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Abstract. Chartrand et al. (2004) have given an upper bound for the nearly antipodal

chromatic number ac′(Pn) as
(n−2
2

)

+2 for n > 9 and have found the exact value of ac′(Pn)

for n = 5, 6, 7, 8. Here we determine the exact values of ac′(Pn) for n > 8. They are
2p2 − 6p + 8 for n = 2p and 2p2 − 4p + 6 for n = 2p + 1. The exact value of the radio
antipodal number ac(Pn) for the path Pn of order n has been determined by Khennoufa
and Togni in 2005 as 2p2− 2p+3 for n = 2p+1 and 2p2− 4p+5 for n = 2p. Although the
value of ac(Pn) determined there is correct, we found a mistake in the proof of the lower
bound when n = 2p (Theorem 6). However, we give an easy observation which proves this
lower bound.
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1. Introduction

Let G be a connected graph. For any positive integer k, a radio k-coloring of

G is an assignment f of colors (positive integers) to the vertices of G such that

|f(u) − f(v)| > 1 + k − d(u, v) for every two distinct vertices u, v of G. The span

rck(f) of a radio k-coloring f of G is the maximum color assigned to a vertex of G.

The radio k-chromatic number rck(G) of G is the minimum span of all radio k-

colorings of G. If rck(f) = rck(G) for some radio k-coloring f of G then we say that

f is a minimal radio k-coloring. The radio 1-chromatic number rc1(G) is then the

chromatic number χ(G). If diamG = d, the radio d-coloring of G is referred to as

the radio coloring of G, and the radio d-chromatic number rcd(G) is called the radio

number of G that was introduced in [1]. The radio (d−1)-coloring of G is referred to

as the radio antipodal coloring of G and the radio (d−1)-chromatic number ac(G) is

called the radio antipodal chromatic number or simply the antipodal number of G.
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The radio (d − 2)-coloring is known as the nearly antipodal coloring of G and the

radio (d−2) coloring number is called the nearly antipodal chromatic number ac′(G)

of G. The radio k-coloring of a graph was defined by Chartrand et al. in [3], [4]. The

radio antipodal coloring for graphs was first studied by Chartrand et al. [2], [3].

Kchikech et al. [7] have given the exact values of the radio k-chromatic number of

Pn for k > n, which are (n−1)k− 1
2n(n−2)+1 if n is even and (n−1)k− 1

2 (n−1)2+2

if n is odd. Liu and Zhu [6] determined the exact value of the radio (n− 1)-coloring

number (radio number) as given below.

Theorem 1.1 ([6]). For any integer n > 3,

rc(n−1)(Pn) =

{

2p2 + 3 if n = 2p + 1,

2p2 − 2p + 2 if n = 2p.

Next we define the symbols εj , 2 6 j 6 n, which are used in the sequel.

Definition 1.2. For any radio k-coloring f of a path Pn and an ordering

x1, x2, . . . , xn of vertices of Pn with f(xi) 6 f(xi+1), 1 6 i 6 n − 1, we define

εj = (f(xj) − f(xj−1)) − (1 + k − d(xj , xj−1)), 2 6 j 6 n. It is clear from the

definition of a radio k-coloring that εj > 0, 2 6 j 6 n.

Khennoufa and Togni [5] determined the exact value of the radio antipodal number

for the path Pn as given below.

Theorem 1.3 ([5]). For any integer n > 5,

ac(Pn) =

{

2p2 − 2p + 3 if n = 2p + 1,

2p2 − 4p + 5 if n = 2p.

