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Abstract

We propose a conservative multiscale scheme for the numerical simu-
lation of a high-dimensional Navier-Stokes-Fokker-Planck system for dilute
polymer solutions. The incompressible Navier-Stokes equations model the
unsteady motion of the Newtonian solvent, while the Fokker-Planck equa-
tion describes the evolution of the probability density function of infinitely
extensible polymer dumbbell molecules. This leads to a problem of un-
bounded domain. Our method combines a Lagrange-Galerkin and a Her-
mite spectral methods together with a space splitting approach. We prove
theoretically that the proposed scheme satisfies the discrete conservation of
mass with respect to the probability density. Several numerical experiments
are presented to illustrate the performance of the solver, and to confirm the
conservation of mass at the discrete level.

Keywords: stabilized Lagrange-Galerkin; Hermite spectral method; unbounded
domain; mass conservative scheme; space splitting; viscoelastic fluids; Navier-
Stokes-Fokker-Planck; kinetic dumbbell theory; Oldroyd-B model; Peterlin model

1 Introduction

In everyday life we encounter a huge class of multi-component fluids displaying non-
Newtonian behaviour due to their underlying micro-structure and its interaction
with solvent. Examples of such complex fluids are polymeric melts, solutions,
biopolymers (DNA, proteins), and also known from daily life such as blood, glue,
and detergent. We deal with a multiscale simulation of a class of models arising
as microscopic-macroscopic bead-spring models from the kinetic theory of dilute
polymer solutions with non-interacting polymeric chains.

The kinetic model considered in the present paper is a Navier-Stokes-Fokker-
Planck system describing the unsteady motion of viscoelastic fluids with infinitely

∗mizerova@math.cas.cz
†she@math.cas.cz

1



extensible molecular chains. This leads to a challenging problem of numerical
solution in an unbounded domain in a configuration space of polymer molecules.

The simplest model of our current interest is the Hookean dumbbell model
that corresponds to a linear spring force law for the bead-spring models of dilute
polymer solutions. Recently, Barrett and Süli in [3], along the side of the proof of
existence of global-in-time large-data weak solutions, rigorously showed that the
well-known Oldroyd-B model is indeed the macroscopic closure of the Hookean
dumbbell model. Let us mention that, generally, the macroscopic closure of kinetic
models with nonlinear spring force is not possible unless we approximate the non-
linear spring function. We consider the Peterlin approximation which replaces the
length of polymer molecules in the spring coefficient by the average length, cf. [21].
We would like to point out that the averaging in the nonlinear spring function re-
sults in the additional coefficients appearing in the Fokker-Planck equation. They
depend on the average length of polymer molecules that is a macroscopic quantity
only, namely the trace of the conformation tensor tr C = 〈|R|2〉. In the recent
work [9] the macroscopic closure of the proposed kinetic Peterlin model allowed us
to study the existence of global-in-time weak solutions. Note that the macroscopic
counterpart of the proposed kinetic model is the (macroscopic) Peterlin viscoelas-
tic model that has been studied in our previous work both from the theoretical
and numerical point of view, see [14–16].

Let us mention that for a multiscale simulation of kinetic viscoelastic models
confined to a bounded domain both in the physical and the configuration space
we can already find several results in the literature. For instance, the most com-
monly studied kinetic dumbbell-based model is the FENE model (finitely exten-
sible nonlinear elastic), in which a particular form of the corresponding nonlinear
spring potential restricts the system of equations to a bounded domain, see, e.g.,
[1, 5, 11, 13]. Another example is the Doi model with rod-like molecules of finite
length, cf. [10]. However, the methods developed for bounded domains can not,
in general, be efficiently extended to the case of infinite configuration space. Let
us emphasize that the Peterlin approximation of the spring force does not pro-
vide finite extensibility of polymeric chains, and therefore we have to deal with
the problem of an unbounded domain. To the best of our knowledge there are no
available multiscale simulation methods for dilute polymer solutions with infinitely
extensible molecules.

