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1 Introduction

This note is devoted to the study of regularity and separation from singularities of
solutions of the Cahn-Hilliard equation, the model which describes dynamics of two-
phase systems, and its non-isothermal version due to Caginalp. The concentration
difference of the two components (often called the order parameter of the system) is
described by the nonlinear fourth order equation in a domain €2:

up = A(=Au+ f(u)) in (0,T) x Q, (1.1)

where u denotes the order parameter, Q C R? is a bounded smooth domain, and f(u)
is the derivative of a double-well potential F'(u), whose wells correspond to the phases
of the material. The equation is supplemented with Neumann boundary conditions
and an initial datum

Ontlon = OnAulsn =0, uli—o = uo. (1.2)

The thermodynamically relevant potential F' suggested by Cahn and Hilliard [5] is of

the form 0 .
F(u) = 2 ((1+ 0l +w) + (1 - w)In(l —w)) - S, (13)
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where u(t, z) = £1 denote the pure phases. The logarithmic terms are related to the
entropy of the system, 6, > 0 is the critical temperature. If 8 > 6. then f is convex
and the mixed phase is stable. On the other hand, if 0 < § < 6., then F' has indeed
the double well form and phase separation occurs.

This equation was studied by many authors during the last years either with Neu-
mann or dynamic boundary conditions, see, e.g., [12] for more references. In the case
of a regular (nonsingular, e.g., cubic) nonlinear term the problem is well understood,
however, the order parameter need not remain in the physically relevant region [-1,1],
see [12, Remark 2.1]. This problem does not occur when singular nonlinearities f are
taken into account.

The first existence and uniqueness result for the problem (1.1-1.3) was obtained
by Elliott and Luckhaus [8], who constructed u as a limit of solutions of a regularized
problem with F(u) replaced by bounded functions. The result was then improved by
Debusche and Dettori [7] who approximated F'(u) by polynomials. A different way
was used in Miranville and Zelik [10], who approximate the equation by a generalized
Cahn-Hilliard equation based on a microforce balance, and a direct proof using the
general theory of monotone operators was given by Abels and Wilke [1]. The choice
of the nonlinearities was extended to the class

fec(-1,1), lir£11f(s) = —00, lin+11 f(s) =400, f'(s) > —d for some d > 0.

(1.4)
It was proved in these papers that solutions stay in the region —1 < w(t,z) <1
for all £ > 0, x € 2, and that the strict inequality

—1 < u(t,xz) < 1 holds for almost every ¢t > 0, x € Q, (1.5)

and that for every ¢ > 0, the set {x € Q; |u(t,z)| = 1} has zero measure. This enabled
to develop the theory of exponential attractors. The separation from the singularities
has been also shown in many papers dealing with proper dynamic boundary condi-
tions, see [10] and references therein. However, in the case of Neumann boundary
conditions, the problem of separation of the solution from the singularities of the
nonlinearity f for all (positive) times, which is crucial for reducing the problem to the
one with regular potentials with the well developed theory, is open for singularities,
which are not strong enough in the sense that f(s) tends only slowly to the limits in
(1.4), as, e.g., the logarithmic nonlinearity. It was proved in [10], that the separation
holds true for nonlinearities satisfying

/()] < e(f(2)? + 1), (1.6)
which is satisfied for nonlinearities of the type
Fw) = 6(u)(1 =)™, a > 1, G(£1) £0. (L.7)

As claimed in [10, Remark 7.1], this can be relaxed to a > 2. Our assumption (1.20)
satisfies (1.7) with o > 1. Abels and Wilke [1] proved that the w—limit set of any
solution is separated from singularities, and that dist(u(t),w(ug)) — 0 as ¢ — oo in
L>°(Q), so that the solution separates from singularities for sufficiently large time. It
allows to show that the solution converges to a single stationary state provided that
the nonlinearity is analytic.



It is the aim of this note to enlarge the set of nonlinearities which yields the
immediate separation property, and to improve the regularity of solutions. Unfortu-
nately, the separation property for the logarithmic potential is still out of reach, since
obviously this potential satisfies neither (1.6) above nor (1.20) below.

The regularity of solutions satisfying the immediate separation property is exam-
ined at the end of Section 3.

