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Abstract

We develop the theory of weak Fräıssé categories, where the crucial concept
is the weak amalgamation property, discovered relatively recently in model
theory. We show that, in a suitable framework, every weak Fräıssé category
has its unique limit, a special object in a bigger category, characterized by
certain variant of injectivity. This significantly extends the known theory of
Fräıssé limits.
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4 Weak Fräıssé sequences 5

5 Generic objects 10

6 Weak homogeneity 14

7 The Banach-Mazur game 15

8 Applications 20
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1 Introduction

We develop category-theoretic framework for the theory of limits of weak Fräıssé
classes. Fräıssé theory belongs to the folklore of model theory, however actually
it can be easily formulated in pure category theory. The crucial point is the no-
tion of amalgamation, saying that two embeddings of a fixed object can be joined
by further embeddings into a single one. More precisely, for every two arrows f, g
with the same domain there should exist compatible arrows f ′, g′ with the same
codomain, such that f ′ ◦ f = g′ ◦ g. A significant relaxing of the amalgamation
property, called the weak amalgamation property has been discovered by Ivanov [4]
and later independently by Kechris and Rosendal [5] during their study of generic
automorphisms in model theory. It turns out that the weak amalgamation property
is sufficient for constructing special unique objects satisfying certain variant of ho-
mogeneity. We show how do it in pure category theory. We partially rely on the
concepts and results of [7]. Our goal is to obtain a general result on the existence of
special (called generic) objects that are characterized up to isomorphisms in terms
of certain injectivity property.

2 Preliminaries

We recall some basic definitions concerning categories. Let K be a category. The
class of K-objects will be denoted by Obj(K). Given a, b ∈ Obj(K), the set of all
arrows from a to b will be denoted by K(a, b). The identity of a K-object a will be
denoted by ida. We will use the letter K to denote the class of all K-arrows. In other
words,

K =
⋃

a,b∈Obj(K)

K(a, b).

One of the axioms of a category says that K(a, b) ∩ K(a′, b′) = ∅ whenever 〈a, b〉 6=
〈a′, b′〉. Thus, given f ∈ K, there are uniquely determined objects a, b such that
f ∈ K(a, b). In this case a is called the domain of f , denoted by dom(f), while b is
called the co-domain of f , denoted by cod(f). The composition of arrows f and g will
be denoted by f ◦g. The composition makes sense if and only if dom(f) = cod(g). By
a sequence in a category K we mean a covariant functor ~x : ω → K and we denote by
xn the object ~x(n) and by xmn the bonding arrow from xn to xm (i.e., xmn = ~x(〈n,m〉),
where n ≤ m). Recall that ω is treated here as a poset category, therefore 〈n,m〉 is
the unique arrow from n to m provided that m ≥ n.

Following [7], we say that a subcategory S ⊆ K is dominating if the following
conditions are satisfied.

(C) For every x ∈ Obj(K) there is f ∈ K such that dom(f) = x and cod(f) ∈
Obj(S).

(D) For every y ∈ Obj(S), for every K-arrow f : y → z there is a K-arrow g : z → u
such that g ◦ f ∈ S (in particular, u ∈ Obj(S)).
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Figure 1: Cofinal amalgamation

A subcategory S satisfying condition (C) is called cofinal. We shall later need a
weakening of domination. Namely, we say that S ⊆ K is weakly dominating if (D)
is replaced by

(W) For every y ∈ Obj(S) there exists j : y → y′ in S such that for every K-arrow
f : y′ → z there is a K-arrow g : z → u satisfying g ◦ f ◦ j ∈ S.

The somewhat technical concept of weak domination will be more clear after we
define weak amalgamations and formulate the first results. Note that for a full
subcategory condition (D) follows from (C), therefore being weakly dominating is
the same as being dominating.

For undefined notions concerning category theory we refer to Mac Lane’s mono-
graph [9].

3 Weak amalgamations

Let K be a fixed category. We shall say that K has the amalgamation property at
z ∈ Obj(K) if for every K-arrows f : z → x, g : z → y there exist K-arrows f ′ : x→ w,
g′ : y → w satisfying f ′ ◦ f = g′ ◦ g. Recall that K has the amalgamation property
(briefly: AP) if it has the amalgamation property at every z ∈ Obj(K). A natural
weakening is as follows. Namely, we say that K has the cofinal amalgamation property
(briefly: CAP) if for every z ∈ Obj(K) there exists a K-arrow e : z → z′ such that K
has the amalgamation property at z′ (see Fig. 1).