1.1 The Navier-Stokes-Fokker-Planck system

Widely studied models of polymeric fluids represent them simply as chains of
beads and springs or beads and rods surrounded by a Newtonian fluid. In our case
the solvent confined to a bounded domain Ω ⊂ Rd, d = 2, 3, is described by the
incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p+ 2ν∇ ·D(u) +∇ ·T, ∇ · u = 0. (1a)

Here the couple (u, p) : Ω × (0, T ) → Rd × R denotes the velocity and pressure,
ν stands for the solvent viscosity. The symmetric part of the velocity gradient
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is given by D(u) := (∇u + (∇u)T )/2. Each end-to-end dumbbell molecule is
represented by its orientation vector R that belongs to the configuration space
D := Rd. The probability density function ψ : Ω × D × (0, T ) → R gives the
probability of a dumbbell that it stays between R and (R + dR) in space D, at a
physical point x ∈ Ω and time t ∈ [0, T ]. It satisfies the following Fokker-Planck
equation

∂ψ

∂t
+ u · ∇xψ − ε∆xψ = −∇R ·

(
∇xu ·R

)
+

Γ(trC)

2λ

(
∇R ·

(
Rψ
)

+ ∆Rψ
)
. (1b)

Note that ∫
D

ψ(t,x,R) dR = 1, ∀(t,x) ∈ [0, T ]× Ω. (1c)

The system is equipped with the decay/boundary and initial conditions,

ψ||R|→∞ = 0,
∂ψ

∂n
|∂Ω = 0, u|∂Ω = 0, (1d)

ψ(0) = ψ0, u(0) = u0, (1e)

where u0 : Ω→ Rd, ψ0 : Ω×D→ R are suitable initial functions with ψ0 satisfying
(1c). The elastic stress tensor T : Ω × (0, T ) → Rd×d is appearing in (1a) as a
forcing term on the right-hand side of the momentum equation due to the random
movement of polymer molecules. It is obtained by means of Kramer’s expression,

T = γ(trC)C− I. (1f)

where C : Ω× (0, T )→ Rd×d, given by

C :=

∫
Rd

(R⊗R)ψ(t,x,R) dR, (1g)

is the symmetric positive definite conformation tensor. Functions Γ, γ ∈ C(R+;R)
appearing in (1b) and (1f) due to the Peterlin approximation depend on the struc-
ture parameter tr C :=

∑
iCii > 0. They will be specified later based on the fluid

model chosen in the numerical experiments. The positive constants ε and λ stand
for the centre-of-mass diffusion coefficient and the Deborah number describing the
elastic relaxation property of the polymer dumbbells, respectively. As already
mentioned above, the Peterlin approximation allows the macroscopic closure of
the Fokker-Planck equation (1b) which yields a partial differential equation for C.
Formal integration of (1b) multiplied by R ⊗ R over the configuration space D
yields

∂C

∂t
+ (u · ∇x)C− ε∆xC = −(∇xu)C−C(∇xu)T +

Γ(trC)

2λ

(
C− I

)
. (2)

Equation (2) is then equipped with the corresponding Neumann boundary con-
dition, ∇xC · n = 0, and initial condition C(0) = C0. Note that throughout the
paper we might omit the dependence of functions on the variables t,x,R when
there is no confusion.
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Definition 1. We refer the system of equations (1) as the kinetic Peterlin model,
while the system of equations (1a), (1f), (1g) and (2) together with the boundary
and initial conditions for the couple (u,C) as the Peterlin viscoelastic model.

Remark 1. As already pointed out in [9], the standard derivations of bead-spring
models routinely omit the diffusive term appearing in the Fokker-Planck equation
and, consequently, also in the corresponding macroscopic equation for the elastic
stress. However, in [2, 7, 24] it has been shown that the diffusion has indeed a
physical rationale. Therefore we consider the center-of-mass diffusion in (1b) and
hence also in (2) with a small constant ε ≥ 0.

