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Abstract

An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-

nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear

SU(2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way

that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is

characterized by a discrete parameter which has neither topological nor Noether charge associated

with it and therefore represents a hair. A U(1) gauge field interacting with Einstein gravity can

also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always

thermodynamically favored with respect to the corresponding black hole with vanishing Pionic

field.
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1 Introduction

The nonlinear sigma model is a useful theoretical tool with applications ranging from quantum field

theory to statistical mechanics systems like quantum magnetism, the quantum Hall effect, meson

interactions, super fluid 3He, and string theory [1]. The most relevant application of the SU(2) non-

linear sigma model in particle physics is the description of the dynamics of Pions at low energy in 3+1

dimensions (see for instance [2]; for a detailed review [3]). Consequently, the analysis of the coupling

of the nonlinear sigma model to General Relativity is extremely important both from the theoretical

and from the phenomenological point of view. On the other hand, due to the complexity of the field

equations (which usually reduce to a non-linear system of coupled PDEs), the Einstein-nonlinear sigma

model system has been analyzed mostly relying on numerical analyses (classic references are [7–11]).

However, the recent generalization of the boson star ansatz to SU(2)-valued scalar fields (intro-

duced in [12–22] and [23–25]) allows to construct also non-trivial gravitating soliton solutions (see in

particular [13] and [19]) as well as to analyse explicitly thermodynamic properties of solitons (see [25]).

These are necessary ingredients to build Pionic black holes with non-trivial thermodynamics.

Following the strategy devised in those references, we will construct a class of analytic black hole

solutions of the Einstein-Λ-nonlinear sigma model system with intriguing geometrical properties. This

family of black holes possesses a flat horizon5 and a discrete hairy parameter. The thermodynamics

can be analysed explicitly. The first law is satisfied and an interesting feature of these black holes

is that the hairy solution has always less free energy than the corresponding vacuum solution: thus,

the present analysis suggests that the coupling of Pions with the gravitational field can act as a

sort of catalysis for the Pions themselves. This family of black holes with flat horizons can also be

generalized to the case in which there is a U(1) gauge field coupled to Einstein gravity. The interesting

thermodynamical features of these black holes remain in this case as well. This is qualitatively similar

(in a phenomenological setting such as the Einstein-Pions system) to the recent findings of [26] in

which a family of asymptotically flat black holes with non-Abelian hair has been presented which are

thermodynamically favoured over the Reissner-Nordström solution.

The paper is organized as follows. In section 2, the Einstein-Nonlinear σ-model is introduced and

a convenient parametrization is described. The exact hairy black hole solutions are constructed in

section 3. In section 4, the thermodynamic behavior of the solutions is analyzed. In the last section 5,

some conclusions are drawn.

2 The action

We consider the Einstein-non-linear sigma model system in four dimensions, with a possible cosmolog-

ical constant. This describes the low-energy dynamics of pions, whose degrees of freedom are encoded

5Black holes with planar horizons have recently attracted a lot of attention due to their applications in holography,
see, e.g., [27–29].
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in an SU(2) group-valued scalar field U [3]. The action of the system is

S = SG + SPions, (1)

where the gravitational action SG and the nonlinear sigma model action SPions are given by

SG =
1

16πG

∫
d4x
√
−g(R− 2Λ), (2)

SPions =
K

4

∫
d4x
√
−gTr (RµRµ) . (3)

Here we have defined

Rµ = U−1∇µU , U ∈ SU(2) , (4)

while R is the Ricci scalar, G is Newton’s constant, Λ is the cosmological constant and the parameter

K is positive. In our conventions c = ~ = 1, the space-time signature is (−,+,+,+) and Greek

indices run over space-time. In the case of the non-linear sigma model on flat space-times, the

coupling constant K is fixed experimentally. On the other hand, its true meaning in the context of

AdS physics is to introduce a new length scale. Indeed, it is natural to expect that the ratio of this

new length scale with the AdS radius will be a relevant quantity in the thermodynamics of the black

holes which will be analyzed in the following sections. Our results confirm this expectation (we thank

the anonymous referee for this comment).