Proposition 3.1. A category has the cofinal amalgamation property if and only if
it has a dominating subcategory with the amalgamation property.

Proof. Assume K has the CAP and let K0 be the full subcategory of K such that

Obj(K0) = {z ∈ Obj(K) : K has the AP at z}.

We check that K0 dominates K. CAP says that K0 is cofinal in K, that is, (C) holds.
As K0 is full, (D) follows from (C).

Now suppose that S is a dominating subcategory of K and S has the AP. Fix
z ∈ Obj(K) and using (C) choose a K-arrow e : z → u such that u ∈ Obj(S). Fix
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K-arrows f : u→ x, g : u→ y. Using (D), find K-arrows f ′ : x→ x′, g′ : y → y′ such
that f ′ ◦ f, g′ ◦ g ∈ S. Applying the AP, find S-arrows f ′′ : x′ → w, g′′ : y′ → w such
that f ′′ ◦ f ′ ◦ f = g′′ ◦ g′ ◦ g. This shows that K has the AP at u.

The above proposition shows that, from the category-theoretic point of view,
cofinal AP is not much different from AP, as long as we agree to restrict attention
to subcategories. Below is a significant and important weakening of the cofinal AP. In
model theory, it was first considered by Ivanov [4], later by Kechris and Rosendal [5],
and very recently by Krawczyk and the author [6].

Let K be a category. We say that K has the weak amalgamation property (briefly:
WAP)1 if for every z ∈ Obj(K) there exists a K-arrow e : z → z′ such that for every
K-arrows f : z′ → x, g : z′ → y there are K-arrows f ′ : x→ w, g′ : y → w satisfying

f ′ ◦ f ◦ e = g′ ◦ g ◦ e.

In other words, the square in the diagram shown in Fig. 1 may not be commutative.
The arrow e above will be called amalgamable in K. Thus, K has the WAP if for
every K-object z there exists an amalgamable K-arrow with domain z. Note also
that saying “K has the AP at z ∈ Obj(K)” is precisely the same as saying “idz is
amalgamable in K”.

Lemma 3.2. Let e ∈ K be an amalgamable arrow. Then i ◦ e and e ◦ j are amal-
gamable for every compatible arrows i, j ∈ K.

Proof. Assume e : z → u is amalgamable, i : u → v, and fix f : v → x, g : v → y.
Then f ◦ i : u→ x and g ◦ i : u→ y and therefore there are f ′ : x→ w and g′ : y → w
such that f ′ ◦ f ◦ i ◦ e = g′ ◦ g ◦ i ◦ e. This shows that i ◦ e is amalgamable. It is clear
that e ◦ j is amalgamable as long as e is.

Proposition 3.3. Let K be a category. The following properties are equivalent.

(a) K has the weak amalgamation property.

(b) Every cofinal full subcategory of K has the weak amalgamation property.

(c) K has a full cofinal subcategory with the weak amalgamation property.

(d) K is weakly dominated by a subcategory with the weak amalgamation property.

Proof. (a) =⇒ (b) Let S be cofinal and full in K, and fix z ∈ Obj(S). Find an
amalgamable K-arrow e : z → v. Using domination, we may find a K-arrow i : v → u
such that i ◦ e ∈ S. By Lemma 3.2, i ◦ e is amalgamable in K. We need to show that
it is amalgamable in S. For this aim, fix S-arrows f : v → x, g : v → y. Applying
the WAP, we find K-arrows f ′ : x→ w, g′ : y → w such that f ′ ◦f ◦ i◦e = g′ ◦g◦ i◦e.

1Ivanov [4] calls it the almost amalgamation property, while we follow Kechris and Rosendal
who use the adjective weak instead of almost. Actually, we have already considered the concept of
almost amalgamations in metric-enriched categories [8], where the meaning of ‘almost’ is, roughly
speaking, ‘commuting with a small error’.
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Finally, using domination again, find a K-arrow j : w → w′ such that w′ ∈ Obj(S).
Then j ◦ f ′ and j ◦ g′ are S-arrows, because S is a full subcategory of K (this is the
only place where we use fullness). Finally, we have (j◦f ′)◦f◦(i◦e) = (j◦g′)◦g◦(i◦e).