The above introduced Peterlin viscoelastic model covers a large class of macro-
scopic models of viscoelastic fluids, cf. [14] and the references therein. For instance,
setting both γ and Γ constant we get the well-known Oldroyd-B model (for ε > 0
its diffusive version). For ε = 0, arbitrary Γ and constant γ we obtain the PTT
model.

The rest of the paper is organized as follows. In Section 2 we propose the
numerical method and prove that our scheme is, at the discrete level, mass pre-
serving with respect to the probability density function ψ. Section 3 contains
several numerical examples to validate the method.

2 Numerical method

In this section we derive a multiscale method for the Navier-Stoke-Fokker-Planck
system (1) as a coupling of two solvers: one for the macroscopic solvent and the
other for the high-dimesional molecular part. More precisely, we approximate the
Navier-Stokes equations by a stabilized Lagrange-Galerkin method, and apply a
space splitting method on the Fokker-Planck equation. The part corresponding
to the infinite configuration space will be solved by means of a Hermite spectral
method, and the other part corresponding to the finite physical space will be again
solved by the Lagrange-Galerkin method.

2.1 Lagrange-Galerkin method

Firstly, we discretize the time interval [0, T ] into NT equidistant parts, and denote
by tn = n∆t for n = 0, 1, · · · , NT the current time step, and by ∆t = T

NT
the fixed

time increment.
In what follows we briefly explain the Lagrange-Galerkin method (LG) intro-

duced in [20] to approximate the Navier-Stokes equations. This method employs
the following first-order approximation of the material derivative Dg/Dt of a func-
tion g : Ω× [0, T ]→ Rl, l ∈ {1, 2},

Dg

Dt
(x, tn) :=

(
∂g

∂t
+ (u · ∇x)g

)
(x, tn) =

gn(x)− (gn−1 ◦Xn
1 ) (x)

∆t
+O(∆t), (3)
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where Xn
1 : Ω→ Rd is a mapping defined by Xn

1 (x) := x−un(x)∆t. The symbol ◦
means the composition of functions, (gn−1 ◦Xn

1 )(x) := gn−1(Xn
1 (x)) with gn(x) :=

g(tn,x). Approximation (3) following the characteristics of particles backward in
time has appeared as a powerful tool for numerical solution of equations describing
viscoelastic fluids, for which not only the current state but also the history of
motion is important.

Let Ω be a polygonal domain, Th := {K} a triangulation of Ω̄ :=
⋃
K∈Th K, hK

the diameter of K ∈ Th, h := maxK∈Th hK the maximum element size, and Vh the
set of all vertices xi in Th. We consider a regular family of subdivisions {Th}h↓0
satisfying the inverse assumption [6]. We consider a conforming finite element
approximation of the velocity and pressure satisfying the Navier-Stokes equations
(1a), and the probability density function satisfying the part of the Fokker-Planck
equation corresponding to the physical space, see (5) below. To this end we define
the following discrete finite element spaces

Xd
h := {vh ∈ C0(Ω̄h)

d; vh|K ∈ P1(K)d,∀K ∈ Th},
Vh := Xd

h ∩ V, Wh := X1
h ∩H1(Ω), Qh := X1

h ∩Q,

where V := H1
0,σ(Ω)2, Q := L2

0(Ω) are the classical functions spaces, and P1(K) is
the polynomial space of linear functions on element K. It is well-known that the
P1/P1-approximation of the couple (u, p) solving (1a) does not satisfy the inf-sup
condition. Therefore we employ the Brezzi-Pitkaränta pressure stabilization [4],
see (19) below. For more details on LG we refer the reader to [19, 20] or our
previous work [15–17], where the above described method has been successfully
employed for the numerical simulation of macroscopic viscoelastic models.

