IX(2)=1; XL(2)=0.0D0

IX(3)=1; XL(3)=0.0D0

IX(4)=1; XL(4)=0.0D0

DO 1 I=1,NF

1 CONTINUE

IC(1)=5; CL(1)=0.0D0

IC(2)=5; CL(2)=0.0D0

IC(3)=1; CL(3)=0.0D0

IC(4)=1; CL(4)=0.0D0

ICC(1)= 3;

ICC(2)= 4

ICC(3)=-3;

ICC(4)=-4

DO 2 I=1,NF

IH(I)=I; JH(I)=I

2 CONTINUE

IH(7)=7

ICG(1)=1

ICG(2)=4

ICG(3)=7

ICG(4)=8

ICG(5)=9

JCG(1)=1

JCG(2)=3
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JCG(3)=5

JCG(4)=2

JCG(5)=4

JCG(6)=6

JCG(7)=5

JCG(8)=6

MC=8

$ENDSET

$SET(FMODELF)

FF=X(1)**2-2.0D0*X(1)+X(2)**2-2.0D0*X(2)+X(5)**2+X(6)**2

$ENDSET

$SET(GMODELF)

GF(1)=2.0D0*X(1)-2.0D0

GF(2)=2.0D0*X(2)-2.0D0

GF(5)=2.0D0*X(5)

GF(6)=2.0D0*X(6)

$ENDSET

$SET(FMODELC)

IF (KC.EQ.1) THEN

FC=2.0D0*X(5)-2.0D0*X(1)+2.0D0*(X(5)-1.0D0)*X(3)

ELSEIF (KC.EQ.2) THEN

FC=2.0D0*X(6)-2.0D0*X(2)+2.0D0*(X(6)-1.0D0)*X(4)

ELSEIF (KC.EQ.3) THEN

FC=2.5D-1-(X(5)-1.0D0)**2

ELSEIF (KC.EQ.4) THEN

FC=2.5D-1-(X(6)-1.0D0)**2

ENDIF

$ENDSET

$SET(GMODELC)

IF (KC.EQ.1) THEN

GC(1)=-2.0D0

GC(3)=2.0D0*(X(5)-1.0D0)

GC(5)=2.0D0+2.0D0*X(3)

ELSEIF (KC.EQ.2) THEN

GC(2)=-2.0D0

GC(4)=2.0D0*(X(6)-1.0D0)

GC(6)=2.0D0+2.0D0*X(4)

ELSEIF (KC.EQ.3) THEN

GC(5)=-2.0D0*(X(5)-1.0D0)

ELSEIF (KC.EQ.4) THEN

GC(6)=-2.0D0*(X(6)-1.0D0)

ENDIF

$ENDSET

$NF=6

$NX=4

$NC=4

$NCC=2

$HESF=’S’

$JACC=’S’

$BATCH

$STANDARD
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c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Hessian matrix, the sparsity pattern of the constraint Jacobian matrix, and the specification
of standard and complementarity constraints. The sparse Hessian matrix, indicated by the statement
$HESF=’S’, is diagonal. The sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’.
By using the macrovariable $FMODELF we specify analytically the value of the model function. By using
the macrovariable $GMODELF we specify analytically the gradient of the model function. By using the
macrovariable $FMODELC we specify analytically the values of the constraint functions. By using the
macrovariable $GMODELC we specify analytically the gradients of the constraint functions. Macrovariable
$NCC specifies the number of complementarity constraints.

d) Problem solution (basic screen output):

CLASS = MN - LC3 UPDATE = N MODEL = FF HESF = S NF = 6

NIC= 0 NIT= 0 NFV= 1 NFG= 4 F=0.210D+00 C=0.750D+00 G=0.490D+01

NIC= 0 NIT= 1 NFV= 3 NFG= 8 F=0.152D+02 C=0.926D+00 G=0.337D+01

NIC= 0 NIT= 2 NFV= 4 NFG= 12 F=0.823D+01 C=0.562D+00 G=0.100D+01

NIC= 0 NIT= 3 NFV= 5 NFG= 16 F=-.372D+00 C=0.122D+00 G=0.389D+00

NIC= 0 NIT= 4 NFV= 6 NFG= 20 F=-.946D+00 C=0.198D+00 G=0.163D+00

NIC= 0 NIT= 5 NFV= 7 NFG= 24 F=-.981D+00 C=0.702D-02 G=0.276D-01

NIC= 0 NIT= 6 NFV= 8 NFG= 28 F=-.994D+00 C=0.903D-04 G=0.463D-02

NIC= 0 NIT= 7 NFV= 9 NFG= 32 F=-.999D+00 C=0.696D-05 G=0.133D-02

NIC= 0 NIT= 8 NFV= 10 NFG= 36 F=-.998D+00 C=0.978D-06 G=0.284D-03

NIC= 0 NIT= 9 NFV= 11 NFG= 40 F=-.100D+01 C=0.607D-06 G=0.966D-04

NIC= 0 NIT= 10 NFV= 12 NFG= 44 F=-.100D+01 C=0.185D-08 G=0.240D-04

NIC= 0 NIT= 11 NFV= 13 NFG= 48 F=-.100D+01 C=0.244D-08 G=0.511D-05

NIC= 0 NIT= 12 NFV= 14 NFG= 52 F=-.100D+01 C=0.156D-08 G=0.175D-05

NIC= 0 NIT= 13 NFV= 15 NFG= 56 F=-.100D+01 C=0.100D-11 G=0.438D-06

NIC= 0 NIT= 14 NFV= 16 NFG= 60 F=-.100D+01 C=0.576D-11 G=0.942D-07

NIC= 0 NIT= 15 NFV= 17 NFG= 64 F=-.100D+01 C=0.360D-11 G=0.316D-07

NIC= 0 NIT= 16 NFV= 18 NFG= 68 F=-.100D+01 C=0.155D-14 G=0.788D-08

NIC= 0 NIT= 17 NFV= 19 NFG= 72 F=-.100D+01 C=0.179D-13 G=0.162D-08

NIC= 0 NIT= 18 NFV= 20 NFG= 76 F=-.100D+01 C=0.117D-13 G=0.592D-09

NIC= 0 NIT= 19 NFV= 21 NFG= 80 F=-.100D+01 C=0.129D-15 G=0.148D-09

NIC= 0 NIT= 20 NFV= 22 NFG= 84 F=-.100D+01 C=0.104D-15 G=0.332D-10

0 NIT= 21 NFV= 22 NFG= 84 F=-0.10000D+01 C=0.1D-15 P=0.2D-16 G=0.3D-10

FF = -0.1000000000D+01

X = 0.5000022653D+00 0.5000020861D+00 0.7132758014D-12 0.7846083046D-11

0.5000022653D+00 0.5000020861D+00

TIME= 0:00:00.00

7.36 Large-scale least squares optimization with complementarity constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F (x) =
1

2

n−1∑
i=1

(fA
i )2,

where

fA
i = (2 + 5x2

i )xi + 1 +
i+1∑

j=max(1,i−5)

xj(1 + xj), 1 ≤ i ≤ n− 1,
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and n = 101, over the set given by the nonlinear constraints

fC
i (x) = 4x2i − (x2i−1 − x2i+1) exp(x2i−1 − x2i − x2i+1)− 3 ≥ 0,

1 ≤ i ≤ nC , where nC = 50, and the complementarity constraints

fC
i (x)fC

i+nc/2
(x) = 0, 1 ≤ i ≤ nC/2.

The starting point is xi = 3 for 1 ≤ i ≤ n.

b) Problem specification (input file):

$REM +---------------------------------------------------------------+

$REM + SPARSE SUM OF SQUARES WITH COMPLEMENTARITY CONSTRAINTS +

$REM +---------------------------------------------------------------+

$ADD(INTEGER,’\I\K’)

$SET(INPUT)

DO 1 I=1,NF

X(I)=3.0D0

1 CONTINUE

MA=1

DO 3 KA=1,NA

IAG(KA)=MA

DO 2 I=5,1,-1

IF (KA.GT.I) THEN

JAG(MA)=KA-I

MA=MA+1

ENDIF

2 CONTINUE

JAG(MA)=KA

JAG(MA+1)=KA+1

MA=MA+2

3 CONTINUE

IAG(NA+1)=MA

MA=MA-1

MC=1

DO 4 KC=1,NC

IC(KC)=1; CL(KC)=0.0D0

ICC(KC)=KC

ICG(KC)=MC

I=2*KC

JCG(MC)=I-1

JCG(MC+1)=I

JCG(MC+2)=I+1

MC=MC+3

4 CONTINUE

ICG(NC+1)=MC

MC=MC-1

$ENDSET

$SET(FMODELA)

FA=(2.0D0+5.0D0*X(KA)**2)*X(KA)+1.0D0

DO 5 I=MAX(1,KA-5),MIN(NF,KA+1)

FA=FA+X(I)*(1.0D0+X(I))

5 CONTINUE
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$ENDSET

$SET(FMODELC)

K=2*KC

FC=4.0$P 0*X(K)-(X(K-1)-X(K+1))*EXP(X(K-1)-X(K)-X(K+1))-3.0D0

$ENDSET

$IADA=1

$IADC=1

$NF=101

$NA=100

$NC=50

$NCC=25

$MA=800

$MC=800

$MODEL=’AQ’

$JACA=’S’

$JACC=’S’

$BATCH

$STANDARD

c) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Jacobian matrix, the sparsity pattern of the constraint Jacobian matrix and the specification
of standard and complementarity constraints. The sparse objective Jacobian matrix is indicated by the
statement $JACA=’S’. The sparse constraint Jacobian matrix is indicated by the statement $JACC=’S’.
By using the macrovariable $FMODELA we specify values of the approximating function analytically.
The gradients of the approximating function are computed by automatic differentiation, since $IADA=1.
By using the macrovariable $FMODELC we specify the values of the constraint functions analytically.
The gradients of the constraint functions are computed by automatic differentiation, since $IADC=1. For
the sum-of-squares minimization we set $MODEL=’AQ’. Macrovariable $NCC specifies the number of
complementarity constraints.

d) Problem solution (basic screen output):

CLASS = MN - LC3 UPDATE = N MODEL = AQ HESF = S NF = 101

NIC= 0 NIT= 0 NFV= 27 NFG= 27 F=0.252D+07 C=0.000D+00 G=0.420D+05

NIC= 0 NIT= 1 NFV= 55 NFG= 55 F=0.674D+06 C=0.000D+00 G=0.139D+05

NIC= 0 NIT= 2 NFV= 83 NFG= 83 F=0.182D+06 C=0.000D+00 G=0.457D+04

NIC= 0 NIT= 3 NFV= 111 NFG= 111 F=0.500D+05 C=0.000D+00 G=0.151D+04

NIC= 0 NIT= 4 NFV= 139 NFG= 139 F=0.139D+05 C=0.000D+00 G=0.505D+03

NIC= 0 NIT= 5 NFV= 167 NFG= 167 F=0.519D+04 C=0.346D-01 G=0.178D+03

NIC= 0 NIT= 6 NFV= 195 NFG= 195 F=0.279D+04 C=0.000D+00 G=0.674D+02

NIC= 0 NIT= 7 NFV= 223 NFG= 223 F=0.184D+04 C=0.384D-02 G=0.262D+02

NIC= 0 NIT= 8 NFV= 251 NFG= 251 F=0.163D+04 C=0.191D-01 G=0.168D+02

NIC= 0 NIT= 9 NFV= 279 NFG= 279 F=0.159D+04 C=0.523D-02 G=0.255D+01

NIC= 0 NIT= 10 NFV= 307 NFG= 307 F=0.159D+04 C=0.125D-03 G=0.142D+00

NIC= 0 NIT= 11 NFV= 335 NFG= 335 F=0.159D+04 C=0.683D-04 G=0.126D-01

NIC= 0 NIT= 12 NFV= 363 NFG= 363 F=0.159D+04 C=0.374D-06 G=0.349D-03

NIC= 0 NIT= 13 NFV= 391 NFG= 391 F=0.159D+04 C=0.486D-09 G=0.166D-06

NIC= 0 NIT= 14 NFV= 419 NFG= 419 F=0.159D+04 C=0.000D+00 G=0.853D-13

NIC= 0 NIT= 15 NFV= 447 NFG= 447 F=0.159D+04 C=0.000D+00 G=0.568D-13

0 NIT= 16 NFV= 447 NFG= 447 F= 0.15927D+04 C=0.0D+00 P=0.2D-28 G=0.6D-13
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8 Model examples for demonstration of graphic outputs

Here we introduce several problem specifications (input files) which demonstrate the application of the
graphic screen output. The graphic screen output can be used only on PC computers under the MS DOS
system. This possibility is not allowed on the UNIX workstations.

The input files are included into the UFO system as demo-files PROC01.UFO,. . . ,PROC08.UFO. Corre-
sponding graphic pictures are included in the Appendix D. The data recommended for graphic pictures
are introduced in lines which begin by the directive $REM.