The resulting Einstein equations are

Gµν + Λgµν = 8πGTµν , (5)

where Gµν is the Einstein tensor and the energy-momentum tensor is

Tµν = −K
2

Tr

(
RµRν −

1

2
gµνR

αRα

)
. (6)

For the nonlinear SU(2) sigma model, Tµν can be seen to satisfy the dominant and strong energy

conditions [30]. Finally, the matter field equations are

∇µRµ = 0. (7)

In the following, it will be useful to write Rµ as

Rµ = iRjµσj , (8)

where σj are the Pauli matrices. Furthermore, we adopt the standard parametrization of the SU(2)-

valued scalar U(xµ)

U±1(xµ) = Y 0(xµ)I± iY j(xµ)σj ,
(
Y 0
)2

+ Y iYi = 1 , (9)
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where I is the 2× 2 identity matrix. From (8) one thus finds

Riµ = εijkYj∇µYk + Y 0∇µY i − Y i∇µY 0. (10)

Defining the quadratic combination

Sµν := δijR
i
µR

j
ν = ∇µY 0∇νY 0 +∇µY i∇νY i = Gij(Y )∇µY i∇νY j , (11)

with

Gij := δij +
YiYj

1− Y kYk
(12)

being the S3 metric of the target space,6 we obtain that the action (3) reads

SPions = −K
∫
d4x
√
−g
[

1

2
Gij(∇µY i)(∇µY j)

]
, (13)

while the energy-momentum tensor (6) takes the form

Tµν = K

(
Sµν −

1

2
gµνS

)
. (14)

The second of (9) means that Y I := (Y 0, Y i) define a round unit 3-sphere in the internal space.

A useful set of coordinates (H,A,G) in the internal space is defined by

Y 0 = cosH sinA, Y 1 = sinH cosG,

Y 3 = cosH cosA, Y 2 = sinH sinG, (15)

where H ∈ [0, π/2], while A ∈ [0, 2πk1], G ∈ [0, 2πk2] are both periodic Killing coordinates of S3, with

k1 and k2 positive integers (there is clearly some redundancy in this choice of the periodicities – the

standard choice k1 = k2 = 1 already covers the whole S3 – but this will become physically meaningful

later on). In [19] and [25] it has been shown that similar parametrizations are extremely useful both

in curved and in flat spaces. The tensor Sµν (11) takes the form

Sµν = (∇µH)(∇νH) + cos2H(∇µA)(∇νA) + sin2H(∇µG)(∇νG). (16)

If one defines the following combinations of the Killing coordinates

Φ+ = G+A, Φ− = G−A, (17)

6For the special field configuration Y 0 = 0, eq. (12) should be replaced by Gij := δij . This case will not be considered
in this paper.
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the field equations (7) can be written in the compact form7

�H − 1

2
sin(2H)∇Φ+ · ∇Φ− = 0, (18)

sin(2H)�Φ+ + 2∇H · [∇Φ− + cos(2H)∇Φ+] = 0, (19)

sin(2H)�Φ− + 2∇H · [∇Φ+ + cos(2H)∇Φ−] = 0. (20)

SU(2)-valued scalar fields may possess a non-trivial topological charge which, mathematically, is

a suitable homotopy class or winding number W . Its explicit expression as an integral over a suitable

three-dimensional hypersurface Σ can be found, e.g., in [1]. However, in the present paper we will

consider only configurations with W = 0.

3 Toroidal black hole solutions

3.1 Uncharged black hole

We now analyze configuration which are a natural non-topological generalization of the ansatz of

[19,25].

We will consider a static spacetime with a flat base manifold and the following diagonal metric

ds2 = −f (r) dt2 + h (r) dr2 + r2
(
dθ2 + dϕ2

)
. (21)

In this geometry, for the matter field (15) we choose the “adapted” configuration

H =
π

4
, A = θ, G = ϕ, (22)

which is consistent with (15) if we set the periodicity of the angular spacetime coordinates as

θ ∈ [0, 2πk1], ϕ ∈ [0, 2πk2], (23)

making the base manifold in (21) a (flat) 2-torus.8 It is easy to see that, thanks to (21) and (22),

the field equations (18)–(20) are satisfied identically. In addition, by construction we have W = 0

(since the field (22) is 2-dimensional), as we required. We further note that this Pionic configuration

has also zero Noether charge associated with the global isospin symmetry of the model. Indeed, the

Noether charge is proportional to the spatial integral of the time-component of the Nother current

associated with the global Isospin symmetry of the model. In the present case, due to the fact that

the SU(2)-valued field does not depend on time, its Noether charge vanishes identically.