2.2 Space splitting for the Fokker-Planck equation

We adopt the space splitting method, also called alternating-direction method,
that has been applied for FENE model by Lozinski and Chauviere in [5], and
Knezevic and Süli in [11]. Since the Fokker-Planck equation involves both the
configuration space (R ∈ D = Rd) and the physical space (x ∈ Ω ⊂ Rd), it is
natural for the numerical simulation to decompose equation (1b) into two parts
accordingly. For the approximation of the Fokker-Planck equation in the configu-
ration space we adopt the Hermite spectral method, which is naturally designed
for an unbounded domain, cf. [8]. To solve the equation in the physical space
we use the LG method described in Subsection 2.1. Consequently, we solve two
systems of equations in two sub-spaces.

Definition 2. (Space splitting)
Firstly, we fix a point in the physical space x ∈ Ω and solve the first part of (1b)
in the configuration space D := R2,

ψ∗ − ψn

∆t
= ∇R · ((−∇xu

n ·R + ξR)ψ∗) + χ∆Rψ
∗, R ∈ D. (4)
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In the second step we fix the point in the configuration space R ∈ D and solve the
rest of (1b) in the physical space,

ψn+1 − ψ∗

∆t
− un · ∇xψ

∗ − ε∆xψ
n+1 = 0, x ∈ Ω. (5)

2.3 Hermite spectral method for an unbounded domain

In order to deal with the problem of infinite configuration space we consider a
spectral method based on the weighted Hermite polynomials. Due to their useful
properties, they have been already used to derive numerical methods for problems
on unbounded domains. The readers are invited to read, for instance, [8, 23].

Before we derive the spectral method, let us introduce the definition and useful
properties of the Weighted Hermite polynomial [18]. It is defined for r ∈ R as

H̃m(r) :=
ωα√
2mm!

Hm(αr), ωα(r) := eα
2r2 , α > 0, m ≥ 0, (6)

where the Hermite polynomial of degree m is defined as

Hm(r) := (−1)mer
2

∂mr (e−r
2

), r ∈ R. (7)

The weighted Hermite polynomials are orthogonal with respect to the weight ωα,∫
R
H̃m(r)H̃n(r)ωα(r) =

√
π

α
δmn, (8)

δmn being the Kronecker delta. Moreover, they satisfy the following properties
that shall be used for the derivation of the configuration space solver (15) below

αrH̃m(r) =

√
m+ 1

2
H̃m+1(r) +

√
m

2
H̃m−1(r), (9a)

d

dr
H̃m(r) = −α

√
2(m+ 1)H̃m+1(r), (9b)

r
d

dr
H̃m(r) = −

√
(m+ 1)(m+ 2)H̃m+2(r)− (m+ 1)H̃m(r), (9c)

d2

dr2
H̃m(r) = 2α2

√
2(m+ 1)(m+ 2)H̃m+2(r). (9d)

Another useful feature of this function is

H̃m(r) −→ 0 as r −→∞. (10)

We refer the reader to, e.g., [8,22,25] and the references therein for the definition,
and an overview of the properties of the weighted Hermite polynomials.

For the simplicity of notation and better readability let us fix the dimension
in what follows to d = 2. Note that the method can be analogously derived for
d = 3. Let R := (r1, r2) ∈ D = R2. We define a grid point Rij := (r1,i, r2,j), where
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r1,i and r2,j are the roots of the Hermite polynomial HN+1(r). Consequently, we
can define the mesh DN as the set of (N + 1)× (N + 1) grid points Rij, i.e.,

DN :=
{
Rij = (r1,i, r2,j), i, j = 0, 1, · · · , N ; HN+1(r1,i) = HN+1(r2,j) = 0

}
. (11)

To solve the Fokker-Planck equation (1b) we use the spectral method based on the
weighted Hermite polynomials introduced above. To this end we define the space
PN := span {H̃m(r)}Nm=0, and P2

N := PN ⊗ PN . We seek an approximate solution
ψh,N ∈ Wh ⊗ P2

N in the form

ψnh,N(x,R) =
N∑
i=0

N∑
j=0

φnij(x) H̃i(r1)H̃j(r2), ∀ tn, n = 0, . . . , NT . (12)

Note that property (10) together with the above defined spectral decomposition
of the approximate solution directly imply that the decay boundary condition in
(1d) is satisfied at the discrete level.

