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Abstract

This double-sized chapter contains two related themes that were supposed to be
covered by two independent chapters of the handbook in the original project:
(1) weak solutions of the Navier-Stokes equations in the barotropic regime and
(2) weak solutions of the Navier-Stokes-Fourier system.

We shall discuss for both systems:

(1) Various notions of weak solutions, their relevance, and their mutual rela-
tions.

(2) Global existence of weak solutions.
(3) Notions of relative energy functional, dissipative solutions and relative

energy inequality and its impact on the investigation of the stability analysis
of compressible flows.

(4) Weak strong uniqueness principle.
(5) Longtime behavior of weak solutions.

For physical reasons, we shall limit ourselves to the three-dimensional physical
space.
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1 Introduction

1.1 Weak Solutions

The Navier-Stokes-Fourier system is a system of partial differential equations
describing evolution of density % D %.t; x/, absolute temperature # D #.t; x/,
and velocity u D u.t; x/ of a viscous compressible and heat-conducting fluid
filling domain � (x 2 �) within the time interval t 2 Œ0; T /. There are several
ways to define weak solutions for the complete Navier-Stokes-Fourier system.
Here, we shall mention three of them: the convenience of each definition depends
on the mathematical assumptions that one imposes on the constitutive laws for
pressure (internal energy) on one hand and on the transport coefficients on the other
hand. Indeed, the weak formulation of the momentum and continuity equations is
standard, while for the weak formulation of the energy conservation, one has at
least three reasonable options that are not equivalent within the class of irregular
solutions: (1) formulation in terms of the internal energy, (2) formulation in terms
of the specific entropy, and (3) formulation in terms of the total energy.

The first and second one are continuations of the theories based on the so-called
effective viscous flux identity started by P.L. Lions [77], and the third one, due to
Bresch and Desjardins [7], can be considered as a continuation of theories based on
new a priori estimates in the line started by Kazhikov [72].

The first approach due to Feireisl [30] based on a weak formulation of the
continuity, momentum, and internal energy equations is convenient for the pressure
p and internal energy e of type

p.%; #/ D pc.%/C #pth.%/; pc.%/ �1 %� ; �>3=2 (1)

e.%; #/ D ec.%/C eth.#/; ec.%/ D

Z %

1

p.z/

z2
dz; eth.#/ � #

!C1; ! � 0;
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where pth must be monotone and dominated by a certain power of pc.%/ for large
%’s (more precisely by p1=3c .%/). Here, # denotes the temperature, % denotes the
density, and � is the adiabatic coefficient of the fluid. The heat conductivity in this
approach has to be temperature dependent (with a convenient power growth), and
the viscosity coefficients have to be constant.

The second approach was developed in [33] preceded by a compactness result in
[32]. It exploits the observation of Ducomet and Feireisl [20,21] on the regularizing
effect of the radiative pressure on the weak solutions of the magnetohydrodynamic
equations. It involves, besides the standard weak formulation of continuity and
momentum equations, the weak formulation of the conservation of energy in terms
of the specific entropy that includes explicitly the second law of thermodynamics
via the entropy production rate being a nonnegative measure. This approach is
applicable for the pressure and internal energy laws p.%; #/, e.%; #/, exhibiting
the coercivity of types %� and #4 for large densities and temperatures; a prototype
example is

p.%; #/ � %� C #pth.%/C #
4; (2)

e.%; #/ � %� C #!C1 C
#4

%
; ! � 0;

where pth is the same as in (1). The viscosity coefficients in this theory are in general
temperature dependent and have to behave like .1C #/ˇ; the heat conductivity has
to behave like .1 C #/˛ , where loosely speaking ˛ > 0 has to be larger when
ˇ � 0 becomes smaller. For example, for the pressure law of monoatomic gas with
radiation that behaves like %5=3 (for large %’s and # fixed) and like #4 (for large #’s
and % fixed) – see Sect. 2.4, in particular (47)–(49) – the theory gives ˇ 2 Œ2=5; 1�
within physically reasonable value ˛ D 3 (see [33]), while for the pressure law
of type (2) obeying the above asymptotic condition for pth, one can achieve values
ˇ 2 Œ0; 4=3� provided ˛ D 16

3
� ˇ (see [32]). If � > 3 one can achieve values

�4 � ˇ � 0 provided ˛ � 16
3
C jˇj. The latter situation corresponds rather to

compressible fluids than to gasses (see [58]).
Both above formulations are sufficiently weak to allow existence of variational

solutions for large data and reasonable in the sense that any sufficiently regular
weak solution is a classical solution.

The second formulation including balance of entropy as the pointwise conserva-
tion of energy in the weak formulation has an important advantage in comparison
with the first formulation based on the pointwise energy conservation in terms of
the internal energy balance. Indeed, in the second approach, the thermodynamic
stability conditions can be reformulated in terms of an evolution variational
inequality (called relative energy inequality) governing a specific functional called
relative energy functional, which is able to measure a “distance” between a weak
solution .%; #;u/ and any other (sufficiently regular) state of the fluid .r;‚;U/.
This inequality is automatically satisfied by any weak solution based on the balance
of entropy (see [34] and [49, 50] for the barotropic case). It appears that the relative
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energy inequality encodes most of the stability properties of compressible fluids and
is, in fact, responsible for the robustness of this type of weak solutions with respect
to perturbations of initial conditions and external forces as well as with respect to
singular limits involving various physically reasonable small parameters appearing
in the nondimensional formulation of the Navier-Stokes-Fourier system.

The third approach due to Bresch and Desjardins [7, 8] (see also Mellet, Vasseur
[83]) is convenient in the case when the shear viscosity � and the bulk viscosity �
depend on the density and satisfy the differential identity

.� �
2

3
�/0.%/ D 2%�0.%/ � 2�.%/;

and pressure is in the form (1), where however pc.%/ is singular at % ! 0. The
main ingredient in the proof in this situation is the fact that the particular relation
between viscosities stated above makes possible to establish a new mathematical
entropy identity, which provides estimates for the gradient of density. This estimate
implies compactness of the sequence of approximating densities. In spite of the
compactness, the construction of the solutions in this situation is a tough problem.
It was so far possible under the additional nonphysical assumption that pc explodes
at the vacua. Only recently, two preprints [75, 105] appeared suggesting an explicit
construction of the global solutions in the “simple” barotropic case in the physically
reasonable situation when the cold pressure pc is not singular at zero.

In this chapter we shall concentrate to the first two formulations; the third
formulation is investigated in a separate chapter of the handbook.

In the mathematical literature, there is another notion of weak solutions to the
compressible Navier-Stokes equations due to D. Hoff [64–68] and references quoted
there. Hoff’s solutions must have essentially bounded density, but discontinuities are
allowed. Solutions in Hoff’s class are almost unique (see [68]). A drawback is that
their existence is guaranteed only for small initial data. They will be treated in a
separate chapter of the handbook.

1.1.1 Lions’ Approach and Feireisl’s Approach
The concept of weak solutions in fluid dynamics was introduced in 1934 by Leray
[74] in the context of incompressible Newtonian fluids. It has been extended more
than 60 years later to the Newtonian compressible fluids in barotropic regime
(meaning that p D p.%/ � %� ) by Lions [77].

The Lions theory relies on two crucial observations:

(1) A discovery of a certain weak continuity property of the quantity

p.%/C .
4

3
�C �/divu

called effective viscous flux. This part is essential for the existence proof; it
employs certain cancelation properties that are available due to the structure
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of the equations that are mathematically expressed through a commutator
involving density, momentum, and the Riesz operator. The main ideas related
to the effective viscous flux identity will be explained in Sect. 8 (namely, in
Sect. 8.4).

(2) Theory of renormalized solutions to the transport equation that P.L. Lions
introduced together with DiPerna in [18]. In the context of compressible
Navier-Stokes equations, the DiPerna-Lions transport theory applies to the
continuity equation. The theory asserts among others that the limiting density
is a renormalized solution to the continuity equation provided it is square
integrable. This hypothesis is satisfied only provided � � 9=5. The condition
on the squared integrability of the density is the principal obstacle to the
improvement of the Lions result.

Notice that some indications on the particular importance of the effective
viscous flux were known at about the same time to several authors and used in
different problems dealing with small data (see Hoff [64] and Padula [86]) and that
the suggestion to use the continuity equations to evaluate the oscillations in the
sequence of approximating densities has been formulated and performed in the one-
dimensional case by D. Serre [97].

All physically reasonable adiabatic coefficients � for gases belong to the interval
.1; 5=3/, the value � D 5=3 being reserved for the monoatomic gas. This is the
reason why it is interesting and important to relax the condition on the adiabatic
coefficient in the Lions theory. This has been done by Feireisl et al. in [47]. The
new additional aspects of this extension are based on the previous observations by
Feireisl in [27] and are the following:

(1) As suggested in [27], the authors have used the oscillations defect measure to
evaluate the oscillations in the sequence of approximating densities and proved
that it is bounded provided � > 3=2. This part of the proof will be discussed in
detail in Sect. 8 (namely, Sect. 8.5).

(2) The boundedness of the oscillations defect measure is a criterion that replaces
the condition of the squared integrability of the density in the DiPerna-Lions
transport theory. Consequently if any term of the sequence of approximating
densities satisfies the renormalized continuity equation, and if the oscillations
defect measure of this sequence is bounded, then the weak limit of the sequence
is again a renormalized solution of the continuity equation. This property is
discussed in detail in Sect. 8.6.

Recently the authors of so far unpublished paper [9] suggested an alternative way
to the Lions’ approach of measuring of oscillations in the density sequence, which
promises to be slightly more robust than the Lions’ approach.

1.1.2 Weak Solutions for the Complete Navier-Stokes-Fourier System
The existence theory for the complete Navier-Stokes-Fourier system (with possibly
temperature-dependent viscosities) employs both Lions’ and Feireisl’s techniques.
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Most of its additional difficulties dwell in the possible existence of vacuum regions
in relation to the temperature approximations. In what follows, we describe general
ideas on how these problems can be solved:

First approach.

(1) The procedure to prove strong convergence of the approximated density
sequence %n via the Lions-Feireisl approach involves solely continuity
and momentum equations. The weak limit of the sequence #npth.%n/ can
be identified with expression #pth.%/, where # is a weak limit of the
approximated temperature sequence #n and pth.%/ is the weak limit of
the sequence pth.%n/. After this observation, the Lions-Feireisl method
including effective viscous flux identity bound for the oscillations defect
measure and renormalized continuity equation can be performed exactly as
in the barotropic case, leading to the almost everywhere convergence of %n
to a function % � 0. After this observation, the problem is reduced to the
limit passage in the internal energy balance. The details are described in
Sections 8.2, 8.3, 8.4, 8.5, and 8.6.

(2) In this case the internal energy balance provides an estimate of @t .%#!C1/
(and not of @t#!C1). Loosely speaking, this estimate eliminates possible
oscillations outside vacua in the set f.t; x/ 2 QT j%.t; x/ > 0g (QT D

.0; T /��), but, unfortunately, does not discard oscillations on the vacuum
set f.t; x/ 2 QT j%.t; x/ D 0g which can be of nonzero measure.
Consequently we can reasonably hope to obtain almost everywhere con-
vergence of the approximated temperature sequence #n to Q# on the set
f.t; x/j%.t; x/ > 0g � QT . This observation in combination with the
almost everywhere convergence of density established in item (1) allows to
pass to the limit in all terms of the weak formulation of the internal energy
balance containing multiples of %.

(3) The term corresponding to the heat flux divq.#;rx#/ can be written in the
form ��K.#/ with convenient strictly monotone function K provided the
heat flux q is given by the Fourier law with the coefficient of heat conductiv-
ity dependent only on temperature. The available estimates provide a weak
limit K.#/ of the sequence K.#n/ in L1.QT /. One can now define a new
temperature # D K�1.K.#// that is equal to the almost everywhere limit
Q# of the approximated temperature sequence on the set f.t; x/j%.t; x/ > 0g
established in item (2). (In the real proof, the sequence K.#n/ is bounded
only in L1.QT / which does not prevent concentrations. One can however
perform the proof by using convenient truncations of K using a procedure
reminiscent to Chacon’s biting limit see [11]).

(4) Fortunately, the above term is the only term in the internal energy balance
(except the term involving S.rxu/ W rxu, whose limit passage can be
treated by the lower weak semi-continuity provided the stress tensor obeys,
e.g., the Navier-Stokes law for the Newtonian fluids) which is not a multiple
of %. Therefore, we can replace in all remaining terms the temperature Q# by
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the new temperature # . A detailed development of ideas described in items
(2), (3), and (4) is available in Sect. 8.8.

Second approach.

(1) In order to reduce the investigation to a situation similar to the barotropic
case, one has to prove first the almost everywhere convergence of the
approximated temperature sequence. In contrast with the previous case,
this seems to be possible, thanks to the presence of radiation energy.
Indeed the energy conservation allows to estimate @t .#

4/ and thus to
discard the possible time oscillations in the approximated temperature
sequence. Since in this setting we are dealing with entropy balance rather
than with the energy balance, this point involves the treatment of the
entropy production rate as a Radon measure and a convenient use of the
compensated compactness, namely, of the Div-Curl lemma in combination
with the theory of parametrized Young measures. The crucial condition
allowing to conclude is the monotonicity of the entropy with respect to
temperature.

(2) Even after the strong convergence of temperature is known, the weak
continuity of the effective viscous flux is not an obvious issue. It requires to
use another cancelation property that is mathematically expressed through
another commutator including shear viscosity, symmetric velocity gradient,
and the Riesz operator. The ideas described in items (1) and (2) are treated
in Sects. 10.1 and 10.2.

(3) Once the weak continuity property of the effective viscous flux is known,
the proof follows the lines of Lions’ and Feireisl’s approaches: (a) one
proves first the boundedness of the oscillations defect measure for the
sequence of densities; (b) the boundedness of oscillations defect measure
implies that the limiting density is a renormalized solution to the continuity
equation; and (c) the renormalized continuity equation is used to show that
the oscillations in the density sequence do not increase in time. This means
the strong convergence of density. The details to this part of the proof are
available in Sect. 10.3.

Weak solutions for the compressible barotropic equations are introduced in
Sect. 4 along with the main existence results and their qualitative properties, while
those for the complete Navier-Stokes-Fourier system are introduced in Sects. 7
and 9. We provide the detailed description of the main ideas of the existence proofs
of weak solutions in Sects. 8 and 10.

Weak solutions in the theory of compressible Navier-Stokes equations are usually
constructed via several levels of approximations including small parameters via
suitable approximating system of PDEs. Construction of weak solutions through
numerical schemes is a very recent topic which goes out of scope of this chapter.
The reader can consult [55, 71], or monograph [56] for the recent development in
this subject.
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1.2 Relative Energy and Robustness of the Class of Weak
Solutions

Weak solutions are not known to be uniquely determined (cf., e.g., exposition
of Fefferman [26] dealing with three-dimensional incompressible Navier-Stokes
equations) and may exhibit rather pathological properties (see, e.g., Hoff and Serre
[69]). So far, the best property that one may expect in the direction of a unique result
is the weak-strong uniqueness, meaning that any weak solution coincides with the
strong solution emanating from the same initial data as long as the latter exists.
The weak-strong uniqueness principle is known for the incompressible Navier-
Stokes equations since the works of Prodi [95] and Serrin [98] (see [25] for the
later development). About 50 years later, the weak-strong uniqueness problem has
been revisited by Desjardins [17] and Germain [61] for the compressible Navier-
Stokes equations. They obtained some partial and conditional results. Finally, the
unconditional weak-strong uniqueness principle has been proved in [50] (see also
related paper [49]).

Only very recently the weak-strong uniqueness property has been proved in [34]
for weak solutions of the complete Navier-Stokes-Fourier system in the entropy
formulation introduced in [33].

In all cases cited above, the weak-strong uniqueness principle has been achieved
by the method of relative energy that is reminiscent to the relative entropy method.
Relative entropy method was brought to the mathematical fluid mechanics by
C. Dafermeos [16] and has been used later in various contexts by different authors
(see [77], Saint-Raymond [96], Grenier [63], Masmoudi [80], Ukai [103], Wang and
Jiang [107], among others). The notion of dissipative solutions introduced in Lions
[76] for the incompressible Euler equations is very much related to the concept of
relative entropies.

Regardless the fact that [16] is about conservation laws (disregarding the
dissipation) while [33] includes dissipative effects, the main difference between the
relative energy and relative entropy methods is the following: the starting point of
[16] (in the case of complete Euler system) is the balance of internal energy, and the
output is the relative entropy inequality, while the starting point in [33] is the balance
of entropy and the output is the relative energy inequality. The procedure suggested
in [16] cannot be repeated in the context of weak solutions to the Navier-Stokes-
Fourier system unless one supposes additionally that the density and temperature
are bounded from below by positive constants. It is however not known whether the
latter condition is satisfied globally in time for any weak solution.

The relative energy method is introduced in Sects. 5 and 11.
We have already mentioned that the relative energy inequality encodes most

of the robustness properties of the weak solutions to the compressible Navier-
Stokes-equations and to the Navier-Stokes-Fourier system. Let us mention a few
applications:
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(1) If one takes for the test state .r;‚;U/ a strong solution in the relative energy
inequality, one obtains a stability estimate of a strong solution (emanating
from initial data .r0;‚0;U0/ and external force g) within the class of weak
solutions (emanating from initial data .%0; #0;u0/ and external force f), in terms
of difference of the external forces and relative energy of the initial data. This
statement yields, in particular, the weak-strong uniqueness principle saying
that the weak solution coincides with the strong solution as long as the strong
solution exists, provided both solutions emanate from the same initial data and
external forces (see again [34,49,50] for the barotropic case). These applications
will be investigated in Sects. 5 and 11.

(2) The large time behavior of weak solutions, namely, convergence to the equi-
librium states in the case of conservative forces, energy blow up in the case
of nonconservative forces, and questions related to the bounded absorbing sets
and attractors can be treated on the basis of the relative energy inequality
(see [44] and references quoted there). These applications are investigated in
Sects. 6 and 12.

(3) There is a bunch of applications of the relative energy inequality related to the
investigation of singular limits in the nondimensional version of the compress-
ible Navier-Stokes equations and the Navier-Stokes-Fourier system involving
various combinations of low Mach, Froude, Rossby, Péclet numbers, and large
Reynolds number toward reduced target systems as long as we know that the
target system admits a regular solution (at least locally in time). Practically all
so far rigorously obtained singular limits within the complete Navier-Stokes-
Fourier system have been obtained by the relative energy method. Another
family of problems, where the relative energy inequality appeared to be a
crucial tool, are limits connected to dimension reduction. We refer to [3, 5, 35–
38, 52, 79, 100] for a few examples to some of these applications. The problem
of the singular limits in the compressible Navier-Stokes equations will be
discussed in another two independent chapters of the handbook.

(4) The numerical version of the relative energy inequality is employed in [60] to
investigate the error estimates of numerical schemes solving the compressible
Navier-Stokes equations. The reader can consult also, e.g., [54, 57] among
others, for the recent developments of this subject. These applications go far
beyond the scope of this handbook.

The chapter is organized as follows. We start with a short introduction to
the thermodynamics of viscous fluids (Sect. 2) followed by a review section
collecting the most important specific mathematical tools for the treatment of
compressible Navier-Stokes equations (Sect. 3). Sections 4, 4, and 6 are devoted to
the compressible Navier-Stokes equations in barotropic regime (treating the notions
of weak solutions, finite and bounded energy weak solutions, renormalized weak
solutions, dissipative solutions, relative energy inequality, weak-strong uniqueness,
and longtime behavior). The same issue is then revisited for the full Navier-Stokes-
Fourier system through Sects. 7, 8, 9, 10, 11, and 12.
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2 Thermodynamics of Viscous Compressible Fluids

We shall describe the motion of a compressible, viscous and heat-conducting fluid
sometimes called also a viscous gas. For simplicity, we suppose that the fluid fills a
fixed domain � � R

3, and we shall investigate its evolution through an (arbitrary)
large time interval .0; T /. We denote by QT D .0; T / �� the space-time cylinder.
The motion will be described by means of three basic state variables: the mass
density % D %.t; x/, the velocity field u D u.t; x/, and the absolute temperature
# D #.t; x/, where t 2 .0; T / is the time variable and x 2 � � R

3 is the
space variable in the Eulerian coordinate system. The physical nature of density
and temperature requires that the density is nonnegative function on QT , and the
absolute temperature is positive function on QT . We shall investigate the time
evolution of these quantities. It is described by the balance laws of physics expressed
through the following partial differential equations:

(i) Conservation of mass

@t%C divx.%u/ D 0: (3)

(ii) Conservation of linear momentum

@t .%u/C divx.%u˝ u/Crxp.%; #/ D divxS.%; #;rxu/C %f: (4)

(iii) Conservation of internal energy – first law of thermodynamics

@t .%e.%; #//C divx.%e.%; #/u/C divxq.%; #;rx#/C p.%; #/divxu

D S.%; #;rxu/ W rxu:
(5)

In these equations p D p.%; #/ is the pressure, e D e.%; #/ is the (specific) internal
energy, S D S.%; #;rxu/ is the viscous stress tensor, and q.%; #;rx#/ is the heat
flux. They are given functions characterizing the gas. The quantity f D f.t; x/ is a
given function expressing the specific external forces. For the sake of simplicity, we
do not consider the external heat sources.

In physics, there are at least two another ways of writing the conservation of
energy (5): in terms of the specific total energy and in terms of the specific entropy.

Formulation of the first law in terms of the kinetic energy. The specific total
energy is the sum of specific kinetic energy ekin D

1
2
u2 and the specific internal

energy e.%; #/

etot.%;u/ D
1

2
u2 C e.%; #/: (6)



12 A. Novotny and H. Petzeltová

Due to (3)–(5), it must obey equation

@t .%etot.%; #//C divx
��
%etot.%; #/C p.%; #/

�
u
�
C divxq.%; #;rx#/ (7)

D divx
�
S.%; #;rxu/ � u

�
C %f � u:

Formulation of the first law in terms of the specific entropy. The second law of
thermodynamics postulates existence of the specific entropy s D s.%; #/ defined by
the Gibbs relation

#ds.%; #/ D de.%; #/ �
p.%; #/

%2
d% (8)

that must obey the balance of entropy equation

@t .%s.%; #//C divx.%s.%; #/u/C divx

�
q.%; #;rx#/

#

�
D �; (9)

where the quantity � must be nonnegative. It is called the entropy production rate.
In the present situation,

� D
1

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
: (10)

If p, e, S, q are differentiable functions of their respective arguments, if density
% and temperature # are positive and sufficiently smooth on QT , and if the velocity
field u is sufficiently smooth on QT , then equations (5), (7), and (9)–(10) are
equivalent. This equivalence does not need to be necessarily true if the functions
above do not possess enough regularity.

Therefore, in spite of the fact that weak formulation of the balance of energy
based on each of equations (5), (7), and (9), respectively, is equally physically
justifiable, it may lead to weak solutions with different properties. It may happen
that some of the possible definitions of weak solutions may be more advantageous
in some situations and may even lead to global in time existence results, while
other definition will fail to have this property, depending on the flow regimes and
constitutive laws characterizing the gas.

If % > 0 on QT and %, u belong to C1.QT /, then the continuity equation is
equivalent to the family of so-called renormalized continuity equations:

@tb.%/Cdivx
�
b.%/u

�
C
�
%b0.%/�b.%/

�
divxu D 0 for all b 2 C1.0;1/: (11)

Again, if the couple .%;u/ does not possess enough regularity, this property does
not need to be true, in general.



Weak Solutions for the Compressible Navier-Stokes Equations: Existence,. . . 13

2.1 Navier-Stokes-Fourier System

We suppose that the viscous stress S is described by Newton’s law

S.%;#;rxu/D�.%; #/T.rxu/C�.%; #/divxuI; T.rxu/DrxuC.rxu/T�
2

3
divxuI;

(12)
where I is the identity tensor, while q is the heat flux satisfying Fourier’s law

q D �	.%; #/rx#: (13)

The quantities �, �, and 	 are called transport coefficients, more specifically, shear
and bulk viscosities, and heat conductivity, respectively. According to the second
thermodynamical law, they have to be all nonnegative. We are however dealing
with viscous and heat conducting fluids; we shall therefore always suppose that
the transport coefficients satisfy at least

�.%; #/ > 0; �.%; #/ � 0; 	.%; #/ > 0; (14)

and we shall assume the following minimal regularity,

.�; �; 	/ 2 C1.Œ0;1/2/: (15)

The system of equations (3)–(5) (where (5) may be replaced by (7) or by (9)–(10))
with the constitutive relations (12) and (13) is called Navier-Stokes-Fourier system.

Physical considerations suggest that the heat conductivity behaves

	.#/ � #˛; ˛ � 3 for large values of # (16)

due to the radiation effects. The approximation of viscosity coefficients by constants

� > 0; � � 0 (17)

is considered in many situations as satisfactory. The kinetic theory predicts

�.#/ �
p
#; for large values of # (18)

(see [108]).

2.2 Domain, Conservative Boundary Conditions and Initial Data

2.2.1 Initial Data
Equations (3)–(5) are supplemented with initial conditions

%.0; �/ D %0; %u.0; �/ D %0u0; %e.%; #/.0; �/ D %0e.%0; #0/; %0 � 0; #0 > 0;
(19)

where %0, #0, and u0 are given functions.
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2.2.2 Boundary Conditions
We shall always assume that � has globally uniformly Lipschitz boundary. If � is
bounded, we will deal with no-slip boundary conditions for velocity

uj@� D 0; (20)

and zero heat transfer conditions through the boundary

q � nj@� D 0; (21)

where n denotes the external normal to the boundary @� of�. The no-slip boundary
conditions can be replaced in many cases by the complete slip boundary conditions

u � nj@� D 0; Sn � nj@� D 0; (22)

or with Navier’s slip boundary conditions

u�nj@� D 0;
�
Sn�nCƒ.u�n/

�
j@� D 0; where ƒ � 0 is the friction coefficient:

(23)
If � is an unbounded domain, one has to prescribe in addition to boundary
conditions (20), resp. (22), resp. (23), and (21) also the behavior at infinity,

%.t; x/! %1 � 0; u.t; x/! u1 2 R
3; #.t; x/! #1 > 0 (24)

in some sense, as jxj ! 1.

2.2.3 Global Conservation Properties
Suppose now that the domain � is bounded (and sufficiently smooth). Integrating
equation for the conservation of global energy under conditions (23), we get

d

dt

Z
�

�
1

2
%juj2 C %e.%; #/

�
dx Cƒ

Z
@�

juj2dSx D
Z
�

%f � u dx; (25)

provided the trio .%; #;u/ is sufficiently smooth in QT ; in particular, in the case of
boundary conditions (20) and (22), the total energy of the system in the volume �
is conserved, namely,

d

dt

Z
�

�
1

2
%juj2 C %e.%; #/

�
dx D

Z
�

%f � u dx: (26)

Under the same smoothness requirement, multiplying equation (9) by a positive
constant ‚, integrating over �, and subtracting the result from equations (25)
and (26), we get the dissipation identity
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d

dt

Z
�

�
1

2
%juj2 CH‚.%; #/

�
dx C‚

Z
�

�dx Cƒ
Z
@�

juj2dSx D
Z
�

%f � u dx;

(27)
respectively,

d

dt

Z
�

�
1

2
%juj2 CH‚.%; #/

�
dx C‚

Z
�

�dx D
Z
�

%f � u dx; (28)

where the quantity

H‚.%; #/ D %
�
e.%; #/ �‚e.%; #/

�
(29)

is called Helmholtz function or ballistic free energy. It plays an essential role in the
stability analysis of weak solutions.

2.3 Thermodynamic Stability Conditions

The fluid characterized by the pressure p.%; #/ and internal energy e.%; #/ verifies
the thermodynamic stability conditions if

@p.%; #/

@%
> 0;

@e.%; #/

@#
> 0 for all %; # > 0: (30)

We easily verify by using Gibbs’ relation (8) that

@H#

@#
.%; #/ D %

# � #

#

@e

@#
.%; #/ and

@2H#

@%2
.%; #/ D

1

%

@p

@%
.%; #/: (31)

Thus, the thermodynamic stability in terms of the function H# can be reformu-
lated as follows:

% 7! H#.%; #/ is strictly convex, (32)

while

# 7! H#.%; #/ attains its global minimum at # D #: (33)

We notice that if the second thermodynamical condition is satisfied, then the map
# 7! s.%; #/ is for any % a (strictly) increasing function of temperature; therefore it
admits a limit as # ! 0C that is 0 or �1 (after choosing adequately the constant
of integration).
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2.4 Constitutive Relations

We shall primarily assume a certain minimal regularity of constitutive laws for
pressure and internal energy,

p 2 C1.Œ0;1/ � Œ0;1//; e 2 C1..0;1/ � Œ0;1// (34)

We shall always assume that the gas obeys the second law of thermodynamics
expressed through the Gibbs relation (8) postulating existence of the specific
entropy; in particular, it must obey relation

@%e.%; #/ D
1

%2

�
p.%; #/ � #@#p.%; #/

�
; (35)

called Maxwell’s relation.
There are several families of constitutive laws enjoying physical justification and

allowing for the satisfactory theory of weak solutions. They can be written down in
the following framework

p.%; #/ D pra.#/C pmo.%; #/C pel .%/; (36)

where the indexes “ra,” “mo,” and “el” refer to “radiative,” “molecular,” and
“elastic” (pressure), respectively. Correspondingly, the internal energy reads

e.%; #/ D
1

%
era.#/C emo.%; #/C eel.%/; (37)

where we have to take

era.#/ D #p
0
ra.#/ � pra.#/; eel.%/ D

Z %

1

pel.z/

z2
dz

in order to comply with Maxwell’s relation (35). Under these assumptions, the
specific entropy reads

s.%; #/ D
1

%
sra.#/C smo.%; #/C sel.%/; (38)

and the Helmholtz function is

H‚ D Hra;‚ CHmo;‚ CHel; (39)

According to (35), the radiative entropy reads

sra.#/ � sra.1/ D

Z #

1

e0ra.z/

z
dz: (40)
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Consequently the radiative Helmholtz function is given by

Hra;‚.%; #/ D Hra;‚.#/ D

Z #

1

e0ra.z/

z
.z �‚/dzCHra;‚.1/: (41)

The contribution of the elastic components of pressure and internal energy to the
specific entropy and to the Helmoholtz function is

sel.%; #/ D 0; Hel.%; #/ D Hel.%/ D %

Z %

1

pel.z/

z2
dz D %eel.%/; (42)

respectively, again by virtue of relation (35). In particular,

%H 0el.%/ �Hel.%/ D pel.%/; (43)

and in view of (11) function .t; x/ 7! Hel.%.t; x// verifies

@tHel.%/C divx.Hel.%/u/C pel.%/divxu D 0: (44)

We shall consider two families of molecular pressure constitutive laws:

1. Real gas phenomenological constitutive laws
The molecular pressure and internal energy in many real gases enter into the

following general framework

pmo.%; #/ D #pth.%/; emo.%; #/ D eth.#/: (45)

In this situation, the specific entropy reads

smo.%; #/ D smo;# .#/C smo;%.%/; smo;# .#/ D

Z #

1

e0th.z/

z
dz;

smo;%.%/ D �

Z %

1

pth.z/

z2
dz (46)

and the Helmholtz function is

Hmo;‚ D %
�
emo.#/ �‚

Z #

1

e0mo.z/

z
dz
�
C %

Z %

1

pth.z/

z2
dz:

2. Constitutive laws derived in the statistical mechanics
They take the general form

pmo.%; #/ D #
�=.��1/P

� %

#1=.��1/

�
; � > 1; (47)
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where

P 2 C1Œ0;1/: (48)

In agreement with Gibbs’ relation (8), the (specific) internal energy must be
taken as

emo.%; #/ D
1

� � 1

#�=.��1/

%
P
� %

#1=.��1/

�
: (49)

In this case, the specific entropy reads

smo.%; #/ D S
� %

#1=.��1/

�
; where S 0.Z/ D �

1

� � 1

�P .Z/ � P 0.Z/Z

Z2
:

(50)

The reader may consult Eliezer, Ghatak, and Hora [23] and [33, Chapter 3] for
the physical background and further discussion concerning the structural hypothe-
ses (47), (48), and (49).

We shall proceed to several concrete examples.

Radiative pressure
The radiative pressure and energy are given by the Stefan-Boltzmann law:

pra.%; #/ D pra.#/ D
a

3
#4;

era.%; #/ D
a

%
#4 where a > 0 is the Stefan-Boltzmann constantI (51)

consequently we deduce from (40) and (41),

sra.%; #/ D
4

3

a

%
#3; Hra;‚.#/ D a.#

4 �
4

3
‚#3/: (52)

Examples of real gas phenomenological molecular pressure constitutive laws

Perfect gas – Boyle’s law. For the perfect gas,

pmo.%; #/ D R%#; emo.%; #/ D cv#
p; p � 1 (53)

where R > 0 is universal gas constant and cv > 0; we have for the specific
entropy

smo.%; #/ D

8̂
<
:̂

cv ln# �R ln %; if p D 1;

cv
p

p�1
.#p�1 � 1/ �R ln % if p > 1

9>=
>; ; (54)
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and

Hmo;‚.%; #/ D

8̂
<̂
ˆ̂:

cv%
�
.# �‚ ln#/C � ln %

�
if p D 1;

cv%
�
#p C p

p�1
.#p�1 � 1/‚C � ln %

�
if p > 1

9>>=
>>;
:

(55)
Real gases – virial series. According to Becker [2, Chapter 10], the pressure

in the real gas can be expressed through the so-called virial series that takes
the form

p.%; #/ D R#%C

nX
iD1

Bi .#/%
i ; n 2 N:

One of the best approximations of this form is the so-called Beattie-
Bridgeman state equation (see [106, Sections 3.4, 10.10, Chapter 10] for
more details).

Mie-Gruneisen equations of state are of the form

p.%; #/ D pc.%/C %#G.%; #/;

where pc.%/ refers to the “cold” pressure (see [13, 99] for more details).

Examples of molecular pressure constitutive laws from statistical mechanics
In formulas (47), (48), and (49), at least two values of � are considered to be
physically reasonable.

Monoatomic gas. For monoatomic gases, � D 5=3.
Relativistic gas. For the so-called relativistic gas, � D 4=3.

See [23, Chapter 3] for more details.
Examples of elastic pressure

Nuclear fluids. In a simplified model of nuclear fluids, the molecular pressure
is given by the Boyle’s law while there is an elastic pressure being
composed of two terms:

pel.%/ D c1%
5=3 C

�
c2%

3 � c3%
2
�
; c1; c2; c3 > 0;

where the first term is the so-called Thomas-Fermi-Weizsacker approxima-
tion while the second term comes from the so-called Skyrme interaction
(see [19]).

Perfect gas in isentropic regime. Supposing that the gas evolves in the regime
with the constant entropy s, we may deduce from (54)pD1 and (53)
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pmo.%; #/ 	 pel.%/ D b%
� ; b D Res > 0; � D

RC cv

cv
:

This is the pressure law for isentropic gas. The values of � (that is called
adiabatic constant) ranges in the interval .1; 5

3
/. The value � D 5=3

corresponds to the isentropic flows of monoatomic gas.

2.5 Constraints Imposed by Thermodynamic Stability Conditions

The elastic pressure satisfies thermodynamic stability conditions if and only if

p0el.%/ > 0 for all % > 0: (56)

The molecular pressure and internal energy given by formula (45) satisfy thermo-
dynamic stability conditions if and only if

p0th.%/>0 for all %>0; e0th.#/>0 for all #>0: (57)

Likewise, the pressure and internal energy given by formulas (47), (48), and (49)
satisfy thermodynamic stability conditions if and only if

P 0.Z/ > 0;
�P .Z/ � P 0.Z/Z

Z
> 0 for all Z > 0: (58)

First point to be noticed at this moment is that by virtue of (58), the function Z 7!
P .Z/=Z� must be decreasing on .0;1/ and therefore

lim
Z!1

P .Z/=Z� D p1 2 Œ0;1/: (59)

Second point is that under the thermodynamic stability conditions, functionZ 7!
S.Z/ is decreasing on interval .0;1/ in view of (50); it may be chosen by means
of a convenient additive constant in such a way that

lim
Z!1

S.Z/ D S1; where S1 D 0 or S1 D �1: (60)

2.6 Third Law of Thermodynamics

The third thermodynamical law postulates that

lim
#!0C

s.%; #/ D 0 for all % > 0: (61)
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We notice that the perfect gas whose state equation is given by the Boyle’s law
does not obey the third law (see formula (54)). The gases of mechanical statistics
whose pressure and internal energy are given by formulas (47)–(49) obey the third
law provided S can be taken (by choosing the integration constant in (50)) in such
a way that

lim
Z!1

S.Z/ D 0: (62)

The third law imposes further constraints on the constitutive laws in extreme
regimes close to values # D 0. It is usually not necessary for building up the
existence theory (at least on bounded domains). It may however play an important
role when one investigates the stability issues.

2.7 Barotropic Flows

A fluid flow is said to be in barotropic regime or the fluid is said to be barotropic if
the pressure p depends solely on the density. This can be achieved if we take in (36),
pra D 0, and molecular pressure/internal energy given by (45) with pth.%/ D 0. We
thus get

p.%/ D pel.%/; e.%; #/ D eel.%/C eth.#/:

Supposing moreover that the viscous stress S is independent on the absolute
temperature, system (3)–(9) in this situation reads

@t%C divx.%u/ D 0; (63)

@t .%u/C divx.%u˝ u/Crxp.%/ D divxS.%;rxu/ D %f; (64)

@t .%eth.#//C divx.%eth.#/u/C divxq.%; #;rx#/ D S.%;rxu/ W rxu; (65)

where we have used identity (44) in order to transform (5) to (65). We observe that
equation (65) and system (63)–(64) are decoupled in the sense that once the couple
.%;u/ is determined from equations (63)–(64), temperature # can be obtained by
solving (65) with boundary conditions (21).

Moreover, taking a scalar product of equation (64) with u and integrating over�
(under the assumption of enough smoothness of %;u and positivity of %) yields

@t

Z
�

�1
2
%juj2 CH.%/

�
dx C

Z
�

S.%;rxu/ W rxu dx D
Z
�

%f � u dx; (66)

where

H.%/ D Hel.%/ D %

Z %

1

p.z/

z2
dz; (67)
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provided the boundary conditions for velocity are conservative as those exposed
in (20) or (22). This equation replaces for the barotropic flows the global dissipation
identity (28) valid for the (regular) heat-conducting flows.

System of partial differential equations (63) and (64) is called compressible
Navier-Stokes equations in barotropic regime. It does not describe fully satisfac-
torily physically realistic situations. However, it is consistent with thermodynamics,
and it already contains pretty much of the mathematical difficulties encountered
when dealing with the full Navier-Stokes-Fourier system. Its investigation is not
only of independent interest, but it can be used as a preliminary toy problem before
attacking the full system.

The most usual examples of barotropic flows are isothermal flows where

p.%/ D R#%

describing the flows of the perfect gas with the constant temperature # > 0 and the
isentropic flows

p.%/ D Res%� ; � D
RC cv

cv

describing the flows of the perfect gas with the constant entropy s 2 R. Notice,
however, that the requirements of constant temperature or constant entropy violate
conservation of energy (65) unless specific external heat sources are not added
to (65).

3 Specific Mathematical Tools for Compressible Fluids

We shall gather in this section most of mathematical tools needed to investigate
weak solutions to the compressible Navier-Stokes equations or to the Navier-Stokes-
Fourier system. As far as the notations are concerned, we employ standard notation
commonly used in the mathematical analysis and in the theory of partial differential
equations, as in the books [30, 33, 59, 88, 102].

3.1 Instantaneous Values of Functions in L1.0,TI L1.�//

Theorem on Lebesgue points (see, e.g., [10, Appendix]) says that for any v 2
L1.0; T IX/, X a Banach space, there exists Qv˙ 2 L1.0; T IX/ such that:

(i)

For a. a. 
 2 .0; T /; lim
h!0C

1

h

Z
B˙.
 Ih/

kv.t/ � Qv˙.
/kXdt D 0;

where BC.
 Ih/ D .
; 
 C h/, B�.
; h/ D .
 � hI 
/.
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(ii)

For a. a. 
 2 .0; T /; QvC.
/ D Qv�.
/:

(iii) If v 2 Cweak.Œ0; T �IL
1.�//, then QvC.
/ D Qv�.
/ D v.
/ for all 
 2 Œ0; T �.