8.1 Nonlinear regression

$SET(INPUT)

LDIM=5

X(1)=7.0D20

X(2)=1.0D4

X(3)=2.2D0

X(4)=1.01D0

X(5)=7.0D17

X(6)=7.0D3

X(7)=1.6D0

X(8)=1.01D0

X(9)=1.0D16

X(10)=4.0D3

X(11)=1.5D0

X(12)=1.01D0

X(13)=2.0D15

X(14)=4.0D3

X(15)=1.3D0

X(16)=1.01D0

X(17)=1.0D16

X(18)=5.0D2

X(19)=1.2D0

X(20)=1.01D0

BETA=5.95D0

CALL BIUD01(NF,LDIM,NA,X,XL,XU,IX,AT,AM)

$ENDSET

$SET(FMODELA)

CALL BAFU01(NF,LDIM,KA,NA,X,AT,FA,BETA)

$ENDSET

$SET(GMODELA)

CALL BAGU01(NF,LDIM,KA,NA,X,AT,GA,BETA)

$ENDSET

$NF=30

$NA=500

$MIT=100

$MODEL=’AQ’

$CLASS=’GN’

$TYPE=’G’

$DECOMP=’M’

$NUMBER=7

$UPDATE=’F’

$TOLX=’1.0$P-16’
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$TOLF=’1.0$P-16’

$TOLB=’1.0$P-16’

$TOLG=’1.0$P-6’

$KBA=1

$KBF=2

$GRAPH=’Y’

$SCAN=’Y’

$BATCH

$ADD(REAL,’\BETA\AT($NA)’)

$ADD(SUBROUTINES)

SUBROUTINE BIUD01(N,L,NA,X,XL,XU,IX,AT,AM)

INTEGER N,L,NA,IX(N),I,K

REAL*8 X(N),XL(N),XU(N),AT(NA),AM(NA)

N=4*L

K=0

DO 1 I=1,L

X(K+1)=LOG(X(K+1))

XL(K+1)=LOG(1.0D+0)

XU(K+1)=LOG(1.0D+40)

IX(K+1)=3

X(K+2)=LOG(X(K+2))

XL(K+2)=LOG(1.0D+0)

XU(K+2)=LOG(1.0D+10)

IX(K+2)=3

XL(K+3)=1.0D-2

XU(K+3)=1.0D+2

IX(K+3)=3

XL(K+4)=1.00001D0

XU(K+4)=1.00000D1

IX(K+4)=3

K=K+4

1 CONTINUE

OPEN (11,FILE=’PROC01.DAT’,STATUS=’OLD’)

NA=0

2 NA=NA+1

READ (11,’(2D14.6)’,ERR=3) AT(NA),AM(NA)

GO TO 2

3 NA=NA-1

RETURN

END

SUBROUTINE BAFU01(N,L,KA,NA,X,AT,FA,BETA)

INTEGER N,L,KA,NA

REAL*8 X(N),AT(NA),FA,Q(8),QD(8)

REAL*8 ARG,POM,BK,B6INT,BETA

INTEGER J,K

COMMON /BCOM/ Q,QD

DATA BK /8.617385D-5/

FA=0.0D 0

K=0

DO 1 J=1,L

ARG=X(K+3)/(BK*AT(KA))

IF (KA.EQ.1) THEN
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Q(J)=B6INT(AT(KA),ARG)

FA=FA+EXP(X(K+1)+X(K+2)-ARG)

ELSE

POM=X(K+4)-1.0D0

FA=FA+EXP(X(K+1)+X(K+2)-ARG)*

& (1.0D0+(POM/BETA)*EXP(X(K+1))*(B6INT(AT(KA),ARG)-

& Q(J)))**(-X(K+4)/POM)

ENDIF

K=K+4

1 CONTINUE

RETURN

END

SUBROUTINE BAGU01(N,L,KA,NA,X,AT,GA,BETA)

INTEGER N,L,KA,NA

REAL*8 X(N),AT(NA),GA(N)

REAL*8 FAC,ARG,POM,POW,BK,B6INT,B6INTD,A,B,C,D,E,F,G

REAL*8 Q(8),QD(8),QQ,QQD,BETA

INTEGER J,K

COMMON /BCOM/ Q,QD

DATA BK /8.617385D-5/

K=0

DO 1 J=1,L

FAC=1.0D0/(BK*AT(KA))

ARG=FAC*X(K+3)

IF (KA.EQ.1) THEN

Q(J)=B6INT(AT(KA),ARG)

QD(J)=FAC*B6INTD(AT(KA),ARG)

QQ=0.0D0

QQD=0.0D0

ELSE

QQ=B6INT(AT(KA),ARG)-Q(J)

QQD=FAC*B6INTD(AT(KA),ARG)-QD(J)

ENDIF

POM=X(K+4)-1.0D0

POW=-X(K+4)/POM

A=EXP(X(K+1)+X(K+2)-ARG)

B=EXP(X(K+1))

G=B*QQ

C=(1.0D0+(POM/BETA)*G)

D=C**POW

E=POW*D/C

F=POM*POM

GA(K+1)=A*(D+E*(POM/BETA)*G)

GA(K+2)=A*D

GA(K+3)=A*(-FAC*D+E*(POM/BETA)*B*QQD)

GA(K+4)=A*D*(LOG(C)/F+POW*G/(C*BETA))

K=K+4

1 CONTINUE

RETURN

END
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FUNCTION B6INT(T,X)

REAL*8 T,X,B6INT

REAL*8 A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6

DATA A1,A2,A3,A4,A5,A6 /41.0D+0, 590.0D+0, 3648.0D+0,

& 9432.0D+0, 8028.0D+0, 720.0D+0/

DATA B1,B2,B3,B4,B5,B6 /42.0D+0, 630.0D+0, 4200.0D+0,

& 12600.0D+0, 15120.0D+0, 5040.0D+0/

B6INT=(1.0D0-(A6+X*(A5+X*(A4+X*(A3+X*(A2+X*(A1+X))))))/

& (B6+X*(B5+X*(B4+X*(B3+X*(B2+X*(B1+X)))))))*EXP(-X)*T

RETURN

END

FUNCTION B6INTD(T,X)

REAL*8 T,X,B6INTD

REAL*8 A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6

REAL*8 C1,C2,C3,C4,C5,D1,D2,D3,D4,D5,DIS,DEN,DISD,DEND

DATA A1,A2,A3,A4,A5,A6 /41.0D+0, 590.0D+0, 3648.0D+0,

& 9432.0D+0, 8028.0D+0, 720.0D+0/

DATA B1,B2,B3,B4,B5,B6 /42.0D+0, 630.0D+0, 4200.0D+0,

& 12600.0D+0, 15120.0D+0, 5040.0D+0/

DATA C1,C2,C3,C4,C5 /205.0D+0, 2360.0D+0, 10944.0D+0,

& 18863.0D+0, 8028.0D+0/

DATA D1,D2,D3,D4,D5 /210.0D+0, 2520.0D+0, 12600.0D+0,

& 25200.0D+0, 15120.0D+0/

DIS=A6+X*(A5+X*(A4+X*(A3+X*(A2+X*(A1+X)))))

DEN=B6+X*(B5+X*(B4+X*(B3+X*(B2+X*(B1+X)))))

DISD=C5+X*(C4+X*(C3+X*(C2+X*(C1+6.0D0*X))))

DEND=D5+X*(D4+X*(D3+X*(D2+X*(D1+6.0D0*X))))

B6INTD=((DIS-DISD+DEND*DIS/DEN)/DEN-1.0D0)*EXP(-X)*T

RETURN

END

$ENDADD

$STANDARD

8.2 Nonlinear minimax optimization

$FLOAT W

$SET(INPUT)

X(1)=0.5D0 ; X(2)=0.0D0 ; X(3)=0.0D0

X(4)=0.0D0 ; X(5)=0.0D0

$ENDSET

$SET(FMODELA)

W=0.1D0*DBLE(KA-1)-1.0D0

FA=(X(1)+W*X(2))/(1.0D0+W*(X(3)+W*(X(4)+W*X(5))))-EXP(W)

$ENDSET

$MODEL=’AM’

$NF=5

$NA=21

$NAL=0

$GRAPH=’Y’

$MAP=’Y’

$HIL=’Y’

$ISO=’Y’
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$PATH=’E’

$BATCH

$STANDARD

$REM VAR=1, XL=-5, XU=5

$REM VAR=3, XL=-5, XU=5

8.3 Transformer network design

$SET(INPUT)

NEXT=4

CALL EIUD06(NF,NA,NAL,X,FMIN,XMAX,NEXT,IEXT,IERR)

$ENDSET

$SET(FMODELA)

CALL EAFU06(NF,KA,X,FA,NEXT)

$ENDSET

$SET(GMODELA)

CALL EAGU06(NF,KA,X,GA,NEXT)

$ENDSET

$NF=6

$NA=11

$NAL=0

$MOUT=1

$MODEL=’AM’

$GRAPH=’Y’

$MAP=’Y’

$HIL=’Y’

$ISO=’Y’

$PATH=’E’

$BATCH

$STANDARD

$REM VAR=1, XL=-5, XU=5

$REM VAR=3, XL=-5, XU=5

8.4 Global optimization

$SET(INPUT)

NEXT=4

CALL EIUD09(NF,XL,XU,NEXT,IERR)

$ENDSET

$SET(FMODELF)

CALL EFFU09(NF,X,FF,NEXT)

$ENDSET

$NF=4

$MOUT=1

$GCLASS=1

$GRAPH=’Y’

$MAP=’Y’

$HIL=’Y’

$ISO=’Y’

$EXTREM=’G’
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$BATCH

$STANDARD

$REM VAR=1, XL=-3.8, XU=3.8

$REM VAR=2, XL=-3.8, XU=3.8

8.5 Nonsmooth optimization

$SET(INPUT)

NEXT=15

CALL EIUD19(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)

MA=NF+3

$ENDSET

$SET(FMODELF)

CALL EFFU19(NF,X,FF,NEXT)

$ENDSET

$SET(GMODELF)

CALL EFGU19(NF,X,GF,NEXT)

$ENDSET

$KSF=3

$NF=30

$MOUT=-1

$MODEL=’FF’

$GRAPH=’Y’

$MAP=’Y’

$HIL=’Y’

$ISO=’Y’

$PATH=’Y’

$BATCH

$STANDARD

$REM VAR=1, XL=-5, XU=5

$REM VAR=4, XL=-5, XU=5

8.6 The Rosenbrock function

$SET(INPUT)

X(1)=-1.2D0

X(2)= 1.0D0

$ENDSET

$SET(FMODELF)

FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

$ENDSET

$NF=2

$GRAPH=’Y’

$MAP=’Y’

$ISO=’Y’

$PATH=’Y’

$BATCH

$STANDARD
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8.7 Ordinary differential equations

$FLOAT W1,W2,W3,W4

$SET(INPUT)

TA=0.0D0

YA(1)=0.994D0

YA(2)=0.0D0

YA(3)=0.0D0

YA(4)=-2.00158510637908252240537862224D0

TAMAX=17.0652165601579625588917206249D0

$ENDSET

$SET(FMODELE)

W1=0.012277471D0

W2=1.D0-W1

W3=(YA(1)+W1)**2+YA(2)**2

W3=W3*SQRT(W3)

W4=(YA(1)-W2)**2+YA(2)**2

W4=W4*SQRT(W4)

GO TO (1,2,3,4) KE

1 FE=YA(3)

GO TO 5

2 FE=YA(4)

GO TO 5

3 FE=YA(1)+2*YA(4)-W2*(YA(1)+W1)/W3-W1*(YA(1)-W2)/W4

GO TO 5

4 FE=YA(2)-2*YA(3)-W2*YA(2)/W3-W1*YA(2)/W4

5 CONTINUE

$ENDSET

$NE=4

$NA=2000

$MODEL=’DE’

$SOLVER=’DP5’

$TOLR=’1.0$P-9’

$TOLA=’1.0$P-9’

$MED=1

$GRAPH=’Y’

$BATCH

$STANDARD

8.8 The Lorenz attractor

$FLOAT W1,W2,W3

$SET(INPUT)

W1=10.0D0

W2=28.0D0

W3=8.0D0/3.0D0

TA=0.0D0

YA(1)=-8.0D0

YA(2)= 8.0D0

YA(3)=W2-1.0D0

TAMAX=50.0D0

$ENDSET
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$SET(FMODELE)

GO TO (1,2,3) KE

1 FE=-W1*YA(1)+W1*YA(2)

GO TO 4

2 FE=-YA(1)*YA(3)+W2*YA(1)-YA(2)

GO TO 4

3 FE=YA(1)*YA(2)-W3*YA(3)

4 CONTINUE

$ENDSET

$NE=3

$NA=2000

$MODEL=’D’

$SOLVER=’DP8’

$TOLR=’1.0$P-9’

$TOLA=’1.0$P-9’

$MED=1

$GRAPH=’Y’

$BATCH

$STANDARD
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[190] L.Lukšan: Computational experience with improved variable metric methods for unconstrained min-
imization. Kybernetika 26 (1990) 415-431.
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[211] L.Lukšan, C.Matonoha, J.Vlček: Trust-region interior point method for large sparse l1 optimization.
Optimization Methods and Software 22 (2007) 737-753.
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[218] L.Lukšan, C.Matonoha, J.Vlček: Modified CUTE Problems for Sparse Unconstrained Optimization.
Technical Report V-1081. Prague, ICS AS CR 2010.
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[230] L.Lukšan, J.Vlček: Preconditioning of saddle-point systems. In: Proceedings of the conference SI-
MONA 2000, Liberec 2000.
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[239] L.Lukšan, J.Vlček: Recursive form of general limited memory variable metric methods. Kybernetika
49 (2013) 224-235.

[240] L.Lukšan, J.Vlček: Efficient tridiagonal preconditioner for the matrix-free truncated Newton method.
Applied Mathematics and Computation 235 (2014) 394-407.
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[245] M.Mäkelä, J.Neittaanmäki: Nonsmooth Optimization. World Scientific Publishing Co. Ltd. London
1992.

[246] J.M.Martinez: A quasi-Newton method with modification of one column per iteration. Computing
33 (1984) 353-362.

[247] J.M.Martinez, M.C.Zambaldi: An inverse column-updating method for solving large-scale nonlinear
systems of equations. Optimization Methods and Software 1 (1992) 129-140.

[248] E.S.Marwill: Exploiting sparsity in Newton-like methods. Ph.D. Thesis, Cornell University, Ithaca
1978.

[249] H.Matthies, G.Strang: The solution of nonlinear finite element equations. Int. J. for Numerical
Methods in Engineering 14 (1979) 1613-1623.

[250] G.P.McCormick, K.Ritter: Alternative Proofs of the convergence properties of the conjugate-gradient
method. J. Optimization Theory and Applications 13 (1975) 497-518.

[251] M.F.McGuire, P.Wolfe: Evaluating a restart procedure for conjugate gradients. Report RC-4382,
IBM Research Center, Yorktown Heights, 1973.

[252] J.Miao: Two infeasible interior-point predictor-corrector algorithms for linear programming. SIAM
J. Optimization 6 (1996) 587-599.

[253] A.Miele, J.W.Cantrell: Study on a memory gradient method for the minimization of functions. J.
Optimization Theory and Applications 3 (1969) 459-185.

292



[254] R.B.Mifflin, J.L.Nazareth: The least-prior deviation quasi-Newton update. Technical Report, Dept.
of Pure and Applied Math., Washington State University, Pullman 1991.

[255] S.Mizuno: Polynomiality of infeasible-interior-point algorithms for linear programming. Math Pro-
gramming 67 (1994) 109-119.
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[343] J.Vlček, L.Lukšan: Globally convergent variable metric method for nonconvex nondifferentiable
unconstrained minimization. J. Optimization Theory and Applications 111 (2001) 407-430.
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A Demonstration of the text dialogue mode

Suppose that the model function has the form

fF (x) = 100(x2
1 − x2)

2 + (x1 − 1)2

(the Rosenbrock function) and the starting point is x1 = −1.2 and x2 = 1.0. If we type the statement
UFOGO (without batch input file specification), then the following questions (which we supplement together
with answers) appear on the screen.

UFO PREPROCESSOR V.3.1.
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AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,

HERE THE STARTING POINT, BOUNDS FOR VARIABLES,

USER SUPPLIED INPUT:

? INPUT ( ) ?

X(1) = -1.2D0; X(2) = 1.0D0

? GRAPH (N) ?

SPECIFICATION OF GRAPHICAL OUTPUT

N - GRAPHICAL OUTPUT SUPPRESSED
Y - GRAPHICAL OUTPUT REQUIRED

? DISPLAY (N) ?

SPECIFICATION OF EXTENDED SCREEN OUTPUT

N - EXTENDED SCREEN OUTPUT SUPPRESSED
Y - EXTENDED SCREEN OUTPUT REQUIRED

? MODEL (FF) ?

TYPE OF OBJECTIVE FUNCTION

FF - GENERAL FUNCTION

FL - LINEAR FUNCTION
FQ - QUADRATIC FUNCTION

AF - SUM OF FUNCTIONS
AQ - SUM OF SQUARES

AP - SUM OF POWERS

AM - MINIMAX

DF - DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION
DQ - DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

DE - DIFFERENTIAL EQUATIONS

NE - NONLINEAR EQUATIONS

NO - MODEL IS NOT SPECIFIED

? NF (0) ?