7It is useful to recall the simple identity (gµνhf,ν);µ = ∇h · ∇f + h�f .
8Here the integers k1 and k2 are used to define the identifications of points in the physical spacetime and are therefore

not redundant anymore (as opposed to (15)). Also note that the cylindrical [and planar] topology is included in the
formal limit k1 → +∞ [and k2 → +∞].
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One still needs to solve Einstein’s equations (5) with (14), which here becomes

Tµν =
K

2r2
(fδtµδ

t
ν − hδrµδrν). (24)

Eq. (5) is thus solved by (21) (up to a constant rescaling of t) with

1

h(r)
= f(r) = −4πGK − µ

r
− Λ

3
r2, (25)

where µ is an integration constant.

Geometric features of the spacetime are described more transparently if we introduce two “nor-

malized” coordinates x, y ∈ [0, 1] such that

θ = 2πk1x, ϕ = 2πk2y , (26)

and additionally rescale

t 7→ 2πt, r 7→ r

2π
, µ 7→ µ

(2π)3
. (27)

Defining the convenient parameters9

b2 = 16π3GK , `2 = − 3

Λ
, (28)

the final form of the solution is given by the field (22), (26) in the spacetime

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2

(
k21dx

2 + k22dy
2
)
, (29)

f(r) = −b2 − µ

r
+
r2

`2
. (30)

Note that b2 is not an integration constant, but is fixed by the coupling constants of the theory.

Let us mention a possible alternative parametrization of this solution. Rescaling

k1 = εk̃1, k2 = εk̃2, µ = µ̃/ε3, r = r̃/ε, t = εt̃, (31)

one obtains

ds2 = −f (r̃) dt̃2 +
dr̃2

f (r̃)
+ r̃2

(
k̃21dx

2 + k̃22dy
2
)
, (32)

f(r̃) = −ε2b2 − µ̃

r̃
+
r̃2

`2
. (33)

This allows one to set ε = 0, if desired, thus recovering the known toroidal vacuum solution [31–35] –

this limit is however only “formal”, since the Pionic field (22), (26) degenerates discontinuously to a

single point in the internal space.

9Here we are interested in solutions in AdS, but in (25) Λ can take any sign or vanish.
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From now on we stick to the parametrization (29), (30). The base space is a flat 2-torus with Te-

ichmüller parameter ik1/k2 (cf., e.g., [35]). Metric (29) is similar to the well-known vacuum topological

black holes, for which the base manifold can be spherical, hyperbolic or toroidal [31–35]. However,

while in the absence of Pions the constant term in the lapse function is fixed by the curvature of the

base manifold (i.e., +1,−1, 0 in the spherical, hyperbolic and toroidal case, respectively), in (30) it

takes a negative value despite the fact that the base is flat. As a consequence, the base space area

σ = k1k2, (34)

plays the role of an extra (discrete) parameter that cannot be rescaled away by a redefinition of µ (as

opposed to toroidal black holes in vacuum [31–35]). Recalling that the present Pionic configuration

has neither topological nor Noether charge, σ can be considered as an integer Pionic hair of the black

hole.