After this reminder, we are ready to define the instantaneous values of functions in
L1.0; T IL1.�//. We define right instantaneous value of v 2 L1.0; T IL1.�// at

 2 Œ0; T / as a continuous linear functional (a measure) v.
C/ 2 .C .�//�

< v.
C/; � >C.�/D lim inf
h!0C

1

h

Z
BC.
;h/

v.t; x/�.x/dx for all � 2 C.�/; (68)

and left instantaneous value of v 2 L1.0; T IL1.�// at 
 2 .0; T � as a continuous
linear functional (a measure) v.
�/ 2 .C .�//�

< v.
�/; � >C.�/D lim sup
h!0C

1

h

Z
B�.
;h/

v.t; x/�.x/dx for all � 2 C.�//: (69)

The instantaneous values of function v will be defined as follows:

instŒv�.0/Dv.0C/; instŒv�.
/D
1

2
.v.
C/Cv.
�//; if 
2.0; T /; instŒv�.T /Dv.T �/:

(70)
If v belongs only to L1.0; T IL1.�//, then v.
/ D instŒv�.
/ for a.a. 
 2 .0; T /.
If v 2 L1.0; T ILp.�//, 1 < p < 1, then instŒv�.
/ 2 Lp.�/: Theorem on
Lebesgue points described above implies that for any v 2 Cweak.Œ0; T �IL

1.�//,

instŒv�.
/ D v.
/ for all 
 2 Œ0; T �: (71)

Here and in the sequel, Cweak.Œ0; T �IL
p.�// is the space of functions in

L1.0; T ILp.�// which are continuous for the weak topology of the space Lp.�/,
1 � p <1.

3.2 Instantaneous Values of Solutions of Conservation Laws

3.2.1 The Case of Variational Identity
Suppose that d 2 L1.0; T IL1.�// verifies identity

�

Z T

0

Z
�

d.t; x/@t'.t; x/ dxdt �
Z T

0

Z
�

F.t; x/ � rx'.t; x/ dxdt (72)

D

Z T

0

Z
�

G.t; x/'.t; x/ dxdtC
Z
�

d0.x/'.0; x/ dx; with any ' 2 C1
c .Œ0; T /��/;
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where .F; G/ 2 L1.QT IR
4/ and d0 2 L1.�/. We may take in (72) the test functions

 ˙
;h.t/'.t; x/, ' 2 C
1
c .Œ0; T /��/, where 
 2 .0; T / and h > 0 is sufficiently small,

and

 �
;h D

8<
:

1 if t 2 .�1; 
 � h�
1 � 1

h
.t � 
 C h/ if t 2 .
 � h; 
/

0 if t 2 Œ
 ;1/

9=
; ;

 C
;h D

8<
:

1 if t 2 .�1; 
 �
1 � 1

h
.t � 
/ if t 2 .
; 
 C h/
0 if t 2 Œ
 C h;1/

9=
; :

(We easily verify by density argument that  ˙
;h.t/'.t; x/ are convenient test
functions.) Letting moreover h ! 0, we obtain by virtue of (69) and (68) and the
theorem on Lebesgue points

Z
�

d.
; x/'.
; x/ dx �
Z
�

d0.x/'.0; x/ dx

D

Z 


0

Z
�

d.t; x/@t'.t; x/ dxdt C
Z 


0

Z
�

F.t; x/ � rx'.t; x/ dxdt

C

Z 


0

Z
�

G.t; x/'.t; x/ dxdt with any ' 2 C1
c .Œ0; T / ��/ (73)

for a.a. 
 2 .0; T /, or for all 
 2 Œ0; T � if
R
�
d.
; x/'.
; x/ dx is replaced

< instŒd �.
/I'.
; �/ >C.�/ according to formula (70). In particular, if d 2
L1.0; T ILp.�// with some 1 < p < 1, then d 2 Cweak.Œ0; T �IL

p.�//. We
also observe that weak formulations (72) and (73) are equivalent.

3.2.2 The Case of Variational Inequality
We shall now suppose that function d 2 L1.0; T IL1.�// verifies solely the
variational inequality

�

Z T

0

Z
�

d.t; x/@t'.t; x/ dxdtC
Z T

0

Z
�

Z.t; x/�.t; x/ dxdt�
Z T

0

Z
�

F.t; x/�rx'.t; x/ dxdt

(74)

�

Z T

0

Z
�

G.t; x/'.t; x/ dxdtC
Z
�

d0.x/'.0; x/ dx; with any '2C1
c .Œ0; T /IM/; '�0;

where M is a vector subspace of C1.�/, .F; G;Z/ 2 L1.QT IR
5/, Z � 0, and

d0 2 L
1.�/. Replacing in (74) test function ' by  ˙
;h' and letting h! 0, we get

Z
�
d.
; x/'.
; x/ dx �

Z
�
d0.x/'.0; x/ dx C

Z 


0

Z
�
Z.t; x/'.t; x/ dxdt (75)
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�

Z 


0

Z
�
d.t; x/@t'.t; x/ dxdtC

Z T

0

Z
�

F.t; x/�rx'.t; x/ dxdtC
Z 


0

Z
�
G.t; x/'.t; x/ dxdt

for a.a. 
 2 .0; T / with any ' 2 C1
c .Œ0; T /IM/, ' � 0. Formulations (74) and (75)

are equivalent.
On the other hand, inequality (74) implies

�

Z T

0

 0.t/
h Z

�

d.t; x/�.x/ dx
i
dt C

Z T

0

 .t/
h Z

�

Z.t; x/�.x/ dx
i
dt

�

Z T

0

 .t/
h Z

�

F.t; x/ � rx�.x/ dx
i
dt (76)

�

Z T

0

 .t/
h Z

�

G.t; x/�.x/ dx
i
dtC .0/

Z
�

d0.x/�.x/ dx; with any � 2M;� � 0

for all  2 C1
c Œ0; T /,  � 0.

We deduce from (76) that for any � 2M , � � 0, there exists a nonnegative linear
functional †� on the vector space C1

c Œ0; T / defined by

�

Z T

0

 0.t/
h Z

�

d.t; x/�.x/ dx
i
dtC< †�; >�

Z T

0

 .t/
h Z

�

F.t; x/�rx�.x/ dx
i
dt

(77)

D

Z T

0

 .t/
h Z

�

G.t; x/�.x/ dx
i
dtC .0/

Z
�

d0.x/�.x/ dx for any  2 C1
c Œ0; T /;

verifying

< †�; > �

Z T

0

 .t/
h Z

�

Z.t; x/�.x/ dx
i
dt for any  2 C1

c Œ0; T /;  � 0:

As a nonnegative linear functional onC1
c Œ0; T /,†� can be extended to a nonnegative

linear functional on CcŒ0; T / by the standard Schwarz procedure. Indeed, if  2
CcŒ0; T /, we take sequences

C1
c Œ0; T / 3  

�
n % Œ ��; C 1

c Œ0; T / 3  
C
n % Œ �C;

where Œ �C D maxf0;  g; Œ �� D �minf0;  g; (78)

define < †�; Œ �
� > and < †�; Œ �

C > as the limits of nondecreasing sequences
< †�; 

�
n > and < †�; 

C
n >, respectively, (we notice that these limits do not

depend on the choice of the sequences  �n , resp.,  Cn provided they satisfy (78))
and set

< †�; >D< †�; Œ �
C > � < †�; Œ �

� > for all  2 CcŒ0; T /: (79)
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Employing Hölder’s inequality in each integral term in (76), we find out that

< †�; 
�
T;h >� c; (80)

where c D
�
kdkL1.0;T IL1.�// C k.F; G/kL1.QT IR4/ C kd0kL1.�/

�
k�kC1.�/ is

independent of 0 < h < T . This fact in combination with (79) makes possible
to extend †� to a continuous linear functional on C Œ0; T �. We will denote this
functional by the same symbol†� and indicate the duality pairing subscriptC Œ0; T �.
In particular,

j < †�; >CŒ0;T � j � k†�k.C Œ0;T �/�k kCŒ0;T �; (81)

where

k†�k.C Œ0;T �/� D lim
h!0C

< †�; 
�
T;h >

�
�
kdkL1.0;T IL1.�// C k.F; G/kL1.QT IR4/ C kd0kL1.�/

�
k�kC1.�/:

According to the Riesz representation theorem, there exists ��algebra of
measurable sets containing all Borel sets on [0,T] and a unique nonnegative measure
�†� on this ��algebra such that

< †�; >CŒ0;T �D

Z
Œ0;T �

 d�†�; (82)

and, moreover, thanks to (81)

k†�k.C Œ0;T �/� D

Z
Œ0;T �

d�†�: (83)

We may define a restriction of †� on C Œ0; 
/, resp., C Œ0; 
� by setting

< †�; >CŒ0;
�D

Z
Œ0;
�

 d�†�; resp. < †�; >CŒ0;
/D

Z
Œ0;
/

 d�†�: (84)

In particular, functions 
 7!< †�; 1 >CŒ0;
�, and 
 7!< †�; 1 >CŒ0;
/ are
nondecreasing functions, and, moreover, < †�; 1 >CŒ0;
/�< †�; 1 >CŒ0;
� for all

 2 .0; T �.

Coming back to identity (77) with test functions  ˙
;h and letting h ! 0C, we
obtain
Z
�

d.
; x/�.x/ dx �
Z
�

d0.x/�.x/ dx C
1

2

� Z
Œ0;
/

d�†� C

Z
Œ0;
�

d�†�

�
(85)

D

Z 


0

Z
�

F.t; x/ � rx�.x/ dxdt C
Z 


0

Z
�

G.t; x/�.x/ dxdt for any � 2M;� � 0;
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for a.a. 
 2 .0; T / (or equivalently for all 
 2 .0; T � if we replaceR
�
d.
; x/�.x/ dx by the duality pairing < instŒd �.
/I � >C.�/, where instŒd � is the

instantaneous value of d defined in (70). We can therefore conclude that function
< d.
/I � >CŒ0;T � (with � as in (85)) is a sum of a nonincreasing function with
countable number of jumps (because d 2 L1.0; T IL1.�//) and of an absolutely
continuous function.

3.2.3 The Particular Case of Variational Inequality on .0; T/
By the same token, variational inequalities

�

Z T

0

d.t/ 0.t/dt C
Z T

0

 .t/Z.t/dt

�

Z T

0

 .t/G.t/dt C d0 .0/ for all  2 C1
c Œ0; T /;  � 0; (86)

with Z;G 2 L1.0; T /, Z � 0, d 2 L1.0; T /, and

d.
/ .
/ � d0 .0/C

Z 


0

 .t/Z.t/dt �
Z 


0

d.t/ 0.t/dt C
Z 


0

 .t/G.t/dt

(87)
for all  2 C1

c Œ0; T /,  � 0 and a.a. 
 2 .0; T /, are equivalent.
On the other hand, if d 2 L1.0; T / verifies variational inequality (86), then

there exists a nonnegative finite measure � on the � -algebra of Borel sets on interval
Œ0; T � such that

d.
/ � d0 C
1

2

� Z
Œ0;
/

d�C
Z
Œ0;
�

d�
�
D

Z 


0

G.t/dt for a.a. 
 2 .0; T /; (88)

or for all 
 2 .0; T � if we replace d.
/ by instŒd �.
/ defined by (70) with
d.
�/ D lim suph!0

1
h

R
B�.
 Ih/ d.t/dt , d.
C/ D lim infh!0 1h

R
BC.
 Ih/ d.t/dt .

Now we can read from (88) that the map Œ0; T � 3 
 7! instŒd �.
/ is a sum of
nonincreasing function with at most countable number of jumps and an absolutely
continuous function.

If (86) is an identity (with sign “D” instead of “�” and with Z D 0), then it is
equivalent to the “integrated form”

d.
/ � d0 D

Z 


0

G.t/dt for a.a. 
 2 .0; T /: (89)

In particular, instŒv� is an absolutely continuous function on Œ0; T �.
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3.2.4 The Case 2 with M D C1.�/

We suppose that d 2 L1.0; T IL1.�// verifies the variational inequality

�

Z T

0

Z
�
d.t; x/@t'.t; x/ dxdtC

Z T

0

Z
�
Z.t; x/'.t; x/ dxdt�

Z T

0

Z
�

F.t; x/�rx'.t; x/ dxdt

(90)

�

Z T

0

Z
�
G.t; x/'.t; x/ dxdt C

Z
�
d0.x/'.0; x/ dx; with any ' 2 C1c .Œ0; T /��/; ' � 0;

where again .F; G;Z/ 2 L1.QT IR
5/, Z � 0, and d0 2 L1.�/.

Repeating the reasoning of (76)–(85) with the set Œ0; T / � � in place of
Œ0; T /, we will find that there exists a nonnegative continuous linear functional
† 2 .C .Œ0; T � ��//� such that

�

Z T

0

Z
�

d.t; x/@t'.t; x/ dxdtC < †; ' >C.Œ0;T ���/ �
Z T

0

Z
�

F.t; x/�rx'.t; x/ dxdt

(91)

D

Z T

0

Z
�

G.t; x/'.t; x/ dxdtC
Z
�

d0.x/'.0; x/ dx; with any ' 2 C1
c .Œ0; T /��/; ' � 0;

where

< †; ' >C.Œ0;T ���//�

Z T

0

Z
�

Z.t; x/'.t; x/ dxdt with any ' 2 C.Œ0; T ���/; ' � 0:

Due to the nonnegativity of †,

k†kC.Œ0;T ���/� D lim
h!0C

< †; �T;h >� kdkL1.0;T IL1.�//: (92)

Moreover there exists a unique nonnegative measure �† on the � -algebra of Borel
sets of Œ0; T � �� such that

< †; ' >C.Œ0;T ���/D

Z
Œ0;T ���

'd�†: (93)

Choosing in (91) test functions '.t; x/ ˙
;h, we get

Z
�

d.
; x/'.
; x/ dx �
Z
�

d0.x/'.0; x/ dxC
1

2

� Z
Œ0;
/��

'd�†C
Z
Œ0;
���

'd�†
�

(94)

D

Z 


0

Z
�

d.t; x/@t'.t; x/ dxt C
Z 


0

Z
�

F.t; x/ � rx'.t; x/ dxdt

C

Z 


0

Z
�

G.t; x/'.t; x/ dxdt; with any ' 2 C1
c .Œ0; T / ��/; ' � 0:

Identity (94) holds for a.a. 
 2 .0; T / and it is equivalent to (90).
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In particular, one deduces from the choice  .t; x/ D  �
;h.t/1.x/, resp.,
 .t; x/ D  �z;h.t/1.x/ in (90)

Z
�

d.
; x/ dx �
Z
�

d0.x/ dx C
1

2

� Z
Œ0;
/��

d�† C
Z
Œ0;
���

d�†
�

D

Z 


0

Z
�

G.t; x/'.t; x/ dxdt (95)

for a.a. 
 2 .0; T /, and

Z
�

d.
; x/ dx �
Z
�

d.z; x/ dx C
1

2

� Z
Œz;
/��

d�† C
Z
.z;
 ���

d�†
�

D

Z 


z

Z
�

G.t; x/'.t; x/ dxdt (96)

for a.a. 0 < z < 
 < T or for all values of 
 and z in Œ0; T � if we replaceR
�
d.�; x/ dx by inst

h R
�
d.�; x/ dx

i
.�/.

3.3 Weakly Convergent Sequences in L1

Theorem 1. Let O � R
N be a bounded open set and vn W O 7! R be a sequence

of measurable functions such that

sup
n�1

kˆ.vn/kL1.O/ <1; for a certain application ˆ 2 C Œ0;1/:

Suppose that

lim
jzj!1

jzj

ˆ.jzj/
D 0:

Then there is a subsequence of vn (not relabeled) such that

vn * v in L1.O/:

3.4 Convexity, Monotonicity, and Weak Convergence

It is well known that convex lower semicontinuous functions give rise to L1

– sequentially weakly lower semicontinuous functionals – and give rise to a
useful criterion of the a.e. convergence. We present here a convenient formulation
of these results taken over from [30, Theorem 2.11 and Corollary 2.2] or [33,
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Theorem 10.20]. (More general formulation can be found in Brezis [10] or in
Ekeland, Temam [22].) The corresponding theorems read:

Theorem 2. LetO � R
N be a measurable set and fvng1nD1 a sequence of functions

in L1.OIRM/ such that

vn ! v weakly in L1.OIRM/:

Let ˆ W RM ! .�1;1� be a lower semicontinuous convex function.
Then ˆ.v/ W O 7! R is integrable and

Z
O

ˆ.v/dx � lim inf
n!1

Z
O

ˆ.vn/dx:

Strictly convex lower semicontinuous functions are involved in a useful criterion
of the a.e. convergence.

Theorem 3. LetO � R
N be a measurable set and fvng1nD1 a sequence of functions

in L1.OIRM/ such that

vn ! v weakly in L1.OIRM/:

Let ˆ W RM ! .�1;1� be a lower semicontinuous convex function such that
ˆ.vn/ 2 L1.O/ for any n, and

ˆ.vn/! ˆ.v/ weakly in L1.O/:

Then

ˆ.v/ � ˆ.v/ a.e. on O: (97)

If, moreover, ˆ is strictly convex on an open convex set U � R
M and

ˆ.v/ D ˆ.v/ a.e. on O;

then

vn.y/! v.y/ for a.a. y 2 fy 2 O j v.y/ 2 U g (98)

extracting a subsequence as the case may be.

Similar properties are true also for monotone functions as a consequence of the
so-called Minti’s trick. The following result is taken from [33, Theorem 10.19]:
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Theorem 4. Let I � R be an interval, Q � R
N a domain, and

.P;G/ 2 C.I / � C.I / a couple of nondecreasing functions. (99)

Assume that %n 2 L1.QI I / is a sequence such that

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

P .%n/! P .%/;

G.%n/! G.%/;

P .%n/G.%n/! P .%/G.%/

9>>>>>=
>>>>>;

weakly in L1.Q/: (100)

(i) Then

P .%/ G.%/ � P .%/G.%/: (101)

(ii) If, in addition,

G 2 C.R/; G.R/ D R; G is strictly increasing;

P 2 C.R/; P is nondecreasing;
(102)

and

P .%/G.%/ D P .%/ G%/; (103)

then

P .%/ D P ıG�1.G.%//: (104)

(iii) In particular, if G.z/ D z, then

P .%/ D P .%/: (105)

3.5 The Inverse of the Div Operator (Bogovskii’s Formula)

Theorem 5. Let � � R
N be a bounded Lipschitz domain.

(i) Then there exists a linear mapping B,

B W ff j f 2 C1c .�/;
Z
�

f dx D 0g ! C1c .�IR
N /;
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such that

divx.BŒf �/ D f

with the following properties:
(ii) We have

kBŒf �kW kC1;p.�IRN / � ckf kW k;p.�/ for any 1 < p <1; k D 0; 1; : : : ;
(106)

In particular, B can be extended in a unique way to a bounded linear operator

B W ff j f 2 Lp.�/;
Z
�

f dx D 0g ! W
1;p
0 .�IRN /:

(iii) If f 2 Lp.�/,
R
�
f dx D 0, and, in addition, f D divxg, where g 2

.Lq.�//N , 1 < q < 1, and g � nj@� D 0 (in the weak sense of normal
traces), then

kBŒf �kLq.�IRN / � ckgkLq.�IRN /: (107)

Operator B has been constructed for the first time by Bogovskii. The reader can
consult Galdi [59] or [88, Section 3.3] for more details about this problem.

3.6 Poincaré- and Korn-Type Inequalities

Applications in compressible thermodynamics often require refined versions of
Poincaré and Korn inequalities that are not directly covered by the standard theory.
We shall list some of them and refer the reader to [33, Appendix, Sections 10.8,
10.9] for more systematic treatment.

Theorem 6. Let 1 � p � 1, 0 < � <1, and let� � R
N be a bounded Lipschitz

domain. Let V � � be a measurable set such that

jV j � V0 > 0:

Then there exists a positive constant c D c.p; �; V0/ such that

k v kW 1;p.�/ � c
h
krxvkW 1;p.�;RN / C

� Z
V

jvj�dx
� 1
�
i

for any v 2 W 1;p.�/.
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Theorem 7. Let� � R
N ,N > 2 be a bounded Lipschitz domain, and let 1 < p <

1,M0 > 0,K > 0, � > 1. Then there exists a positive constant c D c.p;M0;K; �/

such that inequality

kvkW 1;p.�IRN / � c
����rxv

���
Lp.�IRN /

C

Z
�

r jvj dx
�

holds for any v 2 W 1;p.�IRN / and any nonnegative function r such that

0 < M0 �

Z
�

r dx;
Z
�

r� dx � K: (108)

The following lemma is often useful in combination with Theorem 6 to investi-
gate positivity of the temperature (see [33, Lemma 2.1]).

Lemma 1. Let � be a bounded Lipschitz domain and p; � > 1. Let S 2 C.0;1/
be a strictly decreasing function such that limZ!1 S.Z/ D S1 2 f�1; 0g and

lim sup
n!1

Z
f%n�#

1=.��1/
n g

%nS
� %n

#
1=.��1/
n

�
dx � 0

whenever %n � 0 is bounded in L�.�/ and 0 < #n ! 0 in Lp.�/.
Then for any M0 > 0, �0 > 0, and S 2 R, there exist ˛ D ˛.M0; �0; S/ > 0,

# D #.M0; �0; S/ > 0 such that for any nonnegative functions %, # satisfying
Z
�

%dx �M0;

Z
�

.%� C #p/dx � �0;

and Z
�

%S
� %

#1=.��1/

�
dx � S > M0S1;

we have ˇ̌
ˇf# � #g

ˇ̌
ˇ � ˛: (109)

The classical Korn’s inequality deals with the symmetrized gradients of the
vector fields. It reads:

Theorem 8. Assume that 1 < p <1.

(i) There exists a positive constant c D c.p;N / such that

krvkLp.RN IRN�N / � ckrvCrT vkLp.RN IRN�N /

for any v 2 W 1;p.RN IRN /.
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(ii) Let � � R
N be a bounded Lipschitz domain. Then there exists a positive

constant c D c.p;N;�/ > 0 such that

kvkW 1;p.�IRN / � c
�
krvCrT vkLp.�;RN�N / C

Z
�

jvj dx
�

for any v 2 W 1;p.�IRN /.

In the fluid dynamics of compressible fluids, we often need a version of Korn’s
inequality involving the symmetrized and traceless gradient. It reads:

Theorem 9. Let 1 < p <1 and N > 2.

(i) There exists a positive constant c D c.p;N / such that

krvkLp.�IRN�N / � ckrvCrT v �
2

N
divv IkLp.�IRN�N /

for any v 2 W 1;p.RN IRN /, where I D .ıi;j /
N
i;jD1 is the identity matrix.

(ii) Let � � R
N be a bounded Lipschitz domain. Then there exists a positive

constant c D c.p;N;�/ > 0 such that

kvkW 1;p.�IRN / � c
�
krvCrT v �

2

N
divv IkLp.�;RN�N / C

Z
�

jvj dx
�

for any v 2 W 1;p.�IRN /.

Finally the generalized version of the above inequality reads:

Theorem 10. Let � � R
N , N > 2 be a bounded Lipschitz domain, and let

1 < p <1, M0 > 0, K > 0, � > 1.
Then there exists c D c.p;K;M0; �/ > 0 such that

kvkW 1;p.�IRN /

� c
����rxvCrTx v �

2

N
divv I

���
Lp.�IRN /

C

Z
�

r jvj dx
�

for any v 2 W 1;p.�IRN / and for any nonnegative function r such that

0 < M0 �

Z
�

r dx;
Z
�

r� dx � K: (110)



Weak Solutions for the Compressible Navier-Stokes Equations: Existence,. . . 35

3.7 Time Compactness

We report the classical theorem known as Aubin-Lions-Simon lemma [6, Theo-
rem II.5.16].

Theorem 11. LetX �� B � Y be Banach spaces, where the symbols�� denotes
compact and � continuous imbeddings, respectively, and let 1 � p; q � 1. Let vn

be a sequence of functions such that

vn is bounded in Lp.0; T IX/; @tv
n bounded in Lq.0; T IY /:

Then there exists a subsequence (denoted again by vn) such that

if p <1; vn ! v (strongly) in Lp.0; T IB/I

if p D1 and q > 1; vn ! v (strongly) in C.Œ0; T �IB/:

The classical Aubin-Lions lemma is convenient for applications involving time
evolution of the quantity v expressed through an equation. It usually cannot
be applied to investigate time compactness of quantities evaluating according to
differential inequalities. In the latter situation, one may use a weaker variant of the
above theorem (see [30, Lemma 6.3]).

Theorem 12. Let � � R
N be a bounded domain and 1 < p < 1. Let vn be a

sequence of functions such that

vn is bounded in Lp.0; T ILq.�/// \ L1.0; T IL1.�//; q >
2N

2CN
;

@tv
n D gn C†n;

where

†n is a nonnegative distribution and gn is bounded in L1.0; T IW �m;r .�//

with some m � 1, r > 1. Then vn contains a subsequence such that

vn ! v (strongly) in Lp.0; T IW �1;2.�//:

3.8 Operator r��1 and Riesz-Type Operators

We introduce operators A D rx��1 and R D rx ˝rx��1,

.r��1/j .v/ D �F�1
h i
j
j
j2

F.v/.
/
i
; .r ˝r��1/ij .v/ D F�1

h
i 
j
j
j2

F.v/.
/
i
;

(111)
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where F denotes the Fourier transform

ŒF.v/�.
/ D 1

2�3

Z
R3

v.x/exp.�i
 � x/dx:

We recall the basic properties of these operators (see e.g. Feireisl [30], [33,
Sections 0.5 and 10.16] or [88] for more details).

Theorem 13. (i) A is a continuous linear operator from L1 \ L2.R3/ to L2 C
L1.R3IR3/ and from Lp.R3/ to L3p=.3�p/.R3IR3/ for any 1 < p < 3.

(ii) R is a continuous linear operator from from Lp.R3/ to Lp.R3IR3�3/ for any
1 < p <1.

(iii) The following formulas hold

R.v/ D RT .v/;

3X
jD1

Rjj .v/ D v; v 2 L
p.R3/;

@kRij .v/ D Rij .@kv/; Rij .@kv/ D Rik.@j v/; v 2 W
1;p.R3/;

where 1 < p <1;

rxA.v/ D R.v/; divA.v/ D v; v 2 Lp.R3/;

where 1 < p < 3;

Z
R3

A.v/wdx D �
Z
R3

vA.w/dx;

with

v 2 Lp.R3/; w 2 Lq.R3/; A.w/ 2 Lp0.R3/; A.v/ 2 Lq0.R3/;

where 1 < q; p < 3;

Z
R3

R.v/wdx D
Z
R3

vR.w/dx; v 2 Lp.R3/; w 2 Lp
0

.R3/;

where 1 < p <1.

3.9 Some Results of Compensated Compactness

We shall start by the celebrated Div-Curl lemma of Murat and Tartar [84] formulated
in the form [33, Lemma 10.1].
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Theorem 14. Let Q � R
N be an open set. Assume

Un ! U weakly in Lp.QIRN /;

Vn ! V weakly in Lq.Q;RN /;
(112)

where

1

p
C
1

q
D
1

r
< 1:

In addition, let

div Un 	 r � Un;

curl Vn 	 .rVn � r
TVn/

9=
; be precompact in

�
W �1;s.Q/;

W �1;s.Q;RN�N /;
(113)

for a certain s > 1. Then

Un � Vn ! U � V weakly in Lr.Q/:

The next theorem involving commutator of Riesz operators may be seen as a
consequence of the Div-Curl lemma stated above (see Feireisl [30, Section 6] or
[33, Theorem 10.27]).

Theorem 15. Let

V" ! V weakly in Lp.RN IRN /;

U" ! U weakly in Lq.RN IRN /;

where 1
p
C 1

q
D 1

s
< 1. Then

U" �RŒV"� �RŒU"� � V" ! U �RŒV� �RŒU� � V weakly in Ls.RN /:

The next theorem is a compensated compactness result in the spirit of Coifman
and Meyer [15] (see [33, Theorem 10.28]).

Theorem 16. Let w 2 W 1;r .RN / and V 2 Lp.RN IRN / be given, where

1 < r < N;
1

r
�
1

N
C
1

p
< 1:

Then there exists ˛ > 0 and q D q.r; p/ > 1 such that
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���RŒwV� � wRŒV�
���
W ˛;q.RN IRN /

� c.r; p/kwkW 1;r .RN /kVkLp.RN IRN /:

Here W ˛;q.RN / denotes the Sobolev-Slobodeckii space.

3.10 Parametrized (Young) Measures

Let Q � R
N be a domain; we say that  W Q � R

M is a Carathéodory function on
Q � R

M if

8<
:

for a. a. x 2 Q; the function � 7!  .x; �/ is continuous on R
M I

for all � 2 R
M ; the function x 7!  .x; �/ is measurable on Q:

9=
; (114)

We recall that � is called a probability measure on R
M if it is a nonnegative Borel

measure, such that �.RM/ D 1. In the sequel, we shall deal with families f�xgx2Q
of probability measures �x . We say that the family of measures f�xgx2Q is a family
of parametrized measures depending measurably on x if for almost all x 2 Q, �x is
a probability measure and if

8<
:

8� W RM ! R; � 2 C.RM/ \ L1.RM/;

the function x !
R
RM
�.�/ d�x.�/ WD< �x; � > is measurable on Q:

9=
;
(115)

Families of parametrized measures are connected to the weak convergence as
described in the following theorem (see Pedregal [91, Chapter 6, Theorem 6.2]):

Theorem 17. Let fvng1nD1, vn W Q � R
N ! R

M be a weakly convergent sequence
of functions in L1.QIRM/, where Q is a domain in R

N .
Then there exist a subsequence (not relabeled) fvng1nD1 and a parameterized

family f�ygy2Q of probability measures on R
M depending measurably on y 2 Q

with the following property:
For any Carathéodory function ˆ D ˆ.y; z/, y 2 Q, z 2 R

M such that

ˆ.�; vn/! ˆ weakly in L1.Q/;

we have

ˆ.y/ D

Z
RM

 .y; z/ d�y.z/ for a.a. y 2 Q:

The family of measures f�ygy2Q associated to a sequence fvng1nD1, vn * v
in L1.QIRM/; is termed Young measure. Suppose that vn is only a bounded
sequence in L1.Q/. Then there still exists an associated parametrized family
f�ygy2Q of nonnegative Borel measures with the properties stated in Theorem 17,
which, however, do not need to be necessarily probability measures.
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3.11 Some Elements of the DiPerna-Lions Transport Theory

In the following theorems, we present some consequences of the DiPerna-Lions
transport theory applied to the continuity equation (see [33, Section 10.16]. )

Theorem 18. LetN � 2, ˇ; q 2 .1;1/, 1
q
C 1

ˇ
2 .0; 1�. Suppose that the functions

.%;u/ 2 L
ˇ
loc..0; T / � R

N / � L
q
loc.0; T IW

1;q
loc .R

N IRN //, where % � 0 a. e. in
.0; T / � R

N , satisfy the transport equation

@t%C divx.%u/ D f (116)

in D0..0; T / � R
N /, where f 2 L1loc..0; T / � R

N /.
Then

@tb.%/C divx
�
.b.%/u

�
C
�
%b0.%/ � b.%/

�
divxu D f b0.%/ (117)

in D0..0; T / � R
N / for any

b 2 C1.Œ0;1//; b0 2 Cc.Œ0;1//: (118)

Theorem 19. Let � � R
N , N D 2; 3 be a bounded Lipschitz domain.

(i) Suppose that .ˇ; q/ satisfy assumptions of Theorem 18 and that .%;u/ 2
Lˇ..0; T / � �/ � Lq.0; T IW

1;q
0 .�//. Then there holds: If the couple .%;u/

satisfies equation (116) in D0..0; T / � �/, then it verifies the same equation
also in D0..0; T / � R

N / provided .%;u/ is extended to .0; T / � R
N as follows:

.%;u/.t; x/ D
�

.%;u/.t; x/ for .t; x/ 2 .0; T / ��;
.%1 � 0; 0/ for .t; x/ 2 .0; T / � .RN n�/:

(119)

(ii) Suppose that .%;u/ 2 L1..0; T / � �/ � Lq.0; T IW 1;q
0 .�//, q > 1 verifies

renormalized continuity equation (117) in D0..0; T / � �/ with any b belong-
ing to class (118). Then the extension (119) verifies the same equation in
D0..0; T / � R

N / for the same functions b.

Theorem 20. Let � � R
N , N � 2 be a bounded domain and let .%;u/, % 2

L1.0; T ILˇ.�//, u 2 Lq.0; T IW 1;q.�//, f 2 Lq..0; T /��/, %u 2 L1..0; T /�
�/ satisfies continuity equation (116) in D0..0; T /��/ and renormalized continuity
equation (117) with any b in class (118). Then

% 2 C.Œ0; T �IL1.�//:
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Lemma 2. Let N � 2, ˇ; q 2 Œ1;1/, 1
q
C 1

ˇ
2 .0; 1�. Suppose that the functions

.%;u/ 2 Lˇloc..0; T /�R
N /�L

q
loc.0; T IW

1;q
loc .R

N IRN //, where % � 0 a.e. in .0; T /�
R
N , satisfy the renormalized continuity equation (117) for any b belonging to the

class (118).
Then we have:

(i) If f 2 Lploc..0; T /�R
N / for some p > 1, p0. ˇ

q0
� 1/ � ˇ, then equation (117)

holds for any

b 2 C1.Œ0;1//; jb0.s/j � csˇ=q
0�1; for s > 1: (120)

(ii) If f D 0, then equation (117) holds for any

b2C.Œ0;1// \ C1..0;1//; sb0 � b 2 C Œ0;1/; jb0.s/j � csˇ=q
0�1 if s 2 .1;1/:

(121)

3.12 The Gronwall Lemma

We recall a variant of the Gronwall-Bellman lemma. The reader can consult the
monograph [89] for the details on this variant and other differential and integral
inequalities.

Theorem 21. Let ˛ 2 L1.0; T /, ˇ 2 L1.0; T /, ˇ � 0 be given functions. Suppose
that a function u 2 L1.0; T / satisfies inequality

u.
/ � ˛.
/C
Z 


0

ˇ.t/u.t/dt for a.a. 
 2 .0; T /:

Then

u.t/ � ˛.t/C
Z t

0

˛.s/ˇ.s/e
R t
s ˇ.z/dzds for a.a. t 2 .0; T /:

4 Existence of Weak Solutions to the Compressible
Navier-Stokes Equations for Barotropic Flows

In this section we shall define and investigate weak solutions to the system (63)–(64)
in a time cylinder QT D .0; T / ��, where � is a bounded domain, with pressure

p D p.%/; p 2 C Œ0;1/ \ C1.0;1/; p.0/ D 0: (122)

and stress tensor (12), where

� D const: > 0; � D const: � 0: (123)
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The system is completed with initial conditions

%.0; �/ D %0.�/; %u.0; �/ D %0u0; (124)

and no-slip boundary conditions (20), i.e.,

u.t; �/j@� D 0: (125)

4.1 Weak Formulation and Weak Solutions

We begin with the definition of the Leray-type weak solutions to problem (63)–
(64), (122)–(125). It consists of the standard weak formulation of equations (63)–
(64). Dissipation identity (66) will be replaced by the dissipation inequality “�” in
the integral form. In fact identity (66) integrated over time contains the functional
Z 7!

R 

0

R
�
S.Z/ W Z dxdt , Z D ru that is not continuous but only sequentially

lower weakly semicontinuous with respect to the weak topology of L2.Q
 IR
9/.

Consequently, when passing from approximations to a solution, the limit processes
will conserve solely the inequality “�.”

Definition 1. Let � be a bounded domain, and let

%0 W �! Œ0;C1/;u0 W �! R
3;

%0u0 D 0; %0u20 D 0 a.e. in the set fx 2 �j%0.x/ D 0g
(126)

with finite energyE0 D
R
�
.1
2
%0u20CH.%0//dx and finite mass 0 < M0 D

R
�
%0dx.

We shall say that a pair .%;u/ is a finite energy weak solution to the problem (63)–
(64), (122)–(125) emanating from the initial data .%0;u0/ if:

(a)

% 2 L1.0; T IL1.�//; % � 0 a.e. in .0; T / ��; p.%/ 2 L1.QT /; (127)

u 2 L2.0; T IW 1;2
0 .�//; %u;

1

2
%u2; H.%/ 2 L1.0; T IL1.�//:

(b) % 2 Cweak.Œ0; T �IL
1.�//, and the continuity equation (63) is satisfied in the

following weak sense

Z
�

%'dx
ˇ̌
ˇ

0
D

Z 


0

Z
�

�
%@t' C %u � rx'

�
dxdt; (128)
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for all 
 2 Œ0; T � and for all ' 2 C1c .Œ0; T � ��/:
(c) %u 2 Cweak.Œ0; T �IL

1.�//, and the momentum equation (64) is satisfied in the
weak sense,

Z
�

%u�'dx
ˇ̌
ˇ

0
D

Z 


0

Z
�

�
%u�@t'C%u˝u Wr'Cp.%/div'�S.rxu/ W rx'C%f�'

�
dxdt

(129)
for all 
 2 Œ0; T � and for all ' 2 C1c .Œ0; T � ��IR

3/:

(d) The dissipation identity (66) is satisfied as inequality in the weak sense:

�

Z T

0

 0.t/

Z
�

�1
2
%juj2 CH.%/

�
dx C

Z T

0

 .t/

Z
�

S.rxu/ W rxu dxdt

(130)

�

Z T

0

 .t/

Z
�

%f � u dxdt CE0 .0/ for all  2 C1Œ0; T /;  � 0:

Here and hereafter the symbol
Z
�

gdx j
0 is meant for
Z
�

g.
; x/dx �Z
�

g0.x/dx. We recall that the Helmholtz function H is defined in (67). Space

Cweak.Œ0; T �IL
1.�// is defined in (71).

Definition 2. A couple .%;u/ satisfying all requirements of Definition 1 with
exception of the energy inequality (130) which is replaced by

Z
�

�1
2
%juj2 CH.%/

�
dx
ˇ̌
ˇ

0
C

Z 


0

Z
�

S.rxu/ W rxu dxdt �
Z 


0

Z
�

%f � u dxdt;

(131)
for almost all 
 2 .0; T / will be called bounded energy weak solution of
problem (63)–(64), (122)–(125).

Definition 3. We say that the couple

.%;u/ 2 L1.0; T IL1.�// � L2.0; T IW 1;p.�//; % � 0; %u 2 L1.QT /; p > 1

(132)
satisfies continuity equation in the renormalized sense iff it satisfies continuity
equation (116) in D0..0; T / � �/ and renormalized continuity equation (117) in
D0..0; T /��/with any test function b belonging to the class (118) and with f D 0.

Weak solution to problem (63)–(64), (122)–(125) satisfying the continuity
equation in the renormalized sense will be called renormalized weak solution.

Remark 1. 1. Suppose that .%;u/ is a renormalized weak solution of the continuity
equation such that
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% 2 L1.0; T IL�.�//; u 2 L2.0; T IW 1;2.�//; � > 1;

where � is a bounded domain. Then

% 2 C.Œ0; T �IL1.�//:

If, moreover, uj.0;T /�@� D 0 and � is a Lipschitz domain, then the renormalized
continuity equation is satisfied up to the boundary, namely,

Z
�

b.%.
; x//'.
; x/ dx �
Z
�

b.%.0; x//'.0; x/ dx (133)

D

Z 


0

Z
�

�
b.%/@t' C b.%/u � rx' � B.%/divxu'

�
dxdt D 0

for all 
 2 Œ0; T �, for all ' 2 C1
c .QT /, and for all b; B belonging to

b 2 C Œ0;1/\C1.0;1/; jb.z/j � c.1Cz
5
6 � /; B 2 C Œ0;1/; jB.%/j � c.1C%

�
2 /;

(134)
where b; B are related by the formula B.z/ D zb0.z/ � b.z/. Moreover, b.%/ 2
C.Œ0; T �IL1.�//.

If, in addition � � 2, then the continuity equation is satisfied up to the
boundary, namely,

Z
�

%.
; x/'.
; x/ dx�
Z
�

%.0; x/'.0; x/ dx D
Z 


0

Z
�

�
%@t'C %u � rx'

�
dxdt

for all 
 2 Œ0; T � and for all ' 2 C1
c .QT /.

The above statements follow from the DiPerna-Lions transport theory [18]
evoked through Theorems 18, 19, 20, and Lemma 2. The reader can consult
[30, Chapter 4, Section 4.1.5], [88, Chapter 6, Section 6.2], [33, Appendix,
Section 10.18] for more details and proofs.