NUMBER OF VARIABLES

2
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? IEXT (0) ?

TYPE OF EXTREMUM

0 - MINIMUM

1 - MAXIMUM

? FMODELF (*) ?

MODEL OF OBJECTIVE FUNCTION

FF = <FORTRAN EXPRESSION>

FF = 1.0D2∗(X(1)∗∗2 - X(2))∗∗2 + (X(1) - 1.0D0)∗∗2

GF(NF) = <FORTRAN EXPRESSION>
.

.

GF(2) = <FORTRAN EXPRESSION>

GF(1) = <FORTRAN EXPRESSION>

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

? GMODELF (*) ?

HF(M) = <FORTRAN EXPRESSION>
.

.

HF(2) = <FORTRAN EXPRESSION>

HF(1) = <FORTRAN EXPRESSION>

MODEL OF HESSIAN MATRIX

? HMODELF (*) ?

? KCF (2) ?

COMPLEXITY OF THE OBJECTIVE FUNCTION

1 - EASY COMPUTED FUNCTION

2 - REASONABLE BUT NOT EASY COMPUTED FUNCTION

3 - EXTREMELY COMPLICATED FUNCTION

? KSF (1) ?

SMOOTHNESS OF THE OBJECTIVE FUNCTION:

1 - SMOOTH AND WELL-CONDITIONED FUNCTION

2 - SMOOTH BUT ILL-CONDITIONED FUNCTION

3 - NONSMOOTH FUNCTION
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? HESF (D) ?

TYPE OF HESSIAN MATRIX:

D - DENSE
S - SPARSE WITH KNOWN (GENERAL) STRUCTURE

N - HESSIAN MATRIX IS NOT USED

? KBF (0) ?

TYPE OF SIMPLE BOUNDS:

0 - NO SIMPLE BOUNDS

1 - ONE SIDED SIMPLE BOUNDS

2 - TWO SIDED SIMPLE BOUNDS

? KBC (0) ?

TYPE OF GENERAL CONSTRAINTS:

0 - NO GENERAL CONSTRAINTS

1 - ONE SIDED GENERAL CONSTRAINTS

2 - TWO SIDED GENERAL CONSTRAINTS

? EXTREM (L) ?

TYPE OF OPTIMIZATION

L - LOCAL OPTIMIZATION

G - GLOBAL OPTIMIZATION

? NORMF (0) ?

SCALING SPECIFICATION FOR VARIABLES:

0 - NO SCALING IS PERFORMED

1 - SCALING FACTORS ARE DETERMINED AUTOMATICALLY

2 - SCALING FACTORS ARE SUPPLIED BY USER

? INPUTDATA (N) ?
READ INPUT VALUES OF X (Y OR N)

? TEST (N) ?
STANDARD TEST OF EXTERNAL SUBROUTINES:

N - NO TEST

Y - PERFORM TEST BEFORE SOLUTION

A - PERFORM TEST AFTER SOLUTION

O - PERFORM TEST WITHOUT SOLUTION
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? KOUT (0) ?

LEVEL OF TEXT FILE OUTPUT:
ABS(KOUT)=0 - NO PRINT OR PAPER SAVING PRINT

ABS(KOUT)=1 - STANDARD PRINT OF ITERATIONS

ABS(KOUT)=2 - ADDITIONAL PRINT OF STEPSIZE SELECTION

ABS(KOUT)=3 - ADDITIONAL PRINT OF DIRECTION DETERMINATION

AND VARIABLE METRIC UPDATE
ABS(KOUT)=4 - ADDITIONAL PRINT OF CONSTRAINT HANDLING

ABS(KOUT)=5 - ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION

KOUT<0 - ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING

? LOUT (1) ?

LEVEL OF TEXT FILE OUTPUT:

0 - NO PRINT

1 - COPY OF THE BASIC SCREEN OUTPUT

-1 - PAPER SAVING PRINT

? MOUT (-2) ?

LEVEL OF BASIC SCREEN OUTPUT:
ABS(MOUT)=0 - NO OUTPUT

ABS(MOUT)=1 - FINAL OUTPUT

ABS(MOUT)=2 - ADDITIONAL OUTPUT IN EACH ITERATION

ABS(MOUT)=3 - ADDITIONAL FINAL OUTPUT OF LINEAR OR

QUADRATIC PROGRAMMING

ABS(MOUT)=4 - ADDITIONAL OUTPUT IN EACH ITERATION

OF LINEAR OR QUADRATIC PROGRAMMING

MOUT<0 - FINAL OUTPUT WITH TERMINATION CRITERION

1

? NOUT (0) ?

LEVEL OF BASIC SCREEN OUTPUT:

0 - BASIC FINAL OUTPUT

1 - EXTENDED FINAL OUTPUT

1

? MSELECT (1) ?

SELECTION OF OPTIMIZATION METHOD

1 - AUTOMATICAL SELECTION OF METHOD

2 - MANUAL SELECTION OF METHOD

3 - MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS

4 - MANUAL SELECTION OF METHOD AND ALL PARAMETERS
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? LAPACK (N) ?

USE LAPACK SUBROUTINES

N - ONLY UFO SUBROUTINES

Y - CONNECTION TO LAPACK POSSIBLE

SPECIFIC OUTPUT.

CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A

HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

USER SUPPLIED OUTPUT:

? OUTPUT ( ) ?

? OUTPUTDATA (N) ?
WRITE OUTPUT VALUES OF X (Y OR N)

UFO PREPROCESSOR STOP

Each question is represented by one frame which contains the contents of the question (name of the
macrovariable that has to be defined), the default value (in brackets) and an explanation of the requirement.
If no default value is wanted, the corresponding value or text has to be typed. The dialogue can be ended
by pressing the key <!>.

The result of the UFO preprocessor action is the following source program (reported in a slightly short-
ened form) consisting of global declarations, input specifications, problem definition, method realization
and control variables adjustment:

*

* -------------------

* GLOBAL DECLARATIONS

* -------------------

*

INTEGER ITIME

INTEGER IMD

INTEGER IX(1)

REAL*8 UXVDOT

REAL*8 GF(2)

REAL*8 X(2)

REAL*8 HD(2)

REAL*8 HF(2*(2+1)/2)

REAL*8 S(2)

REAL*8 ALF

REAL*8 BET

REAL*8 XO(2)

REAL*8 GO(2)

INTEGER IMB

*

* commons placed here were omitted

* since they require a large space

*
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* -------------------

* END OF DECLARATIONS

* -------------------

*

OPEN (2,FILE=’P.OUT’,STATUS=’UNKNOWN’)

OPEN (3,FILE=’P.DIM’,STATUS=’UNKNOWN’)

CALL UYCLEA

CALL UYINTP

*

* ----------

* METHOD (1)

* ----------

*

CALL UYINT1

CALL UOTES1(’VM’,’L’,’I’,’1’,’B’,’FF

& ’,’D’,NF)

X(1)=-1.2D0

X(2)=1.0D0

CALL UYCLST

WRITE(3,’(/’’PROBLEM: NEXT =’’,I8)’) NEXT

IF (NF.GT.2) THEN

CALL UOERR2(’UZLMIN’,80,NF,2)

CALL UOERR4

ITERM=-80

TXFU=’LACK SPC’

ENDIF

WRITE(3,’(’’NUMBER OF VARIABLES: NF =’’,I8)’) NF

M=NF*(NF+1)/2

IF (ITERM.LT.0) STOP

CALL UYTIM1(ITIME)

NDECF=0

IF (ITERM.NE.0) GO TO 11200

CALL UO0FU1(NF,NA,NAL,MAL,NC,NCL,MCL,EPS0,EPS1,EPS2,EPS3,EPS4,EPS5

& ,EPS6,EPS7,EPS8,EPS9,ETA0,ETA1,ETA2,ETA3,ETA4,ETA5,ETA6,ETA7,E

& TA8,ETA9,ALF1,ALF2,ALF3,BET1,BET2,BET3,GAM1,GAM2,GAM3,DEL1,DEL

& 2,DEL3,RPF1,RPF2,RPF3,RGF1,RGF2,RGF3,FMIN,XMAX,XDEL,REXP,MET,M

& ET1,MET2,MET3,MES,MES1,MES2,MES3,MOT,MOT1,MOT2,MOT3,MOS,MOS1,M

& OS2,MOS3,MEP,MEP1,MEP2,MEP3,MEG,MEG1,MEG2,MEG3,MEX,MEX1,MEX2,M

& EX3,MED,MED1,MED2,MED3,MCG,MCG1,MFP,MFP1,MPF,MPF1,MGF,MGF1,MLP

& ,MLP1,MQP,MQP1,MEQ,MEQ1,MSG,MSG1,KSF,KCF,KSA,KCA,KSC,KCC,KTERS

& ,INITD,INITS,INITH,IREM,IADD,IRES1,IRES2,MRED,IRAN1,IRAN2,ISAM

& 1,ISAM2,KINP,IPRN)

*

* ----------------------

* VARIABLE METRIC METHOD

* TEMPLATE : U1FDU1

* ----------------------

*

ASSIGN 11130 TO IMD

CALL UYPRO1(’UXFU’,1)

CALL UYPRO2(FMIN,FO)

11110 CONTINUE
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*

* -----------------

* MODEL DESCRIPTION

* -----------------

*

11600 CALL UF1F01(NF,GF,GF,FF,F)

GOTO (11640,11610,11620) ISB+1

11610 CONTINUE

ASSIGN 11710 TO IMB

11700 CONTINUE

NFV=NFV+1

FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2

GOTO IMB

11710 CONTINUE

GOTO 11600

11620 CONTINUE

CALL UF0GS2(NF,X,IX,X,GF,FF,HD,R,SNORM,1.0D-15,1.0D-15,2,1)

GOTO (11600,11630) ISB+1

11630 CONTINUE

ASSIGN 11910 TO IMB

GOTO 11700

11910 CONTINUE

GO TO 11620

11640 CONTINUE

*

* ------------------------

* END OF MODEL DESCRIPTION

* ------------------------

*

GO TO IMD

11130 CONTINUE

CALL UYTRUG(NF,N,X,GF,GF,UMAX,GMAX)

CALL UO2FU3(NF,M,NA,NC,X,GF,HF,X,X,F,DMAX,GMAX)

CALL UYFUT1(N,F,FO,UMAX,GMAX,DMAX,ITES,IRES1,IRES2,INEW)

IF(ITERM.NE.0) GOTO 11190

11140 CONTINUE

ASSIGN 11140 TO IMD

CALL UUDSD1(N,HF,1)

GOTO (11150,11110) ISB+1

11150 CONTINUE

IF(ITERM.NE.0) GOTO 11190

CALL UYCPSD(NF,IX,HF,HD,MCG1)

CALL UYTRUH(NF,N,X,HF)

*

* -----------------------

* DIRECTION DETERMINATION

* TEMPLATE : UDGLG1

* -----------------------

*

CALL UOD1D1

IF (IDECF.LT.0) THEN

IDECF=9
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INF=0

ENDIF

TDXX(1:4)=’INV ’

IF (IDECF.EQ.0) THEN

*

* INVERSION

*

ALF=ETA2

CALL UXDPGF(N,HF,INF,ALF,BET)

CALL UXDPGI(N,HF)

NDECF=NDECF+1

IDECF=9

ELSE IF (IDECF.EQ.9) THEN

ELSE

ITERD=-1

TDXX=’BAD DEC9’

CALL UOERR1(’UDDLI1’,1)

GO TO 12630

ENDIF

GNORM=SQRT(UXVDOT(N,GF,GF))

*

* NEWTON LIKE STEP

*

CALL UXDSMM(N,HF,GF,S)

CALL UXVNEG(N,S,S)

INITD=MAX(ABS(INITD),1)

ITERD=1

IF(INF.EQ.0) THEN

TDXX(5:8)=’ POS’

ELSEIF(INF.LT.0) THEN

TDXX(5:8)=’ ZER’

ELSE

TDXX(5:8)=’ NEG’

ENDIF

SNORM=SQRT(UXVDOT(N,S,S))

NRED=INF

CALL UOD1D5(ALF,BET,INF)

12630 CALL UOD1D2(N,GF,S)

*

* ------------------------------

* END OF DIRECTION DETERMINATION

* ------------------------------

*

IF (KD.GT.0) P=UXVDOT(N,GF,S)

CALL UD1TL1(NF,N,GF,S,EPS0,ALF1,ALF2,R,P,GNORM,SNORM,RMIN,RMAX,XMA

& X,XDEL,MES,INITD,INITH)

IF(ITERM.NE.0) GOTO 11190

IF(IREST.NE.0) GOTO 11140

CALL UYTRUS(NF,X,X,XO,GF,GO,S,S,RO,FP,FO,F,PO,P,CMAX,CMAXO)

11170 CONTINUE

ASSIGN 11170 TO IMD

CALL US0L01(EPS1,RO,RP,R,FO,FP,F,PO,PP,FMIN,FMAX,PAR1,PAR2,RMAX,RM
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& IN,SNORM,MODE,KTERS,MES,MES1,MES2,INITS,MRED)

GOTO (11174,11172) ISB+1

11172 CONTINUE

CALL UXVDIR(NF,R,S,XO,X)

GOTO 11110

11174 CONTINUE

IF (ITERS.LE.0) THEN

CALL UYZER0(NF,X,XO,R,F,FO,FF,P,PO,MOT3)

IF(IDIR.EQ.0) THEN

CALL UYRES1(TSXX)

CALL UYSET1

GO TO 11140

ELSE IF (MOT3.EQ.0) THEN

CALL UYSET1

GO TO 11140

ELSE

ITERD=0

ENDIF

ENDIF

IF(KD.GT.LD) THEN

ASSIGN 11180 TO IMD

GO TO 11110

ENDIF

11180 CONTINUE

TXFU=TUXX

CALL UYUPSD(NF,X,IX,XO,GF,GO,HD,P,MCG1)

CALL UYTRUD(NF,X,X,XO,GF,GO,R,F,FO,P,PO,DMAX)

CALL UUDBI1(N,HF,S,XO,GO,R,PO,F,FO,P,1.0D 60,8)

IF(IDIR.EQ.0) THEN

IF(ITERH.NE.0) CALL UYRES1(’UPDATE ’)

GOTO 11130

ELSE

GOTO 11140

ENDIF

11190 CONTINUE

IF(ITERM.LT.0) TXFU=TDXX

CALL UYEPI1(1)

11200 CONTINUE

CALL UOERR3(KOUT,LOUT,MOUT,ITERM,IER)

CALL UO1FU2(NF,NA,NC,X,X,X,X,FF,F,FO,DMAX,GMAX,XMAX,EPS0,EPS1,EPS2

& ,EPS3,EPS4,EPS5,BET1,BET2,GAM1,GAM2,ETA1,ETA2,MET,MET1,MET2,ME

& T3,MOT,MOT1,MOT2,MOT3,MES,MES1,MES2,MES3,MOS,MOS1,MOS2,MOS3,IN

& ITD,INITS,INITH,IRES1,KTERS,IPRN)

13599 CONTINUE

*

* -----------------

* END OF METHOD (1)