In Section 4, we show that the same result holds also for the nonisothermal prob-
lem. The model proposed by Caginalp [3], [4], consists of the following system of
equations for the phase-field variable u and the temperature ¥:

up = A(=Au+ f(u) + 29), w(0) = ug, (1.8)

U + %ut =AY, 9(0) = V. (1.9)

The problem is complemented with the Neumann boundary conditions (1.2) and also
OnV)oa = 0. (1.10)

For the sake of simplicity, we normalized the physical constants to 1, and assume that
Q] = 1.

This system was studied many times with regular potentials, but with f satisfying
(1.4) we have to establish the existence result first. We also examine the long-time
behavior of solutions in the case that the nonlinearity is analytic in the interval (-1,1).
We show that any solution of the Caginalp system converges to a single stationary
state, a solution of the problem

A(Auoo - f(uoo)) =0on Q, (1.11)
Onloo = OpQAts = 0 on 01, (1.12)
Voo = const. (1.13)

In the case of regular potentials, the convergence to equilibria was proved in [6] for
the problem with dynamic boundary conditions, and in [9] with Neumann boundary
conditions. Maximal attractors and inertial sets were examined in [2].

Our main result is the following

Theorem 1.1 Let f satisfy (1.4). Then for every ug satisfying
1
ug € L>(Q) with ||ugl| ) <1 and |Q|/ ug dz € (—1,1), (1.14)
Q

there is a unique solution u € L*°((0,00); L*°(Q)) N L%((0,00); H2(Y)) of (1.1-1.2)
such that for any e > 0,

u € L™ ((g,00); W3%(Q2)), (1.15)

f(u) € LOO((E7OQ);L6(Q)), (1‘16)

uy € L((g,00); H1(Q)) N L?((g,00); HY(Q)), (1.17)
Vu(t) € C’%(ﬁ) for allt > ¢, (1.18)

we O (e, T); C*(Q)) with v € (0, %], p="> 162”. (1.19)



Moreover, if there exists 6 € (0,1) such that f satisfies, in addition to (1.4),
f(s) < —C(1+8)75 for —1<s<—1+46, f(s)>C(1—s)"5 (1.20)

for1—0 < s<1, then
Hu(t)”c(ﬁ) <1 forallt>e. (1.21)

Remark. In comparison with [1] we have immediate separation property, not
only when the solution reaches a small neighborhood of a set of stationary solutions,
but we need a stronger nonlinearity. On the other hand, our nonlinearity is allowed
to be weaker than that in [10] (see (1.6)) to get separation for all positive times.
This is achieved by improving regularity of solutions, and examining the behavior of
solutions around possible points with |u(t, z)| = 1.

For the Caginalp system (1.8), (1.9) we have

Proposition 1.1 Let the assumptions of Theorem 1.1 hold. Moreover, let ¥y €
HY(Q). Then there exists a unique solution (u,?¥) of the problem (1.8)-(1.10), (1.2)
such that u satisfies the assertions of Theorem 1.1, and

0 € L*((0,00); H*(Q2)) N L®((0,00); H' (), (1.22)
191 L7 (¢t 041y w28 (02)) < C, (1.23)
19¢llr (e e41)528 () < Ces (1.24)

independently of t > €, and for any 1 < r < co. The constant C. depends on € but is
independent of r.

Remark. For (1.22)-(1.24) it is sufficient that f satisfies (1.4). With these esti-
mates and (1.15) at hand, we arrive at

Proposition 1.2 Let f,ug satisfy (1.4),(1.14), and 99 € HY(Q)). Then for any solu-
tion u, 9 of the problem (1.8)-(1.10), (1.2), the trajectories

UtZTU(t), UtZTﬂ(t)a T > ¢, (125)

are precompact in the space W*5(Q) for any s € (0,2).

The convergence result is formulated in the following

Proposition 1.3 Let the assumptions of Proposition 1.2 be satisfied, and, in addi-
tion, let f be real analytic in (-1,1). Let (u,d) be a solution of the problem (1.8)-
(1.10), (1.2). Then there exists a function uss-a classical solution of the problem
(1.11), (1.12), and Vo = [, Yoda such that

u(t) = Uoo, V() = Vo in CY(Q), v < % as t — oo.