2. For any t 2 Œ0; T �, the momentum %u.t; �/ vanishes almost everywhere on the
vacuum set of function %.t; �/. More precisely, properties % 2 C.Œ0; T �IL1.�//,
% � 0, %u 2 Cweak.Œ0; T �IL

1.�//, and %u2 2 L1.0; T IL1.�//, where u 2
L1.QT /, are enough to conclude that

%u.t; �/ D 0 a.e. on the set fx 2 �j%.t; x/ D 0g: (135)
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Similarly, if in addition to previous hypotheses, % 2 L1.0; T IL3=2.�//, then

%u2 D 0 a.e. on the set [t2Œ0;T �
�
ftg � fx 2 �j%.t; x/ D 0g

�
: (136)

3. We introduce global kinetic energy Ekin W Œ0; T � 7! Œ0;1/ and global elastic
energy Eel W Œ0; T � 7! Œ0;1/

Ekin D inst
h Z

�

1

2
%u2.t; x/ dx

i
; Eel D inst

h Z
�

H.%/.t; x/ dx
i
; (137)

where the instantaneous values were introduced in (70). We define global
mechanical energy as

Emech 	 E D Ekin CEel: (138)

With this notation, in agreement with (86)–(88), inequality (130) can be rewritten
as identity

E.
/ .
/ �

Z 


0

 0.t/E.t/dt C
1

2

� Z
Œ0;
/

 .t/d�C
Z
Œ0;
�

 .t/d�
�

(139)

D

Z 


0

 .t/

Z
�

%f � u dxdt CE0 .0/ for all  2 C1Œ0; T �;  � 0;

for all 
 2 Œ0; T �, where � is a nonnegative measure on the ��algebra of Borel
sets of interval Œ0; T � satisfying, in particular,

1

2

� Z
Œ0;
/

 .t/d�C
Z
Œ0;
�

 .t/d�
�
�

Z 


0

 .t/

Z
�

S.rxu/ Wrxu dxdt; for all  2C Œ0; T �;  �0:

With this definition at hand, we may deduce from inequality (139) in agreement
with (86)–(88) that

E.
/ �E0 C
1

2

� Z
Œ0;
/

d�C
Z
Œ0;
�

d�
�
D

Z 


0

Z
�

%u � f dxdt for all 
 2 Œ0; T �;

(140)
and

E.
/ �E.z/C
1

2

� Z
Œz;
/

d�C
Z
.z;
 �

d�
�
D

Z 


z

Z
�

%u � f dxdt

for all 0 < z < 
 < T .
In particular, function 
 7! E.
/ is a sum of a nonincreasing function 
 7!

� 1
2

� R
Œ0;
/

d�C
R
Œ0;
�

d�
�

(that must have at most a countable number of jumps)
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and an absolutely continuous function 
 7!
R 

0

R
�
%u �f dxdt . This representation

ofE is convenient to use for studying of the longtime behavior of weak solutions.
4. Relation (139) implies that any finite energy weak solution is a bounded energy

weak solution.

Existence of weak solutions to problems (63)–(64),and (122)–(125) is known
provided the pressure verifies in addition to (122) conditions

p0.%/ � a1%
��1 � b; % > 0; (141)

p.0/ D 0; p.%/ � a2%
� C b; % � 0;

with some � > 3=2, a1 > 0, a2; b 2 R. The exact statement of the existence result
is announced in the following theorem:

Theorem 22 (See [77] for p.%/ � %� , � � 9=5, [47, Theorem 1.1] with p.%/ �
%� , � > 3=2, [28, Theorem 1.1] for nonmonotone pressure (141) and � > 3=2.).
Let � be a bounded domain of class C2;� , T > 0 and f 2 L1.QT /, where QT D

.0; T /��. Suppose that the initial data satisfy (126) and that the pressure p belongs
to the regularity class (122) and satisfies condition (141) with � > 3=2. Then the
problem (63)–(64), (124), (125) admits a renormalized finite energy weak solution
with the following additional properties

% 2 C.Œ0; T �IL1.�// \ L1.0; T IL�.�// \ Lp0.QT /; p0 D min
n5� � 3

3
;
3

2
�
o
;

(142)

p.%/ 2 Lp1.QT /; p1 D p0=� > 1; (143)

%u 2 L1.0; T IL
2�
�C1 .�// \ Cweak.Œ0; T �IL

2�
�C1 .�//: (144)

The main ideas of the proof of Theorem 22 will be explained in the more
general context of heat-conducting gases in Sect. 7. The detailed existence proof
can be found in paper [47] for the monotone pressure and � > 3=2 and in [28] for
nonmonotone pressure. More details about this problem are available in monographs
[30, 77, 88].

On unbounded domains, Definitions 1, 2, and 3 of finite (bounded/renormalized)
weak solutions for the problem (63)–(64), (123) (124), (125) must be slightly
modified in order to be able to accommodate conditions at infinity (24). We shall
first consider the case

%1 D 0; u1 D 0; cf. (24): (145)

Definition 4. Let� be an unbounded domain. We say that couple .%;u/ is (i) finite
energy weak solution, (ii) bounded energy weak solution, (iii) renormalized weak
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solution of problem (63)–(64), (122)–(125) with zero conditions at infinity (145) iff:
it belongs to class (127) with u belonging to L2.0; T ID1;2

0 .�IR
3// (in place of u 2

L2.0; T IW 1;2
0 .�IR3//), % 2 Cweak.Œ0; T �IL

1.K//, %u 2 Cweak.Œ0; T �IL
1.KIR3//

with any compact K � � and

(i) it satisfies all requirements of Definition 1 (for finite energy weak solution);
(ii) it satisfies all requirements of Definition 2 (for bounded energy weak solution);

(iii) it satisfies all requirements of Definition 3 (for renormalized weak solution).

In the above, we have denoted byD1;2
0 .�/ the homogenous Sobolev space given by

closurekrx �kL2.�IR3/

�
C1c .�/

�
:

The weak solutions designed in Definitions 1, 2, 3, and 4 enjoy the following
stability condition with respect to the variations of the domain:

Theorem 23 (See [48, Theorem 1.1]). Let�n be a sequence of domains in R
3 and

� be a domain, such that:

(i) For any compact set K � �, there is a natural number n0 such that for all
n � n0, K � �n;

(ii) Sets �n n� enjoy the property cap2.�n n�/! 0, where

cap2.M/ D inff
Z
R3
jrx�jdx j� 2 C

1
c .R

3/; � � 1 onM g:

Let .%n;un/ be a sequence of bounded energy renormalized weak solutions to
problem (63)–(64), (123), (124), (125) (and (24), (145) if � is unbounded) with
pressure p satisfying (122), (141) with � > 3=2 with initial conditions .%n;0 �
0;un;0/ and external forces fn such that

�
%n;0; %n;0un;0

�
!
�
%0; %0u0

�
in L1.R3IR4/ .when extended by .0; 0/ to R

3/;

En;0D

Z
�n

�
%n;0jun;0j2 CH.%n;0/

�
dx ! E0; fn ! f in L1 \ L1..0; T / � R

3IR3/:

Then, extending .%n;un/ by .0; 0/ in .0; T /�.R3 n�/ and passing to a subsequence
as the case may be, we have

%n ! % in C.Œ0; T �IL1.R3//; un * u in L2.0; T IW 1;2.R3//;

where .%;u/ is a bounded energy renormalized weak solution of the same problem
on .0; T / �� for initial conditions .%0;u0/.
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Remark 2. 1. A sufficient condition guaranteeing (ii) is, for example, �n n �

bounded, j@�nj D j@�j D 0, and j�n n�j ! 0.
2. Existence of weak solutions on nonsmooth domains. Theorem 23 asserts

existence of bounded energy weak solutions on a large class of nonsmooth
bounded domains. These weak solutions are however not finite energy weak
solutions. Finite energy weak solutions do not exist in general on nonsmooth
domains, but they are known to exist on domains that are Lipschitz (or even
slightly less regular than Lipschitz; see [73]).

More exactly, the conclusion of Theorem 22 is valid under the same assump-
tions for bounded Lipschitz domains. To see this fact, one may approximate
domain � by “larger” smooth domains �n and construct the finite energy
weak solutions .%n;un/ on domains �n according to Theorem 22. Since �
is Lipschitz, we obtain the crucial estimate H.%n/ up to the boundary (in
Lp..0; T / � �/, p > 1), thanks to the properties of the Bogovskii operator
on Lipschitz domains (see Theorem 5 and its application exposed in item 6 of
Sect. 7.1). This estimate suffices to pass to the limit in the differential form of
the dissipation inequality (130).

This is in sharp contrast with the case of a nonsmooth bounded domain when
the Bogovskii operator provides only local estimates out of the boundary for
the sequence %n. Under this circumstance one does not have almost everywhere
convergence of sequenceH.%n/ up to the boundary, and one must use the lower
weak semi-continuity and the weaker integral form (131) of the dissipation
inequality for the limit passage. The reader can consult Kukucka [73], Poul
[48, 94], and comments in [88, Section 7.12] for related material.

3. Existence of weak solutions on unbounded domains (case %1;u1/ D .0; 0/).
Large class of unbounded domains (in particular, exterior domains, but many

others) can be approximated by C2;� domains in the sense of convergence
postulated in Theorem 23.

Theorem 23 in combination with the existence Theorem 22 thus
guarantees existence of bounded energy weak solutions to problem (63)–
(64), (123) (124), (125) endowed with conditions at infinity (145) on an
unbounded domain � in the class described in the above alinea, provided
hypotheses of Theorem 22 are satisfied on �, and f belongs additionally to
L1..0; T / � �/. Existence of finite energy weak solutions in this situation is
not known.

4. Existence of (bounded) energy weak solutions on unbounded domains (case
%1 > 0;u1 2 R

3).
If u1 D 0, the definition of the bounded energy weak solutions has

to be changed as follows: (1) as far as the functional spaces, we must
take % 2 L1.0; T IL1loc.�// \ Cweak.Œ0; T �IL

1.K// (K any compact sub-
set of �/, u 2 L2.0; T ID1;2

0 .�IR
3//, %u 2 L1.0; T IL1loc.�IR

3// \

Cweak.Œ0; T �IL
1.KIR3//, and p.%/ 2 L1.0; T IL1loc.�//; (2) weak formu-

lations to the continuity and momentum equations remain without changes
(see (128), (129)); and (3) the dissipation inequality (131) must be replaced by
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Z
�

�
%u2 CH.%/ �H 0.%1/.% � %1/ �H.%1/

�
dx
ˇ̌
ˇ

0

(146)

C

Z 


0

Z
�

S.rxu/ W rxu dxdt �
Z 


0

Z
�

%f � u dxdt:

Bounded energy weak solutions are known to exist on a large class of uniformly
bounded Lipschitz domains, provided f 2 L1 \ L1..0; T / � �IR3/ for the

initial data with finite energy
R
�

�
%0u20 C H.%0/ � H

0.%1/.%0 � %1/ �

H.%1/
�

dx. Existence of finite energy weak solutions (where the dissipation

inequality (146) is replaced by its differential counterpart) is not known in this
situation. The reader can consult [88] and [70] for more details and related
material on unbounded domains in this situation.

The treatment when u1 ¤ 0 is slightly more involved. It is investigated in
[88, Definition 7.78, Theorem 7.79] in the case of an exterior domain.

5. One can consider the same problem (63)–(64), (124) with the complete slip (22)
or with the Navier slip (23) boundary conditions for the velocity (instead of
uj@� D 0) on a bounded domain provided one modifies appropriately the
definition of weak solutions. For example, in the case of Navier’s boundary
conditions, the necessary modifications in the definition of finite energy weak
solutions are the following: (1) In functional spaces (see formula (127)), one
has to require u 2 L2.0; T IW 1;2.�IR3// and u � nj.0;T /�@� D 0 in the sense
of traces instead of u 2 L2.0; T IW 1;2

0 .�IR3//. (2) In the weak formulation
of the momentum equation (129), one has to add to the right-hand side term
�ƒ

R T
0

R
@�

u � 'dSxdt and to consider test function ' 2 C1c .Œ0; T � � �/,

' � njŒ0;T ��@� D 0. 3) One has to add term ƒ
R T
0
 .t/

R
@�
juj2dSxdt to the

left-hand side of the dissipation inequality (130).
Once these modifications are done, one can prove existence of finite energy

weak solutions under the same assumptions on the regularity of the domain,
initial data, external force, constitutive relations, and transport coefficients
as in Theorem 22. The solutions constructed in this way enjoy all additional
properties mentioned in Theorem 22. Also in this situation, any finite energy
weak solution is also a bounded energy weak solution. The reader can consult
[77], [88, Section 7.12.2], [33, Chapter 3] for related considerations.

6. Likewise one can consider finite (and bounded) energy weak solutions to
the problem (63)–(64), (124) with periodic boundary conditions (i.e., � is
replaced by the periodic cell .Œ0; 1�jf0;1g/3 (1� periodic torus)- with period 1 for
simplicity. In this case, all function spaces entering into the definition of weak
solutions are replaced by the functional spaces of (periodic) functions on the
torus with the same regularity and integrability properties. Theorem 22 holds
also in this situation.

7. The case of non-homogenous boundary conditions. The reasonable (and
natural) definition of weak solutions of problem (63)–(64), (124) with nonzero
inflow-outflow boundary conditions
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(
%.t; x/ D %1.t; x/ on [t2.0;T /

�
ftg � �in.t/g

�
;

u.t; x/ D u1.t; x/ on .0; T / � @�

)
; (147)

where �in is the inflow part of the boundary,

�in.t/ D fx 2 @� ju1.t; x/ � n.x/ < 0g;

has been suggested in [88, Section 7.12.5]. Existence of this weak solution has
been proved in Novo [85] (for � a ball and %1, u1 constant) and in Girinon
[62] (where the domain and boundary data can be more general, but the inflow
boundary must be convex and contained in the cone and the inflow velocity
must verify the so-called no-reflux condition). The general result without these
limitations has been obtained recently in [12].

8. Theorem 22 is true also for bounded two-dimensional domains provided � > 1.
In the borderline cases (� D 3=2 for the three-dimensional domains and � D 1
for the two-dimensional domains), the main difficulty in proving the existence
of weak solutions comes from the limit passage in the convective term (at least
in two dimensions). The two-dimensional case has been solved only recently
(see [92]); the three-dimensional case still resists. These problems are subject
of a separate chapter of the handbook.

9. The progress within the framework of the Lions’ theory (with limitation
� � 9=5) has been made also in another directions. It concerns the relaxation
of certain hypotheses on the pressure (allowing more general nonmonotonicity
than stipulated in (141)) and the relaxation in the conditions in the form of
the viscous stress tensor (allowing small anisotropic perturbations of the stress
tensor (12) in the case of constant viscosities (123)) (see D. Bresch and P.E.
Jabin [9]).

10. Existence of time periodic solutions is subject of papers [46, 47].

Remark 3. 1. Sometimes, it may be convenient to use another representation of
mechanical energy than the representation (137). To this end we introduce lower
continuous convex function

e W R � R
3 7! .�1;1�; e.r;q/ D

8̂
<
:̂

1
2

q2

r
if r > 0;

0 if .r;q/ D .0; 0/;
C1 if r � 0; .r;q/ ¤ .0; 0/:

(148)

We realize that under hypothesis (141),

H.%/ D A.%/CB.%/; A.%/ D %

Z %

1

p.z/ � p.1/C bz

z2
dz; B.%/ D %

Z %

1

p.1/ � bz

z2
dz;

where A is convex continuous function on Œ0;1/, jA.z/j � c.1C z� / and B is
continuous on Œ0;1/, B.z/ � c.1C zj ln zj/ with some c > 0, for all z 2 .0;1/.
We introduce mechanical energy
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Œ0; T � 3 t 7! Emech.t/ D E.t/ D

Z
�

e

�
%.t; x/; %u.t; x/

�
dxC

Z
�

H.%.t; x// dx:

(149)

Since
R
�
1
2
%.t; x/u2.t; x/ dx D

R
�
e

�
%.t; x/; %u.t; x/

�
dx for a.a. t 2 .0; T /, we

have

E.t/ D E.t/ for almost all t 2 .0; T /: (150)

Moreover, according to theorem of lower weak semi-continuity of convex
functionals in form formulated in Theorem 2, function

Œ0; T � 3 t 7! E.t/ is lower semicontinuous function; (151)

in particular

E.0/ D E0 � lim inf
t!0C

E.t/:

5 Dissipative Solutions, Relative Energy Inequality, and
Weak-Strong Uniqueness Principle

5.1 Relative Energy and Relative Energy Functional

Let us now introduce the notion of the relative energy. We first introduce the relative
energy function

E W Œ0;1/ � .0;1/! R;

.%; r/ 7! E.%jr/ D H.%/ �H 0.r/.% � r/ �H.r/;
(152)

where H is defined by (67). If the pressure verifies the monotonicity hypothesis

p0.%/ > 0 for all % > 0; (153)

the Helmoholtz function H is strictly convex on Œ0;1/, and therefore

E.%jr/ � 0 and E.%jr/ D 0 , % D r:

In fact function E.�j�/ possesses better coercivity properties than stated above. This
is subject of the following lemma whose proof is an easy application of the real
analysis of functions of two variables.

Lemma 3. Let 0 < a < b <1 and let

p 2 C Œ0;1/ \ C1.0;1/; p.0/ � 0; p0.%/ > 0:
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Then there exists a number c D c.a; b/ > 0 such that for all % 2 Œ0;1/ and
r 2 Œa; b�,

E.%jr/ � c.a; b/
�
1Ores.%/C %1Ores.%/C .% � r/

21Oess.%/
�
; (154)

where E is defined in (152) and

Oess D Œa=2; 2b�; Ores D Œ0;1/ nOess: (155)

In order to measure the “distance” between a weak solution .%;u/ of the
compressible Navier-Stokes system and any other state .r;U/ of the fluid, we
introduce the relative energy functional, defined by

E.%;u
ˇ̌
ˇr;U/ D

Z
�

�1
2
%ju � Uj2 CE.% j r/

�
dx: (156)

It appears that any (bounded energy) weak solution satisfies an inequality
involving the relative energy functional called relative energy inequality regardless
whether the pressure satisfies the thermodynamic stability condition. It is however
to be noticed that the relative energy functional measures “a distance” between
weak solution and any other state of the fluid only provided thermodynamic stability
condition (153) is satisfied.

This fact is formulated in the following theorem:

Theorem 24. If .%;u/ is a weak solution to problem (63)–(64), (122)–(125)
emanating from the finite energy initial data .%0;u0/ specified in (126) and external
force f 2 L1.QT IR

3/, then

E
�
%;u

ˇ̌
ˇr;U

�
.
/
ˇ̌
ˇ

0
C

Z 


0

Z
�

S

�
rx.u � U/

�
W rx.u � U/ dxdt � (157)

Z 


0

Z
�

S

�
rxU

�
Wrx.U�u/ dxdtC

Z 


0

Z
�

%@tU�.U�u/ dxdtC
Z 


0

Z
�

%u�rU�.U�u/ dxdt

�

Z 


0

Z
�

p.%/divU dxdt C
Z 


0

Z
�

r � %

r
@tp.r/ dxdt

�

Z 


0

Z
�

%

r
rxp.r/ � u dxdt �

Z 


0

Z
�

%f � .U � u/ dxdt

for a.a. 
 2 .0; T /, and for any pair of test functions

r 2 C1.Œ0; T � ��/; r > 0; U 2 C1
c .Œ0; T � ��IR

3/; Uj.0;T /�@� D 0: (158)
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Remark 4. 1. Theorem 24 remains true if one replaces the Dirchlet boundary
conditions (125) with the slip (22) or Navier’s conditions (23). In the latter
case, we have to add to the left-hand side of the relative energy inequality
term ƒ

R 

0

R
@�
ju � Uj2dSxdt , and the test functions .r;U/ must be taken in

the class (158), where however condition Uj.0;T /�@� D 0 must be replaced by
U � nj.0;T /�@� D 0 (see [50, Section 3.2.1]).

2. Theorem 24 remains valid if one replaces bounded domain with an unbounded
domain and considers in addition conditions .%1 � 0;u1 D 0/ at infinity
(cf. (24) and items 3, 4 in Remark 2). In this case the test functions .r;U/ must
be taken in class (158), where r�%1 2 C1

c ..Œ0; T ���/ (see [50, Theorem 2.4]).

Theorem 24 has been formulated in [50] (see also [49]) under assumptions
that p additionally complies with the assumptions (141) of the existence theory
and satisfies the thermodynamic stability conditions. The proof from [50] can
be repeated line by line without those additional assumptions. The reader can
consult similar and more involved proof of Theorem 39 (dealing with the full
Navier-Stokes-Fourier system). Under thermodynamic stability conditions, relative
energy inequality becomes a powerful tool with many applications, in singular limit
investigation [35, 36, 38, 52, 80, 100] and in numerical analysis [60], to name only
a few. In what follows, we shall concentrate to the applications closely related to
the problem of well posedness of weak solutions: weak-strong uniqueness principle
and longtime behavior of weak solutions.

5.2 Dissipative Solutions

Inspired by Theorem 24, and following the philosophy of P.L. Lions [76] for
the Euler equations (that can be traced back to Prodi [95] and Serin [98] in the
case of incompressible Navier-Stokes equations), we define for the compressible
Navier-Stokes equation the notion of dissipative solutions that is weaker than weak
solutions.

Definition 5. The couple .%;u/ is a dissipative solution of problem (63)–
(64), (122)–(125) iff:

(a) It belongs to class (127).
(b) It satisfies relative energy inequality (157).

Remark 5. 1. According to Theorem 24, under assumptions of the existence
Theorem 22, problem (63)–(64), (122)–(125), admits at least one dissipative
solution.

2. Any bounded energy weak solution .%;u/ to problem (63)–(64), (122)–(125) is
a dissipative solution (regardless the thermodynamic stability condition and the
asymptotic behavior of % 7! p.%/ for large values of %). The validity of the
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opposite statement is an open problem; it is not known whether any dissipative
solution is a weak solution (even if condition (153) holds).

3. Under the hypotheses (141) of the existence theory (invoked in Theorem 22) and
under the thermodynamic stability conditions (153), finite energy weak solutions
satisfying relative energy inequality to system (63)–(64), (122)–(125) have been
for the first time constructed in [49].

5.3 Relative Energy Inequality with a Strong Solution as a Test
Function

If the test functions .r;U/ in the relative energy inequality (157) obey equa-
tions (63)–(64) almost everywhere in QT , the right-hand side of the relative energy
becomes quadratic in differences .% � r;u � U/. This observation is subject of the
following lemma:

Lemma 4. Let � be a bounded Lipschitz domain and f 2 L1.QT /. Let .%;u/
be a weak solution to the Navier-Stokes equations with initial and boundary
conditions (124)–(125). Let .r;U/ that belongs to the class

0 < r � r � r <1I U 2 L1.0; T IL1.�//; (159)

@t r; @tU; rxr; rxU 2 L2.0; T IL1.�//;

be another (weak) solution of the same equations with initial data .r.0/;U.0// D
.r0;U0/. Then, under assumptions of Theorem 24,

E
�
%;u

ˇ̌
ˇr;U

�ˇ̌
ˇ

0
C

Z 


0

Z
�

S

�
rx.u" � U/

�
W rx.u � U/ dxdt (160)

�

Z 


0

Z
�

.��r/.@tUCU �rxU/ �.U�u/ dxdtC
Z 


0

Z
�

�.u�U/ �rxU �.U�u/ dxdt

C

Z 


0

Z
�

rxp.r/

r
.r��/�.u�U/ dxdt�

Z 


0

Z
�

�
p.�/�p0.r/.��r/�p.r/

�
divU dxdt

for a.a. 
 2 .0; T /.

Sketch of the proof. We deduce from regularity (159) and weak formulation of the
momentum equation (129) that r2xU 2 L2.0; T IL1.�IR27//. The couple .r;U/
is in fact a strong solution and satisfies momentum and continuity equations a.e. in
QT :

@t r C div.rU/ D 0 a.e. in .0; T / ��; (161)

r@tUC rU � rUCrp.r/ D divS.rU/C rf a.e. in .0; T / ��: (162)
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The scalar product of (162) and u � U integrated over � yields

Z
�

�
r@tUC rU � rU� rfCrp.r/

�
� .u�U/ dxC

Z
�

S.rU/ W r.u�U/ dx D 0;

(163)
where we have used the integration by parts in the last integral.

Now we put together identity (163) and relative energy inequality (157).
Formula (160) appears after a straightforward calculation. This finishes proof of
Lemma 4.

5.4 Stability and Weak-Strong Uniqueness

We shall show here three versions of theorems on stability of strong solutions in the
class of weak solutions and of weak-strong uniqueness theorems.

In the first theorem, we shall require for the pressure solely the thermodynamic
stability condition, while we shall suppose that the weak solution has density
bounded from below and from above by positive constants.

Theorem 25. Let � � R
3 be a bounded Lipschitz domain. Assume that the pres-

sure p is twice continuously differentiable on .0;1/ and verifies thermodynamic
stability condition (153).

Let .%;u/ be a weak solution to the Navier-Stokes equations (63)–(64), (124)–
(125) emanating from initial data .%0;u0/ specified in (126) in the time interval
Œ0; T /, T > 0 such that

0 < % < %.t; x/ < % <1: (164)

Let .r;U/ be a strong solution of the same equations in the regularity class (159),
with initial data .r0;U0/ satisfying (126).

Then

Z
�

�1
2
%ju � Uj2 C j% � r j2

�
.
/ dx � c

Z
�

�1
2
%0ju0 � U0j

2 C j%0 � r0j
2
�

dx:

Theorem 25 has a drawback: it is a conditional result in the sense that it is
not known whether one can construct global in time weak solutions satisfying the
additional condition (164). In the second and third theorems, we require for pressure
slightly more than the thermodynamic stability conditions. As a counterpart we can
deal with bounded energy weak solutions without any additional assumptions. This
allows us to get unconditional results.

Theorem 26. Let� be a bounded Lipschitz domain. Suppose that pressure satisfies
in addition to the thermodynamic stability condition (153)

c1 C c2%CH.%/ � p.%/ for all % � R; (165)
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where R, c1, c2 are some positive constants. Assume further that pressure belongs
to the regularity class (122) and is twice continuously differentiable on .0;1/ and
that viscosities �, � verify (123). Assume that the external force f 2 L1.QT ;R

3/.
Let .%;u/ be a weak solution to the Navier-Stokes equations (63)–(64), (124)–

(125) emanating from initial data .%0;u0/ specified in (126). Let .r;U/ be a strong
solution of the same equations with initial data .r0;U0/ as in (126) that belongs to
the class (159).

Then there exists a positive number c (dependent on �; T; j�j; diam�; r; r;
kpkC2.Œr=2;2r�/, kf;UkL1.QT IR6/, k@tU;rU;rrkL2.0;T IL1.�IR15// but independent of
the weak solution itself) such that

E.%;ujr;U/.
/ � cE.%0;u0jr0;U0/ (166)

for a.a. 
 2 .0; T /.
In particular, if .%0;u0/ D .r0;U0/, then

% D r; u D U in Œ0; T � ��: (167)

The third variant of the weak-strong uniqueness theorem is the following:

Theorem 27. Conclusions (166)–(167) of Theorem 26 remain true if we replace
the class of strong solutions (159) with the larger class

0 < r � r � r <1; U 2 L1..0; T / ��/; (168)

rxr 2 L
2.0; T ILq.�IR3//; r2xU 2 L2.0; T ILq.�//; q > maxf3;

6�

5� � 6
g:

and the hypothesis (165) by the stronger hypothesis (141) with � > 6=5.

Remark 6. 1. One may verify by using the definition of Helmholtz functionH that
if pressure satisfies assumptions of Lemma 3 and condition

0 <
1

p1
� lim inf

%!1

p.%/

%�
� lim sup

%!1

p.%/

%�
� p1 <1; where � > 0;

then it satisfies condition (165). In particular, any pressure satisfying the
thermodynamic stability condition (153) and assumption (141)�>1 verifies con-
dition (165). Consequently, weak solutions constructed in Theorem 22 verify
the weak-strong uniqueness principle, provided the pressure is, in addition to
the hypotheses in Theorem 22, twice continuously differentiable on .0;1/ and
verifies thermodynamic stability condition (153).

2. Under assumptions that � is a bounded domain of class C4, p 2

C3.0;1/, f 2 L2loc.Œ0;1/IW
2;2.�IR3//, @t f 2 L2loc.Œ0;1/IL

2.�IR3//
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and %0 2 W 3;2.�/, inf� %0 > 0; u0 2 W 3;2.�IR2/ satisfying the

compatibility condition at the boundary 1
%0

�
� rxp.%0/ C divS.rxu0/ C

%0f � %0u0 � rxu0
�ˇ̌
ˇ
@�

D 0; Valli [104, Theorem A] constructed a

unique strong solution to problem (63)–(64), (123)–(125) in the regularity
class % 2 C.Œ0; TM /IW

3;2.�//; u 2 L2.0; TM IW
4;2.�IR3//; @t% 2

L2.0; TM IW
2;2.�//; @tu 2 L2.Œ0; TM /IW

2;2.�IR3//; 0 < r 	

inf.t;x/2.0;TM /�� %.t; x/ on a short time interval Œ0; TM / (dependent on the size of
the initial data). This class is contained in class (159).

This means that any weak solution emanating from Valli initial data coincides
with the Valli strong solution at least on a (short) time interval Œ0; TM / provided
pressure satisfies assumptions of Theorem 26 (and�, f satisfy the Valli regularity
hypotheses).

3. Under assumption p 2 C1Œ0;1/, � bounded C3 domain, %0 2 W 1;q.�/,
infx2� %0 > 0, u0 2 W

1;2
0 \ W 2;2.�/, f 2 C.Œ0;1/; L2.�IR3// \

L2loc.Œ0;1/IL
q.�IR3//, @t f 2 L2loc.Œ0;1/IW

�1;2.�IR3//, q 2 .3; 6�, Cho,
Choe, Kim [14, Proposition 5] constructed a unique strong solution to prob-
lem (63)–(64), (123)–(125) in the regularity class % 2 C.Œ0; TM /IW 1;q.�//, u 2
C.Œ0; TM /IW

2;2.�IR3// \ L2.0; TM IW
2;q.�IR3//, @t% 2 L2.0; TM ILq.�//,

@tu 2 L2.0; T IW 1;2
0 .�IR3//,

p
%@tu 2 L1.0; T IL2 .�IR3// on a (short)

maximal existence time interval Œ0; TM / (dependent on the size of initial data).
Theorem 27 implies, in particular, that any weak solution emanating from the

Cho, Choe, and Kim initial data coincides with the strong solution at least on
the maximal existence time interval Œ0; TM / of the Cho, Choe, and Kim strong
solution provided pressure satisfies hypotheses of Theorem 27 (and �, f satisfy
the Cho, Choe, Kim regularity hypotheses).

4. Under additional assumptions (141) with � > 1 and p0.%/ > 0, and if

� <
23�

3
; (169)

Sun, Wang, and Zhang [101, Theorem 1.3] showed that if in the previous
statement on existence of strong solutions the maximal existence time interval
TM <1, then necessarily

lim

!TM�

k%kL1.Q
 / D1: (170)

Criterion (170) is a blow-up criterion for strong solutions. These criterions
are widely investigated in the mathematical literature (see [101] and references
quoted there). Loosely speaking, weak-strong uniqueness principle turns most
of blow-up criterions for strong solutions to the regularity criterions for weak
solutions.

In particular, any weak solution on the (arbitrary large) time interval .0; T /
and on C3-bounded domain emanating from Cho-Choe-Kim’s initial data and
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external forces is in fact a strong solution (in the Cho-Choe-Kim’s class) on the
whole time interval Œ0; T /, provided assumptions of Theorem 27 with � > 3=2

and (169) are satisfied, as long as the density component % of the weak solution
remains bounded (see [49, Theorem 4.6]).

Another consequence of the weak-strong uniqueness principle is the fact that
the density in the weak solution must exhibit blowup before developing vacuum.
More precisely, if all assumptions of the previous alinea are satisfied, and if
density of the weak solution (that exists on the large interval .0; T /) verifies

ess inf
x2�

%.
; x/ D 0 for a certain 
 2 .0; T /;

then

lim sup
t!
�

h
ess sup

x2�

%.t; x/
i
D1

(see [49, Corollary 4.7]).
5. Theorems 26 and 27 hold with obvious modifications with slip boundary condi-

tions (22) or with Navier’s boundary conditions (23) (see [50, Section 4.1.2]). It
can be easily extended to a large class of unbounded domains with boundary con-
ditions at infinity .%1 � 0;u1 D 0/ (see [50, Section 4.2.2 and Theorem 4.6]).

Sketch of the proof of Theorems 25, 26, and 27. We shall outline here the main
ideas of proof of Theorems 25, 26, and 27. The reader can find all complementary
details in [50, Theorem 4.1].

5.4.1 Main Idea: The Gronwall Inequality
The main idea is to use the relative energy inequality (157) with the strong solution
.r;U/ of system (63)–(64), (124)–(125) in the form derived in Lemma 4. The goal
is to find an estimate of the left-hand side of (160) from below by

c

Z 


0

ku � Uk2
W 1;2.�IR3/

dt � c0
Z 


0

E.%;u
ˇ̌
ˇr;U/dt C E.%;u

ˇ̌
ˇr;U/

ˇ̌
ˇ

0
; (171)

and the right-hand side from above by

ı

Z 


0

ku � Uk2
W 1;2.�IR3/

dt C c0.ı/
Z 


0

a.t/E.%;u
ˇ̌
ˇr;U/dt (172)

with any ı > 0, where c > 0 is independent of ı, c0 � 0, c0 D c0.ı/ > 0, and
a 2 L1.0; T /. This process leads to the estimate

E.%;u
ˇ̌
ˇr;U/.
/ � E.%0;u0

ˇ̌
ˇr.0/;U.0//C c

Z 


0

a.t/E.%;u
ˇ̌
ˇr;U/dt; (173)
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which implies estimate (166) by the Gronwall inequality invoked in Theorem 21. In
the rest of this section, we shall perform this program.

5.4.2 Bound from Below of the Dissipation
By virtue of the Korn inequality invoked in Theorem 9 and the standard Poincaré
inequality,

c

Z 


0

ku � Uk2
W 1;2.�IR3/

dt �
Z 


0

Z
�

S.r.u � U/ W r.u � U/ dxdt: (174)

5.4.3 Essential and Residual Sets
We introduce essential and residual sets in �. To this end we take in (155) a D r ,
b D r and define for a.e. t 2 .0; T / the residual and essential subsets of � as
follows:

Ness.t/ D fx 2 �
ˇ̌
ˇ%.t; x/ 2 Oessg; Nres.t/ D � nNess.t/: (175)

With this definition at hand and having assumption (165) in mind, we deduce
from Lemma 3

c

Z
�

�h
1
i

res
C
h
%
i

res
C
h
p.%/

i
res
C
h
%� r

i2
ess

�
dx �

Z
�

E.%;u
ˇ̌
ˇr;U/ dx (176)

with some c D c.r; r/ > 0, where we have set

Œh�ess D h1Ness ; Œh�res D h1Nres :

for a function h defined a.e. in .0; T / ��.

5.4.4 Estimates of the Right-Hand Side of Inequality (160) for
Theorem 25

We observe that on essential set,Ness expressionsE.r j%/ and .%�r/2 are uniformly
equivalent, meaning that there are c D c.r; r/ > 0 and c D c.r; r/ > 0,

c.% � r/2 � E.%jr/ � c.% � r/2 whenever % 2 Ness; r � r � r; (177)

provided p 2 C2.0;1/, regardless the structural properties of p near zero and
infinity.

Now, we split all integrals over� at the right-hand side of inequality (160) to the
integrals over the essential sets Ness and residual sets Nres; more precisely, we writeR 

0

R
�
D
R 

0

R
Ness.t/

C
R 

0

R
Nres.t/

.
In the case of Theorem 25, all integrals over the residual sets are zero. (Indeed,

we may suppose that r � %, r � %.) By virtue of the Cauchy-Schwarz inequality
and Taylor’s formula, the upper bound of the integrals over the essential set is
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c

Z 


0

Z
Ness.t/

�1
2
%ju � Uj2 C j% � r j2

�
dx � c0

Z 


0

E.%;ujr;U/dt; (178)

where the last estimate holds due to (176). Implementing these observations
into (160), we arrive at inequality (173) and conclude the proof of Theorem 25
by the Gronwall lemma (see Theorem 21) applied to (173).

5.4.5 Estimates of the Right-Hand Side of Inequality (160) for
Theorems 26 and 27

The essential part of the right-hand side will be treated exactly as in the previous
case. The structural assumptions of the pressure will play a role only for the
estimates of the residual part of integrals at the right-hand side of inequality (160).
Let us show a typical reasoning on the example of the first term of the right-hand
side of (160) in the situation of Theorem 26.

Recall that Nres D f% � r=2g [ f% � 2rg. We shall estimate the integrals over
the sets f% � r=2g and f% � 2rg separately.

Z 


0

Z
�

1f%�r=2g.� � r/.@tUC U � rxU/ � .U � u/ dxdt

� 2r

Z 


0

Z
�

1res

ˇ̌
ˇ@tUC U � rxU

ˇ̌
ˇ
ˇ̌
ˇU � u

ˇ̌
ˇ dxdt

� 2r

Z 


0

���@tUC U � rxU
���
L1.�IR3/

���1res

���
L2.�/

���u � U
���
L2.�IR3/

dt

� ı

Z 


0

���u � U
���2
L2.�IR3/

dt C c.ı; r; r/
Z 


0

a.t/E
�
%;u

ˇ̌
ˇr;U

�
dt;

where a D k@tUC U � rxUk2
L1.�IR3/

2 L1.0; T /, and

Z 


0

Z
�

1f%�2rg.%/.% � r/.@tUC U � rxU/ � .U � u/ dxdt

� 2

Z 


0

Z
�

Œ1�res
p
%
ˇ̌
ˇ@tUC U � rxU

ˇ̌
ˇp%

ˇ̌
ˇU � u

ˇ̌
ˇ dxdt

�

Z 


0

���@tUC U � rxU
���
L1.�IR3/

���
h
%
i

res

���1=2
L1.�/

���%
�

u � U
�2���1=2

L1.�/
dt

� c.r; r/

Z 


0

a.t/E
�
%;u

ˇ̌
ˇr;U

�
dt

with the same a as before. In all the above three formulas, we have employed (176)
in the passage to their last lines.

The remaining terms at the right-hand side of the relative energy inequality (160)
may be estimated in a similar way. Finally, one gets estimate (173) and applies the
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Gronwall lemma invoked in Theorem 21. This finishes the sketch of the proof of
Theorems 25, 26, and 27.

6 Longtime Behavior of Barotropic Flows

In this section, results on the longtime behavior of weak solutions to the barotropic
system (63)–(64) with homogenous Dirichlet boundary conditions (125) with
viscosities (123) and pressure (122) are discussed.

Further restrictions on the pressure, typically

p.%/ D a%� ; a > 0; (179)

where � � 1 will be required later in most of statements starting from Sect. 6.2,
mostly for the sake of simplicity. We do not restrict ourself to bounded domains.

The barotropic model may be viewed as a special case of the Navier-Stokes-
Fourier system with constant temperature or with constant entropy, as described
in Sect. 2.7. In this model the mechanical motion is completely separated from
thermal effects. The simplified system (63), (64), when considered independently
of the thermal energy equation (65), may feature rather different properties than the
complete system. For instance, in contrast to the full system, it admits bounded
absorbing sets for nonconservative forcing term, f 6	 rF , or even nontrivial
periodic solutions provided the driving force is time periodic, which is impossible
in the full system in domains with thermally insulated boundary (see Sect. 12,
Corollary 3, Remark 26 and compare with [51]).

In Sect. 6.2, the large-time dynamics of weak solutions to the problem (63)–
(64), (125) where the external force is a gradient of a scalar potential F , bounded
and Lipschitz continuous on � will be discussed.