Although the value of ac(Pn) determined in [5] is correct, we found a mistake in

the proof of the lower bound when n = 2p (Theorem 6 of [5]). In Theorem 6 of [5],

the inequality rc2p−1(P2p) 6 ac(P2p) + (2p − 1) − ε3 − ε2p−1 is incorrect, because

from Lemma 2 of [5] one gets rc2p−1(f
′) 6 rc2p−2(f)+(2p−1)−ε3−ε2p−1, where f

is a radio k-coloring of Pn and f ′ is a radio k′-coloring of Pn, k′ > k, with rck′(f ′) 6

rck(f) + (n − 1)(k′ − k) −
∑

i∈I

min(k′ − k, εi), I = {i1, i2, . . . , is} ⊂ {2, 3, . . . , n}

such that ij+1 > ij + 1, 1 6 j 6 s − 1. Since rc2p−1(P2p) 6 rc2p−1(f
′), we get

rc2p−1(P2p) 6 rc2p−2(f) + (2p− 1)− ε3 − ε2p−1. We have ac(P2p) 6 rc2p−2(f). The

number rc2p−2(f) cannot be replaced by ac(P2p) unless f is a minimal coloring. If

we assume (or know) that f is a minimal coloring then there is no need of proving

this theorem.

The observation below establishes the lower bound of ac(P2p) (Theorem 6 of [5]).
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Observation 1.4. For n = 2p, the lower bound of the antipodal number of Pn

may be proved as follows. We know that rck(Pn) > rck(Pn−1) for any positive integer

k. So ac(P2p) = rcn−2(Pn=2p) > rcn−2(Pn−1=2(p−1)+1) = 2(p−1)2+3 = 2p2−4p+5

due to Liu and Zhu [6].

Chartrand et al. [4] have given an upper bound for the radio k-chromatic number

when 1 6 k 6 n − 3 as follows.

Theorem 1.5 ([4]). For 1 6 k 6 n − 3,

rck(Pn) 6

{

1
2 (k2 + 2k + 1) if k is odd,

1
2 (k2 + 2k + 2) if k is even.

Chartrand et al. [4] have also given a lower bound for the same number. However,

from Theorem 1.3, we get the following improved lower bound for rck(Pn), 1 6 k 6

n − 3.

Theorem 1.6 ([7]). For 1 6 k 6 n − 3,

rck(Pn) >

{

1
2 (k2 + 5) if k is odd,

1
2 (k2 + 6) if k is even.

Chartrand et al. [4] have further improved the upper bound for the particular case

k = n− 3 (i.e. for ac′(Pn)) as
(

n−2
2

)

+ 2 for n > 9 and have given the exact values of

ac′(Pn) for n = 5, 6, 7, 8 as 5, 7, 11, 16, respectively. In this paper we give the exact

value of the nearly antipodal chromatic number of Pn for n > 8. And consequently,

the lower bound of the radio k-chromatic number of Pn for 5 6 k 6 n − 4 is also

improved.

2. Upper bound

Now we give an upper bound for ac′(Pn) by defining radio (n−3)-colorings of Pn.

Theorem 2.1. For any integer n > 8,

ac′(Pn) 6

{

2p2 − 6p + 8 if n = 2p,

2p2 − 4p + 6 if n = 2p + 1.

P r o o f . Let Pn be the path a1 a2 . . . an.
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C a s e I. In this case we take n = 2p. Define a map f as

f(a1) = p − 1,

f(ap−1−i) = 2p − 1 + i(2p − 3) for 0 6 i 6 p − 3,

f(ap) = 2p2 − 6p + 8,

f(ap+1) = 1,

f(a2p−1−j) = p + 1 + j(2p − 3) for 0 6 j 6 p − 3,

f(a2p) = 2p2 − 7p + 10.

Observe that ap gets the maximum color, i.e. 2p2−6p+8. Here the distance condition

is verified only for vertices of the form ap−1−i and a2p−1−j , 0 6 i, j 6 p − 3 as the

other conditions can be checked easily.

For 0 6 i, j 6 p − 3, |f(a2p−1−j) − f(ap−1−i)| = |p + 1 + j(2p − 3) − (2p − 1 +

i(2p − 3))| = |(j − i)(2p − 3) − (p − 2)| > p − 2 + (j − i) = 1 + (2p − 3) − (2p − 1 −

j − (p − 1 − i)) = 1 + (n − 3) − (2p − 1 − j − (p − 1 − i)) if j 6 i. For j − i = 1,

|(j−i)(2p−3)−(p−2)| = p−1 = p−2+(j−i) = 1+(n−3)−(2p−1−j−(p−1−i)).