Remark. Under the assumptions of Proposition 1.3 we have also separation of u
from the singularities of f, but only for large times, i.e., when the solution arrives
into a small neighborhood of the set of stationary solutions. The immediate separation
property holds again under the additional assumption (1.20). The solutions converge
to equilibria in a stronger topology than it was proved in [1] for the isothermal case
and in [9] for a regular nonlinearity.



2 Preliminaries

Denote ( fg ) dz. Tt is easy to see that, due to the boundary conditions, the
mtegral mean of the solutlon is a conserved quantity,

(u(t)) = /Qu(t) dz = /Quo dz = (ug) for all t > 0, (2.1)

and that the time derivative u; has zero mean:

(ug(t)) = /Qut(t) da = 0. (2.2)

Then we can rewrite equation (1.1) in the following equivalent form

(—AN) e = Ayu— f(u) + (f(u)), (2.3)

where (—Ap)~! is the inverse to the negative Laplace operator with the Neumann
boundary conditions, which is well defined on the space {v € L?(Q); (v) = 0}.
Multiplying (2.3) by u;, and integrating by parts, we get
d
/| —AN) " 2u[? do = — g Eu), (2.4)

where the free energy functional

E(v) :/Q(%‘V’UP—I—F(’U)) dz (2.5)

represents the starting point in the derivation of the Cahn-Hilliard equation.
The following existence Theorem is proved in [1].

Theorem 2.1 [see [1, Theorem 1.2]] Let f satisfy (1.4). Let the initial function ug
satisfy

up € H'(Q) and E(ug) < oo. (2.6)
Then there is a unique solution u € L>=((0,00); HY(Q)) of (1.1-1.2) with
u; € L?((0,00); H~1(Q)) such that

rku € L((0, 00); H2(2)) (2.7)
rf(u) € L=((0,00); L*(2)) (2.8)
kg € L((0, 00); H™1(Q)) N L2((0, 00); H'(2)), (2.9)

where k(t) = (l%rt)a

Remark The regularization effect of the equation allows us to consider also the
initial values from the space L*°(£2). We may use the procedure of approximation of
up by functions satisfying (2.6) as in the proof of Theorem 2.2 in [7], which asserts
that for ug € L?(Q) satisfying (uo) € (—1,1), and |Jug|| =) < 1 there is a unique
solution in the space

u € C([0,T]; L*(Q)) N L?((0,T); H*()), ruy € L?((0,00); H(Q)). (2.10)

It is also shown in [7] that k®u; € L°°((0,00); H~1()) with o > 2. So, the choice of
a weaker initial value wug, satisfying the assumptions of Theorem 1.1 does not affect
our considerations for ¢ > ¢.



3 Proof of Theorem 1.1

With the above Theorem 2.1 at hand, we can improve the regularity of solutions.
The statement (1.17) follows immediately from (2.9). Consequently, given ¢, there
exists a constant C. such that

lue(@)llzr-10) < Ce, i, [(AN) " ue(t)l @) < Ce forall t >, (3.1)

el L2 e,y () < Ce- (3.2)

Here and in what follows, C. denotes a constant that depends on ¢, and ¢ denotes a
generic constant which may vary even within one line.
Similarly, directly from Theorem 2.1, we have

lu@®)ll a2y < Ces [IVu®)lllzs) < cll[Vu®llar@) < Cor [1f(w®)ll2 @) < (Cs :
3.3

for all ¢ > e, where the second inequality follows from the imbedding theorem.
Multiplying (2.3) by —f(u(t))®, and integrating over (2, we get

/Q (—An) by (8)(— f(u(t))*)d

= u(t 2 X 1'— u u 5 X
5/f u(t))|Vu( d+/f d ((t))>/ﬂf((t))d
> |0 oy — 1@l Lt a0 [y — BV Lo £ )
@) oy — I @Dt £ ) o — BTt 2oy | F (D) Lo

where we used (1.4).
On the other hand,

/Q (=) () (—F(u(1)?) dz < (=) (@)oo LF @@ g o

< N=An) " ue®) o) 1 @) o) < Celfu®)Zs )
where the last step follows by (3.1). It means that
1 (D o0y < IF Q@D Ll f @) (@) + SalIValIZo o) I (w®)l|zo(q)

+Ce | f (ut)) |70 (0)-
Hence, taking into account (3.3), we arrive at
I (u(t))l| o) < Cc for all ¢ > e. (3.4)
Consequently, from (2.3), (3.1), and the imbedding H*(Q) C L%(Q2) we deduce

Au(t) € LS(Q),



which, together with (3.3), implies
Hu(t)HWz,G(Q) <C. t>e, (3.5)
and (1.15) follows. Then also

IVu(®)lwre@) < Ce, (3.6)

and from the imbedding theorem

Vau(t) € (C2(@))°, |||Va() Ce, t >, (3.7)

o <
which yields (1.18).