* -----------------

*

CALL UYTIM2(ITIME)

CLOSE (2)

CLOSE (3)
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END

*

* ------------------------

* INITIATION OF METHOD (1)

* ------------------------

*

SUBROUTINE UYINT1

*

* commons placed here were omitted

* since they require a large space

*

REAL*8 XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S

COMMON/UMCLST/ XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S

ETA0=1.0D-15

ETA9=1.0D 60

ITR=6

IRD=5

IWR=2

*

* many other assignments follow which were

* omitted since they require a large space

*

END

*

* ---------------------

* INITIATION OF PROBLEM

* ---------------------

*

SUBROUTINE UYINTP

*

* commons placed here were omitted

* since they require a large space

*

NF=2

IEXT=0

KCF=2

KSF=1

KBF=0

KBC=0

NORMF=0

KDF=0

KDA=-1

KDC=-1

KDE=-1

KDY=-1

END

* ----------------------------------------

* BROYDEN CLASS OF VARIABLE METRIC UPDATES

* TEMPLATE : UUDBI1

* ----------------------------------------

SUBROUTINE UUDBI1(N,H,S,XO,GO,R,PO,F,FO,P,ETA9,MET)

*
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* commons placed here were omitted

* since they require a large space

*

REAL*8 H(N*(N+1)/2),S(N),XO(N),GO(N),R,PO,ETA9

REAL*8 F,FO,P

REAL*8 AA,CC

COMMON /UMFUN1/ AA,CC

REAL*8 UXVDOT,UNFUN1

REAL*8 DIS,POM,POM3,POM4,A,B,C,GAM,RHO,PAR

REAL*8 DEN

INTEGER IUPDT

LOGICAL L1,L3

EXTERNAL UNFUN1

IF (MET.LE.0) GO TO 22

CALL UOU1D1(N,XO,GO)

IF (IDECF.NE.9) THEN

ITERH=-1

TUXX=’BAD DEC9’

CALL UOERR1(’UUDBI2’,1)

GO TO 22

ENDIF

L1=ABS(4).GE.3.OR.ABS(4).EQ.2.AND.NIT.EQ.KIT

L3=.NOT.L1

*

* DETERMINATION OF THE PARAMETERS A, B, C

*

B=UXVDOT(N,XO,GO)

IF (B.LE.ZERO) THEN

ITERH=2

TUXX=’B - NEG.’

GO TO 22

ENDIF

CALL UXDSMM(N,H,GO,S)

A=UXVDOT(N,GO,S)

IF (A.LE.ZERO) THEN

ITERH=1

TUXX=’A - NEG.’

GO TO 22

ENDIF

IF(MET.GE.4.OR.L1) THEN

IF (ITERD.NE.1) THEN

MET=1

C=ZERO

ELSE

C=-R*PO

IF (C.LE.ZERO) THEN

ITERH=3

TUXX=’C - NEG.’

GO TO 22

ENDIF

ENDIF

ELSE
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C=ZERO

ENDIF

*

* DETERMINATION OF THE PARAMETER RHO (NONQUADRATIC PROPERTIES)

*

IF (FO-F+P.EQ.0) THEN

RHO=ONE

ELSE

RHO=HALF*B/(FO-F+P)

ENDIF

IF(RHO.LE.1.0D-2) RHO=ONE

IF(RHO*1.0D-2.GE.ONE) RHO=ONE

AA=A/B

CC=C/B

IUPDT=0

IF (L1) THEN

*

* DETERMINATION OF THE PARAMETER GAM (SELF SCALING)

*

IF (C.LE.ZERO) THEN

PAR=A/B

POM3=0.8D 0

POM4=8.0D 0

ELSE

PAR=SQRT(A/C)

POM3=0.7D 0

POM4=6.0D 0

ENDIF

GAM=RHO/PAR

IF (NIT.NE.KIT) THEN

L3=GAM.LT.POM3.OR.GAM.GT.POM4

ENDIF

ENDIF

IF (L3) THEN

GAM=ONE

PAR=RHO/GAM

ENDIF

*

* NEW UPDATE

*

POM=ONE/(AA*CC)

IF (POM.LT.ONE) THEN

DEN=MAX(POM+1.0D-15,SQRT(C/A))

POM=(DEN-POM)/(ONE-POM)

TUXX=’NEW ’

GO TO 20

ENDIF

17 CONTINUE

*

* BFGS UPDATE

*

POM=ONE
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DIS=PAR+AA

CALL UXVDIR(N,-DIS,XO,S,XO)

DIS=ONE/(B*DIS)

CALL UXDSMU(N,H,DIS,XO)

CALL UXDSMU(N,H,-DIS,S)

TUXX=’BFGS ’

GO TO 21

20 CONTINUE

*

* GENERAL UPDATE

*

DEN=PAR+POM*AA

DIS=POM/DEN

CALL UXDSMU(N,H,(PAR*DIS-ONE)/A,S)

CALL UXVDIR(N,-DIS,S,XO,S)

CALL UXDSMU(N,H,DEN/B,S)

21 CONTINUE

ITERH=0

IF (GAM.EQ.ONE) GO TO 22

*

* SCALING

*

CALL UXDSMS(N,H,GAM)

22 CONTINUE

CALL UOU1D2(N,H,S,RHO,GAM,PAR,A,B,C,POM,ETA9)

RETURN

END

The results (screen output) obtained by using this source program have the following form:

0 NIT= 40 NFV= 138 NFG= 0 GRAD TOL F= .5038712822E-13 G= .828D-05

FF = .5038712822D-13

X = .1000000098D+01 .1000000177D+01
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B The BEL interpreter

The BEL (Batch Editor Language) interpreter, developed as a part of the UFO project, is especially
determined for the generation of computer programs, batch editing of texts, preparation of print files,
filtering of text files etc. The BEL interpreter allows us to generate a prescribed output file from the input
file (template), which is a mixture of text lines and special instructions.

B.1 General description

The BEL interpreter, realized by code BEL.EXE, requires input text file BEL.TEM, output text file BEL.OUT
and an internal table of symbols. The input text file (template) consists of standard text lines together
with the BEL instructions. The output text file contains a text generated by the BEL interpreter. The
table of symbols contains names and values of the macrovariables used.

Although the BEL interpreter can be used in various general applications, it was developed especially
for the generation of FORTRAN programs. It is:

1. Interpreter; since instructions contained in the input text are interpreted and immediately realized.

2. Batch editor; since it serves for editing batch files.

3. Macroprocessor; since it makes it possible to define or modify special macrovariables which can be
substituted into the processed text.

The macrovariable can be an integer constant, a logical constant, a string of characters, a set of text lines,
a set of BEL instructions, even a text file.

The BEL instructions, contained in the input text file, can be of two types:

1. Directives, i.e. control instructions and instructions for manipulation with the table of symbols.
These instructions begin with the special character CHDIR. In the subsequent text, we will suppose
that CHDIR=’$’ (’$’ is the default value).

2. Substitutions, i.e.instructions for substituting macrovariables into the text. These instructions begin
with the special character CHSUB. In the subsequent text, we will suppose that CHSUB=’$’ (’$’ is
the default value).

The BEL interpreter works in the following way:

1. The line of the input file is read.

2. The line is recognized and if the character CHSUB is found, a pertinent substitution is realized.

3. If the first character (different from blank) is CHDIR, the line is a directive line. The recognized
directive is realized.

This process is repeated until directives $STOP, $EXIT or the end of the input file is found. Note that
we suppose that CHSUB and CHDIR have the same values. This is allowed since the correct meaning is
recognized from the context.

At the end of this section, we stress some specific features and advantages of the BEL interpreter.

1. The substitution is recursive. The depth of recursion (the number of nested files) only depends on
the declared work space size.

2. Substitution is allowed in both the text lines and the directives.

3. The names and values of macrovariables can have an arbitrary length which again only depends on
the declared work space size.
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4. The set of directives is relatively small with a consistent syntax. It contains all important instructions
($IF-$ELSEIF-$ELSE-$ENDIF, $DO-$ENDDO, $REPEAT-$UNTIL etc.)

5. The control parameters (CHDIR, CHSUB etc.) can be changed during the work of the BEL inter-
preter. This makes it possible to generate a program written in the BEL language which can be
immediately processed.

6. The optional parameter of the BEL interpreter (e.g. the number of the I/O unit) can be changed
during its work. This possibility enables us to change the input file without recursive nesting.

7. The BEL interpreter is a fully portable device. It can be implemented in an arbitrary system
containing FORTRAN 77 compiler.

B.2 List of instructions

Substitutions:

$INTEGER - Substitute by the absolute label computed from the relative label.
$NAME, $(NAME) - Substitute by the value of the macrovariable NAME.
$DATA(NAME) - Substitute by a new item from the list of items which is a value of the macrovari-

able NAME.
$DEF(NAME) - Substitute by ’.TRUE.’ if the macrovariable NAME is defined in the table of

symbols. Otherwise substitute by ’.FALSE.’
$INT(NAME) - Substitute by ’.TRUE.’ if the value of the macrovariable NAME is an integer

constant. Otherwise substitute by ’.FALSE.’
$LOG(NAME) - Substitute by ’.TRUE.’ if the value of the macrovariable NAME is a logical

constant. Otherwise substitute by ’.FALSE.’
$REAL(NAME) - Substitute by ’.TRUE.’ if the value of the macrovariable NAME is a real con-

stant. Otherwise substitute by ’.FALSE.’
$$ - Substitute ’$’ (replace ’$$’ by ’$’). This makes possible to insert the character

CHSUB into the text.

Directives:

$ADD - Add a value to a macrovariable.
$ADD, $ENDADD - Add text lines to a macrovariable.
$CLEAR - Clear value of a macrovariable which is a list of items type.
$DO, $ENDDO - Cycle.
$ERASE - Erase a macrovariable from the table of symbols.
$EXIT - Return from the deepest nested file or termination of the BEL interpreter work

if there are no nested files.
$HELP, $CHECK - Set a default value to a macrovariable which has not been previously defined.
$IF, $ELSEIF,
$ELSE, $ENDIF - Conditioned instruction.
$INCLUDE - Insert a macrovariable or a text file into the output file.
$OPTION - Change some optional parameter of the BEL interpreter.
$REM - Remark.
$REPEAT, $UNTIL - Cycle.
$RESTORE - Adjust the list of items pointer to the first item.
$REWIND - Rewind the file on a given unit.
$SET - Set a value to a macrovariable.
$SET, $ENDSET - Set text lines to a macrovariable.
$STOP - Termination of the BEL interpreter work.
$SUBST - Substitute a text file into the input file.
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B.3 Special characters

The following special characters are important for the BEL interpreter work:

$ - CHSUB (Substitution Character) - this is the first character in every substitution. If ’$’ should be
inserted into the text, we have to use ’$$’.

$ - CHDIR (Directive Character) - if the first character on the line is CHDIR, then the line is a directive
line (CHSUB and CHDIR are distinguished by the context).

& - CHCON (Continuation Character) - if the last character on the line is CHCON, then it is assumed
that the logical line continues on the next physical line.

; - CHEOL (End Of Line Character) - this character specifies the end of the logical line if it does not
coincide with the end of the physical line. This makes it possible to write several logical lines by
using the same physical line.

\ - CHDS (Data Separator Character) - this character separates individual items in the list of items
type macrovariable.

The use of special characters can be demonstrated by the following simple example. Assume that the
input text has the form

$A=’Paul\Peter\Jane\Mary’
This is a list of my brothers and sis&
ters:
$DO(I=1,4); $DATA(A); $ENDDO

Then the output from the BEL interpreter has the form

This is a list of my brothers and sisters:
Paul
Peter
Jane
Mary

The special characters can be changed by the directive $OPTION. But no special character has to
be the alphabet or the digit. Moreover, different special characters have to differ (with the exception of
CHSUB and CHDIR).

B.4 Description of instructions

This section contains a detailed description of the syntax and action of individual BEL instructions. The
following definitions will be used:

<digit> ::= 0 | 1 | 2 | 3 | ..... | 9

<alphabet> ::= A | B | C | D | ..... | Z

<character> ::= an arbitrary character with the exception of apostrophe

<integer constant> ::= (+ | -) <digit> {<digit>}

<logical constant> ::= .TRUE. | .FALSE.

<macroname> ::= <alphabet> {<alphabet> | <digit>}

<string of characters> ::= ’{<character> | ”}

<text> ::= <string of characters> ’{; <string of characters>}

<list of items> ::= <string of characters> ’{\ <string of characters>}
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Substitutions:

$INTEGER

Syntax:
The type of INTEGER is an integer constant. Although it can have an arbitrary value, an application to
the UFO source program generation requires it to be positive and lower than LABEL2 (see the directive
$OPTION).

Action:
The integer constant INTEGER is a relative label in a given template. The absolute label, substituted into
the UFO source program, is computed by the formula LABEL=LABEL1+K∗LABEL2, where LABEL1
and LABEL2 are options of the BEL interpreter (see the directive $OPTION), and K is a serial number
of the application of the directive $SUBST.

Example:

$10

generates

10010

if the main template is used or

10110

after the first application of the directive $SUBST.

$NAME, $(NAME)

Syntax:
The type of NAME is a macroname. This substitution has two forms, either $NAME or $(NAME). The
latter form is required if the substitution appears inside a continuous string of characters to separate the
NAME from the adjacent text.

Action:
The string ’$NAME’ is replaced by the value of the macrovariable NAME.

Example:

$A=’UFO’
$A SYSTEM

generates

UFO SYSTEM

$DATA(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The string ’$DATA(NAME)’ is replaced by the next item of the list of items, which is a value of the
macrovariable NAME. If the next item does not exist, the list of items pointer is returned to the first item.
Additional information is contained in the description of the directive $RESTORE.

Example:

$LIST=’ITEM1\ITEM2\ITEM3’
$DATA(LIST)
$DATA(LIST)
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$DATA(LIST)
$DATA(LIST)

generates

ITEM1
ITEM2
ITEM3
ITEM1

$DEF(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the macrovariable NAME is defined in the table of symbols, the string ’$DEF(NAME)’ is replaced by
the logical constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=10
$DEF(A)

generates

.TRUE.

$INT(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is an integer constant, the string ’$INT(NAME)’ is replaced by
the logical constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=-25
$INT(A)

generates

.TRUE.

$LOG(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is a logical constant, the string ’$LOG(NAME)’ is replaced by
the logical constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=.FALSE.
$LOG(A)

generates

.TRUE.
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$REAL(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is a real constant (i.e. a string of characters which satisfies
the syntactic rules for FORTRAN real constants), the string ’$REAL(NAME)’ is replaced by the logical
constant .TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=’-0.09D-12’
$REAL(A)

generates

.TRUE.

$$

Action:
The string ’$$’ is replaced by the character ’$’. This substitution allows us to insert the character ’$’ into
the generated text or into the macrovariable.

Example:

$I=’NAME’
$$DEF($I)

generates

$DEF(NAME)

Directives:

$ADD(NAME1,NAME2 or VALUE)

Syntax:
The type of NAME1 and NAME2 is a macroname.
The type of VALUE is an integer constant or a logical constant or a string of characters.