Formally, the problem (63)–(64), (125) represents a gradient flow which admits
a Lyapunov function – the total energy

EF .t/ D

Z
�

�1
2
%juj2 CH.%/ � F%

�
dx;

satisfying the energy inequality

dEF
dt
C

Z
�

�
.
4

3
�C �/jruj2 C �jdiv uj2

�
dx � 0 (180)

(see item 3 in Remark 1). Consequently, it is plausible to anticipate that, at least for
some sequences tn !1,

%.tn/! %s; %u.tn/! 0;

where %s is a solution to the corresponding stationary problem. Uniqueness of
stationary solutions is discussed in Sect. 6.1.
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6.1 Uniqueness of Equilibria

In this section, static (equilibrium) solutions to the problem (63)–(64), (125) are
examined in the case that the external force f is a gradient of a potential F which is
assumed to be locally Lipschitz continuous on �. The system reads

rp.%/ D %rF; % � 0;

Z
�

% dx D m; (181)

where the parameter m represents the total mass conserved by the flow. Beir Qao da
Veiga [1] obtained a necessary and sufficient condition for the existence of a strictly
positive solutions of (181) expressed in terms of F and structural properties of p.
It is easy to show that such a solution is necessarily unique. On the other hand,
this restriction excludes an important class of solutions with vacuum states. The
following theorem applies to any domain� � R

n and a broad class of nonlinearities
p. The uniqueness condition is expressed in terms of the upper level sets of the
potential F ,

ŒF > k� 	 fx 2 �I F .x/ > kg:

Theorem 28 ([39, Theorem 2.1]). Let � � R
n be an arbitrary domain. Suppose

that pressure p satisfies condition (122) and thermodynamic stability condi-
tion (153). Let F be a locally Lipschitz continuous function on �, and, in addition,
suppose that the the upper level sets

ŒF > k� are connected in � for any k: (182)

Then, given m > 0, there is at most one function % 2 L1loc.�/ satisfying (181).
Moreover, if such a function exists, it is given by the formula

%.x/ D Q�1.F .x/ � k�/ (183)

for a certain constant k�, where

Q.z/ D

8̂
<
:̂

R z
0

dp.s/
s

if P0 D
R 1
0

dp.s/
s

is finite

R z
1

dp.s/
s

if
R 1
0

dp.s/
s
D C1:

Theorem 28 provides the following corollary:

Corollary 1. Let p satisfy assumptions of Theorem 28; let P0 be finite, j�j D 1,
F � 0, and
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Z
�

Q�1.F .x// dx D m0 > 0 finite:

Then there are no solutions of (181) with the mass m > m0.

Proof of Corollary 1. If there is such a solution %, then, by virtue of Theorem 28, it
would hold

%.x/ D Q�1.F .x/C c/

with c > 0 and, consequently,

Z
�

%.x/ dx � Q�1.c/j�j D 1:

ut

Remark 7. Two examples involving pressure (179) and different potential forces
are given.

1. In the case that p.%/ D a%� , the solution formula reads

%.x/ D
�� � 1
a�

ŒF .x/C c�C
� 1
��1

for a certain constant c 2 R:

2. Let F be the gravity potential of a solid ball surrounded by a viscous gas, i.e.,

F .x/ D �
!

jxj
; x 2 � D fx 2 R

3 j jxj � rg

for certain positive constants !; r . Consider

p.z/ D z� ; 1 < � <
4

3
:

A straightforward computation gives

Q�1.z/ D
�� � 1

�

� 1
��1

z
1

��1 for z � 0;

and, consequently,

Z
�

Q�1.F .x// dx D c.�; !/
Z
�

jxj
�1
��1 dx;
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where the last integral is finite provided 1 < � < 4
3
. Applying Corollary 1, it is

possible to deduce the existence of a finite critical mass m0 for %, such that the
problem (181) does not possess any solution form > m0. In such a situation, one
can anticipate that any solution of the evolution problem (63), (64), (125) with
the initial massm > m0 should divide into two parts, one of which will converge
to a stationary state and the other tending locally to zero.

The importance of the assumption (182) is illustrated by the following statement:

Theorem 29. Let p satisfy the hypotheses of Theorem 28. Assume P0 is finite,R1
1

dp.s/
s
D1, and there exists k such that the set ŒF > k� has two disjoint bounded

open components.
Then there is m > 0 and a nonempty interval I such that the problem (181)

admits a one-parameter family of solutions %�; � 2 I satisfying

Z
�

%�.x/ dx D m for all � 2 I:

Proof of Theorem 29. Consider the two disjoint components O1;O2 from the
hypotheses of the theorem. As F is continuous, there exists �0 > k such that
the function

%�0.x/ D 1O1Q
�1.F .x/ � �0/C 1O2Q

�1.F .x/ � �0/

is a solution of (181) with

Z
�

%�0.x/ dx D m > 0

for a certain finite m. Using continuous dependence of the integral on parameters
and monotonicity of Q�1, one can find a small interval I containing �0 and a
nonincreasing function q W I 7! I such that

%�.x/ D 1O1Q
�1.F .x/ � �/C 1O2Q

�1.F .x/ � q.�//; � 2 I

are solutions of (181) satisfying

Z
�

%�.x/ dx D m:

ut

The next result applies to the pressure p.%/ D a%� . In Theorem 28, the solution
is uniquely determined by its mass m. One can expect that, prescribing in addition
the potential energy e



64 A. Novotny and H. Petzeltová

Z
�

a

� � 1
%� � %F dx D e; (184)

the geometrical condition on the upper level set ŒF > k� could be relaxed. This is
really the case as stated in the following:

Theorem 30 ([42, Theorem 1.2]). Let � � RN be an arbitrary domain. Assume
F is locally Lipschitz continuous function on �, p.%/ D a%� ; � > 1. Moreover,
suppose � can be decomposed as

� D �1 [�2; �1 \�2 D ;; (185)

where �1; �2 � R
N are domains (one of them possibly empty) and that

ŒF > k� \�i is connected in �i for i D 1; 2 and for any k 2 R: (186)

Then, given m, e, the problem (181), (184) admits at most two solutions.

The proof, where some elements of convex analysis are used, can be found in
[42].

Remark 8. 1. Saying that % is a solution of (181), we require, in particular, all the
integrals being convergent, i.e., % 2 L1 \ L�.�/; %F 2 L1.�/.

2. The previous results were generalized by Erban [24] for F locally Lipschitz
continuous and bounded, p.%/ D a%� ; � > 1. He showed that there exists
critical mass Qm such that:
• The system (181) has at most one solution for the mass m 2 Œ Qm;1/.
• There is continuum of solutions of the system (181) for the mass m 2 .0; Qm/.

Moreover, he defined a critical mass mc such that:
• If m 2 Œmc;1/, then the stationary problem (181), (187) admits at most two

solutions for each energy e 2 R.
• If m 2 .0;mc/, then there exists an energy e 2 R such that the sys-

tem (181), (187) has continuum of solutions.

Some consequences of Theorem 28 with p.%/ D a%� finish this section. Since
the upper level sets ŒF > k� are connected in �, any solution of the stationary
problem (181) with finite mass may be written in the form:

%s.x/ D
�� � 1
a�

ŒF .x/ � k�C
� 1
��1
; (187)

where k is uniquely determined by the mass
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mŒ%s� D

Z
�

%s dx:

The mass mŒ%s� considered as a function of the parameter k,

mŒ%s� W R 7! Œ0;1�;

is continuous nonincreasing. Moreover, clearly,

mŒ%s�.k/ D 0 for all k � sup
x2�

F .x/;

andmŒ%s� is strictly decreasing on any open interval on which it is finite and strictly
positive.

We have the following assertion:

Lemma 5. Let F be as in Theorem 28. Given m0 � 0, there exists a stationary
solution %s such that

Z
�

%s dx � m0;

and

%s � %s

for any stationary solution %s such that

Z
�

%s dx � m0: (188)

Proof of Lemma 5. All stationary solutions are given by the formula (187). Take

k D inffkj %s given by (187) satisfies (188)g

and set

%s.x/ D
�� � 1
a�

ŒF .x/ � k�C
� 1
��1
:

ut

To conclude, consider the energy

eŒ%s� D

Z
�

a

� � 1
%�s � F%s dx:

as a function of the parameter k.
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Lemma 6. Let F satisfy the hypotheses of Theorem 28. Then the energy eŒ%s�
is a nondecreasing function of k with values in Œ�1; 0�. Moreover, e is strictly
increasing on any open interval on which mŒ%s� is finite and strictly positive.

Proof of Lemma 6. Expressing %s by means of the formula (187), one has to observe
that

k 7!
a

� � 1

�� � 1
a�

ŒF � k�C
� �
��1
� F

�� � 1
a�

ŒF � k�C
� 1
��1

is a nondecreasing function of k which may be verified by a direct computation. ut

Corollary 2. For F satisfying the hypotheses of Theorem 28 and E1 a given
number, there is at most one stationary solution %s with finite mass and such that

eŒ%s� D E1:

6.2 Convergence to Equilibria

The aim of this section is to show that any weak solution converges to a fixed
stationary state as time goes to infinity, more precisely,

%.t/! %s strongly in L�.�/;
p
%u.t/! 0 strongly in ŒL2.�/�3 as t !1;

under the two basic hypotheses:

@� is Lipschitz and compact

and the upper level sets satisfy (182):

ŒF > k� D fx 2 �j F .x/ > kg are connected in � for all k:

The above assumptions hold in many physically interesting cases, in particular
in the situation when � is an exterior domain with spherical boundary and F is the
gravitational potential, specifically,

� D fx 2 R
3j jxj � Rg; F .x/ D �

!

jxj
;

! > 0, modeling the motion of a viscous barotropic gas surrounding a star,
considered in [82].

For the sake of simplicity, assume (179)�>1, i.e., p.%/ D a%� . Further restrictions
on values of � will be required later according to the investigated cases.
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Given a positive number m, the condition (182) is both necessary and sufficient
for the stationary problem (181) to admit at most one weak solution %s uniquely
determined by its mass

mŒ%s� D

Z
�

%s dx; (189)

(cf. Theorem 28). On the other hand, the mass mŒ%.t/� is a conserved quantity
even for the weak solutions of the problem (63)–(64), (125) so one is tempted to
believe the condition (189) picks up the right candidate to describe the large-time
behavior of the density %. This is certainly true for bounded domains, while, if � is
unbounded, such a conjecture is false, in general, due to possible “loss of mass at
infinity” (cf. Remark 7).

It seems interesting that for � bounded and a nonconstant potential F , there
always exists m > 0 large in comparison with F such that the unique solution
of (181) with the given mass m contain vacuum zones (cf. formula (187)). Thus
for any nonconstant F , global solutions approach rest states with vacuum regions
as time goes to infinity. We should remark in this context that there are many
formal results on convergence of isentropic flows to a stationary state under various
hypotheses including uniform (in time) boundedness away from zero of the density
(see, e.g., [90]). As just observed, this could be rigorously verified only for solutions
representing perturbations of strictly positive rest states (cf. [66, 81]). In particular,
it is never true when the driving force rF is large in comparison with the total mass
of the data.

The main result of this section reads as follows:

Theorem 31. Let � � R
3 be a domain with compact and Lipschitz boundary.

Let the potential F is bounded and Lipschitz continuous on �, and let the upper
level sets ŒF > k� be connected in � for any k < supx2� F .x/. Moreover, if � is
unbounded, assume

lim
R!1

ess supx2�;jxj�R
�
jF .x/j C jrF .x/j/ D 0: (190)

Finally, let p verify (179) with � > 3=2, namely,

p.%/ D a%� ; a > 0; � >
3

2
: (191)

Then for any finite energy weak solution %;u of the problem (63), (64), (125)
there exists a stationary state %s such that

%.t/! %s strongly in L�.�/;
p
%juj.t/! 0 strongly in L2.�/ as t !1:

(192)
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The proof consists of several steps: energy estimates, local and boundary
estimates, compactness result, and, in the case of unbounded �, also estimates at
infinity. See [40] for details.

Remark 9. 1. Observe that the quantities % and
p
%juj are continuous as functions

of t in the space L�.�/ and L2.�/, respectively, endowed with the weak
topology, and, consequently, (192) makes sense.

2. The condition (191) seems restrictive from the physical point of view but natural
for the mathematical treatment of the problem ensuring local integrability of
the product terms appearing in the equations. In fact, such a condition is not
necessary provided we know that % is bounded in Lq.�/ uniformly in t for a
certain 3

2
< q � 1, in particular when the density is uniformly bounded as it is

the case for radially symmetric data (cf. [82]).
3. As already mentioned, the mass mŒ%s� of the limiting solution may be strictly

less thanmŒ%.t/� D m0. Probably the simplest example is F D 0,� unbounded,
when, according to Theorem 31, the density %.t/ converges to zero in L�.�/.

4. Another example is furnished by item 2 in Remark 7, where 1 < � < 4
3
. As

shown in the previous section, there is a critical mass m such that there is no
solution of the stationary problem with a finite mass greater than m. Taking
radially symmetric data, it can be shown that the density %.t/ remains bounded
uniformly in t !1 (see [82, Proposition 1]). In accordance with the Remark 8,
Theorem 31 applies even though (191) is not satisfied, yielding convergence for
any radially symmetric data. It is clear that the limit mass can never exceed m.

Remark 10. The proof of Theorem 31 can be carried out without essential modifi-
cations in the following situations (see [40]):

1. If� is a bounded regular domain in R
2, the conclusion of Theorem 31 holds with

the same condition (191) with � > 1: However, the case of an exterior domain
exhibits some additional difficulties because of the lack of the Sobolev inequality
for functions in W 1;2.R2/.

2. p is a general strictly increasing function of the density,

p.z/ � z� for large z

and p0 bounded in a neighborhood of zero. Moreover, if � is unbounded, we
need

Z 1

0

p0.z/

z
dz finite:

3. The viscosity coefficients �; � may depend on %;u, and a nonpotential and even
time-dependent external force f may be added to rF provided it vanishes in a
certain sense for large t .
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6.3 Bounded Absorbing Sets

In this part, globally defined finite energy weak solutions of the problem (63)–
(64), (125) on a bounded Lipschitz domain �, will be dealt with. More exactly,
assume that %, u belong to the classes

% 2 L1loc

�
R
CIL�.�/

�
; u 2 L2loc

�
R
CI .W 1;2

0 /3.�/
�
; (193)

the equations (63), (64) hold in D0.RC ��/, and the energy inequality

d

dt
EŒ%;u�.t/C.

4

3
�C�/

Z
�

jru.t/j2 dxC�
Z
�

jdivx u.t/j2 dx �
Z
�

%.t/f.t/:u.t/ dx

(194)
is satisfied in D0.RC/, where the energy EŒ%;u� is given by the formula

EŒ%;u�.t/ D
1

2

Z
�

%.t/ju.t/j2 dx C
a

� � 1

Z
�

%�.t/ dx:

The following result establishes the existence of an absorbing ball for any finite
energy weak solution.

Theorem 32 ([43, Theorem 1.1]). Let p satisfies (179) with

� >
5

3
; (195)

and let f be a bounded measurable function,

n
ess sup

t2RC; x2�

jf.t; x/j
o
� K: (196)

Then there exists a constant E1, depending solely on � ,K and on the total mass
m, having the following property:

Given E0, there exists a time T D T .E0/ such that

EŒ%;u�.t/ � E1 for a.e. t > T (197)

provided

ess lim sup
t!0C

EŒ%;u�.t/ � E0; (198)

and %, u is a (finite energy) weak solution of the problem (63)–(64), (123), (125),
satisfying the hypotheses (193)–(194).
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Remark 11. 1. Theorem 32 was proved in [43] under the additional assumption

% 2 L2loc

�
R
CIL2.�/

�
; (199)

which is satisfied provided � � 9=5 (see [41]). In fact, the condition (199) is
not necessary in the proof of Theorem 32; it is sufficient to have estimates of the
form (262), which are valid for the pressure satisfying (195). Note that estimate
of pressure in Lp up to the boundary (whose main ideas are presented in item
6 of Sect. 8.2; see also “pressure estimates” in [44, Section 4.2]) is one of the
prerequisites to obtain energy inequality in the differential form, and due to this
reason, it constitutes one of the building blocks of the proof of Theorem 32.

2. In agreement with item 3 of Remark 1, the instantaneous values E D

instŒEŒ%;u�� (defined in Sect. 3.2) satisfy inequality (131) everywhere in R
C,

and consequently inequality (197) is valid for any t > T , provided one replaces
EŒ%;u� by its instantaneous value E.

The proof of Theorem 32 is based on the following Lemma and Proposition.

Lemma 7. Assume f satisfies (196). Let %, u belong to the classes (193), (199) and
comply with the energy inequality (194).

Then, being redefined on a set of measure zero if necessary, the (instantaneous
value of) energy E has locally bounded variation on R

C, and

E.tC/ D lim
s!tC

E.s/ � lim
s!t�

E.s/ D E.t�/ for any t 2 R
C: (200)

Moreover,

E.t2�/ �
�
1CE.t1C/

�
e
p
2mK.t2�t1/ � 1 for all 0 < t1 < t2: (201)

Sketch of the proof of Lemma 7. It follows from the energy inequality (194) – see
item 3 in Sect. 3.2 and item 3 in Remark 1 – that E can be written as a sum of a
nonincreasing function and an absolutely continuous one, and, consequently, E is
continuous except a countable set of points in which (200) holds.

By virtue of (196), the right-hand side of (194) may be estimated as follows:

Z
�

%f:u dx � K
� Z

�

% dx
� 1
2
� Z

�

%juj2 dx
� 1
2
�
p
2mK.1CE/;

whence (201) is a straightforward consequence of the Gronwall lemma.

The following assertion plays a crucial role in the proof of Theorem 32.
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Proposition 1. Under the hypotheses of Theorem 32, there exists a constant L,
depending solely on � , K, and m, enjoying the following property: If

E..T C 1/�/ > E.TC/ � 1 for a certain T 2 R
C; (202)

then

sup
t2.T;TC1/

E.tC/ � L:

The proof of this proposition is carried over by a series of auxiliary results (see
[43, Proposition 3.1]).

Sketch of proof of Theorem 32. With Lemma 7 and Proposition 1 at hand, Theo-
rem 32 can be proved. To begin, observe there exists T D T .E0/ such that

E.t0C/ � L for a certain t0 < T;

where L is the constant from Proposition 1. Indeed, if it was not the case then, by
virtue of Proposition 1, the energy would become negative.

Next claim is that for any integer n � 0

E..t0 C n/C/ � L: (203)

By induction, assume

E..t0 C n/C/ � L:

By Proposition 1, either

sup
t2.t0Cn;t0CnC1/

E.tC/ � L;

and, consequently,

E..t0 C nC 1/�/ � L;

or

E..t0 C nC 1/C/ � E..t0 C nC 1/�/ � E..t0 C n/C/ � 1 � L � 1:

Finally, by virtue of Lemma 7 and (203), take

E1 D .1C L/e
p
2mK � 1:

This completes the proof of Theorem 32.
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6.4 Existence of Attractors

In this part, results from the publication [29, Sections 3–5] are presented. Through-
out this section, assume

8<
:
p.%/ D a%� ; � > 5

3
; � is a bounded Lipschitz domain,

f 2 F ; where F denotes a bounded subset of L1.R ��/:

9=
; (204)

First, observe that the finite energy weak solution satisfies

% 2 Cweek.Œ0; T �IL
�.�//; q 	 %u 2 Cweek.Œ0; T �IL

p.�// with p D
2�

� C 1
;

and, moreover, the fact that the continuity equation holds in D0.Œ0; T � � R
3/ makes

it possible to employ the regularizing machinery in the spirit of DiPerna and Lions
[18] to deduce

% 2 C.Œ0; T /IL˛.�// for any 1 � ˛ < �;

cf. Theorem 20 in Sect. 3.11. These relations enable to justify the observation that

.%u/.t; x/ D 0 for a.e. x 2 V .t/ D fxI %.t; x/ D 0g for any t 2 Œ0; T �;

(cf. item 2 in Remark 1).
Now, redefining the total energy on a set of measure zero if necessary, set

EŒ%; %u�.t/ 	 E.t/ D
1

2

Z
%.t/>0

j.%u/j2

%
.t/ dx C

a

� � 1

Z
�

%� dx; (205)

where t 7! E.t/ is lower semicontinuous function on R
C (cf. Remark 3).

The first result deals with complete bounded trajectories, i.e., the finite energy
weak solutions defined on the whole line R whose energy is uniformly bounded on
R. Their importance is shown in Proposition 2. Denote

FCD
�

fI fD lim

n!1

hn.:C 
n/ weak star in L1.R��/ for a certain hn 2 F and 
n!1

	
:

We introduce an analogue of the so-called short trajectory in the spirit of [78].

U sŒE0;F �.t0; t/D
n
Œ%.
/;q.
/�; 
 2 Œ0; 1�I %.
/ D %.t C 
/; q.
/ D .%u/.t C 
/;

where %;u is a finite energy weak solution of the problem (63)–(64), (125) on an

open interval I;

.t0; t C 1� � I; with f 2 F ; and such that lim sup
t!t0

E.t/ � E0 	 E.0/
o
:
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Proposition 2. Assume Œ%n;qn� 2 U sŒE0;F �.t0; tn/ for a certain sequence
tn ! 1.

Then there is a subsequence (not relabeled) such that

%n ! % in L�..0; 1/ ��/ and in C.Œ0; 1�IL˛.�// for 1 � ˛ < �; (206)

qn!.% u/ in Lp..0; 1/��/ and in Cweek.Œ0; 1�IL
2�
�C1 .�// for any 1�p<

2�

� C 1
;

(207)

and

EŒ%n;qn�! EŒ%; % u� in L1.0; 1/; (208)

where %;u is a finite energy weak solution of the problem (63)–(64), (123), (125),
(204) defined on the whole real line I D R such that EŒ%; %u� 2 L1.R/ and
f 2 FC.

For the proof of Proposition 2, see [29, Proposition 3.1].
A straightforward consequence of Proposition 2 is the next theorem, which says

that the set

AsŒF �D
n
Œ%.
/;q.
/�; 
 2 Œ0; 1�I %;qD.%u/ is a finite energy weak solution of the

problem (63)–(64), (123), (125), (179) on I D R with f 2 FC and E 2 L1.R/
o

is a global attractor on the “space” of short trajectories.

Theorem 33. Let the assumption (204) be satisfied. Then the set AsŒF � is compact
in L�..0; 1/ ��/ � ŒLp..0; 1/ ��/�3 and

sup
Œ%;q�2U sŒE0;F �.t0;t/



inf

Œ%;q�2As ŒF �
.k% � %kL� ..0;1/��/ C kq � qkLp..0;1/��//

�
! 0

as t !1 for any 1 � p < 2�

�C1
.

The following assertion is an easy consequence of Theorem 28:

Proposition 3. Let F D ffg; f.x/ D rF .x/ such that ŒF > k� are connected for
all k 2 R. Then the set AsŒffg� of bounded trajectories is a singleton and consists of
the quantity Œ%s; 0� where %s is the unique solution of the stationary problem (181).
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Next, define

AŒF � D
n
Œ%;q�I % D %.0/; q D .%u/.0/ where %;u is a finite energy weak solution

of the problem (63)–(64), (123), (125), (179) on

I D R with f 2 FC and E 2 L1.R/
o
:

A direct consequence of Proposition 2 and Theorem 33 is the following:

Theorem 34. Let the assumption (204) be satisfied. Then AŒF � is compact in L˛ �

L
2�
�C1

week.�/ and

sup
Œ%;q�2U ŒE0;F �.t0;t/



inf

Œ%;q�2AŒF �
.k% � %kL˛.�/ C

Z
�

.jq � q/� dxj/

�
! 0

as t !1 for any 1 � ˛ < � and any � 2 ŒL
2�
��1 .�/�3.

Assume, in addition to the hypotheses of Theorem 34, that the energy is
sequentially continuous on AŒF �. Then the densities converge strongly in L� and
the momenta in L1:

Theorem 35. Let (204) hold, and, moreover, let

EŒ%n;qn�! EŒ%;q� (209)

for any sequence

fŒ%n;qn�g � AŒF � such that %n ! % in L1.�/; qn ! q weakly in L1.�/:

Then

sup
Œ%;q�2U ŒE0;F �.t0;t/



inf

Œ%;q�2AŒF �
.k% � %kL� .�/ C kq � q/kL1.�/

�
! 0 as t !1:

See [29, Theorem 4.2] for the proof.
There is an important particular case, when the assumption (209) is satisfied,

namely, if AŒF � consists of a single stationary solution. In particular, making use
of Proposition 3, the following generalization of the convergence result [87] and
Theorem 31 holds:

Theorem 36. Assume (204), and let f be measurable function bounded uniformly
on R

C. Let F be globally Lipschitz continuous on � such that the upper level sets
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ŒF > k� are connected for any k 2 R. Moreover, let

.f.:C 
/ � rF /! 0 weakly in L1..0; 1/ ��/ as 
 !1: (210)

Then any finite energy weak solution %;u of the problem (63)–(64), (123), (125),
(179) on I D R

C satisfies

%.t/! %s in L�.�/; and the kinetic energy
1

2

Z
%>0

jqj2

%
dx ! 0 as t !1;

where %s is the unique solution of the stationary problem (181).

The convergence in (210) is very weak. It requires only that integral means
taken with respect to space and time approach a potential driving force. In other
words, both the density and the momenta are robust with respect to possible random
fluctuations of the driving force both in space and time. Finally, we discuss the
dependence of the attractor on the driving force f. The result, in the case of a
perturbation of a potential force rF satisfying (182), may be formulated as follows:

Theorem 37. Let the assumptions of Theorem 36 be satisfied. Fix ˛ 2 Œ1; �/.
Then given any " > 0, there exists ı > 0 such that

lim sup
t!1

k%.t/ � %skL˛.�/ < "

whenever

lim sup
t!1

kf.t/ � rF kL1.�/ < ı

for any density component % of a finite energy weak solution of the problem (63)–
(64), (123), (125), (179) with the driving force f measurable and bounded on R

C.
Here %s is the unique solution of the stationary problem (181).

The proof, similarly as the proof of Theorem 33, follows from the compactness
property stated in Proposition 2.

7 Navier-Stokes-Fourier System in the Internal Energy
Formulation

7.1 Definition of Weak Solutions

In this section we shall deal with the Navier-Stokes-Fourier system (3)–(5) with the
stress tensor and heat flux given by (12)–(13) and with the pressure and internal
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energy obeying (34)–(37), where the molecular pressure pmo satisfies (45). The
material of this section is mostly taken from [30].

In this situation, one can use identity (44) in order to rewrite the internal energy
conservation in the simplified form

@t%
�
eth.#/C era.%; #/

�
C divx%u

�
eth.#/C era.%; #/

�
(211)

Cdivxq.%; #;rx#/C
�
#pth.%/C pra.#/

�
divxu D S.%; #;rxu/ W rxu:

The right hand of the above identity contains the positive term S.%; #;rxu/ W rxu
which will give rise in the weak formulation to the functional of type rxu 7!R T
0

R
�
S.%; #;rxu/ W rxu dxdt . This functional cannot certainly be continuous,

but can be solely lower weakly semicontinuous with respect to the weak topology
of the space L2.QT IR

9/. Therefore, we must replace in the weak formulation of
equation (211) the equality sign by the inequality sign “�.” In order to compensate
the lack of information caused by this operation we add to the weak formulation of
the system the total energy balance (26) with sign “�.”

This motivates the following definition of weak solutions that we shall formulate
for the heat flux of a specific form

q D �	.#/rx# D �rxK.#/; where K.#/ D
Z #

0

	.z/dz: (212)

Definition 6. Let� be a bounded domain, and let the initial conditions .%0;u0; #0/
satisfy

%0 W �! Œ0;C1/;u0 W �! R
3; #0 W �! .0;1/; (213)

where

%0u0 D 0 and %0u20 D 0 a.e. in the set fx 2 �j%0.x/ D 0g

with finite energy E0 D
R
�
.1
2
%0u20 C Hel.%0/ C %0eth.#0/ C %0era.%0; #0//dx and

finite mass 0 < M0 D
R
�
%0dx.

We shall say that a trio .%; #;u/ is a weak solution to the Navier-Stokes-Fourier
system (3)–(5) with boundary conditions (20)–(21), with viscous stress and heat
flux (12)–(15), (212), and with pressure and internal energy (34)–(37), where pmo

obeys (45), emanating from the initial data .%0; #0;u0; / if:
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(a)

% 2 L1.0; T IL1.�//; # 2 L1.QT /; % � 0; # > 0 a.e. in .0; T / ��;
(214)

u2L2.0; T IW 1;2
0 .�//I %u;

1

2
%u2; Hel.%/; %.eth.#/Cera.%; #//2L

1.0; T IL1.�//;

#.pth.%/C pra.#//; S.%; #;rxu/ W rxu; K.#/ 2 L1.QT /:

(b) % 2 Cweak.Œ0; T �IL
1.�//, and the continuity equation (3) is satisfied in the

following weak sense

Z
�

%'dx
ˇ̌
ˇ

0
D

Z 


0

Z
�

�
%@t' C %u � rx'

�
dxdt; (215)

for all 
 2 Œ0; T � and for all ' 2 C1c .Œ0; T � ��/:
(c) %u 2 Cweak.Œ0; T �IL

1.�//, and the momentum equation (4) is satisfied in the
weak sense,

Z
�

%u�'dx
ˇ̌
ˇ

0
D

Z 


0

Z
�

�
%u�@t'C%u˝uWr'Cp.%; #/div'�S.rxu/ W rx'C%f�'

�
dxdt D 0

(216)
for all 
 2 Œ0; T � and for all ' 2 C1c .Œ0; T � ��IR3/:

(d) Balance of thermal energy (211) is satisfied as an inequality

Z
�

h
%
�
eth.#/C era.%; #/

�i
.
/ dx �

Z
�

%0

�
eth.#0/C era.%0; #0/

�
dx

�

Z 


0

Z
�

�
%
�
eth.#/C era.%; #/

�
@t' C %

�
eth.#/C era.%; #/

�
u � rx' CK.#/�'

�
�
#pth.%/C pra.#/

�
divxu' C S.%; #;rxu/ W rxu'

�
dxdt (217)

for a.a. 
 2 .0; T / and for all ' 2 C1
c .Œ0; T �IC

2.�//, rx' � nj.0;T /�@� D 0, ' � 0.
(e) The balance of the total energy (26) is satisfied in the weak sense as inequality

�

Z T

0

 0.t/

Z
�

�1
2
%juj2 CHel.%/C %

�
eth.#/C era.%; #/

��
dxdt �

Z T

0

 .t/

Z
�

%f � u dxdt

C  .0/

Z
�

�1
2
%0ju0j2 CHel.%0/C %0

�
eth.#0/C era.%0; #0/

��
dx (218)

for all  2 C1
c Œ0; T /,  � 0.

We recall that
Z
�

gdx j
0 means
Z
�

g.
; x/dx�
Z
�

g0.x/dx. The Helmholtz function

Hel is defined in (67), and the space Cweak.Œ0; T �IL
1.�// is defined in (71).
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Definition 7. Weak solution whose density-velocity component .%;u/ satisfies
the continuity equation in the renormalized sense (116)–(117) in D0.QT / with
f D 0, with any test function b belonging to (118) is called renormalized weak
solution.

Remark 12. 1. According to (88) the total energy balance formulation (218)
implies

Z
�

�1
2
%juj2 CHel.%/C %

�
eth.#/C era.%; #/

��
dx
ˇ̌
ˇ

0
�

Z 


0

Z
�

%f � udxdt;

(219)
for almost all 
 2 .0; T /.

2. According to (85) applied to the thermal energy conservation (217), the right
and left instantaneous values Œ%eth.#/ C %era.%; #/�.
C/ and Œ%eth.#/ C

%era.%; #/�.
�/ defined in (68)–(69) are continuous linear functionals on C.�/
satisfying

Œ%eth.#/C %era.%; #/�.
C/ � Œ%eth.#/C %era.%; #/�.
�/: (220)

3. We deduce from (85) (with � D 1) applied to the thermal energy balance (217)
that the function of instantaneous values of thermal energy

Œ0; T � 3 
 7! Eth.
/ 	 inst
h Z

�

%
�
eth.#.�; x//C era.%.�; x/; #.�; x//

�
dx
i
.
/

(221)
is a sum of an absolutely continuous function and a nondecreasing function (with
at most countable number of jumps).

4. Likewise, according to (86)–(89) applied to (218), the function of the instanta-
neous values of total energy of the weak solution

Œ0; T � 3 
 7! E.
/ 	 inst
h Z

�

�1
2
%u2.�; x/C%e.%; #/.�; x/CHel.%.�; x//

�
dx
i
.
/

(222)
is a sum of an absolutely continuous function and a nonincreasing function (with
a countable number of jumps).

It seems that a significant piece of information is lost when replacing the internal
energy equation (5) by the variational inequality (217). However, to compensate
this loss, we require that the weak solution obeys the total energy inequality (218).
This makes from Definitions 6 and 7 “good” definitions. Indeed, any sufficiently
regular weak solution is a classical solution as stated in the following lemma whose
proof can be found in Feireisl [30, Section 6].
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Lemma 8. Let the trio .%; #;u/ be a weak solution to problem (3)–(9) with the
same constitutive laws for pressure, internal energy, stress tensor, and heat flux as in
Definition 6, with boundary conditions (20)–(21) and initial conditions .%0; #0;u0/
verifying (213) on a Lipschitz bounded domain � in the regularity class

.%; #;u/ 2 C1.QT / � C
1.QT / \ C.Œ0; T �I

C2.�// � C1.QT IR
3/ \ C.Œ0; T �IC2.�IR3// % > 0; # > 0:

(223)

Then .%; #;u/ is a classical solution to the Navier-Stokes-Fourier system. In
particular, it satisfies all energy balance laws (5), (211), (7), (9)–(10) as identities
on QT .

7.2 Existence of Weak Solutions

We start by specifying the assumptions under which the existence theorem on
weak solutions will be investigated. We shall consider the flow without radiation
(i.e., pra D 0, era) for which the present weak formulation is more appropriate.
The reader is invited to confront these assumptions with the physically motivated
requirements (34)–(42), (45)–(46), (56)–(57), (16)–(18):

(1) Pressure and internal energy.

p.%; #/ D pel.%/C #pth.%/; e.%; #/ D eel.%/C eth.#/; (224)

where pel is the same as in the barotropic case, namely,

pel 2 C Œ0;1/ \ C
1.0;1/; pel.0/ D 0;

�
pel.%/ � a1%

� C b;

p0el.%/ � a2%
��1 � b;

	
(225)

for some � � 1; a1; a2; b > 0,

pth 2 C Œ0;1/ \ C
1.0;1/; pth.0/ D 0; p

0
th.%/ � 0;

pth.%/ � c.1C %
�/ for some 0 � �:

(226)

In agreement with (45), the thermal energy is given by

eth.#/ D

Z #

0

cv.z/dz; cv 2 C
1Œ0;1/; inf

z2Œ0;1/
cv.z/ 	 cv > 0; (227)

cv.#/ � c.1C #
˛
2�1/ where c > 0; ˛ � 0:
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In agreement with (42), elastic energy is calculated from the elastic pressure pel

through the formula

%eel.%/ 	 Hel.%/ D %

Z %

1

pel.z/

z2
dz: (228)

(2) Viscous stress and heat flux. The fluid is Newtonian with the viscous stress given
by (12) with the constant viscosity coefficients

� > 0; � � 0: (229)

Heat flux is given by the Fourier law (212), where

	2C2Œ0;1/; c1.1C#
˛/� 	.#/� c2.1C#

˛/; with constants c1; c2>0, and ˛ � 0:
(230)

Under the above assumptions, the Navier-Stokes-Fourier systems admits a weak
solution provided the constants � , � , and ˛ verify some further restrictions. This
statement is subject of the following theorem reported from [30, Theorem 7.1].

Theorem 38. Let � � R
3 be a bounded domain with boundary of class C2;� ,

� > 0. Suppose that pressure, internal energy, viscous stress tensor, and heat flux
satisfy assumptions (224)–(230) with

� > 3=2; 0 � � � �=3; ˛ � 2:

Then the Navier-Stokes-Fourier system (3)–(5) with boundary conditions (20)–
(21) and initial conditions (213) with

ess inf
x2�

#0.x/ > 0

admits a renormalized weak solution with the following additional properties:

% 2 C.Œ0; T �IL1.�// \ L1.0; T IL�.�// \ Lp0.QT /; p0 D minf
5� � 3

3
;
3

2
�g;

(231)

pel.%/ 2 L
p1.QT /; #pth.%/ 2 L

2.QT /; p1 D p0=� > 1; (232)

%u 2 L1.0; T IL
2�
�C1 .�// \ Cweak.Œ0; T �IL

2�
�C1 .�//; (233)

# 2 L˛C1.QT /; (234)

#˛; Œeth.#/�
2
˛ ˛ 2 L2.QT / for all ˛ 2 Œ0;

˛ C 1

2
�; ln# 2 L2.QT /; (235)

%eth.#/ 2 L
1.0; T IL1.�// \ L2.0; T IL

6�
�C6 .�//; (236)
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ess lim
t!0C

Z
�

%eth.#/.t; x/�.x/ dx D
Z
�

%0eth.#0/� dx; � 2 C1c .�/: (237)

There exists Q# 2 L2.0; T IW 1;2.�// such that # D Q# a.e. in f.t; x/j%.t; x/ > 0g:
(238)

8 Main Ideas of the Proof of Theorem 38

As in the case of the “simple” barotropic situation, the main issue in the proof of the
existence theorem is the understanding of the propagation of the density oscillations.
This phenomenon is coupled with the the thermal energy balance and gives rise to
further difficulties linked especially to the vanishing density. In fact in the context
of weak solutions, we cannot avoid the formation of vacuum regions of nonzero
Lebesgue measure.

Rather than existence, we shall prove the weak stability of the set of (sufficiently
smooth) weak solutions. We shall formulate this property in the subsequent
Lemma 9. The proof of this lemma will contain already all main ingredients of
the proof of the existence theorem. The reader should however be aware that even
after Lemma 9 is established, the construction of solutions remains a hard and tricky
job with great amount of difficulties.

The construction of weak solutions to this problem goes far beyond the scope of
the handbook. There are so far two methods available in the mathematical literature:
(1) a functional analytic method based on several levels of approximations by
partial differential equations involving several (small) parameters similar to the one
reported through (402)–(415), whose details can be found in [30, Chapter 7], and (2)
numerical method based on the finite volumes/finite element approximations whose
details can be found in [55]. This method needs a further restriction on the adiabatic
coefficient � , namely, � > 3.

Lemma 9. Let � � R
3 be a bounded domain with boundary of class C2;� ,

� > 0. Suppose that pressure, internal energy, viscous stress tensor, and heat flux
satisfy assumptions (224)–(230) with � > 3=2, 0 � � � �=3, and ˛ � 2. Let
.%n; #n;un/ in the regularity class (223) be a sequence of finite energy renormalized
weak solutions to problem (3)–(5) with boundary conditions (20)–(21) and initial
conditions .%n;0; #n;0;un;0/ satisfying

%n;0 * %0 in L1.�/; %n;0un;0 * %0u0 in L1.�IR3/; (239)

%n;0eth.#n;0/ * %0eth.#0/ in L1.�/;Z
�

�1
2
%n;0jun;0j2 C %n;0eth.#n;0/CHel.%n;0/

�
dx

!

Z
�

�1
2
%0ju0j2 C %0eth.#0/CHel.%0/

�
dx;
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with bounded from below entropy

Z
�

%n;0s.%n;0; #n;0/ dx � S 2 R;

where .%n;0; #n;0;un;0/ and .%0; #0;u0/ verify (213) with Mn;0 > 0; En;0 2 R, and
M0 > 0, E0 2 R, respectively. Then there exists a subsequence (denoted again
.%n; #n;un/) such that

%n ! % weakly-* in L1.0; T IL�.�//; (240)

where % 2 C.Œ0; T �IL1.�// \ Lr.QT /; 0 < r � minf
3

2
�;
5

3
� � 1g;

un ! u weakly in L2.0; T IW 1;2
0 .�IR3//;

%nun!%u weakly-* in L1.0; T IL
2�
�C1 .�IR3//; where %u2Cweak.0; T IL

2�
�C1 .�//;

K!.#n/ * ‚! as n!1 (weakly) in L1.QT /;

‚! ! ‚ a.e. in QT as ! ! 0C;

with

K!.#/ D

Z #

0

h!.z/	.z/dz; h!.z/ D
1

.1C z/!
; (241)

where the trio

.%; # D K�1.‚/;u/

is a renormalized weak solution of (3)–(5) with boundary conditions (20)–(21) and
initial conditions .%0; #0;u0/.