The regularity class (1.19) is a consequence of the following estimates, where
we used the fact that u, € L*(0,T;L*(Q) by (2.9) and the interpolation between
H=Y(Q) and HY(Q):

Let v € (0, %]7 p= % (thus p < 6), and 0 = % - %, and t1,ts > e > 0. Then

lu(ts) —u(t2)llev) < llut) — u(ta)lwir )

1 1
< Jult) = ult) 22 - lu(tr) = u(to) 1o

1
2

1 t2
< cluttr) ~ulte) ey < o [ Nurlirio)
t1

to 1
6 —6 2
< [l - lull il
t1

1
2

S (T S L) P )
= [ PO [ et U T S

S C|t1 —t2|% = C|t1 —tg‘%

Hence u € C*((g,T); C*(2)) with v € (0,4], p = 2522, and € > 0.

The last goal is to show the separation property (1.21). To this end, we examine
points (to,xo) where, possibly, |u(tg,zo)] = 1. Assume zg € Q. Let u(to,z9) =
min{u(tg, z);z € Q} = —1. It means that Vu(tg,xo) = 0, and by (1.18) there exists
U C Q, a neighborhood of xg, such that

\Vu(to, z)| < cla — xo|2. (3.8)
Then

u(to, ) — (—1) = u(to, z) — u(te, zo) = /o %u(to, sz + (1 — s)xg)ds

1
< |z — 9| / Vulto, sz + (1 — 5)z0)|ds
0



1
= |z — x| / Vu(to, sz + (1 — s)xo) — Vu(to, zo)|ds
0

1 .
<clx — x0|/ s%|x — x0|%ds <clr - x0|%,
0
by (3.7). This yields

u(to,x)§—1+c|x—xo\%, reU. (3.9)
If xg € 09, then again Vu(tg, zo) = 0 since

Vu(ty, zo) = Vaqu(to, zo) + dyu(te, zo)v(zo),

where Vaq denotes the surface gradient on 02 and v(xg) is the outer unit normal
in zg. If the boundary 91 is sufficiently smooth, then there exists an extension @ of
u(to,.) defined on a neighborhood V of z with an equivalent W256-norm, such that
a(zg) = —1, Via(xg) = 0. Then the same argument as above applies, and (3.9) holds
in VN Q. Alternatively, the construction given in the proof of [1, Proposition 6.1] to
deal with the boundary points in the case of C® boundary can be used to get (3.9).

In the same way, we deduce that if there is a point (¢g, z) such that u(to,zo) =
1 = max{u(to,x); z € Q}, then

u(to,x)21—c|x—xo|%, x eU. (3.10)

Assume now that f satisfies (1.20), and u(tg,z9) = —1. We already know from
[1], or [10] that u(tg,z) € (—1,1) for a.e. x € Q. By (1.20) and (3.9) we deduce that

flu(to,z)) < —c(1+ u(to,x))_% <clx — $0|_%, for a.e. z €U.

Since [z +— |& — 20|~ 2] ¢ L5(U), this yields a contradiction to (3.4).
In the same way we get a contradiction when u(tg, zg) = 1 at some point (o, zo),
to > ¢, xg € Q. Theorem 1.1 has been proved.

Remarks.
1. To prove the separation property, it is sufficient to show
[(—AN) g poe(q) < c for all t > e. (3.11)

Then it follows from the equation (2.3) that Au = (—=A)~tu, — (f(u))+ f(u) <0
almost everywhere in some neighborhood of (¢g, zo) with u(tg, zo) = —1 because
of the singularity of f(u) at w = —1. This is in contradiction with wu(tg,zo) =
—1 = minf{u(to, z); x € Q}. In the same way we would get Au > 0 a.e. in some
neighborhood of a maximum point (¢p,x0). Hence the immediate separation
holds in this case without any additional assumptions on f.