For j − i > 2, |(j − i)(2p − 3) − (p − 2)| > 3p − 4 > 2p − 5 > p − 2 + (j − i) =

1 + (n − 3) − (2p − 1 − j − (p − 1 − i)).

Therefore the above mapping f is a radio (n−3)-coloring and ac′(Pn) 6 2p2−6p+8

for n = 2p.

C a s e II. In this case we take n = 2p + 1. Define a map g as

g(a1) = p + 1,

g(a2) = 2p2 − 5p + 7,

g(a3+i) = 3p + 1 + i(2p − 1), 0 6 i 6 p − 4,

g(ap+j) = 1 + j(2p − 1), 0 6 j 6 1,

g(ap+2) = 2p2 − 4p + 6,

g(ap+3+l) = 4p + l(2p − 1), 0 6 l 6 p − 4,

g(a2p+m) = p + m(2p − 1), 0 6 m 6 1.

Observe that ap+2 gets the maximum color, i.e. 2p2 − 4p + 6. Here the distance

condition is verified only for vertices of the form a3+i and ap+3+l, 0 6 i, l 6 p− 4 as

the other cases can be checked easily. For 0 6 i, l 6 p − 4, |g(ap+3+l) − g(a3+i)| =

|4p + l(2p − 1) − (3p + 1 + i(2p − 1))| = |(l − i)(2p − 1) + p − 1| > p − 1 − (l − i) =

1+(2p−2)−(p+3+l−(3+i)) = 1+(n−3)−(p+3+l−(3+i)) if l > i. For i−l = 1,

|(l−i)(2p−1)+p−1| = p = p−1−(l−i) = 1+(n−3)−(p+3+l−(3+i)). For i−l > 2,

|(l−i)(2p−1)+p−1| > 3p−1 > 2p−5 > p−1−(l−i) = 1+(n−3)−(p+3+l−(3+i)).

Therefore the above mapping g is a radio (n−3)-coloring and ac′(Pn) 6 2p2−4p+6

for n = 2p + 1.
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E x am p l e 2.2. Here we illustrate Theorem 2.1 by giving an example of nearly

antipodal colorings of Pn for n = 8, 11, 12.

a1 a2 a3 a4 a5 a6 a7 a8

3 12 7 16 1 10 5 14

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

6 32 16 25 1 10 36 20 29 5 14

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

5 38 29 20 11 44 1 34 25 16 7 40

3. Lower bound

Here we first give a result of Liu and Zhu [6] and also a detailed proof of this which

will be useful in deriving some more results in the sequel.

Theorem 3.1 [6]. For any radio k-coloring f of a path Pn: a1 a2 a3 . . . an−1 an,

n
∑

i=2

d(xi, xi−1) 6

{

2p2 − 1 if n = 2p,

2p2 + 2p − 1 if n = 2p + 1,

where x1, x2, x3, . . . , xn−1, xn is an ordering of vertices of Pn such that f(xi) 6

f(xi+1), 1 6 i 6 n − 1.

P r o o f . Let xi = aσ(i), 1 6 i 6 n. Then σ is a permutation of {1, 2, 3, . . . , n}.

Note that d(xi, xi−1) is equal to either σ(i) − σ(i − 1) or σ(i − 1) − σ(i), whichever

is positive. Replacing each term d(xi, xi−1) in
n
∑

i=2

d(xi, xi−1) by the corresponding

σ(i)−σ(i−1) or σ(i−1)−σ(i), whichever is positive, we obtain a summation whose

entries are ±j for j ∈ {1, 2, 3, . . . , n}. Altogether there are 2(n−1) terms of the form

±j in the summation
n
∑

i=2

d(xi, xi−1), half of them positive and half negative. To

maximize the summation
n
∑

i=2

d(xi, xi−1), one needs to minimize the absolute values

for negative terms while maximizing the values of positive terms. It is easy to verify

that the following are the only possibilities achieving the maximum summation.