In order to get the macroscopic quantities from the probability density func-
tions we need to compute integrals over the infinite configuration space. To this
end we use the Hermite-Gauss quadrature.

Theorem 2.1. [22, Theorem 7.3] (Hermite-Gauss quadrature)
Let {ri}Ni=0 be the zeros of HN+1(r), and {wi}Ni=0 be the weights given by

wi :=
2N
√
πN !

(N + 1)H2
N(ri)

, 0 ≤ i ≤ N.

Then, ∫
R
p(r)e−r

2

dr =
N∑
i=0

p(ri)wi, p ∈ P2N+1(R). (13)

For instance, we get the discrete value of the off-diagonal component of con-
formation tensor from the approximation ψh,N given by (12) as follows

C12 = C21 =

∫
R

∫
R
r1r2 ψh,N(r1, r2) dr1 dr2

=
N∑
i=0

N∑
j=0

φnij

∫
R
r1H̃i(r1) dr1

∫
R
r2H̃j(r2) dr2. (14)

The two integrals in (14) are then computed by (13) for p(r) = rH̃i(r) er
2 ∈ C∞(R).

Configuration space solver We insert (12) into equation (4), multiply it with
the test function H̃z(r1)H̃k(r2)ωα(r1)ωα(r2), and integrate over the configuration
space D. After employing the orthogonality (8) and the properties (9) of the
weighted Hermite polynomials we obtain the following finite difference scheme:

φ∗zk − φnzk
∆t

(xi) = L(φ∗zk(xi)), xi ∈ Vh, z, k = 0, . . . , N, (15)
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where

L(φzk) := φz−2,k(2α
2γ2 − A11)

√
z(z − 1) + φz−1,k−1(−A12 − A21)

√
zk

+ φz−1,k+1(−A12)
√
z(k + 1) + φz,k−2(2α2γ2 − A22)

√
k(k − 1)

+ φz,k(−A11z − A22k) + φz+1,k−1(−A12)
√

(z + 1)k.

(16)

Note that φz,k ≡ 0 if any of z, k is less than 0 or grater than N .

Physical space solver We insert (12) into (5), multiply it with the test function
H̃z(r1)H̃k(r2)ωα(r1)ωα(r2)ϕh, and integrate over both the configuration space D
and the physical domain Ω. Consequently, using the LG method introduced in
Subsection 2.1 we derive an equation for the unknowns φnzk. It reads(

φn+1
zk − φ∗zk ◦Xn

1

∆t
, ϕh

)
+ ε(∇xφ

n+1
zk ,∇xϕh) = 0, z, k = 0, . . . , N. (17)

2.4 Multiscale method

We now formulate our multiscale method for the numerical solution of the Navier-
Stoke-Fokker-Planck system (1) for dilute solutions with infinitely extensible poly-
mer molecules.

Definition 3. (multiscale scheme)
Let u0

h ∈ Vh and ψ0
h,N ∈ X1

h × P2
N be the initial values. We seek a solution

{un+1
h , pn+1

h , φn+1
zk }

NT−1
n=0 ⊂ Vh ×Qh ×Wh satisfying

φ∗zk(xi)− φnzk(xi)
∆t

= L(φ∗zk(xi)) for z, k = 0, . . . , Nand a fixed xi ∈ Vh, (18a)(
φn+1
zk − φ∗zk ◦Xn

1

∆t
, ϕh

)
+ ε(∇xφ

n+1
zk ,∇xϕh) = 0 in Ωh for fixed z, k, (18b)(

un+1
h − unh ◦Xn

1

∆t
,vh

)
+ 2ν

(
D(un+1

h ),D(vh)
)
− (pn+1

h ,∇x · vh)− (∇x · un+1
h , qh)