Because of the form of the lapse function (30), one can easily adapt to the present context the

discussion of the causal structure and horizons of hyperbolic vacuum black holes given in [34, 35] (to

which we refer for more details). First, since r = 0 is a curvature singularity, we restrict ourselves to

the range r > 0. The discriminant of f(r) = 0 reads (up to an overall positive factor) ∆ = 4`2b6−27µ2,

while the three roots satisfy r1r2r3 = µ`2 > 0 and r1 + r2 + r3 = 0. It follows that there cannot be

three real roots with the same sign, and that there are no real positive roots (only) when ∆ and µ are

both negative. To be more precise, let us define the (positive) critical value of µ (such that ∆ = 0 for

µ = ±µc, cf. [34, 35])

µc =
2
√

3

9
`b3. (35)

There exists a unique, positive simple root r+ for µ ≥ 0, two distinct positive roots r+ and r− (with

r+ > r−) for −µc < µ < 0, a double positive root for µ = −µc, and no positive roots for µ < −µc, the

latter case thus describing a naked singularity. The critical value µ = −µc gives rise to a degenerate

Killing horizon at r = re ≡ `b/
√

3, however this spacetime does not describe a black hole [34, 35]. In

order to have a black hole solution, one thus needs to take µ > −µc. Therefore r+ is a monotonically

increasing function of µ and r+ > re.

3.2 Charged black hole

The generalization of the above model to the presence of a U(1) gauge field minimally coupled to

General Relativity is direct. The main motivation for this extension consists in analyzing whether or

not the thermodynamic behaviour disclosed in the Einstein-nonlinear sigma model system (discussed

in section 4) resists after the inclusion of further reasonable matter fields.

More precisely, we add to the action (1) the electromagnetic term

SMax = − 1

16πG

∫
d4x
√
−g (FµνF

µν) , (36)
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where Fµν = ∂µAν − ∂νAµ, which adds to the energy-momentum tensor (14) the usual Maxwell term

1

4πG

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
. (37)

We will focus on static electric fields defined by the potential

Aµ =
(
−q
r
, 0, 0, 0

)
. (38)

This form of Aµ has the property of being compatible with the metric (29), i.e., the Maxwell equations

∂µ(
√
−gFµν) = 0

are automatically satisfied. Solving Einstein’s equations with the ansatz (21), (22) and (38) shows

that the contribution of the electric field consists just in an upgrading of the the lapse function (30)

to

f(r) = −b2 − µ

r
+
r2

`2
+
q2

r2
. (39)

Of course, the presence of an electric field modifies the structure of the black hole horizons. In general

in this charged case we have both an inner horizon r− and an outer horizon r+, see [34] for a related

discussion.

4 Thermodynamic behavior of the asymptotically locally AdS black

hole solution

4.1 Uncharged black hole

Let us begin by analyzing the electrically uncharged case. We employ the Euclidean approach [37]

and thus replace t 7→ it in (29). The temperature is given by the inverse of the Euclidean time period,

i.e.,

T ≡ β−1 =
1

4π
f ′(r+) =

1

4π

(
µ

r2+
+

2r+
`2

)
, (40)

or, expressing µ = r+(r2+/`
2 − b2) as a function of r+, by

T =
1

4π

(
−b2

r+
+

3r+
`2

)
. (41)

This is a monotonically increasing function of r+ (and thus of µ), with T ∈ [0,+∞) vanishing for the

extremal solution with µ = −µc. Inverting this relation admits only one positive root for r+, which

expresses the horizon radius as a function of T

r+ =
`2

3

(
2πT +

√
4π2T 2 +

3b2

`2

)
, (42)
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therefore no bifurcations of the free energy similar to the Hawking-Page [36] phase transition are

possible here.

The Euclidean action (which we denote by I to distinguish it from its Lorentzian counterpart) is

a sum of three contributions, namely

I = Ibulk + Isurf + Ict, (43)

with (recall (11)–(13))

Ibulk = − 1

16πG

∫
M
d4x
√
g

(
R+

6

`2

)
+
K

2

∫
M
d4x
√
gGijg

µν∂µY
i∂νY

j , (44)

Isurf = − 1

8πG

∫
∂M

d3x
√
hKB, (45)

where hab is the metric induced on the boundary ∂M at r = rB, and KB is the trace of the extrinsic

curvature of ∂M as embedded inM. For rB → +∞, both Ibulk and Isurf are divergent when evaluated

on our solutions, nevertheless (43) can be made finite by an appropriate definition of the counterterm

action Ict. The latter consists of boundary integrals involving scalars constructed only from boundary

quantities. At this purpose, taking inspiration from [29], where similar matter field was studied,

we naturally generalise the counterterm action to the more general collection of scalar fields, we are

considering, in the following way

Ict =
1

8πG

∫
∂M

d3x
√
h
`

2

(
RB +

4

`2

)
− K

2

∫
∂M

d3x
√
h `Gijh

ab∂aY
i∂bY

j , (46)

where RB is the Ricci scalar of the boundary metric. When the sigma model coupling of the scalar

fields is trivialised to become a kinetic interaction, i.e. Gij = δij , the axion contertem of [29] is,

indeed, recovered from (46). The AdS gravitational part of the above counterms is well-known [38]