Remark 13. 1. It should be noticed that the gradient of the temperature component
# of the weak solution is not square integrable, as one would expect from the
presence of dissipation in the thermal energy balance. One can show that there is
Q# 2 L2.0; T IW 1;2.�// such that

#n * Q# in L2.0; T IW 1;2.�//

coinciding with the temperature component # of the weak solution almost
everywhere outside the vacuum set. Consequently, K. Q#/ D K.#/ almost
everywhere outside vacua; however it may happen that K. Q#/ ¤ K.#/ in a subset
of the vacuum set with the nonzero measure.
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8.1 Equations Verified by the Sequence

By virtue of Lemma 8, the trio .%n; #n;un/ satisfies equations (3), (4), (5), (211)eraD0,
(7), (9)–(10) together with boundary conditions (20)–(21). In particular,

@t%nCdivx.%nun/D0 in Œ0;T ��R3 provided .%n;un/ is extended by .0; 0/ outside �;
(242)

@t .%nun/Cdivx.%nun˝un/Crxp.%n; #n/ D divxS.rxun/ D %nf in QT ; (243)

@t .%neth.#n//C divx.%nuneth.#n// (244)

Cdivxq.rx#n/C #npth.%n/divxun D S.rxun/ W rxun in QT ;

@t .%ns.%n; #n//C divx.%ns.%n; #n/un/C divx

�
q.#n;rx#n/

#n

�
(245)

D
1

#n

�
S.rxun/ W rxun �

q.#n;rx#n/ � rx#n
#n

�
in QT ;

d

dt

Z
�

�1
2
%njunj2 C %neth.#n/CHel.%n/

�
dx D

Z
�

%nf � un dx for all t 2 Œ0; T �;

(246)

@tb.%n/C divx
�
b.%n/un

�
C
�
%nb
0.%n/ � b.%n/

�
divxun D 0; b as in (134);

(247)
in Œ0; T � � R

3 provided .%n;un/ is extended by .0; 0/ outside �:

This implies

@tTk.%n/C divx
�
Tk.%n/un

�
C
�
%nT

0
k.%n/ � Tk.%n/

�
divxun D 0; (248)

and

@t%nLk.%n/C divx
�
%nLk.%n/un

�
C Tk.%n/divxun D 0 (249)

in Œ0; T � � R
3 provided .%n;un/ is extended by .0; 0/ outside �;

where

Tk.z/ D kT .z=k/; Lk.z/ D
Z z

1

Tk.w/

w2
dw; (250)
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T 2 C1Œ0;1/; T .z/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z if z 2 Œ0; 1�;

concave on Œ0;1/;

2 if z � 3:

8.2 A Priori Estimates

1. Bounds due to the mass conservation.
Integrating equation (242) yields

Z
�

%n.
/ dx D
Z
�

%n;0 dx;

in particular

k%nkL1.0;T IL1.�// � c.M0/: (251)

2. Bounds due to the global energy conservation.
Balance of total energy in the volume � (246) (that is equation (7) integrated

over �) yields

Z
�

�1
2
%njunj2 C %neth.#n/CHel.%n/

�
.
/ dx

D

Z
�

�1
2
%n;0jun;0j2 C %n;0eth.#n;0/CHel.%n;0/

�
dx C

Z 


0

Z
�

%nf � un dxdt:

Recalling definition ofHel (42) and (225), we verify that c1%� � Hel.%/Cc2.1C

% ln %/ with c1; c2 > 0 (dependent on a1; a2; b). Further j
R 

0

R
�
%nf � un dxdt j �

kfkL1.Q
 IR3/

R 

0

�qR
�
%n dx

qR
�
%n.un/2 dx by virtue of the Cauchy-Schwarz

inequality. Employing these facts, the Gronwall lemma (see Theorem 21) and
assumptions (227) on the form of eth, we derive from the last center-lined identity
the bounds

k%nkL1.0;T IL� .�// � c.M0;E0; F0; T /; (252)

k%neth.#n/kL1.0;T IL1.�//; k%n#nkL1.0;T IL1.�// � c.M0;E0; F0; T /; (253)

k%njunj2kL1.0;T IL1.�// � c.M0;E0; F0; T /; (254)

where here and hereafter, we denote

F0 	 kfkL1.QT IR3/:
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3. Bounds due to the entropy balance.
Entropy balance (245) integrated over the space time cylinder Q
 , while

taking into account the boundary conditions (20), (21), yields

Z 


0

Z
�

� 1
#n

S.rxun/ W rxun C 	.#n/
jrx#nj

2

.#n/2

�
dxdt

D

Z
�

%ns.%n; #n/.
/ dx �
Z
�

%n;0s.%n;0; #n;0/ dx;

where the specific entropy s.%; #/ D smo.%; #/ D smo;# .#/ C smo;%.%/ is given
by formula (46). Employing (46) and assumptions (226), (227) we find pointwise
estimates

smo;# .#/1f#�1g.#/� c.1C eth.#//1f#�1g.#/;

�smo;# .#/1f#<1g.#/� cvj ln#j1f#<1g.#/;

and

smo;%.%/ � c.1C %
�/:

Consequently, we deduce from the entropy balance the following bounds

k%n ln#nkL1.0;T IL1.�// � c.M0;E0; S; F0; T /; (255)

kr ln#nkL2.0;T IL2.�IR3// C kr.#n/
˛=2kL2.0;T IL2.�IR3// � c.M0;E0; S; F0; T /:

(256)

Estimate (256) in combination with (255) and (253) yields

k ln#nkL2.0;T IW 1;2.�// C k.#n/
˛=2kL2.0;T IW 1;2.�// � c.M0;E0; S; F0; T /;

(257)
by virtue of the Poincaré inequality stated in Theorem 7. Next, we may use the
Sobolew imbedding to get

k ln#nkL2.0;T IL6.�//Ck.#n/
˛kL2.0;T IL6.�// � c.M0;E0; S; F0; T /; 0 � ˛ � ˛=2:

(258)
Finally, estimate (257) in combination with assumption (227) yields, in particu-
lar,

keth.#n/kL2.0;T IW 1;2.�// � c.M0;E0; S; F0; T /: (259)

4. Bounds due to the thermal energy balance I
Integrating the thermal energy balance (244) while taking into account

boundary conditions (20)–(21), we get
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Z 


0

Z
�

S.rxun/ W rxun dxdt D
Z 


0

Z
�

#npth.%n/divxun dxdt

C

Z
�

%neth.#n/.
; x/ dx �
Z
�

%n;0eth.#n;0/ dx:

The first term at the right-hand side is bounded from above by virtue of
Hölder and Young inequalities by c.ı/k#nk2L2.0;
 IL6.�//kpth.%n/k

2
L1.0;
;L3.�//

C

ıkdivxunk2L2.0;
 IL2.�// with any ı > 0, while the left-hand side is bounded

from below by ckrxunk2L2.0;
 IL2.�IR9// in view of Korn’s inequality stated in
Theorem 9. Next, we use the known upper bounds (258), (252) together with
assumption (226) where 0 � � � �=3, and (253) to obtain

krxunkL2.0;T IL2.�IR9// � c.M0;E0; S; F0; T /:

Finally, the classical Poincaré inequality gives

kunkL2.0;T IW 1;2.�IR3// � c.M0;E0; S; F0; T /: (260)

5. Bounds due to the thermal energy balance II
Multiplying the thermal energy balance (244) by .#n/�ˇ , 0 < ˇ < 1, and

integrating over Q
 , we get

ˇ

Z 


0

Z
�

	.#n/
jrx#nj

#
ˇC1
n

dxdt D
Z
�

%nHˇ.#n/.
; x/ dx �
Z
�

%n;0Hˇ.#n;0/ dx

�

Z 


0

Z
�

1

.#n/ˇ
S.rxun/ W rxun dxdt �

Z 


0

Z
�

.#n/
1�ˇpth.%n/divxun dxdt;

where Hˇ.#/ D
R #
0

z�ˇcv.z/dz. We write z�ˇcv.z/ �
1
z 1f0<z<1g.z/ C

cv.z/1fz�1g.z/; whence the first two terms are bounded by virtue of (253), (255).
We already know from the entropy balance (see item 3.) and from the thermal

energy balance (see item 4.) that
R 

0

R
�

�
1 C 1

#n

�
S.rxun/ W rxun dxdt �

c.M0;E0; S; F0; T /I whence the third term at the right-hand side is bounded by
c.M0;E0; S; F0; T /. Finally, the absolute value of the last term is estimated by
Hölder’s inequality and (252), (258)–(260). As a conclusion, after application of
Theorem 7

k.#n/
˛C1�ˇ

2 kL2.0;T IW 1;2.�// � c.M0;E0; S; F0; T; ˇ/ with any 0 < ˇ < 1:
(261)

6. Pressure estimates
We multiply momentum equation (243) by the test function '.t; x/ D

�.t/B
h
%!n �

1
j�j

R
�
%!n dx

i
and integrate over the space time cylinder QT , where

B is the inverse of the divergence operator defined in Theorem 5, ! is a positive
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number (that will be specified later), and � represents a conveniently chosen
family of C1

c .0; T / cutoff functions. Employing the renormalized continuity
equation (247) and the properties of operator B, one gets after several integrations
by parts

Z T

0

�

Z
�

p.#n; %n/.%n/
! dxdt D

7X
iD1

Ii ;

where

I1 D
1

j�j

Z T

0

�
� Z

�

p.#n; %n/ dx
Z
�

.%n/
! dx

�
dt;

I2 D

Z T

0

�

Z
�

%nun � B
h
divx..%n/

!un/
i

dxdt;

I3 D .! � 1/

Z T

0

�

Z
�

%nun � B
h
.%n/

!divxun �
1

j�j

Z
�

.%n/
!divxun dx

i
dxdt;

I4 D �

Z T

0

�0
Z
�

%nun � B
h
%! �

1

j�j

Z
�

.%n/
! dx

i
dxdt;

I5 D �

Z T

0

�

Z
�

%nun ˝ un W rxB
h
%! �

1

j�j

Z
�

.%n/
! dx

i
dxdt;

I6 D

Z T

0

�

Z
�

S.rxun/ W rxB
h
%! �

1

j�j

Z
�

.%n/
! dx

i
dxdt;

I7 D �

Z T

0

�

Z
�

%nf � B
h
%! �

1

j�j

Z
�

.%n/
! dx

i
dxdt:

Writing moreover the left-hand side as the sum

Z T

0

�

Z
�

pel.%n/.%n/
! dxdt C J1; J1 D

Z T

0

�

Z
�

#npth.%n/.%n/
! dxdt;

we shall use the Hölder inequality, assumptions (225)–(226), and Theorem 5
together with already established estimates (namely, (252)–(253), (258)–(261))
in order to get bound

k%nkL�C!.QT /
� c.M0;E0; S; F0; T /; 0 < ! � minf

2

3
� � 1;

1

2
�g; (262)

in particular,

kp.%n; #nkLq.QT / � c.M0;E0; S; F0; T / with some q > 1: (263)
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7. Temperature estimates
Temperature estimates (258), (261) are still not sufficient to give sense to

the term containing K.#/ in the weak formulation (217) of the thermal energy
balance. We need further estimates of the temperature.

An improved estimate outside of vacuum regions is quite straightforward.
Since

R
G
#.˛C1/pdx � .

R
G
#dx/1=s

0

.
R
G
#..˛C1/p�1=s

0/sdx/1=s , 1 � p < 1,
1 < s <1, we have by virtue of (261), (253)

k#nkLp.f%n�"g/ � c.M0;E0; S; F0; T; p; "/ with 0 < " < M=j�j: (264)

Similar estimate near the vacuum regions is more tricky. To this end, we
multiply by test function

'.t; x/ D �.t/. .t; x/ �  /; with  D inf
.t;x/2QT

 .t; x/;

and integrate overQT the thermal energy balance equation (244), where  is the
unique solution with the zero mean of the Neumann problem

� D h.%n.t; x// �
1

j�j

Z
�

h.%n/ dx in �; rx � nj@� D 0; (265)

in which

C1.R/ 3 h nonincreasing; h.z/ D 0 if z � "; h.z/ D �1 if z � 2";

and � 2 C1
c .0; T / represents the same family of test functions as used in the step

dealing with pressure estimates. This testing yields the integral identity

Z T

0

�

Z
�

K.#n/
�
h.%n/ �

1

j�j

Z
�

h.%n/ dx
�

dxdt D
5X
iD1

Ii ;

where

I1 D

Z T

0

�0
Z
�

. �  /%neth.#n/ dxdt;

I2 D �

Z T

0

�

Z
�

@t %neth.#n/ dxdt;

I3 D �

Z T

0

�

Z
�

%neth.#n/un � rx dxdt;

I4 D

Z T

0

�

Z
�

. �  /S.rxun/ W rxun dxdt;

I5 D

Z T

0

�

Z
�

. �  /#npth.%n/divxun dxdt:
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We deduce from Hölder’s inequality and (251)–(252) that jf%n � 2"gj � h."/ >

0; whence thanks to the choice of function h, the left-hand side of the above
inequality is bounded from below by expression h."/

j�j

R
f%n<"g

�K.#n/dxdt: Each
of integrals I1-I5 can be estimated by Hölder’s inequality; the Lebesgue norms
involving and @t will be estimated by means of standard ellipticLp estimates
for the Neumann problem applied to (265) and to

�@t D� divx.h.%n/un/C.h.%n/� %nh0.%n//divxun�
1

j�j

Z
�

.h.%n/�%nh
0.%n//divxun dx;

rx@t � nj@� D 0;

where the renormalized continuity equation (247) has been used to calculate the
right-hand side of the latter Laplace equation.

Performing this program we arrive, with the help of estimates (251)–(263) and
assumption (230) (translated to K – see (212)) to the bound

k.#n/
˛C1kL1.f%n<"g/ � c.M0;E0; S; F0; T; "/I

whence

k.#n/
˛C1kL1.QT / � c.M0;E0; S; F0; T / (266)

by virtue of the last estimate and (264).

8.3 Weak Limits in the Momentum and Renormalized Continuity
Equations

Bounds (252), (258), (260) imply existence of a subsequence (denoted again
.%n; #n;un/) and of a trio .%; Q#;u/ such that

%n *
� % in L1.0; T IL�.�//;

#n * Q# in L2.0; T IW 1;2.�//;

un * u in L2.0; T IW 1;2.�IR3//:

(267)

In what follows we systematically denote by g.%; #;u/ a weak limit in L1.QT /

of the sequence g.%n; #n;un/ in L1..0; T / ��//.
Due to (263),

p.%n; #n/ * p.%; #/ in Lp.QT / with some p > 1: (268)
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Next, we can use continuity equation (242), renormalized continuity equa-
tion (247), and momentum equation (243) to show the equi-continuity of functions

t 7!

Z
�

%n' dx; t 7!

Z
�

b.%n/' dx; t 7!

Z
�

%nun' dx;

on Œ0; T �, where ' 2 C1c .�/. This fact makes possible to use the Arzela-
Ascoli compactness argument which in combination with the density argument
yields convergence of the sequences %n, b.%n/, and %nun in Cweak.Œ0; T �IL

q.�//

with some q > 6=5. Employing moreover the compact imbedding Lq.�/ ,!,!
W �1;2.�/, we get the convergence of these quantities in L2.0; T IW �1;2.�//.
Summarizing the above, we have

%n ! % in Cweak.Œ0; T �IL
�.�// and in L2.0; T IW �1;2.�//;

b.%n/! b.%/ in Cweak.Œ0; T �IL
q.�//; and in L2.0; T IW �1;2.�//;

provided b 2 C Œ0;1/ \ C1.0;1/; b.%n/ bounded in L1.0; T ILq.�//;

%nb
0.%n/ � b.%n/ bounded in L2.QT //;

%nun ! %u in Cweak.Œ0; T �IL
2�=.�C1/.�IR3// and in L2.0; T IW �1;2.�;R3//;

%nun ˝ un ! %u˝ u in L2.0; T IL6�=.4�C3/.�;R9//:
(269)

The second relation in (269) employed with b D pth in combination with the
second relation in (267) yields, in particular,

#npth.%n/ * Q# pth.%/ in L2.QT /; (270)

#npth.%n/Tk.%n/ * Q# pth.%/Tk.%/ in L2.QT /:

Now, we are ready to let n!1 in equations (242), (243), and (247). We get, in
particular,

Z
�

%.
; x/'.
; x/ dx�
Z
�

%0'.0; �/ dx D
Z T

0

Z
�

�
%@t'C%u�rx'

�
dxdt (271)

for all 
 2 Œ0; T � and any ' 2 C1
c .Œ0; T � ��/;

Z
�

%.
; x/'.
; x/ dx �
Z
�

%0u0 � '.0; �/ dx (272)
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D

Z T

0

Z
�

�
%u �@t'C%u˝u W rx'Cp.%; #/divx'�S.rxu/ W rx'C%f �'

�
dxdt

for all 
 2 Œ0; T � and for any ' 2 C1
c .Œ0; T � ��IR

3/, 'j@� D 0;
Z
�

%Lk.%/.
; x/'.
; x/dx �
Z
�

%0Lk.%0/'.0; �/ dx (273)

�

Z 


0

Z
�

%Lk.%/
�
@t' C u � rx'

�
dxdt D �

Z T

0

Z
�

Tk.%/divu' dxdt;

andZ
�

Tk.%/.
; x/'.
; x/dx�
Z
�

Tk.%0/'.0; �/dx�
Z 


0

Z
�

Tk.%/
�
@t'Cu �rx'

�
dxdt

(274)

D �

Z 


0

Z
�

.%T 0k.%/ � Tk.%//divu ' dxdt;

where 
 2 Œ0; T � and ' 2 C1
c .Œ0; T ���/ and functions Tk , Lk are defined in (250).

8.4 Effective Viscous Flux Identity

The quantity

p.%; #/ �
�4
3
�C �

�
divxu

called effective viscous flux or effective pressure satisfies a certain weak continuity
property discovered by P.L. Lions [77] in the context of barotropic model. This
property, in our situation, is formulated in the following lemma.

Lemma 10 (See [30, Proposition 6.1]). Let .%n; #n;un/ be the trio investigated in
Lemma 9. Then for any k > 1, there holds

�4
3
�C �

��
Tk.%/divxu � Tk.%/divxu

�
D
�
p.%; #/Tk.%/ � p.%; #/ Tk.%/

�
;

(275)
with functions Tk defined in (250).

In order to get the statement of Lemma 10, we proceed in several steps.
Step 1.

First, we multiply the momentum equation (243) by test function

 .t/�.x/rx�
�1Œ Q�Tk.%n/�; where  2 C1

c .0; T /; �;
Q� 2 C1c .�/
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and integrate over the space-time cylinder QT . The (pseudodifferential) operator
rx�

�1 is defined in (111). Employing notation introduced in (111) and in Theo-
rem 13, we get identity

Z T

0

 

Z
�

�p.%n; #n/Tk.%n/ dxdt �
Z T

0

 

Z
�

�S.rxun/WRŒ Q�Tk.%n/� dxdtD
7X
iD1

I inCJn;

(276)
where

Jn D

Z T

0

 

Z
�

un �
�
Q�Tk.%n/RŒ�%nun� � �%nun �RŒ Q�Tk.%n/�

�
dxdt;

and

I 1n D

Z T

0

 

Z
�

S.rxun/ W
�
rx� ˝AŒ Q�Tk.%n/�

�
dxdt;

I 2n D �

Z T

0

 

Z
�

p.%n; #n/rx� �AŒ Q�Tk.%n/� dxdt;

I 3n D �

Z T

0

 

Z
�

�%nf �AŒ Q�Tk.%n/� dxdt;

I 4n D �

Z T

0

 

Z
�

%nun ˝ un W
�
rx� ˝AŒ Q�Tk.%n/�

�
dxdt;

I 5n D �

Z T

0

 

Z
�

�%nun �AŒTk.%n/rx Q� � un� dxdt;

I 6n D �

Z T

0

 0
Z
�

�%nun �AŒ Q�Tk.%n/� dxdt;

I 7n D

Z T

0

 

Z
�

�%nun �AŒ Q�.%nT 0k.%n/ � %n/� dxdt:

When deriving identity (276), we have used several times integration by parts,
renormalized continuity equation (248), and item (iii) in Theorem 13.
Step 2.

Employing in the limiting momentum equation (272) test function

 .t/�.x/rx�
�1Œ Q� Tk.%/�; where  2 C1

c .0; T /; �;
Q� 2 C1c .�/;

we get identity

Z T

0

 

Z
�

�p.%; #/ Tk.%/ dxdt�
Z T

0

 

Z
�

�S.rxu/ W RŒ Q� Tk.%/� dxdt D
7X
iD1

I iCJ;

(277)



Weak Solutions for the Compressible Navier-Stokes Equations: Existence,. . . 93

where

J D

Z T

0

 

Z
�

un �
�
Q� Tk.%/RŒ�%u� � �%u �RŒ Q� Tk.%/�

�
dxdt;

and

I 1 D

Z T

0

 

Z
�

S.rxu/ W
�
rx� ˝AŒ Q� Tk.%/�

�
dxdt;

I 2 D �

Z T

0

 

Z
�

p.%; #/rx� �AŒ Q� Tk.%/� dxdt;

I 3 D �

Z T

0

 

Z
�

�%f �AŒ Q� Tk.%/� dxdt;

I 4 D �

Z T

0

 

Z
�

%u˝ u W
�
rx� ˝AŒ Q� Tk.%/�

�
dxdt;

I 5 D �

Z T

0

 

Z
�

�%u �AŒTk.%/rx Q� � u� dxdt;

I 6 D �

Z T

0

 0
Z
�

�%u �AŒ Q� Tk.%/� dxdt;

I 7 D

Z T

0

 

Z
�

�%u �AŒ Q� .%T 0k.%/ � %/� dxdt:

When deriving identity (277), we have used several times integration by parts,
renormalized continuity equation (274), and item (iii) in Theorem 13.
Step 3.

In view of estimates and induced convergence relations established in previous
two sections together with the continuity properties of operators A and R reported
in first two items of Theorem 13, it is a relatively easy task to verify that

I in ! I i .as n!1/: (278)

Step 4.
Now, we shall establish relation

J n ! J .as n!1/: (279)

This relation is the key point in the proof of Lemma 10. In fact, this property does not
follow by employing the “standard” compactness argument. Instead, we must use
the compensated compactness. Indeed, combining the commutator lemma reported
in Theorem 15 with the convergence established in the first two lines of (269), we
get
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�
Q� Tk.%n/RŒ�%nun�� �%nun �RŒ Q�Tk.%n/�

�
.t/ *

�
Q� Tk.%/RŒ�%u�� �%u �RŒ Q� Tk.%/�

�
.t/

(weakly) in Lr.�IR3/ with some r > 6=5 (in fact r D 2�

�C1
) for all t 2 Œ0; T �. The

compact imbeddingLr.�/ ,!,! W �1;2.�/ now yields that the above convergence
is strong in W �1;2.�/ for every t 2 Œ0; T �. We use this fact together with the weak
convergence of the sequence un established in (267) and the Lebsegue dominated
convergence theorem used over .0; T / in order to conclude

R T
0
 
R
�

un �
�
Q�Tk.%n/RŒ�%nun� � �%nun �RŒ Q�Tk.%n/�

�
dx

!
R T
0
 
R
�

u �
�
Q� Tk.%/RŒ�%u� � �%u �RŒ Q� Tk.%/�

�
dx:

This is exactly statement (279).
Step 5.

Integrating twice by parts and employing the property of the Riesz operator listed
in item (iii) of Theorem 13, we get identities

lim
n!1

Z T

0

 

Z
�

�S.rxun/WRŒ Q�Tk.%n/� dxdtD
�4
3
�C �

�Z T

0

 

Z
�

� Q� Tk.%/divxu dxdt;

(280)Z T

0

 

Z
�

�S.rxu/ W RŒ Q� Tk.%/� dxdt D
�4
3
�C �

� Z T

0

 

Z
�

� Q� Tk.%/divxu dxdt:

Step 6.
At the point of conclusion, we perform limn!1 in the identity (276) and subtract

from its identity (277). We obtain the statement of Lemma 10 in view of (278)–
(280).

8.5 Oscillations Defect Measure

Let %n be a sequence and % its weak limit in L1.QT /. We introduce the oscillations
defect measure of the sequence %n,

oscpŒ%n * %�.QT / 	 sup
k�1

�
lim sup
n!1

Z
QT

ˇ̌
ˇTk.%n/ � Tk.%/

ˇ̌
ˇpdxdt

�
; p � 1;

(281)
where function Tk is defined in (250).

The main achievement of the present section is the following lemma.

Lemma 11 (see [Proposition 6.2][30]). Let .%n; #n;un/ be the trio investigated in
Lemma 9. Then

osc�C1Œ%n * %�.QT / <1: (282)
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Step 1.
In view of (225),

pel.%/ D
a2

�
%� C pm.%/C pb.%/; (283)

with % 7! pm.%/ D pel.%/�
a2
2�
%�Cbminfr; %g is nondecreasing function on Œ0;1/

and pb.%/ D �minfr; %g, where a2r��1 D 2b . With this decomposition and with
relation (270) at hand, effective viscous flux identity (275) implies

a2

�

Z T

0

Z
�

�
%�Tk.%/�%� Tk.%/

�
dxdtC

Z T

0

Z
�

�
pm.%/Tk.%/�pm.%/ Tk.%/

�
dxdtC

(284)

C

Z T

0

Z
�

Q#
�
pth.%/Tk.%/ � pth.%/ Tk.%/

�
dxdt D lim sup

n!1

3X
iD1

I in;

where

I 1n D
�4
3
�C �

� Z T

0

Z
�

�
Tk.%n/ � Tk.%/

�
divxun dxdt;

I 2n D
�4
3
�C �

� Z T

0

Z
�

�
Tk.%/ � Tk.%/

�
divxun dxdt;

I 3n D �

Z T

0

Z
�

�
pb.%n/Tk.%n/ � pb.%n/Tk.%/

�
dxdt:

Step 2.
By Hölder’s inequality, lower weak semi-continuity of Lebesgue norms and

interpolation

jI 1n jCjI
2
n j � 2 lim sup

n!1
kdivxunkL2.QT /

kTk.%n/ � Tk.%/k
��1
2�

L1.QT /
kTk.%n/ � Tk.%/k

�C1
2�

L�C1.QT /

� c.M0;E0; S; F0; T /
h
osc�C1Œ%n * %�.QT /

i �C1
2�
;

where we have used bounds (251), (260). Similarly,

jI 3n j � c.M0;E0; S; F0; T /:

Step 3.
We write

Z T

0

Z
�

�
%�Tk.%/�%� Tk.%/

�
dxdt D lim sup

n!1

Z T

0

Z
�

�
%�n�%

�
��
Tk.%n/�Tk.%/

�
dxdt

(285)

C

Z T

0

Z
�

�
%� � %�

��
Tk.%/ � Tk.%/

�
dxdt:
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Since % 7! %� is convex on Œ0;1/ and % 7! Tk.%/ is concave, the second integral at
the right-hand side of (285) is nonnegative by virtue of Theorem 3. Next, by using
the definition (250) of functions Tk and elementary properties of function % 7! %� ,
we easily verify algebraic relations

ja � bj� � ja� � b� j and ja � bj � jTk.a/ � Tk.b/j; .a; b/ 2 Œ0;1/
2:

Consequently, formula (285) yields

Z T

0

Z
�

�
%�Tk.%/ � %� Tk.%/

�
dxdt � lim sup

n!1

Z T

0

Z
�

ˇ̌
ˇTk.%n/ � Tk.%/

ˇ̌
ˇ�C1 dxdt:

(286)
Step 4.

Finally, according to Theorem 4, the second and third terms at the left-hand
side of relation (284) are nonnegative. Coming back with this information, with
relation (286) and with all estimates established in Step 3 to relations (284), we
deduce inequality

lim sup
n!1

Z T

0

Z
�

ˇ̌
ˇTk.%n/ � Tk.%/

ˇ̌
ˇ�C1 dxdt

� c.M0;E0; S; F0; T /
�
1C

h
osc�C1Œ%n * %�.QT /

i �C1
2�
�
:

The latter formula yields the statement of Lemma 11.

8.6 Renormalized Continuity Equation

Relation (282) implies that the limit quantities %, u satisfy the renormalized
continuity equation. The exact statement reads:

Lemma 12 (see [30, Proposition 6.3] and [33, Lemma 3.8]). Let

%n * % in Lp..0; T / � R
3/; p > 1;

un * u in Lr..0; T / � R
3IR3/;

run * ru in Lr..0; T / � R
3IR9/; r > 1:

Let

oscqŒ%n * %�..0; T / � R
3/ <1 (287)

for 1
q
< 1 � 1

r
, where .%n;un/ solve the renormalized continuity equation (247)

(with any b belonging to (118)). Then the limit functions %, u solve the renormalized
continuity equation
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@tb.%/C divx.b.%/u/C
�
%b0.%/ � b.%/

�
divxu D 0 in D0..0; T / � R

3/ (288)

for any b belonging to the same class (118).

We shall outline the proof of this lemma in several steps.
Step 1.

Passing to the limit in (248), we get

@tTk.%/C divx
�
Tk.%/u

�
D �.%T 0k.%/ � %/divxu in D0..0; T / � R

3/:

Since for fixed k > 0, Tk.%/ 2 L1..0; T / � R
3/, we can employ Theorem 18 in

order to infer that

@tbM .Tk.%//C divx
�
bM .Tk.%//u

�
C
�
Tk.%/b

0
M.Tk.%// � bM .Tk.%//

�
divxu

(289)
D �.%T 0k.%/ � %/divxu b0M.Tk.%// in D0..0; T / � R

3/

holds with any bM in class (118) with compact support in Œ0;M/.
Step 2.

Seeing that by lower weak semi-continuity of L1 norms,

Tk.%/! % in L1..0; T / � R
3/ as k !1;

we obtain from equation (289) by using the Lebesgue dominated convergence
theorem

@tbM .%/C divx
�
bM .%/u

�
C
�
%b0M.%/ � b.%/

�
divxu D 0 in D0..0; T / � R

3/;

(290)
provided we show that

���.%T 0k.%/ � %/divxu/b0M.Tk.%//
���
L1..0;T /�R3/

! 0 as k !1: (291)

To show the latter relation, we use lower weak semi-continuity ofL1 norm, Hölder’s
inequality, uniform bound of un in Lr.0; T IW 1;r .R3//, and interpolation of Lr

0

between Lebesgue spaces L1 and Lq to get

���.%T 0k.%/ � %/divxu/b0M.Tk.%//
���
L1..0;T /�R3/

� max
z2Œ0;M �

jb0M.z/j
Z
fTk.%/�M g

j.%T 0k.%/ � %/divxu/jdxdt

� c supn>0k%nT
0
k.%n/ � %n/k

q.r�1/�r
r.q�1/

L1..0;T /�R3/
lim inf
n!1

k%nT
0
k.%n/ � %n/k

q
r.q�1/

Lq.fTk.%/�M g/
:
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We have

k%nT
0
k.%n/ � %n/kL1..0;T /�R3/ � 2supn>0k%nkL1.f%n�kg/ ! 0 as k !1

by virtue of the uniform bound of %n in Lp..0; T /�R3/ (in the above we have also
used algebraic relation zT 0k.z/ � Tk.z/ � 2z1fz�kg), while

k%nT
0

k .%n/� %n/kLq.fTk.%/�Mg/ � 2kTk.%n/kL1.fTk.%/�Mg/

� 2
�
kTk.%n/� Tk.%/kLq..0;T /�R3/CkTk.%/� Tk.%/kLq..0;T /�R3/ C kTk.%/kLq.fTk.%/�Mg/

�
;

where we have used algebraic relation zT 0k .z/ � 2Tk.z/ and the Minkowski inequality.
Since the latter expression remains bounded, relation (291) is proved. We have thus
shown (290). Equation (290) with b D bM however implies (288) with any b in
class (118) by virtue of the Lebesgue dominated convergence theorem. Lemma 12 is
proved.

8.7 Strong Convergence of the Density Sequence

We deduce from (247) using Lemma 12 with r D 2, p D � , q D � C 1 that

Z
�

%Lk.%/.
; x/'.
; �/ dx �

Z
�

%0Lk.%0/'.0; �/ dx �

Z 


0

Z
�

%Lk.%/
�
@t'C u � rx'

�
dxdt

(292)

D �

Z 


0

Z
�

Tk.%/divu' dxdt;

with any 
 2 Œ0; T � and ' 2 C1
c .Œ0; T ���/, where Lk.%/ is defined in (250).

Next, we write (273) and (292) with test function ' D 1 and deduce

Z
�

�
%Lk.%/� %Lk.%/

�
.
/ dx D �

Z 


0

Z
�

gk dxdt; where gk D Tk.%/divu� Tk.%/divu:

(293)
We evaluate function gk by using the effective viscous flux identity (275) with the
decomposition of elastic pressure

pel D pm.%/� pb.%/; pb 2 C
2
c Œ0;1/; pb � 0;

where pb.z/ D 0 whenever z > r with some r > 0, and pm is an increasing function
on Œ0;1/:

gk D g1k C g
2
k C g

3
k; g1k D

�
Tk.%/divu� Tk.%/divu

�
;

g2k D
1

4
3
�C �

h�
pm.%/Tk.%/� pm.%/ Tk.%/

�
C Q#

�
pth.%/Tk.%/� pth.%/ Tk.%/

�i
;

g3k D
1

4
3
�C �

�
pb.%/Tk.%/� pb.%/ Tk.%/

�
:
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Writing

ˇ̌
ˇ
Z T

0

Z
�

�
Tk.%/divu� Tk.%/divu

�
dxdt

ˇ̌
ˇ � kTk.%/� Tk.%/kL2.QT /kdivukL2.QT /; (294)

and realizing that

kTk.%/�Tk.%/kL1.QT / � kTk.%/�%kL1.QT /Ck%�Tk.%/kL1.QT /! 0 as k!1; (295)

we may use interpolation of L2 between L1 and L�C1 together with the boundedness
of the oscillations defect measure established in Lemma 282 to show

Z
QT

g1k dxdt ! 0 as k!1: (296)

On the other hand, by virtue of Theorem 4,

g2k � 0: (297)

Finally, we observe that there is ƒ D ƒ.pb/ > 0 such that

% 7! ƒ% log %� %pb.%/ and % 7! ƒ% log %C pb.%/ (298)

are convex functions on Œ0;1/. We have, by employing several times Theorem 2,

�4
3
�C �

�
lim
k!1

Z 


0

Z
�

g3k dxdt

D lim
k!1

Z 


0

Z
�

�
pb.%/Tk.%/� pb.%/ Tk.%/

�
dxdt D lim

k!1

Z 


0

Z
�

�
pb.%/%� pb.%/ %

�
dxdt

� lim
k!1

h
ƒ

Z 


0

Z
�

�
% log %� % log %

�
dxdt C

Z 


0

Z
�

�
pb.%/� pb.%/

�
% dxdt

� lim
k!1

h
ƒ

Z 


0

Z
�

�
% log %� % log %

�
dxdt C

Z 


0

Z
%<r

�
pb.%/� pb.%/

�
% dxdt

i

� .1C r/ƒ

Z 


0

Z
�

�
% log %� % log %

�
dxdt;

where we have used relation (295) in the first line, convexity of % 7! ƒ% log %�%pb.%/
in the second line, convexity of % 7! ƒ% log %Cpb.%/ in the last line, and the fact that
pb is nonnegative and vanishing at large arguments in the third line. Coming with
this information back to (293), we infer

Z
�

�
% log %� % log %

�
.
/ dx � c

Z 


0

Z
�

�
% log %� % log %

�
.
/ dxdt (299)

with some c > 0. Now the Gronwall lemma (cf. Theorem 21) says that necessarily
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Z
�

�
% log %� % log %

�
.
/ dx � 0:

Finally, since the function z! z log z is strictly convex on .0;1/, we have

% log %� % log % D 0 a. e. in .0; T /�� (300)

and

%n! % a.e. in .0; T /�� (301)

according to Theorem 3. With relation (301) at hand, we easily establish that

pel.%/ D pel.%/; pth.%/ D pth.%/; b.%/ D b.%/; B.%/ D B.%/; (302)

where b; B are defined in (134).
The reader will notice that in the case of elastic pressure, one can deduce (301)

immediately after (297). The analysis between formulas (298) and (299) is needed
in order to accommodate the locally compactly non monotone elastic pressure. At
this place the analysis hits the limits of the Lions-Feireisl method. The reader can
consult [30, Section 6.6] for more details and proofs.

8.8 Limit in the Thermal Energy Equation

Step 1: Strong convergence of the temperature outside vacua
By virtue of (259),

eth.#n/ * eth.#/ in L2.0; T IW 1;2.�//; (303)

consequently,

%neth.#n/ * %eth.#/ in L2.0; T IL
6�
�C6 .�//; (304)

where we have used the strong convergence of %n in L2.0; T IW �1;2.�/) established
in (269). Next, we evaluate the time derivative @t .%neth.#n// from the thermal energy
equation (244) in order to be able to employ Feiresl’s version of Lions-Aubin
theorem (see Theorem 12), and we establish

%neth.#n/! %eth.#/ (strongly) in L2.0; T IW �1;2.�//: (305)

The latter convergence in combination with (303) yields

%n.eth.#n//
2 * %

h
eth.#/

i2
in L1.QT /: (306)
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Writing

Z
�

%.eth.#n//
2 dx D

Z
�

.%� %n/.eth.#n//
2 dxC

Z
�

%n.eth.#n//
2 dx;

and employing estimate (259) together with (301) and (306), we deduce

Z T

0

Z
�

%
�
eth.#n/� eth.%/

�2
dxdt ! 0;

which implies

eth.#n/! eth.#/ a.e. in f.t; x/j%.t; x/ > 0g: (307)

As function eth admits an inverse function e�1th (since it is increasing according to
assumption (227)), we get

#n! Q# a.e. in f.t; x/j%.t; x/ > 0g; eth.Q#/ D eth.#/ a.e. in f.t; x/j%.t; x/ > 0g;
(308)

where Q# is the weak limit of the sequence #n established in (267).
Step 2: Renormalized thermal energy equation

The goal is now to pass to the limit in the thermal energy equation (244) and
get the thermal energy inequality (217)eraD0. The standard argument to achieve this
goal would be to multiply equation (244) by test function ' in class (217) and
integrate conveniently by parts before passing to the limit by using the already
established convergence. This procedure allows to pass to the limit n!1 (letting
appear eventually an inequality due to the lower weak semi-continuity of termR T
0

R
� S.rxun/ W rxun' dxdt , ' � 0) in all terms except term

R T
0

R
� divxq.#n/' dxdt DR T

0

R
�K.#n/�' dxdt with K.#n/ being bounded solely in L1.QT /. This bound is not

enough to guarantee the limit K.#/ to be a function but merely a measure.
To get around this difficulty, we shall first investigate the renormalized version

of the thermal energy equation: we multiply equation (244) by functions h!.#n/,
! 2 .0; 1/ introduced in (241).

Denoting

eth;!.#/ D

Z #

0

h!.z/cv.z/dz; K!.#/ D

Z #

0

h!.z/	.z/dz;

and testing by ' vanishing at t D T in class (217), i.e.,

' 2 C1
c .Œ0; T /IC

2.�//; rx' � nj.0;T /�@� D 0; ' � 0; (309)
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we obtain,

Z T

0

Z
�

�
%neth;!.#n/@t' C %neth;!.#n/un � rx'

�
dxdt C

Z T

0

Z
�

Kh.#n/�' dxdt

(310)

D

Z T

0

Z
�

h!.#n/#npth.%n/divxun' dxdt �
Z T

0

Z
�

h!.#n/S.rxun/ W rxun' dxdt

C

Z T

0

Z
�

h0!.#n/	.#n/jrx#nj
2' dxdt �

Z
�

%n;0eth;!.#n;0/'.0; �/ dx:

We now pass to the limit n ! 1 for fixed !. Before starting, we observe that the
family of functions h! , ! 2 .0; 1/ verifies

h! 2 C
2Œ0;1/; h!.0/ D 1; h! nonincreasing; (311)

lim
z!1

h!.z/ D 0; h
00
!.z/ h!.z/ � 2.h

0
!.z//

2 for all z � 0;

h! % 1 as ! ! 0C :

Writing

Z T

0

Z
�
h!.#n/pth.%n/#ndivxun' dxdt D

Z T

0

Z
�

�
pth.%n/ � pth.%/

�
h!.#n/#ndivxun' dxdt

C

Z T

0

Z
�
pth.%/h!.#n/#ndivxun' dxdt;

where ' 2 L1.QT /, we deduce from (301), (308), (267), assumptions (226)���=3,
(311), and estimates (252), (259), (266) that

h!.#n/#npth.%n/divxun * h!. Q#/ Q#pth.%/divxu in L1.QT /: (312)

We proceed in a similar way, to get

%neth;!.#n/ * %eth;!. Q#/; %neth;!.#n/un * %eth;!. Q#/u in L1.QT /: (313)

Since h! verifies (311), the function

R
2 3 .s; z/ 7!

(
h!.s/z2 if s � 0;
1 if s < 0;

is convex lower semicontinuous; consequently, we deduce from Theorem 2 that
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Z 


0

Z
�
h!.#/S.rxu/ W rxu' dxdt � lim inf

n!1

Z 


0

Z
�
h!.#n/S.rxun/ W rxun' dxdt

(314)
for any ' 2 L1.QT /, ' � 0.