+ Sh(pn+1
h , qh) =

(
Tn+1
h ,∇xvh

)
in Ωh, (18c)

for any test function (vh, qh, ϕh) ∈ Vh ×Qh ×Wh. Here the pressure stabilization
term is given by

Sh(ph, qh) := δ0

∑
K

h2
K∇ph∇qh, (19)

where δ0 > 0 is constant. The piecewise linear continuous approximation Tn+1
h is

obtained by the interpolation of the discrete values Tn+1(xi) = T(ψn+1
h,N (xi,Rlj))

that are computed by Kramer’s expression (1f) and Hermite-Gauss quadrature.
Here the approximate solution ψn+1

h,N ∈ Wh × P2
N is computed from the solution

φn+1
zk (xi) of equations (18a)-(18b) by

ψn+1
h,N (xi,Rlj) =

N∑
z=0

N∑
k=0

φn+1
zk (xi) H̃z(r1,l)H̃k(r2,j), for xi ∈ Vh and Rlj ∈ DN .
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Remark 2. In all numerical tests in Section 3 we set the stabilization constant
in (19) to be δ0 = 0.05. Note that the multiscale scheme (18) has no requirements
on the time step ∆t. Indeed, the Lagrange-Galerkin method in (18c), (18b) has no
limitation on the time step due to the discretization of material derivative along
the trajectory curve. The Hermite spectral method (18a) neither needs a CFL
condition as it is implicit.

Remark 3. The kinetic Peterlin model (1) is equipped with the initial conditions
(1e), from which we infer the following discrete initial values,

u0
h := ΠS

h [(u0, 0)]1 ∈ Vh, ψ0
h,N(·,R) := Πh ψ

0(·,R) ∈ X1
h. (20)

Here u0
h is the first component of the Stokes projection ΠS

h : V × Q → Vh × Qh

of the couple (u0, 0). By Πh : C(Ω̄) → X1
h we denote the Lagrange interpolation

operator, cf., e.g., [15, Definition 1]. Further, we compute the values φ0
zk(xi) for

all xi ∈ Vh using the spectral decomposition (12).

2.5 Conservation of mass

The Hermite spectral method allows us to show the discrete counterpart of the
conservation of mass with respect to the probability density function, which is one
of the important features of the numerical scheme.

Theorem 2.2. (Discrete conservation of mass)
Let ψh,N ∈ Wh × P2

N be the solution of the multiscale scheme from Definition 3.
Let the probability density function be such that ψ(0,x,R) = ψ0(R) and satisfies
(1c). Then, for n = 0, . . . , NT , it holds that∫

D

ψnh,N(R) dR =

∫
D

ψ0(R) dR = 1.

The proof of Theorem 2.2 comes after two preliminary lemmas.

Lemma 2.3.
Let the assumptions of Theorem 2.2 be satisfied. Then φn00(x) is constant for all
x ∈ Ω and any time tn.

Proof. The proof is done by induction for n = 0, . . . , NT − 1.

• By the assumption of the lemma the coefficients φ0
zk are independent of x.

In particular, φ0
00 is constant in Ω.

• Assume φn00(x) = φn00 is a constant function in Ω. Then equation (18a) with
(16) directly yields φ∗00(xi) = φn00(xi) = φn00. By Lax-Milgram theorem [12],
equation (18b) has a unique solution φn+1

zk , for z, k = 0, . . . , N. We know that
for z = k = 0 the constant φ∗00 is the solution, since φ∗00 ◦ Xn

1 = φ∗00. Thus
φn+1

00 (x) = φ∗00 = φn00. This concludes the proof.
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We recall another useful property of weighted Hermite polynomials without
the proof.

Lemma 2.4. [18, Lemma 4]
For the weighted Hermite polynomial H̃n(r) it holds that∫

R
H̃n(r) dr = 0, for n ≥ 1.