For n = 2p: In the summation
n
∑

i=2

d(xi, xi−1) each of {1, 2, 3, . . . , p − 1} occurs

twice with a negative sign, each of {p + 2, p + 3, . . . , 2p} occurs twice with a positive

sign, p occurs once as negative and p + 1 occurs once as positive. Since p and p + 1

occur only once in the summation, we get {f(x1), f(x2p)} = {f(ap), f(ap+1)}.

For n = 2p + 1:
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(i) Each of the numbers {p+2, p+3, p+4, . . . , 2p+1} occurs twice with a positive

sign, each of {1, 2, 3, . . . , p − 1} occurs twice with a negative sign, and each of

p and p + 1 occurs once as negative. Since both p and p + 1 occur only once in

the summation, we get {f(x1), f(x2p)} = {f(ap), f(ap+1)}.

(ii) Each of the numbers {p +3, p +4, . . . , 2p+ 1} occurs twice with a positive sign,

each of {1, 2, 3, . . . , p} occurs twice with a negative sign, and each of p + 1 and

p + 2 occurs once as positive. Since both p and p + 2 occur only once in the

summation, we get {f(x1), f(x2p)} = {f(ap+1), f(ap+2)}.

Next we give the possibilities of having the distance summation 2p2−2 and 2p2−3

when n = 2p is any radio k-coloring of Pn.

Lemma 3.2. For any radio k-coloring of Pn, the following are the only possibilities

for the sum
n
∑

i=2

d(xi, xi−1) to be 2p2 − 2 when n = 2p.

(i) In the summation each of {1, 2, 3, . . . , p − 1} occurs twice with a negative sign,

each of {p + 1, p + 3, . . . , 2p} occurs twice with a positive sign, p occurs once as

negative and p + 2 occurs once as positive. Since both p and p + 2 occur only

once in the summation, we get {f(x1), f(x2p)} = {f(ap), f(ap+2)}.

(ii) In the summation each of {1, 2, 3, . . . , p−2, p} occurs twice with a negative sign,

each of {p+2, p+3, . . . , 2p} occurs twice with a positive sign, p−1 occurs once

as negative and p + 1 occurs once as positive. Since both p− 1 and p + 1 occur

only once in the summation, we get {f(x1), f(x2p)} = {f(ap−1), f(ap+1)}.

P r o o f . Follows from the proof of Theorem 3.1. �

Lemma 3.3. For any radio k-coloring of Pn, the following are the only possibilities

for the sum
n
∑

i=2

d(xi, xi−1) to be 2p2 − 3 when n = 2p.

(i) In the summation each of {1, 2, 3, . . . , p − 1} occurs twice with a negative sign,

each of {p + 1, p + 2, p + 4, . . . , 2p} occurs twice with a positive sign, p occurs

once as negative and p+3 occurs once as positive. Since both p and p+3 occur

only once in the summation, we get {f(x1), f(x2p)} = {f(ap), f(ap+3)}.

(ii) In the summation each of {1, 2, 3, . . . , p−3, p−1, p} occurs twice with a negative

sign, each of {p+2, p+3, . . . , 2p} occurs twice with a positive sign, p−2 occurs

once as negative and p + 1 occurs once as positive. Since both p − 2 and p + 1

occur only once in the summation, we get {f(x1), f(x2p)} = {f(ap−2), f(ap+1)}.

(iii) In the summation each of {1, 2, 3, . . . , p−2, p} occurs twice with a negative sign,

each of {p+1, p+3, . . . , 2p} occurs twice with a positive sign, p−1 occurs once

as negative and p + 2 occurs once as positive. Since both p− 1 and p + 2 occur

only once in the summation, we get {f(x1), f(x2p)} = {f(ap−1), f(ap+2)}.
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(iv) In the summation each of {1 + 2 + . . . + p − 2} occurs twice with a negative

sign, each of {p + 2 + p + 3 + . . . + 2p} occurs twice with a positive sign, p

and p − 1 occur once with negative sign and p + 1 occurs as +(p + 1) and

−(p + 1). Since both p and p − 1 occur only once in the summation, we get

{f(x1), f(x2p)} = {f(ap), f(ap−1)}.