Action:
The value of the macrovariable NAME2 or the VALUE is added to the value of the macrovariable NAME1
(the resulting value of the macrovariable NAME1 is $NAME1$NAME2 in the first case).

Example:

$NAME=’TOM’
$ADD(NAME,’ JONES’)
Name: $NAME

generates

Name: TOM JONES

$ADD(NAME)
TEXT

$ENDADD

Syntax:
The type of NAME is a macroname.
The type of TEXT is a text.
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Action:
The TEXT is added to the value of the macrovariable NAME.

Example:

$SET(A)
Day: 31

$ENDSET
$ADD(A)

Month: December
Year: 1998

$ENDADD
$A

generates

Day: 31
Month: December
Year: 1998

Remark: Only substitutions are realized in the text TEXT (not directives).

$CLEAR(NAME)

Syntax:
The type of NAME is a macroname.

Action:
This directive clears a list-of-items-type value of the macrovariable NAME, i.e. it deletes all duplications
of items. Small and capital letters of items are not distinguished.

Example:

$DECL=’N\IX(N)\N\M\ I\J\N\M’
$CLEAR(DECL)
$END=’$DATA(DECL)’
$REPEAT

$I=’$DATA(DECL)’
INTEGER $I

$UNTIL(I=END)

generates

INTEGER IX(N)
INTEGER M
INTEGER I
INTEGER J
INTEGER N

$DO(NAME=INDEX1,INDEX2,INDEX3)
TEXT

$ENDDO

Syntax:
The type of NAME is a macroname.
The type of INDEX1, INDEX2, INDEX3 is a macroname or an integer constant.
The type of TEXT is a text.

Action:
This directive has a similar meaning as the statement DO in the FORTRAN language:
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NAME is the cycle counter.
INDEX1 is the initial value of the cycle counter.
INDEX2 is the final value of the cycle counter.
INDEX3 is the change of the cycle counter after a cycle step.
If INDEX3 is not present, the default value INDEX1=1 is assumed.
The cycle counter NAME does not have to be changed in the cycle step.
The value INDEX3 does not have to be equal to 0.
The body of the cycle is terminated by $ENDDO.
If INDEX1>INDEX2 and INDEX3>0 or INDEX1<INDEX2 and INDEX3<0, then the cycle is not real-
ized.
Cycles can be nested. The maximum depth of nested cycles is 20.

Example:

$A=’X\Y\Z’
$DO(I=1,5,2)

A($I,1)=C($I)+$DATA(A)
$ENDDO

generates

A(1,1)=C(1)+X
A(3,1)=C(3)+Y
A(5,1)=C(5)+Z

$ERASE(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The macrovariable NAME is erased from the table of symbols.

Example:

$A=1
$DEF(A)
$ERASE(A)
$DEF(A)

generates

.TRUE.

.FALSE.

$EXIT

Action:
The directive $EXIT has the same meaning as the end of the file achievement. If the nested files are
processed (see the description of the directive $SUBST), the directive $EXIT realizes return to the higher
level file (if the higher level file does not exist, then $EXIT has the same meaning as $STOP).

$HELP
TEXT

$CHECK(NAME,DEFAULT,TYPE,LEVEL,TRANSFER)

Syntax:
The type of TEXT is a text.
The type of NAME is a macroname.
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The type of DEFAULT is either a macroname or an integer constant or a logical constant or a string of
characters.
The type of TYPE is either a list of items or one of the strings INT (integer), LOG (logical), REAL (real).
The type of LEVEL is an integer constant.
The type of TRANSFER is a logical constant.

Action:
The text TEXT appears on the screen if the dialogue mode is used. The value of the macrovariable $NAME
is checked to have the type TYPE. If the macrovariable $NAME is not defined or if it has a wrong value,
the value DEFAULT is used. The value of LEVEL gives the lowest level of the dialogue (1,2,3 or 4) from
which the text TEXT appears on the screen. The value of TRANSFER specifies transfer of the variable
$NAME into the UFO source program (YES if transfer is accepted or NO if transfer is suppressed).

Example:

$HELP
TYPE OF THE HESSIAN MATRIX:

D - DENSE
B - SPARSE WITH KNOWN (PARTITIONED) STRUCTURE
S - SPARSE WITH KNOWN (GENERAL) STRUCTURE
N - HESSIAN MATRIX IN NOT USED

$CHECK(HESF,’N’,’D\B\S\N’,1,NO)

$IF(CONDITION) LINE

Syntax:
The CONDITION can be of the following types:
The type of CONDITION is a macroname and a value of CONDITION is a logical constant.
The type of CONDITION is a logical constant (.TRUE. or .FALSE.).
The type of CONDITION is a string of the form PART1<operator>PART2.
The type of PART1 and PART2 can be a macroname or an integer constant or a logical constant or a
string (values of PART1 and PART2 have to be of the same type) and <operator> can have the following
forms:

= equal to
<> not equal to
< less than (for integer values only)
<= less than or equal to (for integer values only)
> greater than (for integer values only)
>= greater than or equal to (for integer values only)

LINE is either a text line or a directive.

Action:
If the condition CONDITION is satisfied, LINE is inserted into the output file (if it is a text line) or
carried out (if it is a directive). If the values of PART1 and PART2 are strings, then small and capital
letters are not distinguished and blanks are ignored.

Example:

$A=’J O H N’
$IF(A=’John’) Yes
$IF(A<>’Mary’) No

generates

Yes
No
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$IF(CONDITION1)
TEXT1

$ELSEIF(CONDITION2)
TEXT3
.
.

$ELSE
TEXT

$ENDIF

Syntax:
CONDITION1 and CONDITION2 have the same syntax and meaning as CONDITION in the previous
case. The number of repeated $ELSEIF is not limited, $ELSEIF or $ELSE can be omitted.

Action:
This directive has a similar meaning as the conditioned statement IF-ELSEIF-ELSE-ENDIF in the FOR-
TRAN language. The conditioned statements can be nested. The maximum depth of nested conditioned
statements is 20.

Example:

$A=10
$L=.FALSE.
$IF(A=10)

A = A + 1
B = B + 1
$IF(L)
C = C + 1
$ENDIF

$ELSE
WRITE(*,*) I

$ENDIF

generates

A = A + 1
B = B + 1

$INCLUDE(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The directive $INCLUDE(NAME) is a special case of substitution. This directive makes it possible to
insert (into the generated text) one or more lines, which were previously assigned to the macrovariable
NAME. In contrast to the standard substitution $NAME, the inserted lines are not processed by the BEL
interpreter, so the directives are not carried out.

Example:

$SET(LINES)
$ADD(A)
X = Y + Z
CALL SUB(X)
$ENDADD

$ENDSET
$INCLUDE(LINES)
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generates

$ADD(A)
X = Y + Z
CALL SUB(X)
$ENDADD

$INCLUDE(’FILE’)

Syntax:
The type of FILE is a string.

Action:
The directive $INCLUDE(’FILE’) is a special case of substitution. This directive makes it possible to
insert (into the generated text) the text which is stored in the file with the name FILE. The inserted text
is not processed by the BEL interpreter, so the directives are not carried out.

Example:

$INCLUDE(’C:\UFO\UMCOMN.I’)

includes FORTRAN common blocks into the generated text (these common blocks are stored in the file
C:\UFO\UMCOMN.I.

$OPTION(OPTIONNAME=NAME or VALUE)

Syntax:
OPTIONNAME is a selected name from the table of optional parameters (see below).
The type of NAME is a macroname. The value of NAME has to be an integer constant or a logical constant
or a string of character and has to correspond to the type of OPTIONNAME.
The type of VALUE has to be an integer constant or a logical constant or a string of character and has to
correspond to the type of OPTIONNAME.

Action:
This directive makes us possible to change selected optional parameter of the BEL interpreter. Optional
parameters are contained in the following table.
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Name Type Default Description
CHDIR char. ’$’ see B.3
CHEOL char. ’;’ see B.3
CHCON char. ’&’ see B.3
CHDS char. ’\’ see B.3
FN1 char. ’ ’ first part of the file name
FN2 char. ’.I ’ last part of the file name
ILNLEN int. 80 physical length of the input line
OLNLEN int. 80 physical length of the output line
IUNIT int. - No. of the input file unit
OUNIT int. - No. of the output file unit
INUNIT int. - No. of the $INCLUDE files unit
IIUNIT int. - No. of the interactive mode input unit
OIUNIT int. - No. of the interactive mode output unit
DIALOG int. 1 level of dialogue (0 or 1 or 2)
MODERW int. 1 READ/WRITE mode (1 or 2 or 3)
LABEL1 int. 10000 initial label
LABEL2 int. 100 difference between two consecutive labels
LSUBS log. .TRUE. substitutions carried out
LOUT log. .TRUE. output file created
LSMLET log. .TRUE. small letters used in instructions
LFORTO log. .TRUE. output in standard FORTRAN format
LFRFMT log. .TRUE. input in free FORTRAN format

(used only if LFORTO=.TRUE.)
SIFDEC log. .FALSE. using the SIF decoder
DIALGR log. .FALSE. using the graphic dialogue

$REM

Action:
The rest of the line (following after $REM) is ignored by the BEL interpreter. The directive $REM is used
for remarks.

$REPEAT
TEXT

$UNTIL(CONDITION)

Syntax:
The type of TEXT is text.
CONDITION has the same syntax and meaning as that in the directive $IF(...).

Action:
This directive has a similar meaning as the statement REPEAT-UNTIL in the PASCAL language:
The cycle is terminated whenever the condition CONDITION is satisfied (at least one realization is carried
out).
Cycles can be nested. The maximum depth of nested cycles is 20.

Example:

$N=10
$REAL=’X($N)\G($N)\H($N,$N)\.END.’
$REPEAT

$I=’$DATA(REAL)’
$IF(I<>’.END.’) REAL $I

$UNTIL(I=’.END.’)
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generates

REAL X(10)
REAL G(10)
REAL H(10,10)

$RESTORE(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The directive $RESTORE(NAME) can only be used if the value of the macrovariable NAME is a list
of items. Such a macrovariable uses a pointer which points out the next called item. The directive
$RESTORE adjust this pointer to point out the first item of the list (if the end of this list is found, the
pointer is adjusted to point out the first item without applying the directive $RESTORE).

Example:

$A=’X\Y\Z’
$DATA(A)
$DATA(A)

$RESTORE(A)
$DATA(A)

generates

X
Y
X

$REWIND(UNIT)

Syntax:
The type of UNIT is an integer constant.

Action:
The file opened on the unit with the number UNIT is rewound, so it can again be read from the first
record (numbering of I/O units is used in the FORTRAN language).

$NAME1 = NAME2 or VALUE

$SET(NAME1 = NAME2 or VALUE)

Syntax:
The type of NAME1 and NAME2 is a macroname.
The type of VALUE is an integer constant or a logical constant or a string of characters.
This directive has two forms. The latter form is used if the macroname is identical with a directive (e.g.
$SET(REM=’REMARK’)).

Action:
The new macrovariable with the name NAME1 and the value equal to the value of the macrovariable
NAME2 or constant VALUE is inserted into the table of symbols. If the macrovariable NAME1 has
already been defined in the table of symbols, then it is changed.

$SET(NAME)
TEXT

$ENDSET

Syntax:
The type of NAME is a macroname.

325



The type of TEXT is text.

Action:
The macrovariable NAME is inserted into the table of symbols with the value TEXT. If the macrovariable
NAME has already been defined in the table of symbols, then it is changed.

Example:

$ENDTEST=100
$SET(INIT)

CALL EIUD01(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)
IF (IERR.NE.0) GO TO $ENDTEST

$ENDSET
$INIT

generates

CALL EIUD01(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)
IF (IERR.NE.0) GO TO 100

Remark: Only substitutions are realized in the text TEXT (not directives).

$STOP

Action:
The directive $STOP terminates the BEL interpreter work.

$SUBST(’FILE’)

Syntax:
The type of FILE is a string.

Action:
This directive performs the following actions:
The new reference label is computed (using the parameters LABEL1 and LABEL2 of the BEL interpreter).
The file with the name FILE is opened.
This file is processed by the BEL interpreter.
The file with the name FILE is closed.
The old reference label is restored.

This directive is similar to the directive $INCLUDE(’FILE’). But the inserted text is now processed by
the BEL interpreter. All substitutions and directives are carried out. The directive $SUBST(’FILE’) serves
for dividing large texts into segments and makes it possible to generate texts by using conditioned branch-
ing. This is advantageously used for generation of the UFO source program where templates corresponding
to individual subroutines are such segments.

Example:

$SUBST(’C:\UFO\PROBLEM.UFO’)

inserts a template, written in the UFO control language, into the generated text (this template is stored
in the file C:\UFO\PROBLEM.UFO).

B.5 Error messages

The BEL interpreter checks input templates and detects errors in the text written by the batch editing
language. A typical error message has the form
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+++ FATAL ERROR: 9

FILE: UZMETH.I

LINE: 295

CAUSE: MACRO NOT DEFINED

NAME: COLLECTION

+++ EXECUTION ABORTED

Here UZMETH.I is the template where the error was detected, 9 is the error number, 295 is the number
of line containing incorrect text, MACRO NOT DEFINED is the explanation and COLLECTION is the
name of undefined macrovariable.