(see also [39,40]). Taking the limit rB → +∞ gives the renormalized action

I = − βσr+
16πG`2

(
r2+ + b2`2

)
. (47)

It is easy to see that I ∼ T 2 for a large T (similarly as for hyperbolic vacuum black holes [35]).

The energy E = −∂β logZ, the entropy S = (1− β∂β) logZ and the free energy F = −T logZ of

the solutions in the semiclassical approximation logZ ≈ −I thus read

E =
σr+
8πG

(
r2+
`2
− b2

)
=

σµ

8πG
, S =

σr2+
4G

, F = − σr+
16πG`2

(
r2+ + b2`2

)
. (48)

The area law is thus clearly obeyed. By defining the the mass as

M = E, (49)
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it is easy to check with (41) that the first law of black hole thermodynamics is satisfied, i.e.,

TδS =
σ

8πG

(
−b2 +

3r2+
`2

)
δr+ = δM . (50)

The local thermodynamic stability with respect to thermal fluctuations is given by the positivity

of the heat capacity function C, i.e.,

C := T

(
∂S

∂T

)
= T

(
∂S

∂r+

)(
∂T

∂r+

)−1
=

r2+τ(3r2+ − b2`2)
2G(b2`2 + 3r2+)

. (51)

Since black hole solutions satisfy r+ > b√̀
3

(section 3.1), they are stable under temperature fluctuation

(this is also true in the absence of the Pionic matter, cf. [34,35]). In other words, M is a monotonically

increasing function of T (see also (52) below).

We further note that (49) gives a partly negative mass spectrum (similarly as obtained in [39] for

hyperbolic vacuum black holes – cf. [34,35] for a different approach). Note also that M and S depend

not only on the radial length r+ (i.e., on the integration constant µ), but also on the angular periods

via σ. It can thus be seen that, for a given M , larger entropies are attained for larger (discrete) values

of σ. In addition, for a given T (i.e., for a fixed r+) there exists a discrete infinity of black holes

parametrized by σ, for which the functions (48) take different values, namely

M =
`σ

108πG

(
2πT`+

√
4π2T 2`2 + 3b2

)(
4π2T 2`2 + 2πT`

√
4π2T 2`2 + 3b2 − 3b2

)
, (52)

S =
`4σ

9G

(
2π2T 2 + πT

√
4π2T 2 +

3b2

`2
+

3b2

4`2

)
, (53)

F = − `σ

108πG

(
2πT`+

√
4π2T 2`2 + 3b2

)(
3b2 + 2π2T 2`2 + πT`

√
4π2T 2`2 + 3b2

)
. (54)

At high temperatures, M ∼ σT 3, S ∼ σT 2 and F ∼ −σT 3.

It is interesting to compare this black hole solution dressed with a matter field with the corre-

sponding vacuum solution (i.e., with b = 0). The entropy of the toroidal vacuum black hole is [34,35]

S0 =
l4σ

9G
4π2T 2 . (55)

Clearly S0 < S, i.e., at equal temperature the vacuum black hole has always lower entropy than the

dressed solution. In order to see which black hole is thermodynamically favored at a given temperature,

it is necessary to compare the respective free energies. From (54), it is obvious that the free energy is

more negative for b2 6= 0, i.e., the solution with Pionic matter fields is thermodynamically favored at

any temperature.

This result is remarkable, since usually black holes dressed with matter fields in asymptotically

locally AdS spacetimes are thermodynamically favored over their matter-free counterparts only for low

temperatures (see, e.g., [41,42]). Recently, results qualitatively similar to ours have been found in [26].
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However, this reference obtained numerically solutions of a higher order version of Yang-Mills theory

minimally coupled to General Relativity which are asymptotically flat – here we have constructed

analytic results for Pions minimally coupled with AdS gravity.