P r o o f . Follows from the proof of Theorem 3.1. �

Lemma 3.4. Let k be an even integer and n = k + 2 = 2p, n > 8. Let f be a

minimal radio k-coloring of Pn and let x1, x2, x3, . . . , xn be as in Definition 1.2.

Then
n
∑

i=2

d(xi, xi+1) = 2p2 − 1 and
n
∑

i=2

εi = 2.

P r o o f . For any path Pm and a radio k-coloring g we have

(1) g(ym) = (m − 1)(1 + k) −

m
∑

i=2

d(yi, yi−1) +

m
∑

i=2

εi + 1

where y1, y2, y3, . . . , ym is an ordering of vertices of Pm such that g(yi) 6 g(yi+1),

1 6 i 6 m. Equation (1) is true because g(ym) =
m
∑

i=2

(g(yi) − g(yi−1)) + g(y1) =

m
∑

i=2

(k + 1 − d(yi, yi−1) + εi) + 1 = (m − 1)(1 + k) −
m
∑

i=2

d(yi, yi−1) +
m
∑

i=2

εi + 1.

Since f is a minimal radio k-coloring of Pk+2, f(xn) = ac(Pn) = 2p2 − 4p + 5

by Theorem 1.3. By Theorem 3.1, the maximum possible value of
n
∑

i=2

d(xi, xi−1) is

2p2 − 1. Then from equation (1) we have the following possibilities:

(I)
k+2
∑

i=2

d(xi, xi+1) = 2p2 − 1 and
k+2
∑

i=2

εi = 2.

(II)
k+2
∑

i=2

d(xi, xi+1) = 2p2 − 2 and
k+2
∑

i=2

εi = 1.

(III)
k+2
∑

i=2

d(xi, xi+1) = 2p2 − 3 and
k+2
∑

i=2

εi = 0.

Next we prove that (II) and (III) cannot occur. Let Pn: a1 a2 . . . ap ap+1 . . . a2p−1

a2p. Consider the coloring f of the first 2p − 1 vertices of Pn. Let a2p = xj and

ε = (f(xj+1) − f(xj−1)) − (1 + k − d(xj−1, xj+1)). Liu and Zhu [6] have given a

minimal radio k-coloring of P2(p−1)+1 = P2p−1 = Pk+2−1 = Pk+1 whose summation

of distances is equal to 2(p−1)2+2(p−1)−2 and summation of εi’s is equal to 0 with

the span rck(Pk+1) = 2(p− 1)2 + 3 = 2p2 − 4p + 5 = rck(f). So, from Theorem 3.1,

we have the following two possibilities for the coloring f of Pn \ {a2p}.

(i)
( k+2

∑

i=2

d(xi, xi−1)
)

− (d(xj , xj−1) + d(xj , xj+1)) − d(xj−1, xj+1) = 2(p − 1)2 +

2(p − 1) − 1 and
( k+2

∑

i=2

εi

)

− (εj + εj+1 − ε) = 1;
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(ii)
( k+2

∑

i=2

d(xi, xi−1)
)

− (d(xj , xj−1) + d(xj , xj+1)) − d(xj−1, xj+1) = 2(p − 1)2 +

2(p − 1) − 2 and
( k+2

∑

i=2

εi

)

− (εj + εj+1 − ε) = 0.