The last term to be treated is the term containing K!.#n/: First, according
to (266), (212), (230)˛�2,

kK!.#n/kL1.QT /
� kK.#n/kL1.QT /

� c.M0;E0; S; F0; T / (315)

uniformly in n and !. Second, since

lim
z!1

K!.z/
K.z/ D 0;

we can use Theorem 1 to deduce that

K!.#n/ * K!.#/ in L1.QT /; (316)

where by virtue of the almost everywhere convergence established in (308)

K!.#/.t; x/ D K!. Q#.t; x// for a.a. .t; x/ 2 f.t; x/j%.t; x/ > 0g: (317)

With relations (312)–(316), we are ready to pass to the limit n ! 1 in
equation (310) and get

Z T

0

Z
�

�
%eth;!. Q#/@t' C %eth;!. Q#/u � rx'

�
dxdt C

Z T

0

Z
�
K!.#/�' dxdt (318)

�

Z T

0

Z
�

h!.Q#/#pth.%/divxu' dxdt�

Z T

0

Z
�

h!.Q#/S.rxu/ W rxu' dxdt�

Z
�

%0eth;!.#0/'.0; �/ dx

with any ' in class (309), where we have used also the fact that
R 

0

R
� h
0
!.#n/	.#n/

jrx#nj
2' dxdt has negative sign.

Step 3: Thermal energy inequality
The goal now is to pass to the limit ! ! 0 in (318). As h! % 1, we have

%eth;!. Q#/ * %eth. Q#/; %eth;!. Q#/u * %eth. Q#/u;

h!. Q#/ Q#pth.%/divxu * Q#pth.%/divxu; h!. Q#/S.rxu/ W rxu * S.rxu/ W rxu

weakly in L1.QT / as ! ! 0 by the Lebesgue dominated convergence theorem.
The most difficult term in this limit passage is term

R T
0

R
�K!.#/�' dxdt . We

observe that sequence fK!.#.t; x//g!!0 is increasing as ! ! 0 and uniformly
bounded in L1.QT / by virtue of (266). Consequently, by virtue of the monotone
convergence theorem and by (318), there is ‚ 2 L1.QT / such that
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K!.#.t; x//% ‚.t; x/ for a.a. .t; x/ 2 QT as ! ! 0: (319)

On the other hand, due to (317) and definition of K! , the value of ‚ is directly
calculable outside vacua, namely,

‚.t; x/ D K. Q#.t; x// for a.a. .t; x/ 2 f.t; x/j%.t; x/ > 0g: (320)

At this stage we set

#.t; x/ D K�1
�
‚.t; x/

�
: (321)

By virtue of (320)

#.t; x/ D Q#.t; x/ for a.a. .t; x/ 2 f.t; x/j%.t; x/ > 0g:

Passing to ! ! 0 with these observations at hand in (318), we get the required weak
formulation (217) of the thermal energy balance.
Step 4: Positivity of temperature and total energy balance

By virtue of Theorem 2,

� lnK!.#/ � �lnK!.#/: (322)

Moreover according to (230) and (241), K!.#n/ is equivalent to #n near 0, and the
same is true for lnK!.#n/ and ln#n. Therefore, relation (322) together with (257)
and (266) implies

k lnK!.#/kL2.QT /
� c uniformly with respect to ! 2 .0; 1/:

Moreover, ‚.t; x/ � K!.#/.t; x/ for a.a. .t; x/ 2 QT and at the same time ‚ 2
L1.QT /. Consequently,

ln‚ 2 L2.QT /:

After the analysis of behavior of K�1 near 0 and near 1 obtained with the help
of (230)˛�2, we get from (321)

ln# 2 L2.QT /; # 2 L
˛C1.QT /:

Finally, we obtain from the total energy balance (246) in the limit its weak
formulation (218) by virtue of (313), (301), and (263) and the last line in (269).

The procedure described above is very much related to the notion of biting limits
of bounded sequences in L1. The reader may consult [30, Sections 6.7.2–6.8.2] for
more details of the proofs and on these problems.
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9 Navier-Stokes-Fourier System in the Entropy Formulation

In this section we shall deal with the Navier-Stokes-Fourier system in the entropy
formulation, where the internal energy balance is replaced by the entropy balance:

@t%C divx.%u/ D 0; (323)

@t .%u/C divx.%u˝ u/Crxp.%; #/ D divxS.%; #;rxu/C %f; (324)

@t .%s.%; #//C divx.%s.%; #/u/C divx

�
q.%; #;rx#/

#

�
D �: (325)

We recall that the specific entropy s is related to the internal energy e and pressure
p by the Gibbs relation

ds D
1

#

�
de �

p

%2
d%
�
; (326)

where the pressure and internal energy obey (34). Entropy production rate � is given
by formula (10); recall

� D
1

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
: (327)

We consider Newtonian fluids (12) with the heat flux given by Fourier’s law (13),
specifically,

S.%; #;rxu/ D �.%; #/T.rxu/C �.%; #/divxuI; T.rxu/ D rxuC .rxu/T �
2

3
divxuI;

(328)

q D �	.%; #/rx#; (329)

where �; �; 	 obey (14)–(15). Equations (323)–(327) are supplemented with initial
conditions

%.0; �/ D %0; %u.0; �/ D %0u0; %s.%; #/.0; �/ D %0s.%0; #0/; %0 � 0; #0 > 0; (330)

and no-slip boundary conditions for velocity (20) and zero heat transfer condi-
tions (21) on the boundary, recall

q � nj.0;T /�@� D 0; (331)

uj@� D 0: (332)

In [33], the authors have introduced a concept of weak solution to the Navier-
Stokes-Fourier system (323)–(332). This concept postulates, in agreement with the
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second law of thermodynamics, that the entropy production rate � is a nonnegative
measure,

� �
1

#

�
S.#;rxu/ W rxu �

q.#;rx#/ � rx#
#

�
: (333)

With this postulate, equation (325) becomes inequality. In order to compensate the
loss of information, we may postulate that the total energy of the system in the
volume � is conserved, namely,

d

dt

Z
�

�
1

2
%juj2 C %e.%; #/

�
dx D

Z
�
%f � u dx: (334)

Putting together equations (325) and (334), we obtain the so-called dissipation
balance

d

dt

Z
�

�
1

2
%juj2 CH

#
.%; #/ � @%H#.%; #/.% � %/ �H#.%; #/

�
dx (335)

C

Z
�

#

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt �

Z T

0

Z
�
%f � u dxdt;

where we have taken into account inequality (333) and conservation of mass (323).
In this inequality % and # are positive constants and H

#
D %e � #s is the Helmoholtz

function introduced in (29).
On the other hand, if .%; #;u/ % > 0, # > 0 is a trio of smooth functions

satisfying (323)–(332), one may derive, at least formally, the so-called relative energy
identity,

Z
�

�
1

2
%ju � Uj2 CE.%; #jr;‚/

�
.
; �/ dx (336)

C

Z 


0

Z
�
‚
S.%; #;rxu/

#
W rxu dxdt �

Z 


0

Z
�
‚

q.%; #;rx#/
#2

W rx# dxdt

D

Z
�

�
1

2
%0ju0 � U.0; �/j2 CE.%0; #0jr.0; �/;‚.0; �//

�
dx

C

Z 


0

Z
�
S.%; #;rxu/ W rxU dxdt �

Z 


0

Z
�

q.%; #;rx#/
#

� rx‚ dxdt

C

Z 


0

Z
�
%
�
@tUC u � rxU

�
� .U � u/ dxdt

C

Z 


0

Z
�
%
�
s.r;‚/ � s.%; #/

��
@t‚C u � rx‚

�
dxdt
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C

Z 


0

Z
�

h �
1 �

%

r

�
@tp.r;‚/ � %u �

rxp.r;‚/

r

i
dxdt

�

Z 


0

Z
�
p.%; #/divxU dxdt C

Z 


0

Z
�
%f � .u � U/ dxdt;

where we have denoted

E.%; # jr;‚/ D H‚.%; #/ � @%H‚.r;‚/.% � r/ �H‚.r;‚/;

H‚.%; #/ D %e.%; #/ �‚%s.%; #/:

In (336), .r;‚/ is a couple of positive sufficiently‘ smooth functions on Œ0; T � � �,
and U is a sufficiently smooth vector field with compact support in Œ0; T � ��.

Conformably to (333), for a weak solution .%; #;u/, the identity (336) has to be
replaced by an inequality with the inequality sign�. This inequality is usually called
the relative energy inequality. Notice that the dissipation balance (335) is a particular
case of the relative energy inequality, where r D %, ‚ D # , and U D 0.

The material of this section is based on the monograph [33, Chapters 1–3] for the
notion of (finite energy) weak solutions and on papers [34] for the notion of relative
energy functional and dissipative solutions [70] for the notion of bounded energy
weak solutions.

9.1 Definition of Finite Energy Weak Solutions

Definition 8. Let � be a bounded domain, and let the initial functions .%0;u0; #0/ satisfy
condition

%0 W �! Œ0;C1/; u0 W �! R
3; #0 W �! .0;1/; (337)

where

%0u0 D 0 and %0u20 D 0 a.e. in the set fx 2 �j%0.x/ D 0g;

with finite total energy E0 D
R
�.

1
2%0u

2
0C%0e.%0; #0// dx, finite mass 0 < M0 D

R
� %0 dx,

and
R
� %0js.%0; #0/j dx 	 S0 <1.

We shall say that the trio .%; #;u/ is a finite energy weak solution to the Navier-Stokes-
Fourier system (323)–(332) emanating from the initial data .%0; #0;u0; / if:

(a)

%; # 2 L1.0; T IL1.�//; % � 0; # > 0 a.e. in .0; T / ��; p.%; #/ 2 L1.QT /;

(338)

u 2 L2.0; T IW 1;q
0 .�//I %u;

1

2
%u2; %e.%; #/; %s.%; #/ 2 L1.0; T IL1.�//; q > 1;
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%s.%; #/u; S.%; #;rxu/;
1

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
2 L1.QT /I

(b) % 2 Cweak.Œ0; T �IL
1.�// and equation (323) is replaced by a family of integral identities

Z
�
%' dx

ˇ̌
ˇ

0
D

Z 


0

Z
�

�
%@t' C %u � rx'

�
dxdt (339)

for all 
 2 Œ0; T � and for any ' 2 C1c .Œ0; T � ��/;
(c) %u 2 Cweak.Œ0; T �IL

1.�IR3// and momentum equation (324) is satisfied in the sense of
distributions, specifically

Z
�
%u � ' dx

ˇ̌
ˇ

0
D (340)

Z 


0

Z
�

�
%u � @t' C %u˝ u W rx' C p.%; #/divx' � S.%; #;rxu/ W rx' C %f � ' dx

�
dt

for all 
 2 Œ0; T � and for any ' 2 C1c .Œ0; T � ��IR
3/;

(d) the entropy balance (325), (333) is replaced by a family of integral inequalities

�

Z
�
%s.%; #/' dx

ˇ̌
ˇ

0
C

Z 


0

Z
�

'

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt

(341)

� �

Z 


0

Z
�

�
%s.%; #/@t' C %s.%; #/u � rx' C

q.%; #;rx#/ � rx'
#

�
dxdt

for a.a. 
 2 .0; T / and for any ' 2 C1.Œ0; T � ��/, ' � 0;
(e) the balance of total energy (334) in the volume � is verified in the weak sense

�

Z T

0

Z
�

�
1

2
%juj2 C %e.%; #/

�
 0.t/ dxdt D

Z
�
 .0/

�
1

2
%0ju0j2 C %0e.%0; #0/

�
dx

(342)

C

Z T

0
 .t/

Z
�
%f � u dxdt for all  2 C1c Œ0; T /:

Definition 9. Weak solution whose density-velocity component .%;u/ satisfies the continu-
ity equation in the renormalized sense (116)–(117) with f D 0, with any test function b
belonging to (118), is called renormalized weak solution.

Remark 14. 1. We deduce from (89) and (88) that the total energy balance (342) is
equivalent with the formulation

Z
�

�
1

2
%juj2 C %e.%; #/

�
dx
ˇ̌
ˇ

0
D

Z 


0

Z
�
%f � u dxdt for a.a. 
 2 .0; T /: (343)
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2. We deduce from (341) and (77), (85) that

�

Z
�
Œ%s.%; #/��.
; x/ dx C

Z
�
%0s.%0; #0/� dx C ��

h
Œ0; 
�

i
(344)

D �

Z 


0

Z
�

�
%s.%; #/u � rx�C

q.%; #;rx#/ � rx�
#

�
dxdt for a.a. 
 2 .0; T /;

where � 2 C1.�/, � � 0, and �� is a nonnegative Radon measure on Borel sets of Œ0; T �.
Likewise, we deduce from (90), (95), and (341) that

�

Z
�
Œ%s.%; #/�.
; x/ dx C

Z
�
%0s.%0; #0/ dx C �

h
Œ0; 
� ��

i
D 0 for a.a. 
 2 .0; T /;

(345)
where � is a nonnegative Radon measure on Borel sets of Œ0; T � �� satisfying

�
h
Œ0; 
� ��

i
�

Z 


0

Z
�

1

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt:

3. Putting together (343) and (345) we get the so-called dissipation identity in the form

Z
�

�
%juj2 CH

#
.%; #/

�
dx
ˇ̌
ˇ

0
C �

h
Œ0; 
� ��

i
D

Z 


0

Z
�
%f � u dxdt (346)

for a.a. 
 2 .0; T / and # D const > 0. Similarly, by the same token involving (96),

Z
�

�
%juj2 CH

#
.%; #/

�
dx
ˇ̌
ˇ

z
C �

h
Œz; 
 � ��

i
D

Z 


z

Z
�
%f � u dxdt (347)

for a.a. 0 < z < 
 2 .0; T / and # D const > 0, where

�
h
Œz; 
 � ��

i
�

Z 


z

Z
�

1

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt:

4. According to (94) applied to the entropy balance (341), the right and left instantaneous
values Œ%s.%; #/�.
C/ and Œ%s.%; #/�.
�/ defined in (68)–(69) are continuous linear
functionals on C.�/ satisfying

Œ%s.%; #/�.
C/ � Œ%s.%; #/�.
�/: (348)

5. We deduce from (94) (with ' D 1) applied to the entropy balance (341) that the function
of instantaneous values of global entropy

Œ0; T � 3 
 7! inst
h Z

�
%.�; x/s.#.�; x/; %.�; x// dx

i
.
/ (349)

is a nondecreasing function (with a countable number of jumps). Likewise we deduce
from (72)–(73) that the instantaneous values of the total energy
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 3 Œ0; T � D E.
/ D inst
h Z

�

�
1

2
%juj2.�; x/C Œ%e.%; #/�.�; x/

�
dx
i
.
/ (350)

yield an absolutely continuous function.
6. In the important case of the potential forces f.t; x/ D rxF .t; x/, it is convenient to

replace in the definition of finite energy weak solutions the total energy balance (342)
with

�

Z T

0

Z
�

�
1

2
%juj2C%e.%; #/�%F

�
 0.t/ dxdt D

Z
�
 .0/

�
1

2
%0ju0j2C%0e.%0; #0/�%0F

�
dx

(351)
for all  2 C1c Œ0; T / which is equivalent to

Z
�

�
1

2
%juj2 C %e.%; #/ � %F

�
dx
ˇ̌
ˇ

0
D 0 for a.a. 
 2 .0; T /: (352)

If F 2 L1.0; T IW 1;1.�// and %u 2 Cweak.Œ0; T �IL
q.�IR3// with some q > 1, all

formulations (342), (351), (343), and (352) are equivalent.
7. If one considers problem (323)–(331) with slip boundary condition (22), one must modify

adequately the Definition 8 of finite energy weak solutions at two points: (1) In the
function spaces (338), velocity u must belong to the space L2.0; T IW 1;q.�IR3//, q > 1
with the normal trace u � nj.0;T /�@� D 0 (and not to L2.0; T IW 1;q

0 .�IR3//). (2) Test
functions in the weak formulation of the momentum equation must belong to class

' 2 C1c .Œ0; T � ��IR
3/; ' � nj.0;T /�@� D 0: (353)

Other items in the definition remain without changes.

Considering the entropy production rate as a nonnegative measure satisfy-
ing (333) transforms the balance of entropy identity (325) into the variational inequal-
ity (341). It may considerably extend the number of weak solution. To compensate
this loss of information, we require that the weak solution obeys the global energy
conservation (342). This makes from Definition 8 admissible definition. Indeed, any
sufficiently regular weak solution is a classical solution as stated in the following
lemma whose proof can be found in [33, Section 2].

Lemma 13. Let the trio .%; #;u/ be a finite energy weak solution to problem (323)–(332) in
class

.%; #;u/ 2C1.QT / � C
1.QT / \ C.Œ0; T �IC

2.�//

� C1.QT IR
3/ \ C.Œ0; T �IC2.�IR3//; % > 0; # > 0:

Then .%; #;u/ is a classical solution to the Navier-Stokes-Fourier system. In particular, it
satisfies all variants of energy balance laws (5), (7), (9)–(10) as identities on QT .
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Lemma 13 remains valid if we replace the homogenous Dirichlet boundary
conditions (332) with the slip or Navier’s slip boundary conditions (22) or (23).

9.2 Relative Energy Functional

We shall now define dissipative solutions. This definition is inspired by iden-
tity (336). We introduce relative energy as a function of four variables as follows:

Œ0;1/ � .0;1/3 3 .%; #; r;‚/ 7! E.%; # jr;‚/ 2 R; (354)

E.%; # jr;‚/ D H‚.%; #/ � @%H‚.r;‚/.% � r/ �H‚.r;‚/;

where

H‚.%; #/ D %e.%; #/ �‚%s.%; #/:

If the thermodynamic stability conditions (30) are satisfied, then the function E.�j�/ has
a remarkable property of a “quasi-distance”

E.%; #jr;‚/ � 0 and E.%; #jr;‚/ D 0 , .%; #/ D .r;‚/: (355)

Indeed, we deduce this property from the splitting

E.%; #jr;‚/ D ŒH‚.%; #/ �H‚.%;‚/�C ŒH‚.%;‚/ � @%H‚.r;‚/.% � r/ �H‚.r;‚/�;

(356)
by virtue of relations (32)–(33). We may introduce functional

E.%; #;u j r;‚;U/ D
Z
�

�1
2
.%ju � Uj2 CE.%; #jr;‚/

�
dx; (357)

where .%; #;u/, % � 0, # > 0 are integrable functions on QT representing the state
of the gas and .r;‚;U/ are arbitrary integrable functions with positive r and ‚ a.e.
in QT . According to property (355), if the thermodynamic stability conditions (378)
are satisfied, then

E.%; #;u j r;‚;U/ � 0 and E.%; #;u j r;‚;U/ D 0, .%; #;u/ D .r;‚;U/: (358)

Consequently the functional E is able to measure the “distance” between a state
.%; #;u/ of the gas and arbitrary trio .r;‚;U/ with positive r and ‚. In fact, under
the hypotheses of the thermodynamic stability, the relative energy function E.�j�/

obeys stronger coercivity properties than (355). They are described in the following
lemma:
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Lemma 14 (see [33, Proposition 3.2 and Lemma 5.1], [44, Lemma 4.1]). Let the con-
stitutive relations for e; p; s obey regularity (34), Gibbs relation (326), and thermodynamic
stability conditions (30). Let

0 < r < r; 0 < ‚ < ‚

be given constants.
Then there exists c D c.r; r;‚;‚/ > 0 such that for all .%; #/ 2 Œ0;1/� .0;1/ and all

.r;‚/ 2 Œr; r� � Œ‚;‚�

E.%; #jr;‚/ � c

8̂
<
:̂
j% � r j2 C j# �‚j2 if .%; #/ 2 Oess

%e.%; #/C‚js.%; #/j C 1 if .%; #/ 2 Ores;

(359)

where Oess, Ores are essential and residual subsets in the density-temperature two-
dimensional phase space defined by

Oess D Œr=2; 2r� � Œ‚=2; 2‚�; Ores D Œ0;1/ � .0;1/ nOess:

Proof of Lemma 14 is based on the thermodynamic stability conditions expressed
in the form (32), (33) and on the definition of function H‚ (see 354).

9.3 Bounded Energy Weak Solutions

The concept of finite energy weak solutions is not convenient for investigation of
weak solutions on unbounded domains. In fact, the finite energy weak solutions
are not able to track the conditions at infinity (24). If the thermodynamic stability
conditions are satisfied, then E.%; #j%1; #1/ D 0 if and only if .%; #/ D .%1; #1/

according to the property (355) (at least provided %1 > 0, #1 > 0). The
conditions (24) will be then verified in the sense that ŒE.%; #;uj%1; #1;u1/�.
/ is
bounded for a.a. 
 2 .0; T /. We shall incorporate this property into the definition of
weak solutions. Such weak solution will be called bounded energy weak solution.

Definition 10. Let � be a bounded or an unbounded domain, and let conditions at infinity
.%1; #1;u1/ specified in (24) be given in the case of unbounded �. Suppose that initial
data verify

%0 W �! Œ0;C1/; u0 W �! R
3; #0 W �! .0;1/;

with

%0u0 2 L1loc.�/; %0u0 D 0 and %0u20 D 0 a.e. in the set fx 2 �j%0.x/ D 0g;

%0 2 L
1
loc.�/; %0s.%0; #0/ 2 L

1
loc.�//;Z

�

�
%0ju0 � uj2 CH

#
.%0; #0/ � @%H#.%; #/

�
%0 � %

�
�H

#
.%; #/

�
dx <1;
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where we have set % D %1, # D #1, u D u1 if � is unbounded, and %, # positive
numbers, u D 0 in the case of a bounded domain.

The trio .%; #;u/ is a bounded energy weak solution to problem (323)–(332) – with
conditions at infinity (24), if � is unbounded – provided:

(a)

%; # 2 L1.0; T IL1loc.�//; % � 0; # > 0 a.e. in .0; T /��; p.%; #/ 2 L1.0; T IL1loc.�//;

(360)

u 2 L2.0; T IW 1;q
0;loc.�//I %u;

1

2
%u2; %e.%; #/; %s.%; #/ 2 L1.0; T IL1loc.�//; q > 1;

%s.%; #/u; S.%; #;rxu/ 2 L1.0; T IL1loc.�//;

1

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
2 L1.QT /;

H
#
.%; #/�@%H#.%; #/

�
%�%

�
�H

#
.%; #/2L1.0; T IL1.�//; %ju�uj22L1.0; T IL1.�//I

(b) % 2 Cweak.Œ0; T �IL
1.K// for any compact subset K � �, and weak formulation (339)

of the continuity equation holds;
(c) %u 2 Cweak.Œ0; T �IL

1.KIR3// for any compact subset K � �, and weak formula-
tion (340) of the momentum equation is verified;

(d) the weak formulation (341) of the entropy balance is satisfied;
(e) the balance of total energy is replaced by the weak formulation of the dissipation

inequality (335) in the integral form,

Z
�

�1
2
%ju � uj2 CH

#
.%; #/ � @%H#.%; #/

�
% � %

�
�H

#
.%; #/

�
dx
ˇ̌
ˇ

0

(361)

C

Z 


0

Z
�

1

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt �

Z 


0

Z
�
%f � u dxdt

for a.a. 
 2 .0; T /.

Remark 15. 1. In view of the dissipation balance (346) and continuity equation (339), any
finite energy weak solution is a bounded energy weak solution for bounded domains. It is
not known whether the opposite statement is true.

2. If one considers the slip boundary conditions (22), one has to modify accordingly
the definition: Condition u 2 L2.0; T IW

1;q
0;loc.�// in (360) must be replaced by u 2

L2.0; T IW
1;q

loc .�//, u � nj.0;T /�@� D 0, and the test function ' in the weak formulation
of the momentum equation must be taken in class (353).
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9.4 Dissipative Solutions

Definition 11. We say that the triplet .%; #;u/ is a dissipative solution to the Navier-Stokes-
Fourier system (323)–(332) if it belongs to class (338) and if it satisfies relative energy
inequality

E.%; #;u j r;‚;U/
ˇ̌
ˇ

0
C

Z 


0

Z
�
‚
S.%; #;rxu/

#
W rxu dxdt�

Z 


0

Z
�
‚

q.%; #;rx#/
#2

W rx# dxdt

(362)

�

Z 


0

Z
�
S.%; #;rxu/ W rxUdxdt �

Z 


0

Z
�

q.%; #;rx#/
#

� rx‚ dxdt

C

Z 


0

Z
�
%
�
@tUC u � rxU

�
� .U � u/ dxdt

C

Z 


0

Z
�
%
�
s.r;‚/ � s.%; #/

��
@t‚C u � rx‚

�
dxdt

C

Z 


0

Z
�

h �
1 �

%

r

�
@tp.r;‚/ � %u �

rxp.r;‚/

r

i
dxdt

�

Z 


0

Z
�
p.%; #/divxU dxdt C

Z 


0

Z
�
%f � .u � U/ dxdt

for a.a. 
 2 .0; T / with any

.r;‚;U/ 2 C1c .Œ0; T � ��IR
5/; r > 0; ‚ > 0; Uj.0;T /�@� D 0: (363)

Remark 16. 1. If one considers the slip boundary conditions (22) in place of the homoge-
nous Dirichlet boundary conditions (20), the definition must be modified: we must replace
condition Uj.0;T /�@� D 0 in (363) with the condition U � nj.0;T /�@� D 0.

2. If one considers unbounded domains with conditions (24) at infinity with u1 D 0 (for
simplicity) and with homogenous boundary conditions (332), it is necessary to modify the
definition as follows: Inequality (362) remains as it stays, but one must replace (363) by

r � %1; ‚ � #1 2 C
1
c .Œ0; T � ��/; r > 0; ‚ > 0; Uj@� D 0:

The reader can consult [70] to find more details about the dissipative solutions and relative
energy inequality in the situations described in items 1. and 2. above.

Bounded energy weak solutions in the sense of Definition 8 are dissipative solutions
under mild assumptions on constitutive laws and transport coefficients. This is
subject of the following theorem:
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Theorem 39. Let � be a bounded domain, and let .%; #;u/ be a bounded energy weak
solution to the Navier-Stokes-Fourier system (323)–(332) in the sense of Definition 10. Then
.%; #;u/ is a dissipative solution; in particular it satisfies relative energy inequality (362).

Remark 17. 1. The reader has noticed that relations (323)–(332) include implicitly cer-
tain regularity assumptions and sign assumptions on the constitutive laws for p, e
(namely, (34)) and transport coefficients �, �, 	 (namely, (14)–(15)).

2. Theorem 39 holds true regardless whether thermodynamic stability conditions are sat-
isfied. However, it becomes a useful and powerful tool of analysis especially in the
case when the thermodynamic stability conditions are satisfied. Indeed, relative energy
inequality (362) governs the evolution of the relative energy functional E.%; #;ujr;‚;U/.
If the thermodynamic stability conditions are satisfied, the functional E.%; #;ujr;‚;U/
measures the “distance” between the weak solution .%; #;u/ and other state .r;‚;U/
of the fluid by means of Lemma 14. Due to this fact, Theorem 39 has many potential
applications. In this chapter of the handbook, we will mention two of them that are directly
related to the existence theory: (1) stability and weak-strong uniqueness and (2) longtime
behavior. There are other applications, e.g., investigation of various singular limits to the
complete Navier-Stokes-Fourier system that goes far beyond the scope of this chapter
(see, e.g., [35, 38] and monograph [33]).

3. According to Theorem 39, if � is a bounded domain, then any bounded energy weak
solution is a dissipative solution. This statement is not known to be true for the bounded
energy weak solution on unbounded domains. However, under certain additional structural
assumptions on the constitutive laws, one can construct bounded energy weak solutions
that are dissipative. This questions will be discussed later in more details.

Proof of Theorem 39. If we take in the continuity equation (339) as test function ' D jUj
2

2 ,
we obtain the identity

Z
�
%
jUj2

2
dx
ˇ̌
ˇ

0
D

Z 


0

Z
�
%U �

�
@tUC u � rU

�
dxdt: (364)

Momentum equation (340) with the test function ' D U reads

�

Z
�
%u�Udx

ˇ̌
ˇ

0
D�

Z 


0

Z
�

h
%u�.@tUCu�rU/Cp.%; #/divxU�S.%; #;ru/ W rUC%U�f

i
dxdt:

(365)
Taking in the entropy inequality (341) ' D ‚ as test function, we obtain

�

Z
�
%s.%; #/‚dx

ˇ̌
ˇ

0
C

Z 


0

Z
�

‚

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt

(366)

� �

Z 


0

Z
�

h
%s.%; #/.@t‚C u � r‚/C

q.%; #;r#/ � r‚
#

i
dxdt:

Summing up energy identity (343) with identities (364), (365) and with the inequality (366),
we arrive at the inequality
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Z
�

h%
2
ju � Uj2 CH‚.%; #/

i
dx
ˇ̌
ˇ

0

(367)

C

Z 


0

Z
�

‚

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt

�

Z 


0

Z
�
S.%; #;ru/ W rU �

q.%; #;r#/ � r‚
#

dxdt

C

Z 


0

Z
�
%
�
@tUC u � rU

�
� .U � u/ dxdt

�

Z 


0

Z
�
%s.%; #/.@t‚C u � r‚/ dxdt

�

Z 


0

Z
�
p.%; #/divxUdxdt C

Z 


0

Z
�
%f � .u � U/ dxdt:

Due to the Gibbs relation (326),

a@%Hb.a; b/ �Hb.a; b/ D p.a; b/:

Consequently,

Z
�

�
r@%H‚.r;‚/ �H‚.r;‚/

�
dx
ˇ̌
ˇ

0
D

Z 


0

Z
�
@tp.r;‚/ dxdt

for a.a. 
 2 .0; T /.
Further, continuity equation (339) with test function �@%H‚.r;‚/ yields

�

Z
�
%@%H‚.r;‚/dx

ˇ̌
ˇ

0
D

�

Z 


0

Z
�
%
�
@t @%H‚.r;‚/C u � rx@%H‚.r;‚/

�
dxdt;

where, by the Gibbs relation (326),

@y@%Hb.a; b/ D
1

a
@yp.a; b/ � s.a; b/@yb:

Whence adding to the left-hand side of (367) the term

Z
�

h
� %@%H‚.r;‚/C r@%H‚.r;‚/ �H‚.r;‚/

i
dx
ˇ̌
ˇ

0
;
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we arrive at the inequality

Z
�

h%
2
ju � Uj2 CH‚.%; #/ � @%H‚.r;‚/.% � r/ �H‚.r;‚/

i
dx
ˇ̌
ˇ

0

(368)

C

Z 


0

Z
�

‚

#

�
S.%; #;rxu/ W rxu �

q.%; #;rx#/ � rx#
#

�
dxdt

�

Z 


0

Z
�
S.%; #;ru/ W rU �

q.%; #;r#/ � r‚
#

dxdt

C

Z 


0

Z
�
%
�
@tUC u � rU

�
� .U � u/ dxdt

C

Z 


0

Z
�
%
�
s.r;‚/ � s.%; #/

�
.@t‚C u � r‚/ dxdt

C

Z 


0

Z
�

�
1 �

%

r

�
@tp.r;‚/dxdt �

Z 


0

Z
�
p.%; #/divU dxdt

�

Z 


0

Z
�
%u �
rxp.r;‚/

r
dxdt C

Z 


0

Z
�
%f � .u � U/ dxdt:

Theorem 39 is proved.

9.5 Constitutive Relations and Transport Coefficients for the
Existence Theory

In the above setting, we will be able to build up existence theory under certain
assumptions on constitutive laws on pressure, internal energy, and transport coeffi-
cients that are listed in the sequel. The reader is advised to confront these conditions
with the physically motivated constraints due to statistical mechanics exposed
in (47)–(50), (51), due to thermodynamic stability conditions exposed in (58)–(59),
and due to the physical transport properties of the fluid exposed in (16)–(18).

(i) Pressure, internal energy, and specific entropy

p.%; #/ D #�=.��1/P

�
%

#1=.��1/

�
C
a

3
#4; a > 0; � > 1; (369)

where

P 2 C1Œ0;1/; P .0/ D 0; P 0.Z/ > 0 for all Z � 0 (370)

0 <
�P .Z/ � P 0.Z/Z

Z
< c for all Z > 0; (371)
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lim
Z!1

P .Z/

Z�
D P1 > 0: (372)

The internal energy must write

e.%; #/ D
1

� � 1

#�=.��1/

%
P

�
%

#1=.��1/

�
C a

#4

%
; (373)

and the formula for (specific) entropy reads

s.%; #/ D S

�
%

#1=.��1/

�
C
4a

3

#3

%
; (374)

where

S 0.Z/ D �
1

� � 1

�P .Z/ � P 0.Z/Z

Z2
< 0: (375)

(ii) Transport coefficients

�; � 2 C1Œ0;1/ \ L1.0;1/; �0 2 L1.0;1/; (376)

�.1C #ˇ/ � �.1C #ˇ/; 0 � �.#/ � �.1C #ˇ/;

	 2 C1Œ0;1/; 	.1C #3/ � 	.#/ � 	.1C #3/; (377)

where �;�; �; 	; 	 are positive constants.

It should be underlined that pressure and internal energy defined through formu-
las (369)–(375) verify the thermodynamic stability conditions, namely,

@p.%; #/

@%
> 0;

@e.%; #/

@#
> 0 for all %; # > 0: (378)

Recall that these conditions can be rewritten in terms of the Helmoltz function via
formulas

@2%H#.%; #/ D
1

%

@p.%; #/

@%
; @#H#.%; #/ D %

# � #

#

@e.%; #/

@#
(379)

with any # > 0, meaning that

% 7! H
#
.%; #/ is strictly convex, (380)

# 7! H
#
.%; #/ attains its global minimum at # D #: (381)



Weak Solutions for the Compressible Navier-Stokes Equations: Existence,. . . 119

9.6 Existence of Weak Solutions

We shall present two existence theorems for weak solutions. The first one deals with
� D 5=3 (this case corresponds to the monoatomic gas) and ˇ is allowed to vary in a
certain range:

Theorem 40 (see [33, Theorems 3.1 and 3.2] reproved in Feireisl, Pražák [44, The-
orem 4.3]). Let � � R3 be a bounded domain of class C2;� , � 2 .0; 1/ and let
f 2 L1.QT IR

3/. Suppose that the thermodynamic functions p, e, and s satisfy hypothe-
ses (369)–(375) and that the transport coefficients �, �, and 	 obey (376), (377), where

� D 5=3; ˇ 2 .2=5; 1�:

Finally, assume that the initial data (330) verify (337). Then the complete Navier-Stokes-
Fourier system (323)–(332) admits at least one renormalized finite energy weak solution with
the following additional properties:

u 2 Lq.0; T IW 1;p.�IR3// with q D
6

4 � ˇ
; p D

18

10 � ˇ
; (382)

% 2 C.Œ0; T �IL1.�// \ L1.0; T IL�.�// \ Lq.QT / with some q > �; (383)

%u 2 L1.0; T IL
2�
�C1 .�// \ Cweak.Œ0; T �IL

2�
�C1 .�//; (384)

ln#; #ˇ 2 L2.0; T IW 1;2.�//; # 2 L1.0; T IL4.�//; ˇ 2 Œ0; 3=2�; (385)

S.#;rxu/ 2 Lq.QT IR
9/ with some q > 1: (386)

There holds

ess lim
t!0C

Z
�
%s.%; #/�.x/ dx �

Z
�
%0s.%0; #0/� dx; � 2 C1c .�/; � � 0: (387)

If, moreover, #0 2 W 1;1.�/, then

ess lim
t!0C

Z
�
%s.%; #/�.x/ dx D

Z
�
%0s.%0; #0/� dx; � 2 C1c .�/:

In the second variant of the existence theorem, we allow � > 3=2 and fix ˇ D 1.

Theorem 41 (see [70, Theorems 2.1 and 2.2]). Let � � R3 be a bounded domain of class
C2;� , � 2 .0; 1/ and let f 2 L1.QT IR

3/. Suppose that the thermodynamic functions
p, e, s satisfy hypotheses (369)–(375) and that the transport coefficients �, �, and 	

obey (376), (377), where

� > 3=2; ˇ D 1:



120 A. Novotny and H. Petzeltová

Finally, assume that the initial data (330) verify (337). Then the complete Navier-Stokes-
Fourier system (323)–(332) admits at least one renormalized bounded and finite entropy weak
solution with further properties (383)–(387) and with

u 2 L2.0; T IW 1;2.�//: (388)

Remark 18. 1. The conclusion of Theorems 40 and 41 is valid under the same assumptions
also for bounded Lipschitz domains as one can verify by using the techniques introduced
for this purpose by Kukucka [73] and Poul [94].

2. One can consider the same problem (323)–(332) with the complete slip (22) boundary
conditions for the velocity (instead of uj.0;T /�@� D 0) on a bounded domain. After the
necessary appropriate modifications in the definition of weak solutions exposed in item 7
of Remark 14, one can prove their existence under the same assumptions on the regularity
of the domain, initial data, external force, constitutive relations, and transport coefficients
as in Theorems 40 and 41. The solutions constructed in this way enjoy all additional
properties mentioned in Theorems 40, resp., 41, according to the case. The reader can
consult [33, Chapter 3] for the details.

3. Definition of weak solutions introduced through (337)–(342) and investigated in Theo-
rems 40 and 41 relies essentially on the fact that the fluid system must be mechanically
and thermally isolated (meaning that u �nj@�, q �nj@� D 0). If in the boundary conditions
one of these assumptions is violated, the theory cannot be applied.

4. The system (323)–(332) on an unbounded domain with condition (24) admits under
certain circumstances a bounded energy weak solution. For example, if in (24), %1 >

0; #1 > 0; and u1 D 0, it is known that the system (323)–(332) admits on any
unbounded uniformly Lipschitz domain a bounded energy weak and dissipative solution
under the same assumptions on constitutive laws p, e and transport coefficients �, � , 	,
as in Theorems 40, resp.,41 provided f D rxF , F 2 L1.0; T IW 1;1 \ W 1;1.�IR3//

(see [50, Theorem 2.5 and Remarks 2.5, 2.6]). The same problem on unbounded domains
with the complete slip conditions is investigated in the same paper in Sect. 6.

Remark 19. 1. Existence theorems of type Theorem 40 and Theorem 41 are known also to
be true for the phenomenological constitutive laws of real gasses (compressible fluids) of
general form (36), (37). Indeed, the compactness result established in [32, Theorem 3.1]
in combination with the construction of weak solutions suggested in [33, Chapter 3] and
existence theorem proved in [58, Theorem 3.1] can be summarized in the following way.

Assumptions on the constitutive equations and the transport coefficients are the
following:
(1) Pressure and internal anergy take form

p.%; #/ D pF .%; #/C
a

3
#4; a > 0; (389)

e.%; #/ D eF .%; #/C a
#4

%
; (390)

where pF , eF satisfy Gibbs’ relation (8) for a certain entropy sF . Moreover, we
impose the hypothesis of thermodynamic stability
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@pF .%; #/

@%
> 0;

@eF .%; #/

@#
> 0 for all %; # > 0: (391)

Further, we suppose pF 2 C2..0;1/2/ \ C1.Œ0;1/2/,

lim
%!0C

pF .%; #/ D 0 for any # > 0; lim
#!0C

pF .%; #/ D pc.%/ for any % > 0;

(392)
with the “cold pressure” pc satisfying

p%� � pc.%/ � p.1C %/
� ; p > 0: (393)

In addition, we suppose

ˇ̌
ˇ̌@pF .%; #/

@#

ˇ̌
ˇ̌ � c �1C %�=3 C #3� for all 0 < # < ‚c.%/; (394)

where % 7! ‚c.%/ is a continuous curve satisfying

‚c.%/ � c%
�=4 � 1 for a certain c > 0: (395)

As for the internal energy eF , we assume

eF .%; #/ � 0; lim
Œ%;#�!Œ0;0�

eF .%; #/ D 0; (396)

cv.%; #/ 	
@eF .%; #/

@#
2 C.Œ0;1/2/; (397)

0 < c.1C #/! � cv.%; #/ � c.1C #/
! for all %; # > 0: (398)

(2) Transport coefficients
The viscous stress S.#;rxu/ is given by Newton’s rheological law (12), where

� D �.#/; � D �.#/ 2 W 1;1Œ0;1/,

0 < �.1C #/ˇ � �.#/ � �.1C #/ˇ; (399)

0 < �.1C #/ˇ � �.#/ � �.1C #/ˇ; (400)

j�0.#/j� � .1C #/ˇ�1; j�0.#/j� � .1C #/ˇ�1;

for all # 2 Œ0;1/. The heat flux q.#;rx#/ is given by Fourrier’s law (13) where
	 2 C1Œ0;1/ verifies

	.1C #/˛ � 	.#/ � 	.1C #/˛: (401)

In the above, �;�; �; �; 	; 	 are positive constants.
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Under assumptions (389)–(401) with

� > 3=2; 0 � ˇ � 4=3; ˛ �
16

3
� ˇ; 0 � ! � 1=2;

or

� > 3; �4 � ˇ � 0; ˛ �
16

3
� ˇ; 0 � ! � 1=2;

there is a finite energy weak solution in the sense of Definition 8 on a bounded
sufficiently smooth domain.