4.2 Charged black hole

The extension to the electrically charged case is straightforward. Now the lapse function is given by

(39). The electric charge reads Q = qσ
4π and the mass is the same as in the uncharged case. Expressing

M = M(r+, Q) as a function of the horizon radius and of the electric charge, one readily finds that

the first law of thermodynamics

δM = TδS + ΦδQ (56)

is again fulfilled. The Coulomb electric potential Φ at the horizon is defined, as usual, as

Φ = χµAµ

∣∣∣
r∞
− χµAµ

∣∣∣
r+

=
q

r+
, (57)

where χµ represents the Killing vector ∂t, while the temperature of the charged solution is

T =
1

4π

(
µ

r2+
+

2r+
`2
− q2

r3+

)
=

1

4πr3+

(
3r4+
`2
− b2r2+ − q2

)
. (58)

In order to check the thermodynamic stability of this solution, we compare the free energy of the

electrically charged black hole with Pionic field with the electrically charged black hole without Pionic

field. The free energy in the gran canonical ensamble, i.e. when both the temperature T and the

Coulomb potential Φ are considered fixed, for the charged pionic solution is given by the Gibbs free

energy

F = M − TS − ΦQ . (59)

When µ is expressed in terms of r+, the free energy becomes

F (r+, q) = −
r4+ + `2(q2 + b2r2+)

16πr+`2
σ . (60)

In the electrically charged case, it is convinient to write the free energy as a function of the intensive

parameters such as the temperature T and the Coulomb potential Φ. This can be done inverting eqs.

(57) and (58). Again, there is only one positive root of the radial position of the event horizon as a

function of the temperature r+(T )

r+(T ) =
2

3
π`2T +

`

3

√
4π`2T 2 + 3(b2 + Φ2). (61)

Finally the Gibbs free energy reads as follows

F (T,Φ) =
−σ`
108π

(
2π`T +

√
4π2`2T 2 + 3b2 + 3Φ2

) [
3b2 + π`T

(
2π`T +

√
4π2`2T 2 + 3b2 + 3Φ2

)]
.

(62)
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This expression for the free energy is the generalisation of the uncharged one, given in eq. (54), which

can be straightly recovered in the vanishing electric potential limit.

Again, the free energy of the dressed black hole turns out to be more more negative at the same

temperature and electric potential, than the one of the black hole without Pionic matter field, as can

be seen from eq. (62) and in Figure 1. Therefore the charged pionic solution is always preferred.

Figure 1: Gibbs free energy F (T,Φ) comparison between the electrovacuum (yellow) and the pionic (blue and
green) black holes as function of the temperature T and electric potential Φ for some fixed numerical values of
the cosmological constant and the base manifold area ` = π, σ = 1. The picture does not change qualitatively
for different values of the chosen pionic parameter b (chosen as 29 and 41 respectively in blue and the green
surfaces): the hairy configuration is always preferred at a given temperature and electric potential since its free
energy is lower.

5 Conclusions

We constructed exact static solutions of the four-dimensional Einstein theory, minimally coupled to

the nonlinear sigma model. A U(1) gauge field interacting with Einstein gravity can also be included.

The ansatz for the nonlinear sigma model depends explicitly on the Killing coordinates, but in such

a way that its energy-momentum tensor is compatible with the Killing fields of the metric. The most

interesting result is the construction of an analytic hairy black hole sourced by a clouds of Pions in the

Einstein non-linear sigma model system with a negative cosmological constant. Such an asymptotically

locally AdS black hole has a flat horizon. The hairy parameter is discrete due to the SU(2) structure

of the matter field – this is thus an explicit example of a discrete primary hair. The thermodynamic

analysis reveals that the hairy black hole is always favoured with respect to the black hole without

the Pions cloud. The inclusion of a U(1) gauge field minimally coupled to General Relativity does

not break this picture. This is a highly phenomenological realization in the Einstein-Pions system of

12



a behaviour similar to the recent findings of [26] in a different context.
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