The following table presents all UFO error messages (error numbers and explanations):

1 - INPUT FILE DOES NOT EXIST OR I/O ERROR

2 - MAX. LENGTH OF BUFFER EXCEEDED

4 - MAX. LENGTH OF SYMBOL TABLE EXCEEDED

5 - ATTEMPT TO APPEND TO READ ONLY VARIABLE

6 - ATTEMPT TO APPEND TO UNDEFINED VARIABLE

7 - ATTEMPT TO OVERWRITE OR DELETE UNDEFINED VARIABLE

8 - ATTEMPT TO OVERWRITE OR DELETE RO OR RA VARIABLE

9 - MACRO NOT DEFINED

10 - OUTPUT HARDWARE ERROR

11 - WRONG FORMAT OF FORTRAN LINE

14 - MAX. NUMBER OF POINTERS TO SYMBOL TABLE EXCEEDED

15 - UNEXPECTED CHDS

16 - MAX. VALUE OF LABEL EXCEEDED

17 - UNEXPECTED CHDIR

20 - SYNTAX ERROR

21 - ’(’ EXPECTED

22 - ’(’ EXPECTED

23 - MACRO NAME EXPECTED

24 - APOSTROPHE EXPECTED

25 - EOL EXPECTED

26 - INTEGER CONSTANT EXPECTED

27 - MEMORY EXHAUSTED

28 - INCLUDED FILE DOES NOT EXIST OR I/O ERROR

29 - ’=’ EXPECTED

30 - IDENTIFIER, STRING, INTEGER OR LOGICAL CONSTANT EXPECTED

31 - ’,’ EXPECTED

32 - ERROR IN DIRECTIVE OPTION

33 - UNEXPECTED ’ENDSET’

34 - UNEXPECTED ’ENDADD’

35 - UNEXPECTED ’ENDIF’

36 - UNEXPECTED ’ELSE’

37 - UNEXPECTED ’ELSEIF’

38 - TOO MANY NESTED ’IF-ENDIF’

39 - REWIND - I/O ERROR

40 - TOO MANY NESTED ’SUBST(FILE)’

41 - SUBSTITUTED FILE DOES NOT EXIST OR I/O ERROR

42 - TOO MANY NESTED ’REPEAT-UNTIL’

43 - UNEXPECTED ’UNTIL’

44 - IN DO(I=IND1,IND2,IND3) IS IND3=0

45 - UNEXPECTED ’ENDDO’

46 - TOO MANY NESTED ’DO-ENDDO’
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47 - UNEXPECTED END OF FILE

48 - AUTOMATICAL DIFFERENTIATION ERROR

B.6 Organization and compilation of the UFO source modules

The BEL interpreter driven by the special input template UZDPRE.I can be used for preprocessing UFO
source modules. The UFO source modules *.I usually consist of two parts. The first part is a template
written in the UFO control language. This template, which begins with substitution $INTERFACE and
terminates by directive $EXIT, serves for generation of the UFO source program by the UFO control
language preprocessor (described in Section B.7). The second part is an actual source module which can
contain statements of the UFO control language, e.g., substitutions $FLOAT, $P, $DBLE for defining
the precision of the final Fortran 77 source code (single or double). The BEL interpreter driven by
template UZDPRE.I skips the interface template and starts the processing on the line containing remark
*IMPLEMENTATION. If the first part is missing, the remark *IMPLEMENTATION can be omitted. If
the second part is missing, the macrovariable $INTERFACE and directive $EXIT need not be used. The
more details can be obtained by reading template UZDPRE.I:

$REM +---------------------------------------------------------------+

$REM + TEMPLATE: UZDPRE 01/12/89 +

$REM + +

$REM + PURPOSE: DRIVER FOR UFO SOURCE-MODULE PREPROCESSOR +

$REM +---------------------------------------------------------------+

$REM +----+ INSTALATION +--------------------------------------------+

$P=’D’

$FLOAT=’REAL*8’

$DBLE=’DBLE’

$GRAPHICS=6

$OPENFILE=.TRUE.

$OPTION(FN2=’.I’)

$REM +----+ INITIATION +---------------------------------------------+

$OPTION(LFRFMT=.FALSE.)

$NEXT=0

$SET(INTERFACE)

$OPTION(LOUT=.FALSE.)

$OPTION(LSUBS=.FALSE.)

$OPTION(LFORTO=.FALSE.)

$OPTION(CHDIR=’*’)

$ENDSET

$IF($DEF(PREDAT))

$PREDAT

$ENDIF

$REM +----+ GRAPHIC INTERFACE +--------------------------------------+

$SET(FIFAC)

$IF(GRAPHICS=0)

$ELSEIF(GRAPHICS=1)
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INCLUDE ’FGRAPH.FI’

INCLUDE ’FLIB.FI’

$ELSEIF(GRAPHICS=4)

INCLUDE ’FGRAPH.FI’

INCLUDE ’FLIB.FI’

$ELSE

$ENDIF

$ENDSET

$SET(FDECL)

$IF(GRAPHICS=0)

$ELSE

$IF(GRAPHICS=1)

INCLUDE ’FGRAPH.FD’

INCLUDE ’FLIB.FD’

$ELSEIF(GRAPHICS=4)

INCLUDE ’FGRAPH.FD’

INCLUDE ’FLIB.FD’

$ELSE

USE DFLIB

$ENDIF

STRUCTURE /MYITEM/

CHARACTER*10 NAZEV

INTEGER POZICE

INTEGER*2 DELKA

INTEGER BARVA

INTEGER HI

ENDSTRUCTURE

$ENDIF

$ENDSET

$REM +----+ INITIATION OF SPECIAL MACROVARIABLES +-------------------+

$SUBST(’UZSETM’)

$OPTION(IUNIT=9)

The first several statements of this template are system dependent and define an individual UFO
installation. Here $FLOAT=’REAL*8’, $P=’D’, $DBLE=’DBLE’ correspond to double precision Fortran
77 source code and $GRAPHICS=6 defines the graphics library used. Option $OPTION(FN2=’.I’) defines
extensions of source modules which have names *.I.

Another part of template UZDPRE.I contains the initiation of important macrovariables used. Option
$OPTION(LFRMT=.FALSE.) means that the input file is written in the free Fortran format (with possi-
ble non-Fortran characters). Options contained in macrovariable $INTERFACE have the following mean-
ing: $OPTION(LOUT=.FALSE.) means that the interface will be ignored, $OPTION(LSUBS=.FALSE.)
means that substitutions are not carried out, $OPTION(LFORTO=.FALSE.) means that the temporary
output is written in the free format (with possible non-Fortran characters) and $OPTION(CHDIR=’*’)
means that the directive character CHDIR will be ’*’ (thus remark *IMPLEMENTATION is interpreted
as the directive which switches the BEL interpreter into the normal mode (with substitutions and records
into the output file).

Finally, $FIFAC and $FDECL define the graphic interfaces and $OPTION(IUNIT=9) means that the
input unit IUNIT is changed in such a way that the subsequent input data are read from file BEL.DAT

(where source module *.I has to be copied).
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If a source module *.I consists of two parts, the above process has one disadvantage. If the interface
template contains remark

* remark

which should be copied into the UFO source program, then $OPTION(CHDIR=’*’) causes that it is
understood as a directive. Therefore, the above remark has to be replaced by the sequence of statements

$CHPOM=’$$’

$IF(.FALSE.)

*IF(.TRUE.)

*CHPOM=’*’

*OPTION(CHDIR=’$’)

$ENDIF

* remark

$OPTION(CHDIR=CHPOM)

in the interface template. This is unnecessary if the processed template has only one part and substitution
$INTERFACE is not used.

The output file BEL.OUT obtained by the BEL interpreter contains a resulting source module written in
the standard Fortran format which can be copied into corresponding file *.FOR and compiled. All required
steps, i.e., copying *.I into BEL.DAT, processing of BEL interpreter, copying BEL.OUT into *.FOR and
compilation *.FOR to *.OBJ is realized by using the batch file PRE.BAT. The object module *.OBJ is added
to the UFO library of object modules by using the batch file UF.BAT.

B.7 The UFO control language preprocessor

The UFO system is organized in such a way that the UFO source program P.FOR (or P.F) need not be
written in Fortran 77 immediately. Instead, the procedure written in the UFO control language is supplied
and the UFO control language preprocessor (UFOCLP), which is the BEL interpreter driven by the special
input template UZDCLP.I, generates the resulting Fortran 77 source program. Besides template UZDCLP.I,
UFOCLP uses many additional templates: user supplied template P.UFO, system templates UZ*.I, drivers
for individual classes of methods U0*.I, U1*.I, U2*.I and other templates, the interfaces of files *.I,
which realize various parts of the source program. Basic properties of UFOCLP can be understood by
reading template UZDCLP.I:

$REM +---------------------------------------------------------------+

$REM + TEMPLATE: UZDCLP 01/12/98 +

$REM + +

$REM + PURPOSE: DRIVER FOR UFO CONTROL LANGUAGE PREPROCESSOR +

$REM +---------------------------------------------------------------+

$REM +----+ INSTALATION +--------------------------------------------+

$OPTION(MODERW=3)

$OPTION(ILNLEN=200)

$OPTION(OLNLEN=200)

$OPTION(FN2=’.I’)

$P=’D’

$USERUNIT=12

$OUTPUTUNIT=11

$FLOAT=’REAL*8’

$DBLE=’DBLE’
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$GRAPHICS=6

$OPTION(DIALGR=.TRUE.)

$REM +----+ OUTPUT UNIT FOR ERROR MESSAGES +-------------------------+

$SET(ERROR)

$OPTION(OUNIT=6)

ERROR:

$ENDSET

$REM +----+ INITIATION +---------------------------------------------+

$OPTION(LSUBS=.FALSE.)

$REM +----+ INITIATION OF THE SYSTEM MACROVARIABLES +---------------+

$SET(BATCH)

$OPTION(DIALOG=0)

$OPTION(DIALGR=.FALSE.)

$DIA=0

$ENDSET

$SET(GDIALOGUE)

$OPTION(DIALOG=1)

$OPTION(DIALGR=.TRUE.)

$DIA=1

$ENDSET

$SET(TDIALOGUE)

$OPTION(DIALOG=1)

$OPTION(DIALGR=.FALSE.)

$DIA=1

$ENDSET

$DIALOGUE=GDIALOGUE

$SET(STANDARD)

$SUBST(’UZSTAN’)

$ENDSET

$SET(METHOD)

$SUBST(’UZMETH’)

$ENDSET

$SET(TSTART)

CALL UYTIM1(ITIME)

$ADD(INTEGER,’\ITIME’)

$ENDSET

$SET(TSTOP)

CALL UYTIM2(ITIME)

$ENDSET

331



$NUMBERS=’1\2\3\4\5\6\7\8\9\0’

$SET(VARERASE)

CALL UYCLEA

$ENDSET

$SET(INITIATION)

$SUBST(’UZINIT’)

$ENDSET

$SET(LABEL)

$L CONTINUE

$IF(TRACE=’YES’) $SUBST(’UZTPNT’)

$ENDSET

$INTERFACE=’$REM’

$SUBST(’UZSETM’)

$OPTION(MODERW=2)

$INTEGER=’.END’

$INTEGER2=’.END’

$LOGICAL=’.END’

$REAL=’.END’

$REAL4=’.END’

$OPTION(MODERW=1)

$DIA=1

$SET(MODERASE)

$SUBST(’UZMDER’)

$ENDSET

$SET(METERASE)

$SUBST(’UZMTER’)

$ENDSET

$SET(RUNERASE)

$SUBST(’UZMTER’)

$LMET=-1

$ENDSET

$SET(GLOBAL)

$OPTION(LFORTO=.FALSE.)

$$SUBST(’UZDECL’)

$OPTION(LFORTO=.TRUE.)

$ERASE(GLOBAL)

$SET(UFOINPUT)

$SUBST(’UZINPT’)

$ENDSET

$IF($DEF(DELETION))

OPEN(7,FILE=’P.PER’,STATUS=’REPLACE’)
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CLOSE (7)

$ERASE(DELETION)

$ENDIF

$ENDSET

$REM $INPUT=’ ’

$SET(SUBROUTINES)

$ENDSET

$NEXT=0

$METHODINIT=.FALSE.

$OPTION(LSUBS=.TRUE.)

$REM +----+ 1. PASS +------------------------------------------------+

$TMPUNIT=$OUNIT

$INITUNIT=$IUNIT

$OPTION(IUNIT=USERUNIT)

$OPTION(LFORTO=.FALSE.)

$$SUBST(’UZIPAR’)

$$SUBROUTINES

$REM +----+ 2. PASS +------------------------------------------------+

$OPTION(LFORTO=.TRUE.)

$OPTION(OUNIT=OUTPUTUNIT)

$REWIND(TMPUNIT)

$OPTION(IUNIT=TMPUNIT)

The first several statements of this template are system dependent and define an individual UFO in-
stallation. Here $FLOAT=’REAL*8’, $P=’D’, $DBLE=’DBLE’ correspond to double precision Fortran 77
source code and $GRAPHICS=6 defines the graphics library used (option $OPTION(DIALGR=.TRUE.)
determines the graphic dialogue). Option $OPTION(MODERW=3) means that the subsequent macrovari-
ables cannot be rewritten in the symbol table, ILNLEN and OLNLEN are lengths of input line and output
line, respectively and $OPTION(FN2=’.I’) defines extensions of intermediate templates which have names
*.I. Option $OPTION(LSUBS=.FALSE.) means that substitutions are not carried out.

Another part of template UZDCLP.I contains initiation of system macrovariables:

$BATCH - Switch to the batch mode.

$DIALOGUE - Switch to the default dialogue mode (text or graphic).

$TDIALOGUE - Switch to the text dialogue mode.

$GDIALOGUE - Switch to the graphic dialogue mode.

$STANDARD - Standard frame of the UFO source program.

$METHOD - Generation of the optimization method.

$TSTART - Start of the time measurement.

$TSTOP - Termination of the time measurement and print of the measured time.

$VARERASE - Clearing the common variables.

$INITIATION - Initiation of the global variables.

$LABEL - Labelling in the UFO source program with possible tracing.

$MODERASE - Cancellation of the current model.

$METERASE - Cancellation of the current method.
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$GLOBAL - Global declarations.

$SUBROUTINES - User supplied subroutines.

The substituted template UZSETM.I contains a definition of additional important macrovariables, e.g., $UK-
MAI1, $UKMCI1, $SETAG, $SETCG. Options $OPTION(MODERW=2) and $OPTION(MODERW =1)
mean that the subsequent macrovariables will be appended or rewritten in the symbol table, respectively.

After the initiation of system macrovariables, the first pass of UFOCLP is started. Thus, the input unit
IUNIT is changed in such a way that the subsequent input data are read from file P.UFO and a temporary
output is written into BEL.OUT. Option $OPTION(LFORTO=.FALSE.) means that the temporary output
is written in the free format (with possible non-Fortran characters) and statements $$SUBST(’UZIPAR’),
$$SUBROUTINES mean that subroutines containing initiation of parameters and user supplied subrou-
tines will be added to the UFO source program in the second pass.

In the second pass, the output temporary file P.UFO is rewound and the input unit IUNIT is changed
in such a way that the subsequent input data are read from file P.UFO. The output unit OUNIT is changed
in such a way, that the final source program is written into P.FOR. Option $OPTION(LFORTO=.TRUE.)
means that the UFO source program is written in the standard Fortran format.

B.8 Basic templates and the UFO source program generation

This section contains information which can be useful for UFO administrators and builders. As it is shown
in Section B.7, the generation of the UFO source program P.FOR (or P.F) starts by reading template P.UFO,
where basic macrovariables defining the problem and the method used are defined and a frame of the UFO
source program is described. The standard frame of the UFO source program is determined by substitution
of macrovariable $STANDARD (synonym for template UZSTAN.I) realizing the sequence $GLOBAL, $INI-
TIATION, $INPUT, $TSTART, $METHOD, $TSTOP, $OUTPUT. Here $INPUT contains user’s input
data (defined by using $SET(INPUT) and $ENDSET), $OUTPUT contains user’s output data (defined by
using $SET(OUTPUT) and $ENDSET), $TSTART and $TSTOP are points denoting start and stop of the
time measurement, $METHOD, $INITIATION, $MODERASE, $METERASE are synonyms for templates
UZMETH.I, UZINIT.I, UZMDER.I, UZMTER.I and $GLOBAL realizes global declarations by using template
UZDECL.I. Global declarations are defined by list of items $INTEGER, $INTEGER2, $LOGICAL, $REAL,
$REAL4 filled up in various templates by requirements of individual methods.

The UFO source program is generated by system templates UZ*.I, which call additional templates
(interfaces of the UFO source modules *.I, see Section B.6). The basic system templates are:

UZPROB.I - Problem definition. Here macrovariables described in Section 2 are determined.

UZMETH.I - Method selection. Here input specifications are defined, possible tests of external sub-
routines are performed, and global or local optimization method (by using templates
UZGMIN.I or ULGMIN.I) is specified.