2. We notice that the bulk viscosity coefficient � is supposed to be strictly positive. This
assumption can be relaxed in the case ˇ � 0, for which the lower bound in (400) can
be replaced by � � 0.

9.7 Construction of Weak Solutions

Proof of Theorems 40 and 41 can be done via several levels of approximations:

(i) Continuity equation
The equation of continuity (323) is regularized by means of an artificial

viscosity term:

@t%C divx.%u/ D "�% in .0; T / ��; (402)

and supplemented with the homogeneous Neumann boundary condition

rx% � nj@� D 0; (403)

and the initial condition

%.0; �/ D %0;ı; (404)

where

%0;ı 2 C
2;�.�/; inf

x2�
%0;ı.x/ > 0; rx%0;ı � nj@� D 0 (405)

is a convenient approximation of the initial density %0.
(ii) Momentum equation

The momentum balance (324) expressed through the integral identity (340)
is replaced by a Faedo-Galerkin approximation:

Z T

0

Z
�

�
%u � @t'C %Œu˝ u� W rx'C

�
p.%; #/C ı.%� C %2/

�
divx'

�
dxdt (406)

D

Z T

0

Z
�

�
".rx%rxu/ � 'C Sı W rx' � %fı � '

�
dx dt �

Z
�
.%u/0 � ' dx;
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to be satisfied for any test function ' 2 C1c .Œ0; T /IXn/, where

Xn � C
2;�.�IR3/ � L2.�IR3/ (407)

is a finite-dimensional (n-dimensional) vector space of functions satisfying

'j@� D 0 in the case of the no-slip boundary conditions. (408)

The spaces Xn � XnC1 are endowed with the Hilbert structure induced by the
scalar product of the Lebesgue space L2.�IR3/, and the linear hull of [n2NXn
is dense in L2.�IR3/.

Furthermore, we set

Sı D Sı.#;rxu/ D .�.#/Cı#/
�
rxuCrTx u�

2

3
divxu I

�
C�.#/divxu I; (409)

while the function

fı 2 C
1.Œ0; T � ��IR3/ (410)

is a suitable approximation of the driving force f.
(iii) Entropy balance

Instead of the entropy balance (325), we consider a modified internal energy
equation in the form

@t .%eı.%; #//C divx.%eı.%; #/u/ � divxrxKı.#/ (411)

D Sı.#;rxu/ W rxu � p.%; #/divxuC "ı.�%��2 C 2/jrx%j2 C ı
1

#2
� "#5;

supplemented with the Neumann boundary condition

rx# � nj@� D 0; (412)

and the initial condition

#.0; �/ D #0;ı; (413)

#0;ı 2 W
1;2.�/ \ L1.�/; ess inf

x2�
#0;ı.x/ > 0; (414)

where #0;ı is a convenient approximation of #0. Here

eı.%; #/ D emo;ı.%; #/C a#
4; emo;ı.%; #/ D emo.%; #/C ı#; (415)

Kı.#/ D
Z #

1
	ı.z/ dz; 	ı.#/ D 	.#/C ı

�
#� C

1

#

�
:
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In problem (402)–(415), the quantities ", ı are small positive parameters, while � > 0
is a sufficiently large fixed number. Loosely speaking, the "�dependent quantities
provide more regularity of the approximate solutions modifying the type of the field
equations, while the ı�dependent quantities prevent concentrations yielding better
estimates on the amplitude of the approximate solutions. For technical reasons, the
limit passage must be split up in two steps letting first "! 0 and then ı ! 0.

The complete existence proof goes far behind the scope of the handbook. The
reader can find all details in [33, Chapter 3]. In the handbook, we shall show
solely the weak compactness property of the set of weak solutions. This property
already contains the main ingredients of the existence proof. Note, however, that the
compressible models are very much “approximation sensitive,” and the way from
the weak compactness to the real existence is always a delicate task.

10 Weak Compactness of the Set of Weak Solutions

In this section we show weak compactness of the (hypothetical) set of weak
solutions emanating from initial data .%0; #0;u0/ in the situation corresponding to
assumptions of Theorem 41. This exercise follows main ideas exposed in [33,
Chapter 3] and illustrates all essential difficulties that one faces during the existence
proof.

Theorem 42. Let � � R
3 be a bounded Lipschitz domain and f 2 L1.QT ;R

3/.
Suppose that the thermodynamic functions p, e, s satisfy hypotheses (369)–(375) and that
the transport coefficients �, �, and 	 obey (376), (377) with � > 3=2, ˇ D 1. Finally assume
that the initial data .%n;0; #n;0;un;0/ satisfy

%n;0 * %0 in L1.�/; %n;0un;0 * %0u0 in L1.�IR3/; (416)

%n;0s.#n;0/ * %0s.#0/ in L1.�/;

Z
�

�1
2
%n;0jun;0j2 C %n;0e.%n;0; #n;0/

�
dx !

Z
�

�1
2
%0ju0j2 C %0e.%0; #0/

�
dx;

where %n;0; #n;0;un;0 and %0; #0;u0 verify (337) with Mn;0 > 0;En;0 > 0; Sn;0 > 0, and
M0 > 0, E0 > 0, S0 > 0, respectively. Let .%n; #n;un/ be a sequence of renormalized finite
energy weak solutions to the complete Navier-Stokes-Fourier system (323)–(332) with initial
data .%n;0; #n;0;un;0/. Then there exists a subsequence (denoted again .%n; #n;un/) such that

%n *
� % in L1.0; T IL�.�//;

#n * # in L2.0; T IW 1;2.�//;

un * u in L2.0; T IW 1;2
0 .�IR3//;
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and the trio .%; #;u/ is a weak solution of the complete Navier-Stokes-Fourier system (323)–
(332) with initial data .%0; #0;u0/.

Remark 20. 1. It is to be noticed that Theorem 42 can be proved with less restrictive
conditions on the heat conductivity 	: One can admit heat conductivity is dependent on
both density and temperature, namely, C1.Œ0;1/ � Œ0;1// 3 	 D 	.%; #/ enjoying
bounds (377) (see [32]). However, in spite of the available compactness result in this
situation, and in contrast with the case 	 D 	.#/, the construction of weak solutions
under condition 	 D 	.%; #/ remains an open problem.

10.1 Estimates and Weak Limits

10.1.1 Estimates
Let .%n; #n;un/ be a sequence of weak solutions of the problem (323)–(332) on
.0; T / ��. Any trio of this sequence satisfies, in particular, the dissipation inequal-
ity (361)uD0. The dissipation inequality will produce most of a priori estimates that
are available in this problem. It will be convenient to split H

#
.%; #/�@%H#.%; #/.%�

%/ �H
#
.%; #/ according to (356). Employing (31), (369), (373), and (419), we obtain

H
#
.%; #/ �H

#
.%; #/ D

Z #

#
@#H#.%; z/dz � 4a

Z #

#
z2.z � #/dx; (417)

and

H
#
.%; #/ � @%H#.%; #/.% � Qr/ �H#.%; #/ D

Z %

%

� Z z

Qr
@2%H.w; #/dw

�
dz (418)



h
% log.%=%/ �

�
% � %

�i
C
h
%� � �%��1.% � %/ � %�

i
;

where we have used the equivalence

P 0.Z/ 
 1CZ��1; Z > 0; (419)

that can be derived from (371)–(372). With observations (417)–(418) at hand, and
using the conservation of mass

Z
�
%n dx DM0; (420)

we deduce from the dissipation balance (361) the following estimates:

esssup.0;T /

Z
�
%nu2ndx � c.M0;E0; S0; T /; (421)
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esssup.0;T /

Z
�
%
�
ndx � c.M0;E0; S0; T /; (422)

esssup.0;T /

Z
�
#4ndx � c.M0;E0; S0; T /: (423)

By virtue of (421)–(422), we deduce for the momentum,

k%nunkL1.0;T IL2�=.�C1/.�IR3// � c.M0;E0; S0; T /: (424)

The “velocity part” of the entropy production yields bounds

kT.rxun/k2L2.0;T IL2.�IR3�3// C
R T
0

R
�

1
#n
jT.rxun/j2dxdt � c.M0;E0; S0; T /I (425)

whence employing first the Korn type theorem (see Theorem 9) and then the
standard Poincaré inequality, we get

kunkL2.0;T IW 1;2.�IR3// � c.M0;E0; S0; T /: (426)

The “temperature part” of the entropy production rate gives

krx#
ˇ
n kL2.0;T IL2.�IR3// � c.M0;E0; S0; T /; ˇ 2 Œ1; 3=2�;

krx log#nkL2.0;T IL2.�IR3// � c.M0;E0; S0; T /:

(427)

In agreement with (374)–(375),

j%s.%; #/j � c.%C %j log %j C %j log#j C #3/: (428)

With this observation at hand, we verify that assumptions of Lemma 1 are satisfied
with some 3 < p < 4. Therefore, we deduce from (427) and the Poincaré-type
inequality from Theorem 6,

k log#n�log#kL2.0;T IW 1;2.�/Ck#
ˇ
n �#

ˇ
kL2.0;T IW 1;2.�/ � c.M0;E0; S0; T /; ˇ 2 Œ1; 3=2�:

(429)
We get by the Sobolev imbedding and by interpolation from (421)–(429) using
eventually (369)–(377)

k#nkL3.0;T IL9.�// � c.M0;E0; S0; T /; k#nkL17=3..0;T /��/ � c.M0;E0; S0; T /;

(430)

kS.#n;rxun/kL2.0;T IL4=3.�IR3�3// � c.M0;E0; S0; T /; (431)

kq.#n;rx#n/=#nkL2.0;T IL8=7.�IR3// � c.M0;E0; S0; T /; (432)

k%ns.%n; #n/kL1.0;T ILq.�// � c.M0;E0; S0; T / with some q > 1; (433)

k%ns.%n; #n/unkLq..0;T /��IR3/ � c.M0;E0; S0; T / with some q > 1: (434)
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Under assumptions (369)–(372)

jp.%; #/j � c.%# C %� C #4/: (435)

Consequently, we can deduce from (422)–(423) only kp.%n; #nkL1.0;T IL1.�// �
c.M0;E0; S0; T /. We however need for the pressure better estimate than an estimate
in L1.�/. To improve this estimate, we use in the momentum equation (340) (written
with .%n; #n;un/ on �) the test function ' D �.t/B�Œ%!n � 1

j�j

R
� %

!
n dx�, where

! > 0, � 2 C1c .0; T / and B is the Bogovskii operator introduced in Theorem 5.
A straightforward but laborious calculation (the same as exposed in (262)) leads to
the conclusion that

R T
0

R
� p.%n; #n/%

!
n dxdt � c.M0;E0; S0; T; !/ with some ! > 0;

R T
0

R
� jp.%n; #n/j

qdxdt � c.M0;E0; S0; T; q/ with some q > 1:
(436)

10.1.2 Weak Limits
Estimates derived in the previous sections together with equations (339), (340), (133)–
(134) written with .%n; #n;un/ give rise to the following convergence relations for a
chosen subsequence denoted again .%n; #n;un/:

%n *
� % in L1.0; T IL�.�//;

#n *
� # in L1.0; T IL4.�//;

un * u in L2.0; T IW 1;2.�IR3//;

#n * # in L2.0; T IW 1;2.�//;

(437)

and

sequences %n; b.%n/; %nun; %nun ˝ un verify convergence relations (269) (438)

(see relations (267)–(269) for the similar reasoning). Moreover, if we denote by
g.%; #;u/ weak limit of the sequence g.%n; #n;un/ in L1..0; T / � �//, we have for
the nonlinear quantities

log#n * log# in L2.0; T IW 1;2.�//;

p.%n; #n/ * p.%; #/ in Lq..0; T / ��/ with some q > 1;

S.#n;rxun/ * S.#;rxu/ in L4=3..0; T / ��IR3�3/;

(439)
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%ns.%n; #n/ * %s.%; #/ in Lq..0; T / ��/ with some q > 1;

q.#n;rx#n/=#n * q.#;rx#/=# in L8=7..0; T / ��IR3/:

The main goal in what follows is to “remove” bars over all nonlinear quantities in
the weak limits (439). This will be done if we show convergence almost everywhere
in QT of the sequences %n and #n.

10.1.3 Limiting Momentum, Continuity, and Renormalized Continuity
Equations

Now, we are ready to let n!1 in the weak formulation of the momentum equation,
continuity equation, and the renormalized continuity equation. We have, similarly
as in (271)–(274), in particular:

(1) Limiting momentum equation
Z
�
%.
; x/'.
; x/ dx �

Z
�
%0u0 � '.0; �/ dx (440)

D

Z T

0

Z
�

�
%u � @t' C %u˝ u W rx' C p.%; #/divx' � S.#;rxu/ W rx'

�
dxdt

for all 
 2 Œ0; T � and for any ' 2 C1c .Œ0; T � ��IR
3/, 'j@� D 0;

(2) Limiting continuity and renormalized continuity equations in form

equations (271), (273), (274) hold; (441)

where functions Tk , Lk are defined in (250), cf. formulas (248)–(249).

10.2 Strong Convergence of Temperature

10.2.1 Entropy Production Rate as a Nonnegative Radon Measure
Entropy balance (341) can be rewritten as identity

Z
�
%0s.%0; #0/'.0; �/dxC < �n; ' > (442)

D �

Z T

0

Z
�

�
%ns.%n; #n/@t' C %ns.%n; #n/un � rx' C

q.#n;rx#n/ � rx'
#n

�
dxdt;

where �n is a nonnegative linear functional on the space C1c .Œ0; T / � �/ defined by
the above equation. According to (90), (92), there is a sequence of continuous linear
functionals †n 2 .C .Œ0; T � ��//�,

k†nk.C Œ0;T ���//� � c.M0;E0; S0; T /; (443)
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such that

< †n; ' >C.Œ0;T ���/D< �n; ' > for all ' 2 C1c .Œ0; T / ��/:

10.2.2 A Consequence of Div-Curl Lemma
We may now apply the Div-Curl lemma (see Theorem 14) to the four-dimensional
vector fields

Vn D .%ns.%n; #n/; %ns.%n; #n/un C q.#n;rx#n/=#n/; Wn D .Tk.#n/; 0; 0; 0/:

Since divVn D †n and since the imbedding .C .Œ0; T � � �//� ,! W �1;q..0; T / � �/

is compact for any q 2 .1; 4=3/, the assumptions of the lemma on .0; T / � � are
satisfied. Therefore,

Tk.#/%smo.%; #/C
4

3
aTk.#/#3 D Tk.#/ %smo.%; #/C

4

3
aTk.#/ #3; (444)

where smo.%; #/ D S.%=#
1

��1 /.
We shall first prove that

Tk.#/%smo.%; #/ � Tk.#/ %smo.%; #/; (445)

where

Tk.z/ D kT .z=k/; C Œ0;1/ 3 T D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

z if z 2 Œ0; 1�;

T strictly increasing on Œ0;1/;

limz!1 T .z/ D 2:

9>>>>>>=
>>>>>>;

To this end we write

%nsmo.%n; #n/
�
Tk.#n/ � Tk.#/

�
D

%n

h
smo

�
%n;T �1k

�
Tk.#n/

��
� smo

�
%n;T �1k

�
Tk.#/

��i�
Tk.#n/ � Tk.#/

�

C%nsmo

�
%n;T �1k

�
Tk.#/

���
Tk.#n/ � Tk.#/

�
:

Therefore, inequality (445) will be shown if we prove that

%nsmo

�
%n;T �1k

�
Tk.#/

���
Tk.#n/ � Tk.#/

�
* 0 weakly in L1..0; T / ��/ as n!1:

(446)
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10.2.3 Application of Theorem on Parametrized Young Measures
The quantity

%nsmo

�
%n;T �1k

�
Tk.#/

�
.t; x// D  .t; x; %n/ (447)

can be regarded as a composition of a Carathéodory function with a weakly
convergent sequence %n.

Since according to (437), (438)

b.%n/! b.%/ in L2.0; T IW �1;2.�//;

G.#n/! G.#/ in L2.0; T IW 1;2.�//;

we have

b.%/G.#/ D b.%/ G.#/ (448)

for any b and G 2 W 1;1..0;1//, zb0 � b 2 L1.0;1/. This implies (446) by virtue of
the fundamental theorem on parametrized Young measures (see Theorem 17).

Indeed, denote �%;#
.t;x/

, �%
.t;x/

, and �#
.t;x/

the parametrized Young measures corre-
sponding, in accordance with Theorem 17, to the sequences .%n; #n/, %n, and #n,
respectively. Then we have, due to (448) and in agreement with Theorem 17,

Z
R2
h.�/G.�/d�.%;#/.�; �/ D

Z
R

h.�/d�%.�/ �
Z
R

G.�/d�#.�/:

Consequently,

 .t; x; %/G.#/.t; x/ D

Z
R2
 .t; x; �/G.�/ d�%

.t;x/
.�/ d�#.t;x/.�/ D

�
 .t; x; %/ G.#/

�
.t; x/:

10.2.4 Monotone Functions Versus Weak Convergence
Now we shall use the properties of monotone operators with respect to the weak
convergence reported in Theorem 4. Theorem 4 implies, in particular,

Tk.#/#3 � Tk.#/ #3;

that in turn with (444)–(445) yields

Tk.#/#3 D Tk.#/ #3;

and finally, by monotone convergence, as k !1,

#4 D ##3: (449)
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The last identity implies

#n ! # a.e. in .0; T / �� (450)

by virtue of (105) in Theorem 4 and Theorem 3.

10.2.5 Weak Limits of the Momentum Equation and Entropy Balance
Coming back with (450) to the momentum equation (440), we obtain

�

Z
�
%0u0 � '.0; �/ dx (451)

D

Z T

0

Z
�

�
%u � @t' C %u˝ u W rx' C p.%; #/divx' � S.#;rxu/ W rx' C %f � '

�
dxdt

for any ' 2 C1c .Œ0; T / ��IR
3/, 'j@� D 0.

Moreover, estimates (425), (427) yield boundedness of the sequences

s
�.#n/

#n

�
rxun C .rxun/T �

2

3
divun

�
;

s
�.#n/

#n
divun;

p
	.#n/

#n
rx#n (452)

in L2..0; T / � �//; whence by the lower weak continuity combined with (450)
and (437), one gets

Z T

0

Z
�

'

#

�
S.#;rxu/ W rxu �

q.#;rx#/ � rx#
#

�
dxdt (453)

� lim inf
n!1

Z T

0

Z
�

'

#

�
S.#n;rxun/ W rxun �

q.#n;rx#n/ � rx#n
#n

�
dxdt;

for any 0 � ' 2 Cc.Œ0; T � ��/.
Thus effectuating the limit n!1 in (341) (with %n; #n;un in place of %; #;u), we

get

Z
�
%0s.%0; #0/'.0; �/ dx C

Z T

0

Z
�

'

#

�
S.#;rxu/ W rxu �

q.#;rx#/ � rx#
#

�
dxdt

(454)

� �

Z T

0

Z
�

�
%s.%; #/@t' C %s.%; #/u � rx' C

q.#;rx#/
#

� rx'

�
dxdt

for any ' 2 C1c .Œ0; T / ��/, ' � 0.
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10.3 Strong Convergence of Density

10.3.1 Effective Viscous Flux Identity
The main result of this section is the following lemma.

Lemma 15 (see [33, formula (3.324) and its proof in Section 3.7.4]). Let .%n; #n;un/ be
the sequence investigated in Theorem 42. Then for any k > 1, there holds

p.%; #/Tk.%/ � p.%; #/ Tk.%/ D
�4
3
�.#/C �.#/

��
Tk.%/divxu � Tk.%/divxu

�
(455)

with functions Tk defined in (250).

Proof. Repeating step-by-step proof of Lemma 10, we arrive at identity

Z T

0

Z
�
� Q�
�
p.%; #/Tk.%/ � p.%; #/ Tk.%/

�
dxdt

D

Z T

0

Z
�
�.t; x/

�
S.#;u/ W RŒ Q�Tk.%/� � S.#;u/ W RŒ Q�Tk.%/�

�
dxdt;

(456)

where �; Q� 2 C1c ..0; T / ��/.
In order to write the right-hand side of formula (456) in the form of the right-hand side of

formula (455), we use properties listed in item (iii) of Theorem 13 yielding identity

Z T

0

Z
�
�S.#;u/ W RŒ Q�Tk.%/� dxdt D

Z T

0

Z
�
� Q�
�
�
2

3
�.#/C �.#/

�
Tk.%/ divxu dxdt

C

Z T

0

Z
�

Q�Tk.%/
n
R W

h
��.#/

�
rxuC .rxu/T

�i
� ��.#/R W

h
rxuC .rxu/T

io
dxdt

C

Z T

0

Z
�
� Q�Tk.%/�.#/R W

h
rxuC .rxu/T

i
dxdt;

where R W .Z/ D
P3
i;jD1Rij .Zij / and R W ŒrxuC .rxu/T � D 2divxu. Consequently,

Z T

0

Z
�
�S.#;u/ W RŒ Q�Tk.%/� dxdtD lim

n!1

Z T

0

Z
�
� Q�
�4
3
�.#n/C �.#n/

�
Tk.%n/ divxun dxdt

C lim
n!1

Z T

0

Z
�

Q�Tk.%n/!.#n;un/ dxdt;

(457)
and

Z T

0

Z
�
�S.#;u/ W RŒ Q�Tk.%/� dxdt D

Z T

0

Z
�
� Q�
�4
3
�.#/C �.#/

�
Tk.%/ divxu dxdt

C
R T
0

R
�
Q� Tk.%/!.#;u/ dxdt;

(458)
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where

!.#n;un/ D
�
R
h
�.t; x/�.#n/

�
run C .run/T

�i
� �.t; x/�.#n/R W



run C .run/T

��
:

In order to treat the difference between the last terms in formulas (457) and (458), we will
need two compensated compactness results: Div-Curl lemma reported in Theorem 14 and a
specific commutator lemma reported in Theorem 16. Thanks to Theorem 16, the sequence

!.#n;un/ is bounded in L1.0; T IW ˇ;q.�IR3// with some ˇ 2 .0; 1/; q > 1: (459)

Now we consider the four-dimensional vector fields

Vn 	 ŒTk.%n/; Tk.%n/un�; Un 	 Œ!.#n;un/; 0; 0; 0�:

Seeing that curlUn is compact in W �1;r ..0; T / � �IR3�3/ with some r > 1 by virtue
of (459), (423), (430) (and of course divVn is compact in W �1;r ..0; T / ��IR3�3/ because
of the fact that .%n;un/ satisfies renormalized continuity equation (133)–(134), with b D Tk)
we may employ Div-Curl lemma reported in Theorem 14 to get

!.#n;un/ Tk.%n/ * !.#;u/ Tk.%/; in L1..0; T / ��/;

where, due to (450),

!.#;u/ D !.#;u/:

This result in combination with (456) and (457)–(458) yields the effective viscous flux
identity (455).

10.3.2 Oscillations Defect Measure
Going back to (419), we deduce employing the hypotheses (369)–(372) that

p.%; #/ D d%� C pm.%; #/; for some d > 0; (460)

where @%pm.%; #/ � 0. Reasoning as in (285), we get

d lim sup
n!0

Z T

0

Z
�

�

1C #
jTk.%n/ � Tk.%/j

�C1 dxdt (461)

� d lim sup
n!1

Z T

0

Z
�

�

1C #

�
.Tk.%n/ � Tk.%/

�
.%
�
n � %

� / dxdt

� d

Z T

0

Z
�

�

1C #

�
%� Tk.%/�%� Tk.%/

�
dxdt�

Z T

0

Z
�

�

1C #

�
p.%; #/ Tk.%/�p.%; #/ Tk.%/

�
dxdt;

with any � 2 C1c ..0; T /��/, � � 0. To derive the last inequality in formula (461), we have
employed decomposition (460), the fact that
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weak� lim
n!1

p.%n; #n/g.%n/ 	 p.%; #/g.%/ D p.�; #/g.�/ 	 weak� lim
n!1

p.%n; #/g.%n/

for any bounded function g (that holds, thanks to the almost everywhere convergence of the
sequence #n; see (450)), and the relation between the weak limits of monotone functions

pm.�; #/Tk.�/ � pm.�; #/ Tk.%/ � 0; (462)

reported in Theorem 4.
Next, we verify that

Z T

0

Z
�
jTk.%n/ � Tk.%/j

qdx D
Z T

0

Z
�

1

.1C #n/!
jTk.%n/ � Tk.%/j

q
�
1C #n

�!
dxdt

� c
h Z T

0

Z
�

1

1C #n
jTk.%n/ � Tk.%/j

�C1 dxdt
iq=.�C1/

;

where q > 2, provided !.� C 1/ D q and !.� C 1/=.� C 1 � q/ � 17=3, cf. (430).
According to (461), expression

Z T

0

Z
�

1

1C #n
jTk.%n/ � Tk.%/j

�C1 dxdt;

which stays at the right-hand side of the last inequality, can be estimated by calculating the
right-hand side of (461) from the effective viscous flux identity (455). Now, reasoning as in
Step 2 of the proof of Lemma 11, we show the following lemma:

Lemma 16. Let .%n;un/ be the density-velocity component of the sequence investigated in
Theorem 42. Then

oscqŒ%n ! %�.QT / � c.M0;E0; F0; T / with some q > 2; (463)

where oscqŒ%n ! %�.QT / is defined in (281).

10.3.3 Renormalized Continuity Equation and Strong Convergence of
Density

Lemma 16 guarantees satisfaction of all hypotheses of Lemma 12. Using the latter lemma,
we deduce that the weak limit .%;u/ constructed in (437) verifies the renormalized continuity
equation (133)–(134), in particular equation (292) holds. Recall that also (273) holds in our
setting according to (441). We deduce from (273) and (292) with the help of the effective
viscous flux identity (455),

Z
�

�
%Lk.%/ � %Lk.%/

�
.
/ dx D �

Z 


0

Z
�
gk dxdt; where gk D Tk.%/divu � Tk.%/divu;

(464)
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in particular,

gk D g
1
k C g

2
k; g

1
k D Tk.%/divxu � Tk.%/divxu;

g2k D
1

4
3�.#/C �.#/

�
p.%; #/Tk.%/ � p.%; #/ Tk.%/

�
:

Reasoning as in (294), we find that limk!1

R 

0

R
� g

1
k

dxdt D 0, while
R 

0

R
� g

2
k

dxdt � 0
by virtue of (460) and (462). Now we get from (464) exactly by the same argument leading
to (300), completed and modified by decomposition (460), and relation (462) that this formula
holds also in the present case. Formula (300) implies

%n ! % a.e. in QT

by virtue of Theorem 3. This is the last convergence relation needed to conclude the proof of
Theorem 42.

11 Stability Results and Weak-Strong Uniqueness

The results presented in this section will rely on the relative energy inequality. They are
based on paper [34], where the relative energy method for the Navier-Stokes-Fourier system
has been introduced. We have observed in Theorem 39 under very mild assumptions on
constitutive laws and transport coefficients that any bounded energy weak solution verifies
relative energy inequality (362). If the thermodynamic stability conditions are satisfied, some
of various consequences of the relative energy inequality are theorems on the stability of
weak solutions with respect to strong solutions and on the weak-strong uniqueness principle.
We shall formulate these results in several settings. The least requirement on the constitutive
relations is contained in the following result:

Theorem 43 (see [31]). Let � � R
3 be a bounded Lipschitz domain. Assume that the

thermodynamic functions p, e are twice continuously differentiable on .0;1/2 and verify
the thermodynamic stability conditions (378).

Let .%; #;u/ be a bounded energy weak solution to the Navier-Stokes-Fourier sys-
tem (323)–(332) in space time cylinder QT , T > 0 in the sense specified in Definition 8,
emanating from the initial data (337), verifying in addition

0 < % < %.t; x/ < % <1; 0 < # < #.t; x/ < # <1 for a.a. .t; x/ 2 QT : (465)

Finally, suppose that the Navier-Stokes-Fourier system admits a strong solution .r > 0;‚ >

0;U/ in class

X 	 f@t r; @t‚; @tU; rmx r; r
m
x ‚; r

m
x U 2 L1.QT /; m D 0; 1; 2g (466)

emanating from the same initial data. Then

.%; #;u/ D .r;‚;U/:
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Remark 21. 1. It is to be noticed that conditions (323)–(332) include implicitly require-
ments (8), (14)–(15), in particular, that e; p; s; �; �; 	 are continuously differentiable
functions of density and temperature and that e; p verify the Gibbs relation.

2. The drawback of this theorem dwells in the fact that it is not known whether weak
solutions satisfying (465) do exist on (arbitrary large) time interval .0; T /.

There are however situations (characterized by the constitutive laws and transport
coefficients) when the weak-strong uniqueness principle holds unconditionally in the class
of weak solutions whose existence is guaranteed by Theorems 40 and 41. We report the
following result:

Theorem 44 (see [34] for the original version of the result with � D 5=3; ˇ D 1; see [31]
for the case � D 5=3, ˇ 2 .2=5; 1�; see [70] for the case � > 3=2, ˇ D 1). Let � be a
bounded Lipschitz domain. Let the constitutive laws for e; p and transport coefficients �; �; 	
satisfy all assumptions of existence Theorem 40 or of existence Theorem 41. Assume further
that the Third law

lim
Z!1

S.Z/ D 0 (467)

is verified and that the function P is twice continuously differentiable on .0;1/.
Let .%; #;u/ be a bounded energy weak solution to the Navier-Stokes-Fourier sys-

tem (323)–(332) in space time cylinder QT , T > 0 emanating from initial data .%0; #0;u0/
in the class (337) and external force f 2 L1.QT IR

3/ constructed in Theorem 40 or 41
according to the case.

Let .r > 0;‚ > 0;U/ be a strong solution to the Navier-Stokes-Fourier system (323)–
(332) in class (466) emanating from the .r0;‚0;U0/ 2 (337) and external force g 2
L1.QT IR

3/. Then there exists a positive constant c depending on the parameters of
constitutive laws, transport coefficients, QT , lower bounds of r and ‚, and the norms of
the strong solution in class (466) (but independent on the weak solution, initial data, and
external forces) such that

E.%; #;u j r;‚;U/ � c
�
E.%0; #0;u0 j r0;‚0;U0/C kf � gk2L1.QT /

�
;

where E is the relative energy functional introduced in (357). In particular, if .%0; #0;u0/ D
.r0;‚0;U0/ and f D g, then

.%; #;u/ D .r;‚;U/:

Remark 22. 1. Theorems 43 and 44 remain true for the bounded energy weak solutions with
the complete slip (22) boundary conditions (see [70, Section 6] for more details).

2. Since on bounded domains the class of finite energy weak solutions is contained in the
class of bounded energy weak solutions, Theorems 43 and 44 are true also for the finite
energy weak solutions.
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3. Theorems 43 and 44 are formulated in the class of bounded energy weak solutions. They
are however true also in the seemingly larger class of dissipative solutions since the proof
relies basically on the relative energy inequality.

4. On unbounded domains with boundary conditions (24) one cannot, in general, construct
finite energy weak solutions. In some situations satisfied by the conditions at infinity,
one can construct bounded energy weak solutions on unbounded domains with uniformly
Lipschitz boundary, provided e; p; s; �; �; 	 verify assumptions of Theorem 40 or 41.
These bounded energy weak solutions are not necessarily dissipative solutions, and they
do not verify the weak-strong uniqueness principle. In the class of bounded energy
weak solutions, there are however solutions that are dissipative. Then the weak-strong
uniqueness principle holds in the class of bounded energy dissipative solutions. The
reader is advised to consult [70], Theorem 2.5 (for the no-slip boundary conditions)
and Theorem 6.5 (for the complete slip boundary conditions) to learn more about these
problems.

5. Under certain additional hypotheses, a strong solution .r;‚;U/ exists at least locally in
time. For example: If � is a bounded domain of class C4, f 2 C1.Œ0; T �IW 2;2.�//,
cv; �; �; 	 2 C

3.0;1/, cv � cv > 0, � � � > 0, 	 � 	 > 0, if the initial data

verify 0 < r0 2 W
3;2.�/, 0 < ‚0 2 W

3;2.�/, U0 2 W 3;2.�IR3/ and satisfy the
natural and classical compatibility conditions at the boundary, then there exists TM > 0

such that the Navier-Stokes-Fourier system (323)–(332) admits a unique strong solution
.r > 0;‚ > 0;U/ on the interval Œ0; TM / in a subclass of (466) (see [104, Theorem A
and Remark 3.3]).

6. The weak-strong uniqueness principle turns some of the blow up criteria for strong
solutions of the Navier-Stokes-Fourier system to the criteria of regularity of weak
solutions (see [53] and [45] for more details about this issue).

7. In some situations, the assumption that the constitutive equations must verify the third law
(see assumption (467) in Theorem 44) can be disregarded. This is the case of constitutive
laws and weak solutions mentioned in Remark 18 as shown in [58, Theorem 4.1].

11.1 Sketch of the Proof of Theorems 43 and 44

11.1.1 Relative Energy Inequality with a Strong Solution as a Test
Function

We denote

A D
�
r.@tUC U � rU/Crp.r;‚/ � rg

�
� .u � U/C S.‚;rU/ W r.u � U/;

and

BD.#�‚/
�
r.@t s.r;‚/CU�rs.r;‚//�

S.‚;rU/ W rU
‚

C
q.‚;r‚/ � r‚

‚2

�
C

q.‚;r‚/ � r.‚� #/
‚

:

Since the trio .r;‚;U/ verifies equations (324)–(325) with (327) and boundary condi-
tions (331)–(332) in the classical sense, there holds

Z 


0

Z
�
.AC B/ dxdt D 0:
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We now add this identity to the right-hand side of the relative energy inequality (362).
Employing several times conveniently the Gibbs relation (326) in the form 1

r @#p.r;‚/ D

�r@�s.r;‚/ and the continuity equation (323) satisfied by .r;U/, we transform after a long
and tedious computation relative energy inequality (362) to the form stated in the following
lemma:

Lemma 17. Let� be a bounded Lipschitz domain and f; g 2 L1.QT ;R
3/. Let .%; #;u/ be

a bounded energy weak solution to the Navier-Stokes-Fourier system emanating from initial
data .%0; #0;u0/ specified in (337) and external force f. Let .r > 0;‚ > 0;U/ be a strong
solution of the same system emanating from initial data .r0;‚0;U0/ in (337) and external
force g, in the class (466). Then,

E.%; #;u j r;‚;U/.
/ � E.%0; #0;u0 j r0;‚0;U0/ (468)

C

Z 


0

Z
�
Dmech.t; x/ dxdt C

Z 


0

Z
�
Dth.t; x/ dxdt �

Z 


0

Z
�
R.t; x/ dxdt

for a.a. 
 2 .0; T /, where

DmechD
‚

#
S.#;ru/Wru�S.#;ru/ W rUC S.‚;rU/Wr.U � u/C

# �‚

‚
S.‚;rU/WrU;

Dth D �

�
‚

#

q.#;rx#/
#

� rx# �
q.#;r#/

#
� r‚

C
q.‚;r‚/

‚
� r.‚ � #/C

# �‚

‚

q.‚;r‚/
‚

� r‚

�
;

R D
�
.% � r/@tUC .%u � rU/ � rxU

�
� .U � u/C .%f � rg/ � .u � U/

�
�
S.%; #/ � .% � r/@%S.r;‚/ � .# �‚/@#S.r;‚/ � S.r;‚/

��
@t‚C U � r‚

�

�
�
p.%; #/ � .% � r/@%p.r;‚/ � .# �‚/@#p.r;‚/ � p.r;‚/

�
divU

C%
�
s.r;‚/ � s.%; #/

�
.u � U/ � rx‚C .f � g/ � .u � U/;

and

S.%; #/ D %s.%; #/: (469)

11.1.2 Relative Energy Inequality Rewritten
We shall investigate separately the cases 0 < # < ‚ and # � ‚. In the first case, we have

1f0<#<‚g

�
‚

#
S.#;ru/ W ru � S.#;ru/ W rU

CS.‚;rU/ W r.U � u/C
# �‚

‚
S.‚;rU/ W rU

�
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� 1f0<#<‚g
�.#/

2
jT.rx.u � U//j2 � 1f0<#<‚g

ˇ̌
ˇ‚ � #
‚

�
S.#;rxU/ � S.‚;rxU/

�
W rxU

C
�
S.#;rU/ � S.‚;rU/

�
W rx.u � U/C 2

‚ � #

‚
S.#;rU/ W rx.u � U/

�ˇ̌
ˇ 	 I1 �R1;

where we have used definition of S and the convexity of the quadratic form Z! S.#;Z/ W Z,
namely, the inequality S.#;ZCH/ W .ZCH/ � S.#;Z/ W Z � 2S.#;Z/ W H; and where

I1 D 1f0<#<‚g
�.#/

2
jT.rx.u � U//j2 � 0:

In the second case, we write

1f#�‚g

�
‚

#
S.#;ru/ W ru�S.#;ru/ W rUCS.‚;rU/Wr.U�u/C

# �‚

‚
S.‚;rU/ W rU

�

D1f#�‚g

h‚
#

�
S.#;ru/�S.#;rU/

�
W rx.u�U/C‚

�
S.#;rU/

#
�

S.‚;rU/
‚

�
W rx.u�U/

C.# �‚/
�
S.‚;rU/

‚
�

S.#;ru/
#

�
W rxU

i
� 1f#�‚g

‚

#

�.#/

2
jT.rx.u � U/j2

�1f#�‚g

ˇ̌
ˇ‚
�
S.#;rU/

#
�

S.‚;rU/
‚

�
W rx.u � U/

C.# �‚/
�
S.‚;rU/

‚
�

S.#;ru/
#

�
W rxU

ˇ̌
ˇ 	 I2 �R2;

where

I2 D 1f#�‚g
‚

#

�.#/

2
jT.rx.u � U/j2 � 0:

In the same spirit, we write

�
‚

#

q.#;r#/ � r#
#

C
q.#;r#/ � r‚

#
�

q.‚;r‚/
‚

� r.‚ � #/ �
# �‚

‚

q.‚;r‚/ � r‚
‚

D ‚	.#/jr.log# � log‚/j2 C‚
�

q.‚;r log‚/ � q.#;r log‚/
�
� r.log# � log‚/

C.# �‚/q.‚;r log‚/ � r.log# � log‚/ 	 I3 �R3;

where

I3 D ‚	.#/jr.log# � log‚/j2 � 0:
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We are now able to rewrite the relative energy inequality (468) in the form

E.%; #;u j r;‚;U/.
/ � E.%0; #0;u0 j r0;‚0;U0/C
Z 


0

Z
�
.I1 C I2 C I3/ dxdt

�

Z 


0

Z
�
.RCR1 CR2 CR3/ dxdt:

(470)

11.1.3 Essential and Residual Sets
We set in Lemma 14

r D inf
.t;x/2QT

r.t; x/; r D sup
.t;x/2QT

r.t; x/; ‚ D inf
.t;x/2QT

‚.t; x/; ‚ D sup
.t;x/2QT

‚.t; x/:

Recalling the definition of the relative energy functional (357), we obtain by integrating (359)
over �

E.%; #;u j r;‚;U/.
/

� c

Z
�

�
Œ1�res C Œ%�

�
res C Œ#�

4
res C jŒ% � r�essj

2 C jŒ# �‚�essj
2
�

dx for a.a. 
 2 .0; T /;

(471)
where we have used the properties (369)–(375) of constitutive relations in the same way as
in (417)–(418) and where we have denoted for a function .t; x/ 7! h.t; x/

Œh�ess.t; x/ D h.t; x/1Oess.%.t; x/; #.t; x//; Œh�res.t; x/ D 1 � Œh�ess.t; x/: (472)

11.1.4 Proof of Theorem 43
We split the right-hand side of inequality (470) on its essential and residual parts as follows:R 

0

R
�.RCR1CR2CR3/ dxdt D

R 

0

R
Ness.t/

.RCR1CR2CR3/ dxdt C
R 

0

R
Nres.t/

.RC

R1CR2CR3/ dxdt . A quick glance at the form of R, R1, R2, R3 yields the estimate of the
essential part

Z 


0

Z
Ness.t/

.RCR1CR2CR3/ dxdt � c
Z 


0

Z
�

�
%.u�V/2Cj%� r j2Cj# �‚j2

�
dxdt;

(473)
by virtue of the Taylor formula and Cauchy-Schwarz inequality. Moreover, due to Lemma 14
and Taylor’s formula, there is c D c.r; r;‚;‚/ > 0 and c D c.r; r;‚;‚/ > 0 such that

cE.%; #jr;‚/ � .r � %/2 C .‚ � #/2 � cE.%; #jr;‚/

for all .%; #/ 2 Oess and .r;‚/ 2 Œr; r� � Œ‚;‚�. Finally, due assumptions (465),

Z 


0

Z
Nres.t/

.RCR1 CR2 CR3/ dxdt D 0:
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Coming back with the last three formulas to relative energy inequality (470), while recalling
that dissipation

R 

0

R
�.I1 C I2 C I3/ dxdt is nonnegative, yields

E.%; #;u j r;‚;U/.
/� E.%0; #0;u0 j r0;‚0;U0/ �
Z 


0
E.%; #;u j r;‚;U/.t/ dt: (474)

The latter inequality yields the statement of Theorem 43 by direct application of the
Gronwall’s inequality.