2. The condition (1.6) implies that u; € L>((g,00); L?(2)), so that (3.11) holds.
Indeed, differentiate (2.3) with respect to ¢, multiply by Ayu:, and integrate
over €. This yields

d1 1 1
&5”"”“)“%2(9) < —lAnui ()72 + §||f(u(t>)tH2L2(Q) + §HANUt(t)||2L2(Q)



< el @l () 3y < ellF 0], 3 g N () 20

< 1F () zoq lue @1 ),
and (3.11) follows from (1.16) and (1.17). The same procedure with the bounds
Hf(u)||L8((t7t+1);Loo(Q)) < e, ||Ut||L4((t’t+1);L2(Q)) < ¢ was applied in [10]. The
condition (1.6) can be relaxed showing that ||ut(t)||H;1+s <cfors> g, t>e,
and employing the imbedding theorem. This can be achieved by multiplying
the time derivative of (2.3) by (—An)%u; instead of Apyug, and realizing that

1F () ()] e < ellf @O g (@ el 113 0

< ellf ()o@ llwe ()l 1 () with p > 2.

See [13, sect. 4.4, Theorem 2, and sect. 2.2.3, Remark 2 |. Hence we have (1.21)
if f'(u)(t) € LP(Q) for some p > 2, t > &, in particular, if | f'(u)] < (] f(u)|741)
for some ¢ < 3. This is still a stronger assumption than (1.20).

3. In one space dimension, the imbedding H'(2) C C(2) and (1.17) ensures that

|(—A)tuy(t,x)| < M for all t > ¢, z € Q.

4. In the two-dimensional case, H!(Q) C LP(Q) for any p > 0, and we can pro-
ceed as in the proof of Theorem 1.1 to show that f(u) € L*((g,00), LP(£2)),
and, accordingly, we get separation property for any negative power f(u) ~
(1 —u?)~%, a > 0. However, this still does not solve the problem for the loga-
rithmic potential (1.3). It was solved in [10, Theorem 7.2] for f satisfying the
additional assumption |f'(u)| < exp(Cy|f(u)| + C2), which is satisfied by the
logarithmic nonlinearity. Using the Orlicz imbedding theorem, the authors ob-
tained estimates allowing to prove that (—A)~!wu; is bounded in the same way
as in the case f' < c(f%+1).

3.1 Regularity

Assume f € C?TH(—1,1), p > 0, and satisfies (1.20) and (1.4). Let £ > 0 be given.
Since (1.15) holds for any € > 0, there is v € (0, 1) such that

Hu(t)”c(ﬁ) <1—~forall t>¢/2, and
f(u) € L=((e/2,00); W20()), Af(u) € L%((¢/2,00); L°(2)).
First, we apply the maximal regularity of parabolic equations to the equation
ug + A%u = A f(u) with boundary condtitions (1.2),

in LP spaces. We take some tq € (£/2,¢) such that u(tg) € W2°(Q). Then the solution
u with the initial value u(ty) belongs to the space L?((to, T), W*%(Q)). Then we can
find t; < e with u(t;) € W*%(Q) as an initial value of u, which yields that

uwe L"((e,T);W*%(Q)), u, € L"((,T); L(Q)), 1<r<oo, T € (g,00).



Imbedding theorems then yield
u € C((e,T); W*5(Q)), and, conseqently, u € C((g,T); CQ’%(Q)).

Then, assuming f € C?T#(—1,1), u > 0, also f(u) € C((e,T);C**(Q)), Af(u) €
C((,T); C*(Q)), and subsequent application of the maximal regularity theorem, this
time in the space of Holder continuous functions, yields a classical solution u of (1.1).