UZGMIN.I - Global optimization method selection. Here a particular global optimization method
and its parameters described in Section 3 are determined. Template UZGMIN.I usually
calls template UZLMIN.I

UZLMIN.I - Local optimization method selection. Here a particular local optimization method and
its parameters described in Section 3 are determined.

UZLINS.I - Step-size selection. Here a suitable line-search or trust-region method and its parameters
described in Section 3 are determined.

UZMODN.I - Objective function definition with the choice of a way for computation of derivatives. If
$NUMDER=1, first and second derivatives are computed by using the objective function.
If $NUMDER=2, first and second derivatives are computed by using the approximating
functions. This template usually calls template UZMODL.I.

UZMODL.I - Objective function definition. Here a suitable module is called, which is determined by
the model used (described in Section 2). Also a structure of this model, which can be
dense, sparse, partitioned, is taken into account.
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There are many other system templates which have to be modified only in case the UFO system is
substantially changed (e.g., templates UZMOD*.I, UZ*MOD.I, UZ*SET.I with ’*’ replaced by A,C,E,F,Y
used for objective function definition or templates UZMDER.I and UZMTER.I for cancellation of the current
model and method, respectively.) Individual system templates are listed in Section C.1

Template UZLMIN.I calls drivers for individual classes of methods, which have the form:

Udmscn.I,

where the character ”d” corresponds to the degree of derivatives used (0, 1, 2), the character ”m” denotes
the model used:

F - general objective function or sum of approximating functions,
L - linear objective function,
Q - quadratic objective function,
S - sum of squares or powers of approximating functions,
A - sum of absolute values of approximating functions,
M - maximum of values of approximating functions (minimax),
C - general objective function with complementarity constraints,
E - system of equations,

the character ”s” denotes the problem structure:

D - methods for dense problems,
S - methods for sparse problems,
B - methods for partially separable problems,
L - limited memory methods,

the character ”c” corresponds to the type of constraints:

U - unconstrained problems,
L - linearly constrained problems,
N - recursive quadratic programming methods for general nonlinear programming problems,
E - recursive quadratic programming methods for problems with equality constraints,
I - interior point methods for general nonlinear programming problems,
F - nonsmooth equation methods for general nonlinear programming problems,
D - ordinary differential equations

and the character ”n” corresponds to the driver number (1-6).

A typical driver template has the following form:

$INTERFACE U0FDU1 97/12/01

$N=’N’

$ADD(INTEGER,’\IMD’)

$HELP

TYPE OF METHOD:

P - PATTERN SEARCH

S - SIMPLEX METHOD

$CHECK(TYPE,’P’,’P\S’,2,NO)

$IF(TYPE=’P’) $TYP=’PS’

$IF(TYPE=’S’) $TYP=’SM’

$IF(TYPE=’P’)

$HELP

NUMBER OF METHOD:

1 - BASIC PATTERN SEARCH WITH SORTING
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$CHECK(NUMBER,’1’,’1’,2,NO)

$ELSE

$HELP

NUMBER OF METHOD:

1 - BASIC SIMPLEX METHOD

$CHECK(NUMBER,’1’,’1\2’,2,NO)

$ENDIF

$ISNF=0

$SUBST(’UO0FU1’)

*

* ----------------

* HEURISTIC METHOD

* TEMPLATE: U0FDU1

* ----------------

*

$LMD=$10

ASSIGN $20 TO IMD

CALL UYPRO1(’UXFU’,0)

CALL UYPRO2(FMIN,FO)

N=NF

$L=$10 ; $LABEL

$KD=0

$SUBST(’UZMODL’)

GO TO IMD

$L=$20 ; $LABEL

$SUBST(’UO2FU3’)

$SUBST(’UYFUT1’)

IF(ITERM.NE.0) GOTO $50

$L=$30 ; $LABEL

ASSIGN $30 TO IMD

*

* -----------------------

* DIRECTION DETERMINATION

* TEMPLATE : UDD$(TYP)$NUMBER

* -----------------------

*

$SUBST(’UDD$(TYP)$NUMBER’)

*

* ------------------------------

* END OF DIRECTION DETERMINATION

* ------------------------------

*

GOTO ($40,$10) ISB+1

$L=$40 ; $LABEL

ASSIGN $40 TO IMD

$SUBST(’US0$(TYP)$NUMBER’)

GOTO ($45,$10) ISB+1

$L=$45 ; $LABEL

TXFU=TUXX

IF(ITERM.EQ.0) GOTO $20

TXFU=TDXX

$L=$50 ; $LABEL

336



CALL UYEPI1(0)

$SUBST(’UO1FU2’)

$ADD(INIT)

NXFU=’U0FDU1’

$ENDADD

$EXIT

The first part of this template contains definition of important macrovariables (parameters of the
method selected), e.g., $TYPE and $NUMBER. The second part contains instructions for corresponding
parts of the UFO source program. Here the objective function is defined by UZMODL.I, direction is deter-
mined by UDDPS1.I or UDDSM1.I and step-size is selected by US0PS1.I or US0SM1.I. Statements $L=$10,
$L=$20 etc. define labels 11110, 11120 etc. in the generated source program and substitution $LABEL
defines possible tracing. Modules UO0FU1.I, UO1FU2.I and UO2FU3 serve for printing intermediate and
final results. Modules UYPRO1.I, UYPRO2.I, UYEPI1.I serve for defining and clearing system variables
and UYFUT1.I contains termination criteria. The form of the UFO source program is also influenced by
macrovariables $INIT, $SINIT, $SINID and $CONST, which are substituted into the UFO source pro-
gram by system templates UZINIT.I, UZINPT.I and UZMETH.I. The text from $INIT is substituted into
SUBROUTINE UYINT1, which is a part of the UFO source program. The texts from $SINIT and $SINID are
substituted before and after user’s input $INPUT, respectively. The text from $CONST is substituted in
such a way that statements of a generated method follow immediately.

Individual driver templates are listed in Section C.2
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C List of important templates

C.1 List of system templates

The BEL interpreter templates:

UZDPRE - Template for the compilation of UFO source modules.

UZDCLP - Template for the UFO control language preprocessor.

Basic system templates:

UZARRY - Names of the basic arrays.

UZDECL - Global declaration.

UZINIT - Initiation for the UFO control program generation.

UZINPT - Substitution of the user input.

UZIPAR - Substitution of the subroutines serving for initiation of problem and method parameters.

UZMDER - The erase of the model macrovariables.

UZMTER - The erase of the method macrovariables.

UZSETG - Initiation of graphic choices.

UZSETM - Initiation of special macrovariables.

UZSTAN - Standard form of the UFO control program.

UZTEST - Testing of external subroutines.

UZTPNT - Tracing in the UFO control program.

Templates for the problem specification:

UZPROB - Problem definition.

UZMODN - Including the generalized objective function into the UFO control program.

UZMODL - Including the standard objective function into the UFO control program.

UZAMOD - Including the approximating function into the UFO control program.

UZASET - Finding parameters of the approximating function.

UZMODA - Definition of the approximating function.

UZCMOD - Including the constraint function into the UFO control program.

UZCSET - Finding parameters of the constraint function.

UZMODC - Definition of the constraint function.

UZEMOD - Including the state function into the UFO control program.

UZESET - Finding parameters of the state function.

UZMODE - Definition of the state function.

UZFMOD - Including the model function into the UFO control program.

UZMODF - Definition of the model function.

UZYMOD - Including the initial function into the UFO control program.

UZYSET - Finding parameters of the initial function.

UZMODY - Definition of the initial function.

UZSIFD - Selection of a test function from the CUTE collection.

Templates for the method selection:

UZMETH - Including the optimization method into the UFO control program.

UZGMIN - Choice of the global optimization method.

UZGSLM - Termination of the global optimization.

UZLMIN - Choice of the local optimization method.
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UZLIND - Preparation of line search.

UZLINS - Choice of the line search method and including line search into the UFO control program.

UZSRND - Selection of the random number generator.

Templates for automatic differentiation:

UZADA1 - Automatic differentiation of the approximating function - the first derivatives.

UZADA2 - Automatic differentiation of the approximating function - the second derivatives.

UZADC1 - Automatic differentiation of the constraint function - the first derivatives.

UZADC2 - Automatic differentiation of the constraint function - the second derivatives.

UZADD1 - Declaration for automatic differentiation - the first derivatives.

UZADD2 - Declaration for automatic differentiation - the second derivatives.

UZADF1 - Automatic differentiation of the model function - the first derivatives.

UZADF2 - Automatic differentiation of the model function - the second derivatives.

UZADS1 - Basic template for automatic differentiation - the first derivatives.

UZADS2 - Basic template for automatic differentiation - the second derivatives.

C.2 List of driver templates

Drivers for unconstrained or box constrained minimization of general objective functions:

U0FDU1 - Heuristic methods for small-size unconstrained problems.

U1FBU1 - Variable metric methods for partially separable unconstrained or box constrained problems.

U1FDU1 - Variable metric methods for dense unconstrained or linearly constrained problems.

U1FDU2 - Conjugate direction methods for dense unconstrained or linearly constrained problems.

U1FDU3 - Proximal bundle methods for dense nonsmooth unconstrained problems.

U1FDU5 - Bundle variable metric methods for dense nonsmooth unconstrained or linearly constrained
problems.

U1FLU1 - Conjugate gradient methods and variable metric methods with limited memory, based on the
Strang recurrences, for unconstrained or box constrained problems.

U1FLU2 - Variable metric methods with limited memory, based on compact matrix updates, for uncon-
strained or box constrained problems.

U1FLU3 - Variable metric methods with limited memory, based on reduced Hessians, for unconstrained or
box constrained problems.

U1FLU4 - Variable metric methods with limited memory, based on shifted product-form updates, for un-
constrained or box constrained problems.

U1FLU5 - Variable metric methods with limited memory, based on projected product-form updates, for
unconstrained or box constrained problems.

U1FLU7 - Variable metric methods with limited memory for nonsmooth unconstrained or box constrained
problems.

U1FSU1 - Variable metric methods for sparse or partially separable unconstrained or box constrained
problems.

U1FSU2 - Truncated Newton methods for unconstrained or box constrained problems.

U1FSU5 - Bundle variable metric methods for sparse nonsmooth unconstrained or box constrained prob-
lems.

U2FBU1 - Modified Newton methods for partially separable unconstrained or box constrained problems.

U2FDU1 - Modified Newton methods for dense unconstrained or linearly constrained problems.

U2FDU3 - Bundle Newton methods for dense nonsmooth unconstrained problems.

U2FSU1 - Modified Newton methods for sparse or partially separable unconstrained or box constrained
problems.
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Drivers for unconstrained or box constrained minimization of sum of squares or powers and for solving
nonlinear equations:

U0SDU1 - Quasi-Newton methods for solving dense nonlinear equations.

U0SDU2 - Discrete Newton and Brent methods for solving dense nonlinear equations.

U0SSU1 - Quasi-Newton methods for solving sparse nonlinear equations.

U0SSU2 - Quasi-Newton methods with limited-memory for solving nonlinear equations.

U0SSU3 - Truncated Newton methods for solving nonlinear equations.

U1SDU1 - Modified Gauss-Newton methods, based on solving linear over-determined systems, for dense
unconstrained or linearly constrained nonlinear least squares.

U1SSU1 - Modified Gauss-Newton methods, based on solving linear over-determined systems, for sparse
unconstrained or box constrained nonlinear least squares.

U2SBU1 - Modified Gauss-Newton methods, based on solving normal linear systems, for partially separable
unconstrained or box constrained nonlinear least squares.

U2SDU1 - Modified Gauss-Newton methods, based on solving normal linear systems, for dense uncon-
strained or linearly constrained nonlinear least squares.

U2SSU1 - Modified Gauss-Newton methods, based on solving normal linear systems, for sparse uncon-
strained or box constrained nonlinear least squares.

Drivers for unconstrained and box constrained minimization of special nonsmooth problems:

U1ASU1 - Primal interior point variable metric methods for sparse unconstrained sum of absolute values.

U2ASU1 - Primal interior point modified Newton methods for sparse unconstrained sum of absolute values.

U1MDU1 - Sequential quadratic programming variable metric methods for dense unconstrained or linearly
constrained minimax problems.

U1MSU1 - Primal interior point variable metric methods for sparse unconstrained or box constrained min-
imax problems.

U1MSU2 - Smoothing variable metric methods for sparse unconstrained minimax problems.

U2MDU1 - Sequential quadratic programming variable metric methods for dense unconstrained or linearly
constrained minimax problems.

U2MSU1 - Primal interior point modified Newton methods for sparse unconstrained or box constrained
minimax problems.

U2MSU2 - Smoothing modified Newton methods for sparse unconstrained minimax problems.

Drivers for linearly constrained smooth problems:

U1LDL1 - Simplex type methods for dense linear programming problems.

U1LSL1 - Simplex type methods for sparse linear programming problems.

U1LSL2 - Primal-dual interior point methods for sparse linear programming problems.

U1QDL1 - Simplex type methods for dense quadratic programming problems.

U1QSL1 - Simplex type methods for sparse quadratic programming problems.

U1QSL2 - Primal-dual interior point methods for sparse quadratic programming problems.

U1FSL1 - Sequential quadratic programming variable metric methods for sparse problems with general
linear constraints.

U1FSL2 - Conjugate direction methods for sparse problems with general linear constraints.

U2FSL1 - Sequential quadratic programming modified Newton methods for sparse problems with general
linear constraints.
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Drivers for nonlinearly constrained smooth problems:

U1FDN1 - Sequential quadratic programming variable metric methods for dense problems with general
nonlinear constraints.

U1FDN3 - Sequential minimax programming variable metric methods for dense problems with general
nonlinear constraints.

U2FDN1 - Sequential quadratic programming modified Newton methods for dense problems with general
nonlinear constraints.

U1FSE1 - Sequential quadratic programming variable metric methods for sparse problems with nonlinear
equality constraints.

U1FSE2 - Sequential quadratic programming variable metric methods with limited memory for sparse
problems with nonlinear equality constraints.

U1FSE3 - Sequential quadratic programming truncated Newton methods for sparse problems with nonlinear
equality constraints.

U2FSE1 - Sequential quadratic programming modified Newton methods for sparse problems with nonlinear
equality constraints.

U1FSF1 - Fisher-Burmeister nonsmooth equation variable metric methods for sparse problems with general
nonlinear constraints.

U1FSF2 - Fisher-Burmeister nonsmooth equation variable metric methods with limited memory for sparse
problems with general nonlinear constraints.

U1FSF3 - Fisher-Burmeister nonsmooth equation truncated Newton methods for sparse problems with
general nonlinear constraints.

U2FSF1 - Fisher-Burmeister nonsmooth equation modified Newton methods for sparse problems with gen-
eral nonlinear constraints.

U1FSI1 - Primal-dual interior point variable metric methods for sparse problems with general nonlinear
constraints.

U1FSI2 - Primal-dual interior point variable metric methods with limited memory for sparse problems
with general nonlinear constraints.

U1FSI3 - Primal-dual interior point truncated Newton methods for sparse problems with general nonlinear
constraints.

U2FSI1 - Primal-dual interior point modified Newton methods for sparse problems with general nonlinear
constraints.