11.1.5 Proof of Theorem 44

Estimates from Below for the Viscous and Heat Dissipation
In the case of Theorem 44, the residual part of integrals at the right-hand side of the relative
energy inequality (470) enters into the game. We need to get as much as possible information
from the viscous and thermal dissipation in order to close the estimates for as large as possible
class of constitutive laws. We see immediately that,

Z
�
I1 dx � c

Z
f0<#<‚g

jT.rxu/j2dx:

We get by using the Hölder inequality that

kvk2
Lr .f#�‚g/ D

� Z
f#�‚g

h #

�.#/

ir=2h�.#/
#

ir=2
jvjrdx

�2=r

�
���
h #

�.#/

i���
Lr=.2�r/.f#�‚g/

Z
f#�‚g

�.#/

#
jvj2dx � c

Z
f#�‚g

�.#/

#
jvj2dx

provided r D 8
5�ˇ , where the last inequality holds since # 2 L1.0; T IL4.�//.

Consequently,

Z
f#�‚g

I2dx � c
� Z
f#�‚g

jT.rxu/jrdx
�2=r

:

Putting together the estimates of I1 and I2 and applying the standard Korn’s inequality
reported in Theorem 8 together with the classical Poincaré inequality, we arrive at the estimate

Z 


0

Z
�
.I1 C I2/ dxdt � aku � Uk2

L2.0;
 IW 1;r .�IR3//
(475)

where a is a positive constant. Similar but more straightforward calculation leads to estimate

Z 


0

Z
�
I3 dxdt � ak

p
	.#/rx.log# � log‚/k2

L2..0;
/��IR3/
(476)

with a > 0.

Estimates of the Right-Hand Side of the Relative Energy Inequality (470)
We split each integral term at the right-hand side of the relative energy inequality (470) to
the essential and residual parts and estimate them separately. The essential part is already
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estimated in inequality (473) whose right-hand side can be further bounded from above by
expression c

R 

0 E.%;u; #jr;‚;V/ dt . The estimate of the residual part

R 

0

R
Nres.t/

.RCR1 C

R2/ dt is technically more complicated. By using Hölder, Young, and Sobolev imbedding
inequalities together with estimate (471) and all structural assumptions of p and s, one arrives
after a long and tedious calculations to

c.ı/
� Z 


0
E.%; #;u j r;‚;U/ dt C kf � gk2

L1.Q
 IR3/

�
C ıku � Uk2

L2.0;
 IW 1;r .�//
(477)

with any ı > 0 where the constant c depends in addition to ı on M0, E0, S0, T , �; the
physical characteristics of e; p; �; �; 	; the lower bounds r ; ‚ of r and ‚; and on the norm
.r;‚;U/ in the space X (cf. formula (466)).

The details of these estimates in the full generality can be found in papers [31] (� D 5=3,
ˇ 2 .2=5; 1�) and [70] (� > 3=2, ˇ D 1).

Application of the Gronwall Inequality
We now put together estimate (470) with (475), (476), and (477). Choosing ı > 0 in (477)
sufficiently small (in comparison with a), we arrive at inequality

E.%; #;u j r;‚;U/.
/ � c
�
E.%0; #0;u0 j r0;‚0;U0/Ckf�gk2L1.QT /

C

Z 


0

E.%; #;u j r;‚;U/ dt
�
:

This yields the statement of Theorem 44 by virtue of the Gronwall inequality reported in
Theorem 21.

12 Longtime Behavior of Weak Solutions

In this section, longtime behavior of (finite energy) weak solutions to the Navier-Stokes-
Fourier system (323)–(332) will be examined under the thermodynamic stability condi-
tions (378). Most of the material of this section is taken from the monograph [44]. There
are two characteristic features that are used in future analysis:

• the system is energetically insulated meaning the total energy and the total mass of the
fluid are constants of motion determined by the choice of initial data at least in the case of
conservative (gradient) external forces;

• the total entropy of the system is nondecreasing in time.

These two properties give rise to a family of a priori estimates and substantially influence the
behavior of the system for large times.

12.1 Equilibrium Solutions

Equilibrium solution is called any finite energy time-independent weak solution .%; #;u/
of the Navier-Stokes-Fourier system (323)–(332) with the time-independent potential force
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f D rxF , where F D F .x/ is a time-independent scalar function (a potential). We start with
several observations:

1. Any equilibrium solution minimizes the entropy production rate
Indeed, one deduces from the total entropy balance (345) that

Z 


0

Z
�

1

#

�
S.#;rxu/ W rxu �

q.#;rx#/ � rx#
#

�
dxdt D 0: (478)

Therefore relation (478) together with the form of the stress tensor (328) and the heat
flux (329) yields

rxuC .rxu/T �
2

3
divxuI D 0; rx# D 0; (479)

for any equilibrium .%; #;u/. As the velocity field vanishes on the boundary of �, the
equalities in (479) together with the Korn inequality reported in Theorem 9 imply

u 	 0; # D Q# D const: > 0 for any equilibrium state.

2. It follows from the above discussion that any equilibrium solution corresponds to the zero
velocity, time-independent, and a spatially homogeneous constant temperature. With this
information at hand, we deduce from the momentum equation (340) that any equilibrium
solution Q% D Q%.x/; Q# satisfies

rxp. Q%; Q#/ D Q%rxF; Q% � 0; Q# D const > 0; (480)

with the constraints

M0 D

Z
�
Q% dx; E0;F D

Z
�

�
Q%e. Q%; Q#/ � Q%F

�
dx; M0 > 0; E0;F 2 R; (481)

where the first constraint follows from the continuity equation (339) and the second one
from the total energy conservation (352).

Next, the unique solvability of problem (480)–(481) will be discussed. The crucial role
in the analysis of this problem plays the strict positivity of the equilibrium density. This
property can be achieved by the thermodynamic stability condition (378)1 extended to % D 0
as follows:

lim
%!0

@p.%; #/

@%
> 0 for any fixed # > 0: (482)

Let us fix constant Q# > 0, F 2 W 1;1.�/ and suppose that Q% 2 W 1;1
loc .�/ verifies (480)

a.e. in �. Then necessarily Q%.x/ > 0 for all x 2 �.
Indeed, by virtue of (379)1, Q% satisfies equation

PQ#. Q%/ D F C cQ# ; (483)
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on any positivity component fx 2 �j Q%.x/ > 0g � �, where cQ# is a constant that may depend
on the specific positivity component and where

Œ0;1/ 3 z 7! PQ#.z/ 	 @%HQ#.z;
Q#/ 2 PQ#.Œ0;1// � R

is an invertible (increasing) application such that limz!0 PQ#.z/ D �1 by virtue of the
thermodynamic stability condition (378)1 extended by (482). Therefore, the right-hand side
of (483) is bounded in contrast with the left-hand side, which tends to minus infinity for Q%
approaching zero. Consequently, Q% must remain bounded away from zero on �.

Finally, equilibrium solutions . Q%; Q#/ maximize the total entropy functional

.%; #/!

Z
�
%s.%; #/ dx

in the class of all measurable functions % � 0, # > 0 verifying constraints
Z
�
% dx D

Z
�
Q% dx;

Z
�

�
%e.%; #/ � %F

�
dx D

Z
�

�
Q%e. Q%; Q#/ � Q%F

�
dx: (484)

In order to see this property, use the definition of Helmholtz function and (484), where F is
replaced by using formula (483) to get

Q#

Z
�

�
Q%s. Q%; Q#/ � %s.%; #/

�
dx D

Z
�

�
HQ#.%; #/ �HQ#. Q%;

Q#/
�

dx C
Z
�
. Q% � %/F dx

D

Z
�

�
HQ#.%; #/ � .% � Q%/

@HQ#. Q%;
Q#/

@%
�HQ#. Q%;

Q#/
�

dx: (485)

The most right integral is however nonnegative and equal to zero if and only if .%; #/ D . Q%; Q#/
by virtue of (355) or alternatively by virtue of Lemma 14.

The above discussion leads to the following theorem:

Theorem 45 (see [44, Theorem 4.1]). Let � � R
3 be a bounded domain. Assume that the

thermodynamic functions p, e, and s are continuously differentiable in .0;1/2 and that they
satisfy relations (326), (378) together with condition (482). Let F 2 W 1;1.�/: Then for
given constants M0 > 0; E0;F , there exists at most one solution Q%; Q# of static problem (480)
in the class of locally Lipschitz functions subject to the constraints (481). In addition, Q% is
strictly positive in �, and, moreover,

Z
�
Q%s. Q%; Q#/ dx �

Z
�
%s.%; #/ dx

for any couple % � 0; # > 0 of measurable functions satisfying (484).

Remark 23. 1. If the solution of problem (480)–(481) with F 2 W 1;1.�/ exists, then
Q% 2 W 1;1.�/, and it is given by the formula

Q%.x/ D P�1Q#
�
F .x/C c

�
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where c 2 R and Q# > 0 are determined through implicit relations

Z
�
P�1Q#

�
F .x/C c

�
dx DM0;

Z
�

h
P�1Q#

�
F .x/C c

�
e
�
P�1Q#

�
F .x/C c

�
; Q#
�
� P�1Q#

�
F .x/C c

�
F .x/

i
dx D E0;F

with PQ#.�/ D @%HQ#.�; Q#/.
2. The result is based on strict positivity of the equilibrium density, which follows from the

assumptions (378)1 and (482). A simple example p.%; #/ D a%� with a > 0; � > 1

shows that the solution of (480) may not be strictly positive in � at least for small values
of the total mass M0. Indeed, the function

Q%.x/ D

 

� � 1

a�
.F .x/C c/

�C! 1
��1

; c 2 R

represents a classical solution of (480). In addition, it can be shown that, in general, the
solutions of (480) are not uniquely determined by the total massM0 (see [24] and Remark
after Theorem 30).

3. Existence theory of finite energy solutions with specific constitutive laws for p; e
satisfying assumptions (369)–(375) was built in Theorems 40and 41. It is to be noticed that
these assumptions obey Gibbs relations (326), thermodynamic stability conditions (341),
as well as the additional condition (482). Theorem 45 therefore applies to this situation.

The following lemma concludes this section by the observation that boundedness of the
entropy and the total mass of a static state imply bounds of its norm, at least when the
pressure and internal energy satisfy assumptions (369)–(375) (needed for the existence theory
in Theorems 40, 41). This result will be useful in the sequel.

Lemma 18 (see [44, Lemma 5.5]). Let the thermodynamic functions p, e, and s be given
through (369)–(375). Let Q%; Q# be a solution of the problem (480) such that

Z
�
Q% dx DM0;

Z
�
Q%s. Q%; Q#/ dx 	 QS0

for certain constants M0 > 0; QS0 2 R: Then there exist constants %; #; %; # depending

only on M0; QS0; and kF kL1.�/ such that

0 < # < Q# < #; 0 < % < Q%.x/ < % for all x 2 �:

12.2 Longtime Behavior of Conservative System

Until the end of Sect. 12, hypotheses (369)–(377) with � D 5=3, 1=2 � ˇ � 1 are assumed.
(These values were considered in [44].)
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In this situation, existence of finite energy weak solutions on time interval .0; T / is
guaranteed by Theorem 40. Moreover, pressure and internal energy obey all assumptions
of Theorem 45 dealing with the static states.

First observation is that the weak solutions constructed in Theorem 40 on time interval
.0; T / can be extended to the time interval .0;1/. This is subject of the following theorem:

Theorem 46 (see [44, Theorems 4.4 and 4.5]). Let the hypotheses of Theorem 40 be
satisfied and, in addition,

f 2 L1..0;1/ ��/IR3/; ˇ 2 Œ
1

2
; 1�:

Then there holds: If 0 < T1 < T2 and if .%1; #1;u1/ is a finite energy weak solution
constructed in Theorem 40 on time interval Œ0; T1/, then there exists a weak solution
.%2; #2;u2/ with the same properties as stated in Theorem 40 on the time interval Œ0; T2/

such that

.%2; #2;u2/jŒ0;T1/ D .%1; #1;u1/:

Theorem 47 (see [44, Theorem 4.5]). Let the hypotheses of Theorem 46 be satisfied. Let
f%; u; #g be a weak solution of the system (323)–(332) on time interval Œ0;1/ constructed in
Theorem 46, where

f D rxF; F D F .x/; F 2 W 1;1.�/:

Then there exist Q% D %.x/; Q# D const > 0 solving the static problem (480)–(481) such that

%.t; :/! Q% in L
5
3 .�/; (486)

.%u/.t; :/! 0 in L
5
4 .�IR3/; (487)

#.t; :/! Q# in L4.�/ (488)

as t !1.

Sketch of the proof. The main idea of the proof is to show that a norm implying con-
vergence (486)–(488) is dominated by the “distance” of the trajectory f%;u; #g from
the equilibrium state f Q%; 0; Q#g by means of the relative energy functional. In view of
inequality (471) (or alternatively in view of Lemma 14), the theorem will be proved once
we achieve

E.%.t; �/; #.t; �/;u.t; �/ j Q%; Q#; 0/! 0 as t !1:
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12.2.1 Weak Compactness of the Set of Weak Solutions
The following stability result can be shown in the same way as the similar stability result
proved in Theorem 42.

Lemma 19 (see [44, Theorem 4.2]). Let the assumptions of Theorem 46 be satisfied. Let
fn 2 L1..0; T / ��/,

kfnkL1..0;T /��/ � c: (489)

Let .%n; #n;un/ be a sequence of finite energy weak solutions to the system (323)–(332), with
f D fn, such that

ess sup

!0

Z
�

�
1

2
%njunj2 C %ne.%n; #n/

�
.
; :/ dx � E; (490)

ess inf

!0

Z
�
%ns.%n; #n/.
; :/ dx � S; (491)

and

Z
�
%n dx �M; (492)

uniformly in n, where

S > MS1; S1 D lim
Z!1

S.Z/ � �1; (493)

and M > 0, E > 0. Finally, suppose that one of the following alternatives holds: either

%n.0/ 	 %0;n ! %0 in L1.�/; (494)

or

divxun ! 0 in L1..0; T / ��/: (495)

Then, passing to a subsequence if necessary, we have

fn *� f in L1..0; T / ��IR3/;

%n ! % in L1..0; T / ��/ \ Cweek.Œ0; T �IL
5
3 .�//;

#n *
� # in L1.0; T IL4.�// and strongly in L1..0; T / ��/;

rx#n * r# in L2.0; T IL2.�IR3/;

un * u in L2.0; T IW 1;2
0 .�IR3//;
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where the trio .%; #;u/ is again a weak solution of the system driven by the force f.
Moreover,

Z
�

�
1

2
%njunj2 C %ne.%n; #n/

�
dx !

Z
�

�
1

2
%juj2 C %e.%; #/

�
dx in L1.0; T /;

Z
�
%ns.%n; #n/.
; :/ dx !

Z
�
%s.%; #/.
; :/ dx for a.a. 
 2 .0; T /:

Remark 24. 1. Hypotheses (494), (495) are of rather different character. Assumption (494)
prevents possible spatial oscillations of the density field that may be imposed through
the initial data. The conclusion of the theorem is then important for existence theory
for the initial-boundary value problems. Hypothesis (495) is satisfied when f%n; �n;ung
represent suitable time shifts of a single trajectory, which provides useful information of
the longtime behavior of the corresponding single solution.

2. The meaning of (493) is to avoid degenerate states with zero temperature. Since the
entropy can be always normalized so that S1 2 f0;�1g, condition (493) reduces to
strict positivity of S in the former case and to finiteness of S in the latter.

12.2.2 Time Shifts of the Weak Solution
Let .%; #;u/ be a finite energy weak solution determined by Theorem 46. We introduce
sequences

%n.t; x/ D %.t Cn; x/; #n.t; x/ D #.t Cn; x/; un.t; x/ D u.t Cn; x/; t 2 .0; T /; x 2 �:

It is a routine matter to show that .%n; #n;un/ verifies hypotheses of Lemma 19.
In particular, it follows from the dissipation balance in the form (347) and the fact that the

total entropy 
 7!
R
�Œ%s.%; #/�.
; x/ dx is non decreasing (see (349)) that

Z T

0
kunk2W 1;q.�IR9/

! 0;

Z T

0
krx#

nk2
L2.�IR3/

! 0; q D
8

5 � ˇ
:

With this information at hand, application of Lemma 19 yields existence of functions Q% D
Q%.x/ and Q# D Q#.t/ such that

%n ! Q% in L1..0; T / ��/ \ Cweak.0; T IL
5=3.�//;

#n ! Q# in L2.0; T IW 1;2.�//;

where . Q%.t; x/; Q#.t// is an equilibrium state (480), (481). In accordance with Theorem 45,
the equilibrium solution is uniquely determined by the constants of motion (481), whence
Q%.t; x/ D Q%.x/, Q#.t/ D Q# D const . Moreover, according to Lemma 18, there are numbers
0 < # < # <1, 0 < % < % <1 (determined by M0, E0, QS0 and kF kW 1;1.�/) such that

% � Q% � %; # � Q# � #:
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12.2.3 Relative Energy Function
The above convergence relations yield

Z
�

�1
2
%nu2n CHQ#.%n; #n/ � %nF

�
dx !

Z
�

�
HQ#. Q%;

Q#/ � Q%F
�

dxI

whence, recalling (483),

ŒE.%n;un; #nj Q%; Q#; 0/�! 0:

Moreover, according to Lemma 14,

E.%n; #n;un j Q%; Q#; 0/.
/ � c
Z
�

� Z
�

%nu2n dxCŒ1�resCŒ%n�
5=3
res CŒ#n�

4
resCŒ%n�Q%�

2
essCŒ#n�

Q#�2ess

�
dx

in terms of notation (471)–(472), where c D c.%; %; #; #/ > 0. This finishes the proof of
Theorem 47.

The following theorem asserts that the set of equilibria is a kind of attractor for all
trajectories emanating from a set of bounded total mass and energy. It means that all
trajectories approach the set of equilibria uniformly with growing time. As the total mass and
energy are constants of motion, we cannot expect the attractor to be bounded or even compact
in the associated energy norm. It is basically the only situation when the energetically
insulated Navier-Sokes-Fourier system possesses an attractor.

Theorem 48 (see [44, Theorem 5.1]). Let the assumptions of Theorem 47 be satisfied. Let
M > 0; EF ; S be given, with S > MS1; S1 D limZ!1 S.Z/ � �1. Then for any
" > 0, there exists a time T D T ."/ such that

k%.t; :/ � Q%k
L
5
3 .�/
� ";

k.%u/.t; :/k
L
5
4 .�IR3/

� ";

k#.t; :/ � Q#kL4.�/ � "

for a:a: t � T ."/, for any weak solution f%;u; #g of the Navier-Stokes-Fourier system defined
on .0;1/ constructed in Theorem 46 and satisfying

Z
�
%.t; :/ dx > M; t 2 .0;1/; (496)

Z
�
.
1

2
%juj2 C %e.%; #/ � %F /.t; :/ dx < EF ; t 2 .0;1/; (497)

ess inf
t>0

Z
�
%s.%; #/.t; :/ dx > S; (498)
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where . Q%; Q#/ is a solution of the static problem (480) determined uniquely by the condition

Z
�
Q% dx D

Z
�
% dx;

Z
�

�
Q%e. Q%; Q#/ � Q%F

�
dx D

Z
�

�1
2
%juj2 C %e.%; #/ � %F

�
dx:

Remark 25. 1. The total mass and the total energy are constant in time, so the specific choice
of the initial time does not play any role; the interval .0;1/ may be replaced by .T;1/.
In general, the case S1 D �1, is possible, so the meaning of the condition (498) is to
avoid degenerate states with vanishing absolute temperature.

2. The rate of decay to the set of static solutions characterized by the mapping " ! T ."/

depends on M; EF , and the structural properties of the constitutive functions.
3. Condition (498) is automatically satisfied if the fluid obeys the third thermodynamical law

limZ!1 S.Z/ D 0.

12.3 Longtime Behavior for Time-Dependent Forcing: Blow Up of
Energy

The choice of time-independent nonconservative driving force

f D f.x/; f 2 L1.�IR3/ such that f 6	 rxF

reflects a constant supply of the mechanical energy into the system that is, in accordance
with second law of thermodynamics, irreversibly converted to heat. As the boundary of � is
thermally insulated, the system accumulates the energy, therefore, inevitably

E.t/ D

Z
�

�1
2
%juj2 C %e.%; #/

�
.t; :/ dx !1 as t !1:

To avoid blow up ofE.t/ in the general situation of time-dependent forcing term, the function
f must behave like gradient of a scalar potential when time tends to infinity, or f must rapidly
oscillate as time tends to infinity. The former situation is described in Theorem 49 and the
latter in Theorem 50 in the next section.

The main theorem of this section reads:

Theorem 49 (see [44, Theorem 5.2]). Let the assumptions of Theorem 46 be satisfied.
Then for any finite energy weak solution of the Navier-Stokes-Fourier system defined on

the interval .0;1/ constructed in Theorem 46, one of the following alternatives holds:

• Either

E.t/ D

Z
�

�1
2
%juj2 C %e.%; #/

�
.t; :/ dx !1 for t !1; (499)
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• or there is a constant E1 such that

E.t/ � E1 for a:a: t > 0: (500)

Moreover, in the latter case, each sequence of times 
n ! 1 contains a subsequence such
that

fn.t; x/ D f.t C 
n; x/

satisfies

fn ! rxF weakly-(*) in L1..0; T ��/IR3/ for any fixed T > 0; (501)

where the limit

F D F .x/; F 2 W 1;1.�/

may depend on the choice of f
ng1nD1.

Sketch of the proof of Theorem 49. The proof of this Theorem follows from the compactness
Lemma 19 and Lemma 18. Assume that there is a solution f%;u; #g such that

E.
n/ � E <1 for 
n !1:

Then, due to the structural properties of e; s, the total entropy is bounded

Z
�
%s.%; #/.
n; :/ dx � S;

and, as the total entropy is nondecreasing in time, assume

lim
t!1

Z
�
%s.%; #/.t; :/ dx D S: (502)

For time shifts

%n.t; x/ D %.
n C t; x/; un.t; x/ D u.
n C t; x/; #n.t; x/ D #.
n C t; x/

it implies, together with the entropy balance (341), that un; rxun; r#n ! 0 in,
say L1..0; T / � �IR3/. Then application of the compactness Lemma 19 gives (weak)
convergence of f%n; #n; fng to a limit f Q%; Q#; fg satisfying, in the sense of distributions,

rxp. Q%; Q#/ D Q%f;
Z
�
Q% dx DM0;

Z
�
Q%s. Q%; Q#/.t; :/ dx D S:
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The entropy is a strictly increasing function of temperature, so the last equality implies that Q#
is independent of t . Then, in accordance with Theorem 45, f is a gradient of a scalar function
F .x/.

The last point is to show that the energy cannot oscillate, i.e.,

lim sup
t!1

E.t/ D1; lim inf
t!1

E.t/ <1

is excluded. If this is valid, then the continuity of the energy implies that for anyK > 0, there
exists a sequence of times 
n ! 1 such that E.
n/ D K: Now, define again time shifts of
solutions and deduce, as above, that they converge to a static solution satisfying

rxp. Q%; Q#/ D Q%rxF; Q# D const > 0;

Z
�
Q% dx DM0;

Z
�
Q%s. Q%; Q#/.t; :/ dx D S: (503)

and

Z
�

�
Q%e. Q%; Q#/ � Q%F

�
dx D K: (504)

However, by virtue of Lemma 18, relations (503) and (504) are not compatible for arbitrary
(large) K, which concludes the proof of Theorem 49.

Examples of external forces which drive the energy to infinity are given in the following
corollary.

These examples are direct consequences of Theorem 46. The fact that the blowupE.t/!
1 implies the blowup of the thermal energy Eth.
/ D

R
� %.
; x/e.%.
; x/; #.
; x// dx is

formulated in Corollary 4.

Corollary 3. Let the assumptions of Theorem 46 be satisfied. Let f 2 L1..0; T / � �IR3/
satisfies one of the following conditions:

(i) f D f.x/; f 6	 rxF ;
(ii) f is time periodic, nonconstant in time, f.t C T; x/ D f.t; x/ for all t; xI

(iii) f is almost periodic, nonconstant in timeI
(iv) f is asymptotic periodic (almost periodic) nonconstant in time, meaning

sup
x2�
jf.t; x/�g.t; x/j!0 as t!1; where g is periodic (almost periodic) nonconstant in time:

Then

E.t/ D

Z
�

�1
2
%juj2 C %e.%; #/

�
.t; :/ dx !1 as t !1

for any finite energy weak solution f%; u; #g of the Navier-Stokes-Fourier system defined on
.0;1/ �� constructed in Theorem 46.
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Remark 26. 1. The first condition together with Theorem 45 gives a complete description of
the longtime behavior of the energetically insulated Navier-Stokes-Fourier system driven
by a time-independent external force.

2. In contrast with the static case, the function f.t; x/ D rxF .t; x/ with F periodic and
nonconstant in time satisfies condition (ii), which leads to the explosion of the total energy.
With the help of Corollary 3, it is possible to construct forces that tend to zero when time
goes to infinity and vanish on a large set, but still drive the energy of the system to infinity.
See [44, Example 5.1].

The following result shows that boundedness of the internal energy implies boundedness
of the total energy.

Corollary 4. Let the assumption of Theorem 46 be satisfied. Let f%; u; #g be a global
finite energy weak solution on Œ0;1/ to the Navier-Stokes-Fourier system constructed in
Theorem 46 such that

E.t/ D

Z
�

�1
2
%juj2 C %e.%; #/

�
.t; :/ dx !1 as t !1: (505)

Then

ess lim sup
t!1

Z
�
%e.%; #/.t; :/ dx D1:

In fact, if ess lim supt!1
R
� %e.%; #/ dx <1; then also

sup k%.t; :/k
L
5
3 .�/
� c;

and the total entropy is bounded, which in turn yields a sequence of times 
n !1 such that

Z 
nC1


n

ku.t; :/kL6.�IR3/ ! 0:

These two relations imply ess lim inft!1 E.t/ <1, in contrast with (505).

12.4 Longtime Behavior: Stabilization to Equilibria for Rapidly
Oscillating Driving Forces

An example of nontrivial driving forces that, in contrast with the examples in the last
section, stabilize the system, is given in this section. The previous discussion may suggest
that almost all time-dependent driving forces imposed on the energetically insulated Navier-
Stokes-Fourier system result in the blowup of the energy for time tending to infinity. Instead
of forces that converge to a conservative form or simply vanish, also rapidly oscillating
forces may stabilize the system. This means that the condition (501) allows for some
interesting exceptions and that thanks to rapid oscillations the solutions may converge to
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the homogeneous static state as time goes to infinity. The specific choice of the driving force
was studied in [44], where the following result was proved:

Theorem 50 (see [44, Theorem 5.3]). Let the assumptions of Theorem 46 be satisfied. Let
the driving force take the form

f.t; x/ D !.tˇ/w.x/; t > 0; x 2 �;

where w 2 W 1;1.�/;w ¤ 0, and

! 2 L1.R/; ! ¤ 0; sup

>0

ˇ̌
ˇ̌
Z 


0
!.t/dt

ˇ̌
ˇ̌ <1; (506)

are given functions, with ˇ > 2.
Then any global-in-time finite energy weak solution of the Navier-Stokes-Fourier system

constructed in Theorem 46 satisfies

%u.t; �/! 0 in L5=4.�IR3/ as t !1; (507)

#.t; �/! Q# in L4.�/ as t !1; (508)

%.t; �/! Q% in L5=3.�/ as t !1; (509)

where Q%; Q# are positive constants,

Q% D
1

j�j

Z
�
%dx:

Proof of Theorem 50. The proof is based on the energy estimates obtained by means of the
total dissipation balance and on the analysis of possible oscillations of the driving force f.

The idea is to apply Lemma 19 on the sequence of time shifts

%n.t; x/ D %.t C n; x/; #n.t; x/ D #.t C n; x/;

un.t; x/ D u.t C n; x/; fn.t; x/ D !..t C n/ˇ/w.x/;

t 2 .0; T /; x 2 �:

To this end, it should be shown that

fn *� 0 in L1..0; T / ��IR3/; (510)

E.
/ D

Z
�

�
1

2
%juj2 C %e.%; #/

�
.
; �/dx ! E1 for 
 !1; (511)

and, exactly as (502), observed that

Z
�
%s.%; #/.
; �/dx ! S1 as 
 !1: (512)
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With (510)–(512) at hand, application of Lemma 19 yields

%.
n C �; �/! Q% in Cweek.Œ0; 1�IL
5=3.�//;

u.
n C �; �/! 0 in, say, L1..0; 1/ ��/;

#.
n C �; �/! Q# in, say, L1..0; 1/ ��/

for any 
n ! 1, where Q%; Q# is the (constant) solution to the stationary problem (480),
uniquely determined by

Q%j�j DM0; Q%e. Q%; Q#/j�j D E1:

To finish the proof, it remains to show convergence (507)–(509). This follows
from (511), (512), and the coercivity of Helmholtz function established in Lemma 14
(see (354) and (359)). Hence, it is sufficient to show (510) and (511).

Proof of (510). It is enough to see that

Z 1

0
!..t C n/ˇ/ .t/ dt ! 0 as n!1 for any  2 C1c .0; 1/:

This is a consequence of hypothesis (506), and ˇ > 2:

Z 1

0
!..tCn/ˇ/ .t/ dtD�

1

ˇ

Z 1

0
O..tCn/ˇ/

h
 0.t C n/1�̌ C.ˇ�1/.t C n/�ˇ .t/

i
dt!0;

(513)
where

O.
/ D
Z 


0
!.t/ dt

is bounded according to (506).
The convergence (511) follows from the total energy balance (343) and the following

relation

Z 


0
!.tˇ/

Z
�

w.x/.%u/.t; x/ dxdt ! I1 2 R for 
 !1: (514)

Proof of (514). First, deduce energy estimates and then uniform bounds via an iteration
process.

Denoting

U.t/ D

Z
�

w � .%u/.t; :/ dx;
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proceed as in (513) to get

Z T

T�1
!.tˇ/

Z
�

w.x/.%u/.t; x/ dxdt D
Z T

T�1
!.tˇ/U .t/ dt �

1

ˇ

ˇ̌
ˇO.tˇ/t1�ˇU .t/

ˇ̌
ˇT
T�1
C
1

ˇ

ˇ̌
ˇ̌
ˇ
Z T

T�1
O.tˇ/



.1 � ˇ/t�ˇU .t/C t1�ˇ

d

dt
U .t/

�
dt

ˇ̌
ˇ̌
ˇ :

Hence, (514) follows provided that U; d
dt U are proved to be bounded functions.

jU.t/j �
p
M0jjwjjL1.�IR3/jj

p
%u.t; �/jjL2.�IR3/:

Take a test function ' D  .t/w.x/ in the momentum equation (324) to get

d

dt
U .t/D

Z
�
.%Œu˝ u� W rxwCp.%; #/divxw�S W rxw/ .t; �/ dxC

Z
�

�
%jwj2

�
.t; �/!.tˇ/ dx

(515)
for a.a. t 2 .0;1/. To get uniform bounds for d

dt U , the total dissipation balance (346) is

used. Now, fix Q# > 0; Q% D M0

j�j
; M0 D

R
� % dx and rewrite equation (346) in terms

of relative energy E.%; #;u j Q%; Q#; 0/. Denoting D.t/ D E.%; #;u j Q%; Q#; 0/ and Q.t/ DR
�

Q#
#

�
S W ru � q�r#

#

�
dx, the equation (335) can be rewritten as follows:

D.
/C

Z 


0
Q.t/ dt � C. Q#;M0;E0; QS0/C

Z 


0
!.tˇ/U .t/ dt: (516)

The next goal is to establish uniform bounds for D, which then imply bounds for Q and the
time derivative of U .

The coercivity of Helmholtz function HQ# gives

Z
�
j.%Œu˝ u� W rxwC p.%; #/divxw/ .t; �/j dx � c1E.t/ � c2.1CD.t//

for a.a. t 2 .0;1/. Also, writing

S W rxw D

r
�.#/

#
ŒrxuCr txu �

2

3
divxuI� W ŒrxwCr txw �

2

3
divxwI�

p
�.#/#

C
p
�.#/=#divxu divxw

p
�.#/#;

yields

�Z
�
S W rxw dx

�2
�

ckwk2
W 1;1.�IR3/

Z
�

�.#/

#
jrxuCr txu �

2

3
divuIj2 dx

Z
�
�.#/# dx

Cckwk2
W 1;1.�IR3/

Z
�

�.#/

#
jdivxuj2 dx

Z
�
�.#/# dx:
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Assumptions (376) on � and � give

Z
�
.�.#/C �.#//#.t; �/ dx � c1

Z
�
.1C #2/.t; �/ dx � c2.1C

p
D.t//:

Altogether, the previous estimates imply

D.
/C

Z 


0
Q.t/ dt � c1 C

Z 


0
!.tˇ/U .t/ dt; (517)

D.
/ � 0; Q.
/ � 0; jU.t/j � c2
p
D.t/; (518)

and

ˇ̌
ˇ̌ d

d

U .
/

ˇ̌
ˇ̌ � c3D.
/C c4pQ.
/

q
1C

p
D.
/C c5 (519)

for a.a. 
 2 .0;1/, where constants ci , i D 1; : : : ; 5 depend only on M0;E0; QS0 and on the
norms kwkW 1;1.�IR3/ and k!kL1.R/. Moreover, the entropy balance equation (345) gives

Z 


0
Q.t/ dt � j QS0j C

Z
�
%js.%; #/j.
/ dx � j QS0j C c.%; #/CD.
/: (520)

Uniform Bounds. Next, estimates (517)–(520) are used to obtain a uniform bound onD. The
first step in the proof is to obtain a bound D.
/ � c
2. Then an iteration procedure, where
by repeating the same argument many times gives better and better bounds in each step, and
after finitely many steps the uniform bound is obtained.

The initial bound on D, follows from (517), (518):

D.
/ � c

�
1C

Z 


0
.1C

p
D.t// dt

�
I

whence

D.
/ � c
2 for a.a. 
 2 .1;1/:

This estimate is a starting point for the iteration procedure described in what follows.
Assume that the following estimate has been already proved:

D.
/ � c
m for a.a. 
 2 .1;1/ (521)

for a certain m 2 Œ0; 2�. Using (521) in (519) gives

ˇ̌
ˇ̌ d

d

U .
/

ˇ̌
ˇ̌2 � c �
2m CQ.
/
m=2� for a.a. 
 2 .1;1/I

whence, thanks to (520) and (521)
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Z T

T�1

ˇ̌
ˇ̌ d

d

U .
/

ˇ̌
ˇ̌2 dt � c1

 
T 2m C T m=2

Z T

0
Q.t/ dt

!
� c2.T

2m C T 3m=2/ � c3T
2m

(522)
provided T > 2.

On the other hand, with the bounded (see (506)) primitive function O

O.
/ D
Z 


0
!.t/ dt;

the following estimate holds

ˇ

Z T

T�1
!.tˇ/U .t/ dt �

ˇ̌
ˇO.tˇ/t1�ˇU .t/

ˇ̌
ˇT
T�1
C

ˇ̌
ˇ̌
ˇ
Z T

T�1
O.tˇ/

h
.1 � ˇ/t�ˇU .t/C t1�ˇU 0.t/

i
dt

ˇ̌
ˇ̌
ˇ :

Therefore,

ˇ̌
ˇ̌
ˇ
Z T

T�1
!.tˇ/U .t/ dt

ˇ̌
ˇ̌
ˇ � c1

�
T 1�ˇCm=2 C T�ˇCm=2 C T mC1�ˇ

�
� c2T

1�ˇCm (523)

using jU.t/j � ctm=2, and (522).
Finally it follows that

D.
/ � c
2�ˇCmI (524)

in particular, (521) implies (524). Hence, using the assumption ˇ > 2, it holds, after finitely
many steps

esssup
2.0;1/D.
/ <1:

Now, it follows from (523)

I .
/ D

Z 


0
!.
ˇ/U .t/ dt ! I1 2 R for 
 !1;

and, using the total energy balance (343) also

E.
/ D

Z
�

�
1

2
%juj2 C %e.%; #/

�
.
; �/ dx ! E1 for 
 !1:

ut

Remark 27. 1. Even if the restriction ˇ > 2 is probably not optimal, some uniform growth
of frequency is necessary. Indeed, consider
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f.t; x/ D !.nt/w for t 2 .Tn�1; Tn/; T0 D 0;

where ! is a time-periodic function with zero mean, and the sequence of times Tn is
chosen in such a way that

E.t/ � n for a:a: t � Tn:

Such sequence of times is possible to find applying repeatedly the existence Theorem and
Corollary 3 to the problem on the intervals .Tn;1/, with initial data

%.Tn; :/ 2 L
5
3 .�/; %u.Tn; :/ 2 L

5
4 .�IR3/; #.Tn; :/ 2 L

4.�/;

where # is uniquely determined by the equation

%.Tn; :/s
�
%.Tn; :/; #.Tn; :/

�
D %s.Tn; :/:

2. Similar stability result was proved in [4] for unbounded driving forces, when the
oscillations are so rapid that they in some sense prevail the growth in time, or the decay in
time allows for slower oscillations, specifically,

f D t ı!.tˇ/w;

where ! and w satisfy the assumptions of Theorem 50, and

ı > 0; ˇ � 2ı > 2 or ı � 0; ˇ � ı > 2:

The assertions (507)–(510) hold true for this kind of forcing terms. The proof of this result
follows the same lines as that of Theorem 50; it is based on precise energy estimates
together with careful analysis of possible oscillations of the driving force.

13 Conclusion

In spite of the fact that the theory of weak solutions to the compressible Navier-Stokes
equations is a young topic, it already benefits of quite large comprehensive literature
including monographs. The first results appeared in the pioneering seminal work of P.L.
Lions [77] dealing with the equations in barotropic regime. The Lions’ breakthrough was
made possible due to the discovery of the so-called effective viscous flux identity and the
renormalized transport theory developed previously by DiPerna and Lions in [18]. Another
milestone in the understanding of weak solutions for these equations is Feiresl’s monograph
[30] containing a comprehensive treatment of the heat-conducting compressible fluids with
weak formulation of the energy conservation in terms of the thermal energy balance. In the
light of this work (that employs in addition to the techniques introduced by P.L. Lions new
ideas related to the notion of oscillations defect measure), the Lions theory is a particular
case of Feireisl’s results. Monograph [88] contains an extensive material on weak solutions
to the compressible Navier-Stokes equations in barotropic regime ranging from stationary



160 A. Novotny and H. Petzeltová

to evolution problems and from bounded to unbounded domains with different boundary
conditions containing comprehensive detailed proofs. The theory of weak solutions has been
revisited in [93] in view of applications in the control theory. Monograph [33] introduces
in Chapter 3 a theory of weak solutions to the complete Navier-Stoke-Fourier system with
the energy conservation in terms of the entropy balance and the entropy production rate as a
Radon measure (entropy weak solutions). Among others, this work reveals importance of the
Helmholtz function (called sometimes ballistic free energy). This quantity plays an essential
role in the book [44] devoted to the investigation of the longtime behavior of weak solutions.
Thermodynamic stability conditions for entropy weak solutions to the Navier-Stokes-Fourier
system as well as for the barotropic equations can be reformulated as a variational inequality
called relative energy inequality (see [34,49,50]) that becomes a basic tool to prove the weak-
strong uniqueness principle for these equations (see again [34, 49, 50]) and has many other
applications, e.g., the investigation of various singular limits or deriving error estimates for
various numerical schemes.
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