4 Nonisothermal case

In this section, we prove Propositions 1.1 and 1.3.
To obtain an existence result corresponding to Theorem 2.1, we reformulate (1.8),
(1.9) in terms of enthalpy e = u + 19 and u as follows:

ug = A(—Au + f(u) + u—2e), (4.1)
er — Ae = —%Au. (4.2)

This allows us to repeat the existence proof in [1], based on the Lipschitz pertur-
bation of monotone operators. To see it, denote by Bu, u € L%((0,T); H'(Q2)), the
unique solution of (4.2) in the space L?((0,7); H'(Q)) with the Neumann boundary
conditions and the integral mean given by the (conserved) initial function ey. The
operator B is a bounded linear operator from L%((0,T); H!(Q)) into itself, it has an
explicit representation

B =(~Ax)? (0 — Ay) " (-An)2,
and we can rewrite (4.1) in the form
ur + A(Au — f(u) — du) = A(—du + u + 2Bu). (4.3)

Assuming (1.4), f(u) + du on the left hand side is monotone, and the right hand
side is Lipschitz continuous from L2((0,T); H*(Q)) into L?((0,7); H=1(Q)). With
the initial condition (2.6), we can proceed in the same way as in [1] (see [1, Theorem
3.1]) to get the existence of a unique solution to (4.3) satisfying (2.7)-(2.9). Regularity
of the enthalpy e, and, consequently, of the temperature ¢ follows from the maximal
regularity of parabolic equation (4.2) with the right hand side —%Au where u satisfies
(2.7), (2.10). For eqg € H*(Q) we have

e € L*((0,00); H*(2)) N L=((0,00); H'(2)), (4.4)
ey € L°((0,00); HH(Q)) N L2((0,00); H(Q)), (4.5)
[9) | 1) < 2lle®)|l ) + 2l|wt)] @) < C- for all ¢ > e. (4.6)

A result analogous to Theorem 1.1 can be deduced from (1.8) rewritten in the
form

(—AN)"up = 20 = Ayu — f(u) + (f(u)) — 2(0), (4.7)
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with the left hand side in L®°((e,00), L°()). Then, multiplying (4.7) by f(u)®, we
get, in the same way as in the previous section,

Hf(u(t))HLG(Q) < ., Hu(t)HW2.5(Q) <(C; fort>e. (4.8)

Consequently, we get also the separation property (1.21) provided that f satisfies
(1.20). Using again the maximal regularity of parabolic equation for the enthalpy
e with the right hand side in L>°((g, o0); L5(Q)) yields finally that the temperature
satisfies (1.23), (1.24), and Proposition 1.1 follows.

4.1 Long-time behavior-convergence to equilibrium

If f satisfies (1.4), and in addition f is real analytic in (-1,1), we can also prove con-
vergence of any solution (with ug as in (1.14) and ¥y € H'(Q)) to a single equilibrium
(oo, Voo), & solution of the stationary problem (1.11)-(1.13).

In this case, multiplying the equation (1.8) by (—Ax)~tuy, and (1.9) by 4(—=Ax) 1) (9+
%ut), and adding, we deduce the energy equality

d 1 9 9
— — F 2 =
a J, 2|Vu| + F(u) + 29° da

1 9 —-1 1,

— A |(—AN) 2ut| + 4|(—AN2 (19,5 + §’U,t)| dz.

This implies in particular that J(u, ) = [, |Vu[*+F(u)+29? dz is a strict Lyapunov
functional. Since (9(t)) = (Jo) for all £ > 0 because of (1.10), and v(t) = I(t) — (Vo) is
a solution of the parabolic equation (1.9) with the right hand side u; satisfying (2.2),
(2.9), we get that v(t) — 0 for t — oo, say, in L?(€2). It follows from Proposition 1.2
that the trajectory

U9 (1),

is precompact in the space W*5(Q) for any s < 2, and, by imbedding, W*°(Q) C
C~2(€). Then we have also

I(t) — (Yo) as t — o0 in CY(Q), v < ;
To show convergence of u(t) to a single stationary point us,, we proceed in the
same way as in [9] for the Caginalp model with a regular potential. The proof is based
on the fact that solutions of the stationary problem are separated from the singular
points of the nonlinearity (see [1, Proposition 6.1], or [9, Lemma 3.1]), and hence f
is real analytic on some neighborhood of the set of equilibria. An application of the
Lojasiewicz-Simon inequality on the energy functional E given by (2.5), together with
the convergence of temperature ¥ yields integrability of the time derivative of u. We
get uy € LY((T,00); H-1(Q)) for some T > ¢, and, consequently, the convergence of
u(t) in H=1(Q) for t — co. With the compactness of the trajectory of u at hand (see
(1.25)), we arrived at Proposition 1.3.

Acknowledgement: The authors wish to thank the referee for a very careful
reading and for suggesting several clarifications.
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