Drivers for nonlinearly constrained special nonsmooth problems:

U1ADN1 - Sequential quadratic programming variable metric methods for dense sum of absolute values
with general nonlinear constraints.

U1ASE1 - Primal-dual interior point variable metric methods for sparse sum of absolute values with general
nonlinear constraints (two slack reformulation).

U1ASE2 - Primal-dual interior point variable metric methods with limited memory for sparse sum of ab-
solute values with general nonlinear constraints (two slack reformulation).

U1ASI1 - Primal-dual interior point variable metric methods for sparse sum of absolute values with general
nonlinear constraints (one slack reformulation).

U1ASI2 - Primal-dual interior point variable metric methods with limited memory for sparse sum of ab-
solute values with general nonlinear constraints - one slack reformulation.

U2ADN1 - Sequential quadratic programming modified Newton methods for dense sum of absolute values
with general nonlinear constraints.

U2ASE1 - Primal-dual interior point modified Newton methods for sparse sum of absolute values with
general nonlinear constraints (two slack reformulation).

U2ASI1 - Primal-dual interior point modified Newton methods for sparse sum of absolute values with
general nonlinear constraints (one slack reformulation).
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U1MDN1 - Sequential quadratic programming variable metric methods for dense minimax problems with
general nonlinear constraints.

U1MSI1 - Primal-dual interior point variable metric methods for sparse minimax problems with general
nonlinear constraints.

U1MSI2 - Primal-dual interior point variable metric methods with limited memory for sparse minimax
problems with general nonlinear constraints.

U2MDN1 - Sequential quadratic programming modified Newton methods for dense minimax problems with
general nonlinear constraints.

U2MSI1 - Primal-dual interior point modified Newton methods for sparse minimax problems with general
nonlinear constraints.

Drivers for problems with complementarity constraints:

U1PSI1 - Primal-dual interior point variable metric methods with exact penalty function for sparse prob-
lems with nonlinear complementarity constraints.

U1PSI2 - Primal-dual interior point variable metric methods with limited memory with exact penalty
function for sparse problems with nonlinear complementarity constraints.

U1PSI3 - Primal-dual interior point truncated Newton methods with exact penalty function for sparse
problems with nonlinear complementarity constraints.

U2PSI1 - Primal-dual interior point modified Newton methods with exact penalty function for sparse
problems with nonlinear complementarity constraints.

C.3 List of templates for direction determination

Direction determination for unconstrained minimization of general objective functions:

UDDPS1 - The Hooke-Jeeves pattern search method.

UDDSM1 - The Nelder-Mead simplex method.

UDDSM2 - The modified Nelder-Mead simplex method.

UDGGG1 - The dog-leg trust region method.

UDGGG2 - The multiple dog-leg trust region method.

UDGGM3 - The Steihaug-Toint trust region method.

UDGGM4 - The shifted Steihaug-Toint trust region method.

UDGGM5 - The simplified Lanczos type trust region method.

UDGGM6 - The Gould-Lucidi-Roma-Toint Lanczos type trust region method.

UDGGM7 - The Moré-Sorensen optimum trust region method.

UDGGM8 - The Hager trust region method that uses projections on subspaces.

UDGGM9 - The Rojas-Sorensen Arnoldi type trust region method.

UDGRM7 - The Gould-Toint optimum cubic regularization method.

UDDLI1 - Multiplication by an approximation of the inverse Hessian matrix.

UDGLG1 - The direct method based on Gaussian elimination.

UDGLG2 - The modified direct method based on Gaussian elimination.

UDGLM3 - The iterative conjugate gradient method.

UDPLI1 - Computation of direction vector for variable metric limited memory methods, based on shifted
product-form updates.

UDPLI2 - Computation of direction vector for variable metric limited memory methods based on corrected
product-form updates.

UDPLI3 - Computation of direction vector for variable metric limited memory methods based on projected
product-form updates.

UDRLI1 - Computation of direction vector for variable metric limited memory methods based on reduced
Hessians - standard form.
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UDRLG1 - Computation of direction vector for variable metric limited memory methods based on reduced
Hessians - factorized form.

UDVLC1 - Computation of direction vector for nonlinear conjugate gradient methods.

UDVLC2 - Computation of direction vector for modified nonlinear conjugate gradient methods.

UDVLV1 - Computation of direction vector for the vector-type BFGS limited memory method.

UDVLV2 - Computation of direction vector for the vector-type Liu-Storey limited memory method.

UDVLV3 - Computation of direction vector for the vector-type variable metric limited memory methods
transformed to the BFGS form.

UDVLV4 - Computation of direction vector for the vector-type variable metric limited memory methods
transformed to the BFGS form - simplified version.

UDVLV5 - Computation of direction vector for the vector-type variable metric limited memory methods
that use vectors from the previous iteration.

UDVLV6 - Computation of direction vector for the vector-type variable metric limited memory methods
that construct conjugate directions.

Direction determination for unconstrained minimization of nonlinear least-squares:

UDGGA1 - The dog-leg trust region method that uses the Jacobian matrix.

UDGGA3 - The CGLS based trust region method that uses the Jacobian matrix.

UDGGA4 - The LSQR based trust region method that uses the Jacobian matrix.

UDGGA7 - The Moré-Sorensen optimum trust region method that uses the Jacobian matrix.

UDGLA1 - The direct method that uses the orthogonal decomposition of the Jacobian matrix.

UDGLA3 - The iterative CGLS method that uses the Jacobian matrix.

UDGLA4 - The iterative LSQR method that uses the Jacobian matrix.

UDSGV3 - The CGLS based trust region method that uses the Jacobian matrix corrected by a simple
Broyden update.

UDSLV3 - The iterative CGLS based method that uses the Jacobian matrix corrected by a simple Broyden
update.

UDGTG1 - The modified dog-leg trust region method that uses the normal-equation matrix.

UDGTM7 - The modified Moré-Sorensen optimum trust region method that uses the normal-equation matrix.

UDGMM1 - The direct Levenberg-Marquardt method.

Direction determination for solving nonlinear equations:

UDDGQ2 - The multiple dog-leg trust region method for dense nonlinear equations.

UDGGE2 - The multiple dog-leg trust region method for sparse nonlinear equations.

UDGGE3 - The CGS based trust region method with double smoothing.

UDGGE4 - The GMRES based trust region method.

UDGGE5 - The BICGSTAB based trust region method.

UDGLE3 - The iterative CGS method with double smoothing.

UDGLE4 - The iterative GMRES method.

UDGLE5 - The iterative BICGSTAB method.

UDDEQ1 - The original Brent method.

UDDEQ2 - The modified Brent method.

UDDEQ3 - The simple discrete Newton method.

UDLLI1 - The inverse column-update method with complete LU factorization.

UDLLI3 - The inverse column-update method with incomplete LU factorization and smoothed CGS cor-
rection.

Direction determination for unconstrained minimization of special nonsmooth functions:
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UDSGX1 - The dog-leg trust region method applied to the barrier function obtained by the primal interior
point method - the minimax case.

UDSLX1 - Direct elimination method applied to the barrier function obtained by the primal interior point
method - the minimax case.

UDSLX2 - Direct elimination method applied to the barrier function obtained by the exponential smoothing
- the minimax case.

UDSLXI - Computing the Hessian matrix of the barrier function - the minimax case.

UDSGA1 - The dog-leg trust region method applied to the barrier function obtained by the primal interior
point method - the sum of absolute values case.

UDSLA7 - The Moré-Sorensen trust region method applied to the barrier function obtained by the primal
interior point method - the sum of absolute values case.

UDSLA1 - Direct elimination method applied to the barrier function obtained by the primal interior point
method - the sum of absolute values case.

UDSLAI - Computing the Hessian matrix of the barrier function - the sum of absolute values case.

UDLLN1 - Computation of direction vector for nonsmooth matrix-type variable metric limited memory
methods.

Direction determination for recursive quadratic programming methods for sparse problems with equality
constraints:

UDSLK1 - The direct method based on Bunch-Parlett elimination applied to the KKT system.

UDSLK3 - The iterative conjugate gradient method applied to the KKT system.

UDSLK4 - The iterative conjugate residual method applied to the KKT system.

UDSLK5 - The iterative QMR method applied to the KKT system.

UDSLK6 - The iterative CGS method applied to the KKT system.

UDSLKA - Computation of the shift parameter for methods that use the KKT system.

UDSLKD - Computation of the directional derivative for methods that use the KKT system.

UDSLKI - Determination of the preconditioner for iterative methods that use the KKT system.

UDSLKP - Preconditioning of iterative methods that use the KKT system.

UDSLKT - Test for termination of iterative methods that use the KKT system.

UDSLG3 - The iterative conjugate gradient method with the Gill-Murray decomposition applied to the
range-space system.

UDSLG4 - The iterative conjugate gradient method with the Bunch-Parlett decomposition applied to the
range-space system.

UDSLGA - Computation of the shift parameter for methods that use the range-space system.

UDSLGD - Computation of the directional derivative for methods that use the range-space system.

UDSLGI - Determination of the preconditioner for iterative methods that use the range-space system.

UDSLGP - Preconditioning of iterative methods that use the range-space system.

UDSLGT - Test for termination of iterative methods that use the range-space system.

UDSGZ3 - The iterative locally constrained method applied to the null-space system.

UDSGZD - Computation of the directional derivative for locally constrained methods.

UDSLZ3 - The iterative conjugate gradient method applied to the null-space system.

UDSLZD - Computation of the directional derivative for methods that use the null-space system.

UDSLZI - Determination of the preconditioner for iterative methods that use the null-space system.

UDSLZP - Preconditioning of iterative methods that use the null-space system.

UDSLZR - Determination of vertical direction in methods that use the null-space system.

UDSLZT - Test for termination of iterative methods that use the null-space system.

Direction determination for primal-dual interior point methods for sparse nonlinear programming problems:
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UDSGI3 - The iterative locally constrained method applied to the KKT system.

UDSGID - Computation of the directional derivative for locally constrained methods.

UDSLI1 - The direct method based on Bunch-Parlett elimination applied to the KKT system.

UDSLI3 - The iterative conjugate gradient method applied to the KKT system.

UDSLID - Computation of the directional derivative for methods that use the KKT system.

UDSLII - Determination of the preconditioner for iterative methods that use the KKT system.

UDSLIP - Preconditioning of iterative methods that use the KKT system.

UDSLIT - Test for termination of iterative methods that use the KKT system.

UDSLQ3 - The iterative conjugate gradient method applied to the KKT system when the objective function
is quadratic.

UDSLQI - Determination of the preconditioner for iterative methods that use the KKT system when the
objective function is quadratic.

Direction determination for nonsmooth equation methods for sparse nonlinear programming problems:

UDSLF1 - The direct method based on Bunch-Parlett elimination applied to the KKT system.

UDSLF3 - The iterative conjugate gradient method applied to the KKT system.

UDSLFD - Computation of the directional derivative for methods that use the KKT system.

UDSLFT - Test for termination of iterative methods that use the KKT system.

Direction determination for primal-dual interior point methods for sparse problems with complementarity
constraints:

UDSLC1 - The direct method based on Bunch-Parlett elimination applied to the KKT system.

UDSLC3 - The iterative conjugate gradient method applied to the KKT system.

UDSLCD - Computation of the directional derivative for methods that use the KKT system.

UDSLCI - Determination of the preconditioner for iterative methods that use the KKT system.

UDSLCP - Preconditioning of iterative methods that use the KKT system.

UDSLCT - Test for termination of iterative methods that use the KKT system.

Solution of linear and quadratic programming subproblems:

UDDBQ1 - Quadratic programming subproblem for dense nonsmooth problems - the proximal bundle
method.

UDDBQ2 - Quadratic programming subproblem for dense nonsmooth problems - the bundle Newton method.

UDDBQ3 - Quadratic programming subproblem for dense nonsmooth problems - the bundle variable metric
method.

UDDSQ1 - Quadratic programming subproblem for dense nonlinear programming problems.

UDDXL1 - Linear programming subproblem for dense unconstrained minimax problems.

UDDXQ1 - Quadratic programming subproblem for dense unconstrained minimax problems.

UDSSQ1 - Quadratic programming subproblem for sparse nonlinear programming problems.

UDSSQ3 - Quadratic programming subproblem for sparse nonlinear programming problems.

UDSLL1 - Solution of the KKT system for the Miao first infeasible predictor-corrector method for linear
programming.

UDSLL2 - Solution of the KKT system for the Miao second infeasible predictor-corrector method for linear
programming.

UDSLL3 - Solution of the KKT system for the Mizuno infeasible predictor-corrector method for linear
programming.
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D Demonstration of internal FORTRAN graphic output

D.1 Nonlinear regression
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D.2 Nonlinear minimax optimization
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D.3 Transformer network design
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D.4 Global optimization
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D.5 Nonsmooth optimization
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D.6 Rosenbrock function

358



D.7 Ordinary differential equations
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D.8 The Lorenz attractor
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E Demonstration of external MATLAB graphic output

E.1 Nonlinear regression

• Bounds and values of variables (final solution)

• Differences between AF and AM (final solution)
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• Isolines

• Map
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E.2 Nonlinear minimax optimization

• Isolines

• Map
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• Surface

• Path with isolines
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E.3 Transformer network design

• Isolines

• Map
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• Surface

• Isolines
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• Map

• Surface
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E.4 Global optimization

• Isolines

• Map
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• Surface

• Path with map
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E.5 Nonsmooth optimization

• Isolines

• Map
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• Surface

• Iterations of F
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• Path with isolines (100 points)

• Path with isolines (30 points)
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E.6 Rosenbrock function

• Iterations of x1, x2

• Iterations of F
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• Path with isolines

• Path with map
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E.7 Ordinary differential equations

• Trajectories of yA3 , y
A
4

• Orbit of yA3 , y
A
4
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E.8 The Lorenz attractor

• Trajectories of yA1 , y
A
2 , y

A
3

• Orbit of yA1 , y
A
2
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• Orbit of yA1 , y
A
3

• Orbit of yA2 , y
A
3
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F Demonstration of external SCILAB graphic output

F.1 Nonlinear regression

• Bounds and values of variables (final solution)

• Differences between AF and AM (final solution)
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• Isolines

• Map
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F.2 Nonlinear minimax optimization

• Isolines

• Map
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• Surface

• Path with isolines
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F.3 Transformer network design

• Isolines

• Map
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• Surface

• Isolines

384



• Map

• Surface
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F.4 Global optimization

• Isolines

• Map
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• Surface

• Path with map

387



F.5 Nonsmooth optimization

• Isolines

• Map
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• Surface

• Iterations of F
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• Path with isolines (100 points)

• Path with isolines (30 points)

390



F.6 Rosenbrock function

• Iterations of x1, x2

• Iterations of F
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• Path with isolines

• Path with map
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F.7 Ordinary differential equations

• Trajectories of yA3 , y
A
4

• Orbit of yA3 , y
A
4
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F.8 The Lorenz attractor

• Trajectories of yA1 , y
A
2 , y

A
3

• Orbit of yA1 , y
A
2
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• Orbit of yA1 , y
A
3

• Orbit of yA2 , y
A
3
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