Suppose f satisfies case II. Here
k+2
∑

i=2

d(xi, xi−1) = 2p2 − 2. Then the coloring

f of the vertices Pn \ {a2p} is either of type (i) or of type (ii). Suppose it is of

type (i). Then d(xj , xj+1) + d(xj , xj−1) − d(xj−1, xj+1) = 2p − 1. Let xj−1 = ar,

xj+1 = as, 1 6 r, s < 2p. Since xj = a2p, we have d(xj , xj+1) + d(xj , xj−1) −

d(xj−1, xj+1) = 2(2p−r) or 2(2p−s) = 2d(xj , xj+1) or 2d(xj , xj−1). Now d(xj , xj+1)

or 2d(xj , xj−1) = 1
2 (2p − 1) which is not possible because 1

2 (2p − 1) is not an integer.

Suppose the coloring f of the vertices Pn \ {a2p} is of type (ii). Then d(xj , xj+1) +

d(xj , xj−1) − d(xj−1, xj+1) = 2p. Similarly to the above, we get d(xj , xj−1) or

d(xj , xj+1) = p. So xj−1 or xj+1 = ap. Since
k+2
∑

i=2

εi = 1, we have εj + εj+1 − ε = 1.

Since εj and εj+1 appear in the summation
k+2
∑

i=2

εi, we get εj + εj+1 = 1. Similarly,

if we consider the coloring f of the vertices Pn \ {a1 = xl (say)}, then xl−1 or

xl+1 = ap+1 and εl + εl+1 = 1. As
k+2
∑

i=2

εi = 1, we have l = j + 1 and εl = εj+1 = 1

or j = l + 1 and εj = εl+1 = 1. That is, |f(a1) − f(a2p)| = 1 + k − d(a1, a2p) + 1 =

1 ⇒ |f(ap) − f(ap+1)| = 1, which is not possible because k > 6.

Suppose f satisfies case III. Here
k+2
∑

i=2

d(xi, xi−1) = 2p2 − 3. By Lemma 3.3,

{f(ap−2), f(ap+1)} = {0, 2p2 − 4p + 5} or {f(ap), f(ap+3)} = {0, 2p2 − 4p + 5} or

{f(ap−1), f(ap+2)} or {f(ap), f(ap−1)} = {0, 2p2−4p+5}. The coloring of Pn \{a1}

is either of type (i) or of type (ii). Suppose it is of type (i). That is, the dis-

tance summation is 2(p − 1)2 + 2(p − 1) − 1. So by Theorem 3.1, either of the sets

{f(ap), f(ap+1)}, {f(ap+1), f(ap+2)} is equal to {0, 2p2 − 4p +5}, which is not poss-

ible because to repeat the color 0 (or 2p2 − 4p + 5) its distance from the previous 0

(or 2p2 − 4p + 5) color must be at least 2p − 1. Suppose the coloring Pn \ {a1} is of

type (ii). Then d(xl, xl−1) + d(xl, xl+1) − d(xl−1, xl+1) = 2p − 1 ⇒ 2d(xl, xl−1) or

d(xl, xl+1) = 2p − 1 ⇒ d(xl, xl−1) or d(xl, xl+1) = 1
2 (2p − 1), which is not possible.

Theorem 3.5. For any integer n > 8,

ac′(Pn) >

{

2p2 − 6p + 8 if n = 2p,

2p2 − 4p + 6 if n = 2p + 1.

P r o o f . C a s e I. k odd and n = k + 3 = 2p.

Let f be any radio k-coloring of the path Pn: a1 a2 a3 . . . an−1 an=2p with span
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2p2 − 6p + 7. Let x1, x2, x3, . . . , xn−1, xn be the ordering of the vertices such that

f(xi) 6 f(xi+1), 1 6 i 6 n− 1. Consider the coloring f of the first 2(p− 1) vertices

of Pn. Liu and Zhu [6] have given a minimal radio k-coloring of Pk+1=2(p−1) with
2(p−1)

∑

i=2

d(xi, xi−1) = 2(p − 1)2 − 1 and
2(p−1)

∑

i=2

εi = 0 (where the span is 2(p − 1)2 −

2(p − 1) + 2 = 2p2 − 6p + 6). If the span of the coloring f of Pn \ {a2p−1, a2p} is

2p2 − 6p + 7, then from Theorem 3.1 we have the following two possibilities for the

coloring f of Pn \ {a2p−1, a2p}:

(i)
2(p−1)

∑

i=2

d(xi, xi−1) = 2(p − 1)2 − 1 and
2(p−1)

∑

i=2

εi = 1,

(ii)
2(p−1)

∑

i=2

d(xi, xi−1) = 2(p − 1)2 − 2 and
2(p−1)

∑

i=2

εi = 0.