Proof of Theorem 2.2. The conservation of mass at the discrete level is a direct
consequence of Lemmas 2.3 and 2.4. Indeed, we have∫

D

ψnh,N(R) dR =

∫
D

N∑
z,k=0

φnzkH̃z(r1)H̃k(r2) dR =

∫
D

φn00H̃0(r1)H̃0(r2) dR

=

∫
D

φ0
00H̃0(r1)H̃0(r2) dR =

∫
D

N∑
z,k=0

φ0
zkH̃z(r1)H̃k(r2) dR

=

∫
D

ψ0(R) dR,

which concludes the proof.

3 Numerical experiments

We present various numerical experiments in two space dimensions (d = 2) in
order to demonstrate the performance of the proposed simulation method. We
consider some classical benchmark problems from the ones with simple setting to
the ones involving complex geometry. The complete multiscale solver is used in
all subsequent experiments except the extensional flow in Subsection 3.1, in which
only the configuration space solver on the unbounded domain is verified.

3.1 Extensional flow

Firstly, we test only the configuration space solver (18a). We consider an exten-
sional flow, where the velocity field is fixed and given by ∇xu = diag{κ,−κ} with
the extension rate κ = 0.5. In this case it is possible to find the steady state
solution of (1b). It reads

ψref(R) = cM exp
{
λRT∇xuR

}
, M(R) =

1

2π
exp

{
−1

2
|R|2

}
,

where c is a normalization constant. In all subsequent tests we take the initial
value ψ0(R) = M(R). Note, that it satisfies the assumptions of Theorem 2.2.
We can also compute the reference value of the macroscopic conformation tensor
corresponding to the steady state distribution ψref. Indeed, it reads

Cref =

∫
D

(R⊗R)ψref dR =

(
2 0
0 2

3

)
.

10



(a) t=0 (b) t=0.1 (c) t=1

(d) t=2 (e) t=10 (f) steady state

Figure 1: Extensional flow: time evolution of ψ towards the steady state, N = 40

Figure 1 depicts the time evolution of ψ towards the steady state ψref for N = 40.
The evolution of the three components of the symmetric conformation tensor is
shown in Figure 2 together with the value of the integral of ψ over the configuration
space D = R2 for different values of N till time t = 10. The corresponding relative
errors of the probability density function in L2(D)-norm, and of the diagonal
elements of the conformation tensor are listed in Table 1 below. We can clearly
observe the experimental convergence of the solution with increasing polynomial
degree N, and thus with an increasing number of the grid points Rij in the discrete
configuration space DN .

Table 1: Extensional flow: numerical error

N 8 10 16 20 30

‖ψh − ψref‖L2(D) 2.1e-2 1.3e-2 3.3e-3 1.3e-3 1.5e-4

|C11 − C11ref| 1.9e-1 7.9e-2 5.5e-3 8.8e-4 6.2e-5

|C22 − C22ref| 8.6e-2 5.5e-3 2.2e-3 7.0e-5 1.0e-6
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(a) C11 (b) C12

(c) C22 (d)
∫
D ψ

Figure 2: Extensional flow: time evolution till time t = 10

3.2 Poiseulle flow

In this experiment we test a periodic plane Poiseulle flow in computational domain
Ωh = [0, 1]2.The initial values are set as

(u0, ψ0) = (uref ,M), with u|ref =
(
x2(1− x2), 0

)T
.