Then by Theorem 3.1 and Lemma 3.2,

(3)
{f(ap−1), f(ap)} or {f(ap−1), f(ap+1)} or {f(ap−2), f(ap−1)}

= {0, 2p2 − 6p + 7}.

Similarly, if we consider the coloring f of Pn \{a1, a2} and if the span of the coloring

of Pn \ {a1, a2} is 2p2 − 6p + 7, we get

(4)
{f(ap+1), f(ap+2)} or {f(ap+1), f(ap+3)} or {f(ap), f(ap+2)}

= {0, 2p2 − 6p + 7}.

Equations (2) and (3) lead to a contradiction because the color 0 or 2p2 − 6p+7 can

be repeated only if its distance is at least 2p − 2. Suppose the span of the coloring

of Pn \ {a1, a2} is 2p2 − 6p + 6 and the span of the coloring of Pn \ {a2p−1, a2p}

is 2p2 − 6p + 7. If the span of the coloring of Pn \ {a1, a2} is 2p2 − 6p + 6, then

{f(ap+1), f(ap+2)} = {0, 2p2−6p+6}. If the span of the coloring of Pn\{a2p−1, a2p}

is 2p2−6p+7, then {f(ap−1), f(ap)} or {f(ap−1), f(ap+1)} or {f(ap−2), f(ap−1)} =

{0, 2p2−6p+7}, which is not possible as the colors 2p2−6p+6 and 2p2−6p+7 are at

least 2p− 3 apart and the color 0 can be repeated if its distance from the previous 0

color is at least 2p−2. Similarly we get a contradiction when the span of the coloring

of Pn \ {a1, a2} is 2p2 − 6p + 7 and the span of the coloring of Pn \ {a2p−1, a2p} is

2p2 − 6p + 6.

C a s e II. k even and n = k + 3 = 2p + 1.

Let f be any radio k-coloring of the path Pn: a1 a2 a3 . . . an−1 an=2p+1 with

span 2p2 − 4p + 5. Let x1, x2, x3, . . . , xn−1, xn be the ordering of the vertices such

that f(xi) 6 f(xi+1), 1 6 i 6 n − 1. Consider the coloring of the first 2p vertices

of Pn. Then by Lemma 3.4, this coloring has the sum of distances equal to 2p2 − 1

and the sum of εi’s is equal to 2. So by Theorem 3.1 we have {f(ap), f(ap+1)} =
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{0, 2p2 − 4p + 5}. Similarly, if we consider the coloring of Pn \ {a1} then we get

{f(ap+1), f(ap+2)} = {0, 2p2 − 4p + 5}. This is a contradiction.

From Theorem 2.1 and Theorem 3.5 we summarize the main result of this paper.

Theorem 3.6. For any integer n > 8,

ac′(Pn) =

{

2p2 − 6p + 8 if n = 2p,

2p2 − 4p + 6 if n = 2p + 1.

Observation 3.7. For any positive integers m and n with m < n one gets that

rck(Pm) 6 rck(Pn). Therefore by Theorem 3.6 we have for n = k + i, i > 4, that

rcn−i(P(n−i)+3) is 2p2−6p+8 for (n−i)+3 = 2p and 2p2−4p+6 for (n−i)+3 = 2p+1.

Since (n − i) + 3 < n, we get the following lower bound for rck(Pn) with n = k + i,

i > 4:

rck(Pn) >

{

2p2 − 6p + 8 if n = 2p − 3 + i,

2p2 − 4p + 6 if n = 2p − 2 + i.
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