In the horizontal direction we set the periodic boundary conditions for u and ψ.
The upper and bottom boundaries are treated as no-slip walls with respect to the
velocity. In addition, the homogeneous Neumann boundary condition is adopted
for ψ on the latter boundaries. We set ∆t = h, and the model parameters ν = 0.5,
λ = 0.5, ε = 0, Γ(trC) = γ(trC) = 1. The choice of ε, Γ and γ leads to the
well-known Oldroyd-B model. This setting allows us to find the exact solution of
the conformation tensor, i.e.,

C11 = 1 + 2λ

∣∣∣∣∂u2

∂x2

∣∣∣∣2 (λ− (t+ λ)e−t/λ
)
, C12 = λ

∂u2

∂x2

(1− e−t/λ), C22 = 1. (21)

Figure 3 shows that the numerical solution coincides with the analytical values (21)
computed at time t = 10. To further state the numerical convergence, we record

12



(a) C11 (b) C12 (c) u1

Figure 3: Poiseulle flow: solution at time t = 10

the relative errors ev := v − vref for v ∈ {u, C11, C12, C22}. Table 2 indicates
the numerical error is getting smaller both with an increasing mesh size h and
increasing Hermite polynomial degree N .

Table 2: Poiseulle flow: numerical error at t = 1

1/h N ‖eu‖L2 ‖eu‖H1 ‖eC11‖L2 ‖eC12‖L2 ‖eC22‖L2

16 8 2.15e-3 1.11e-2 3.17e-2 6.41e-2 2.82e-2

32 12 5.17e-4 4.33e-3 5.30e-3 1.45e-2 2.64e-3

64 16 1.30e-4 2.24e-3 2.58e-3 7.85e-3 1.53e-3

3.3 Driven cavity flow

For one of the benchmark problems for viscoleastic fluids, the driven cavity flow, we
set ∆t = 0.05, ν = 0.59, ε = 0, λ = 0.5, and choose Γ(trC) = (trC)2, γ(trC) = 1,
which indeed covers a PTT model. The boundary condition for velocity is set as
u = (16x2

1(1− x1)2, 0)
T

on the top boundary and zero otherwise. Figure 4 depicts
the contour lines of pressure, the values of the velocity and the conformation tensor
at t = 2. In Figure 5 we present the time evolution of the kinetic energy, the elastic
energy of the polymers represented by the maximum and minimum of the trace of
the conformation tensor, and the total mass of ψ.

3.4 Flow past cylinder

Now we present the performance of the multiscale solver for a flow past cylinder,
a widely considered benchmark problem with a complex geometry. Note that our
choice of parameters ε = λ = Γ(trC) = γ(trC) = 1 covers a diffusive Oldroyd-B
model. The boundary conditions are the same as in the Poiseulle flow test and the
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(a) p (b) u1 (c) u2

(d) C11 (e) C12 (f) C22

Figure 4: Driven cavity flow: solution at time t = 2

(a) kinetic energy (b) trC (c)
∫

Ω×D ψ

Figure 5: Driven cavity flow: time evolution up to time t = 4

inlet velocity is u =
(

1
4
x2(1− x2), 0

)T
. See Figure 6 for the numerical solution for

T = 4, ∆t = 0.01, ν = 0.59.

Conclusion

We have proposed a multiscale scheme for numerical simulation of the unsteady
motion of dilute polymer solutions with infinitely extensible molecules modelled
by the incompressible Navier-Stokes-Fokker-Planck system. For the simulation

14



Figure 6: Flow past cylinder: from top to bottom are u1, u2, p, C11, C12, C22

of the macroscopic solvent we used a stabilized Lagrange-Galerkin method. To
solve the kinetic equation for the distribution of polymer molecules we split this
equation into two parts; the first part in the physical space was solved by the
Lagrange-Galerkin method, while the second part in infinite configuration space
was approximated by the Hermite spectral method. We have proven that the
scheme preserves mass with respect to the probability density. Demonstrating
the performance of our solver, we have presented several numerical experiments,
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from which we could conclude the numerical convergence for decreasing physical
mesh size h and increasing number N of grid points in the discrete configuration
space (degree of the Hermite polynomial) as well. The theoretical result on the
discrete conservation of mass has been also confirmed by the numerical tests. To
the best of our knowledge, this is the first result on the numerical simulation of
dilute solutions with infinitely extensible polymers.
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