(b) =⇒ (c) =⇒ (d) Obvious.
(d) =⇒ (a) Let S be weakly dominating in K and assume S has the WAP. Fix

z ∈ Obj(K). First, find a K-arrow i : z → u with u ∈ Obj(S). Now find an S-arrow
e : u→ v that is amalgamable in S. Let j : v → v′ be an S satisfying the assertion of
(W). By Lemma 3.2, it suffices to show that j ◦ e is amalgamable in K. Fix K-arrows
f : v → x, g : v → y. Using domination, find K-arrows f ′ : x → x′, g′ : y → y′ such
that f ′ ◦ f ◦ j ∈ S and g′ ◦ g ◦ j ∈ S. Using the fact that e is amalgamable in S, we
find S-arrows f ′′ : x′ → w and g′′ : y′ → w satisfying

f ′′ ◦ (f ′ ◦ f ◦ j) ◦ e = g′′ ◦ (g′ ◦ g ◦ j) ◦ e.

Thus j ◦ e is amalgamable in K.

Example showing that fullness is relevant?

4 Weak Fräıssé sequences

We now define the crucial concept of this note. Let K be a fixed category. A sequence
~u : ω → K will be called a weak Fräıssé sequence if the following conditions are
satisfied.

(G1) For every x ∈ Obj(K) there is n such that K(x, un) 6= ∅.
(G2) For every n ∈ ω there exists m ≥ n such that for every K-arrow f : um → y

there are k ≥ m and a K-arrow g : y → uk satisfying g ◦ f ◦ umn = ukn.

· · · un um uk · · ·

y

um
n

f

uk
m

g

Condition (G1) simply says that the image of ~u is cofinal in K. Condition (G2) looks a
bit technical, although it is actually strictly connected with the weak amalgamation
property:

Lemma 4.1. Every category with a weak Fräıssé sequence is directed and has the
weak amalgamation property.

Proof. Let ~u be a weak Fräıssé sequence in K. Condition (G1) clearly implies that
K is directed, as every two K-objects have arrows into a single un for n big enough.

Fix n ∈ ω and let m ≥ n be as in (G2). We claim that umn is amalgamable in
K. Indeed, if f0 : um → x0 and f1 : um → x1 are K-arrows then there are k0, k1 ≥ m
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and K-arrows g0 : x0 → uk0 , g1 : x1 → uk1 such that gi ◦ fi ◦ umn = ukin for i = 0, 1.
Let k ≥ max{k0, k1}. Then

(ukk0 ◦ g0) ◦ f0 ◦ u
m
n = ukn = (ukk1 ◦ g1) ◦ f1 ◦ u

m
n .

Now, if z ∈ Obj(K) and e : z → un is a K-arrow (which exists by (G1)), then umn ◦ e
is amalgamable, by Lemma 3.2.

Lemma 4.2. A category with a weak Fräıssé sequence is weakly dominated by a
countable subcategory, namely, the subcategory generated by the image of a weak
Fräıssé sequence.

Proof. Assume ~u : ω → K is a weak Fräıssé sequence in a category K. Let S be the
subcategory generated by the image of ~u. By (G1), S is cofinal in K. Fix x ∈ Obj(K)
and let e : x→ z be a K-arrow, where z ∈ Obj(S). Then z = un for some n ∈ ω. Let
m > n be as in condition (G2). Then, by the proof of Lemma 4.1, umn is amalgamable
in K. Thus, condition (W) is satisfied.

Lemma 4.3. Assume S ⊆ K is weakly dominating and ~u : ω → S is a weak Fräıssé
sequence in S. Then ~u is a weak Fräıssé sequence in K.

Proof. It is clear that the image of ~u is cofinal in K. It remains to check (G2).
Fix n and let m ≥ n be such that (G2) holds in S, namely:

(1) For every S-arrow f : um → y there are k ≥ m and an S-arrow g : y → uk
such that g ◦ f ◦ umn = ukn.

Let e : um → a be such that (W) holds, namely:

(2) For every K-arrow f : a→ x there is a K-arrow g : x→ y such that g◦f ◦e ∈ S.

Applying (1), find k ≥ m and i : a→ uk such that i ◦ e ◦ umn = ukn.
Fix a K-arrow f : uk → x. Then f ◦ i : a→ x, therefore applying (2) we can find

a K-arrow g : x→ y such that h := g ◦ f ◦ i ◦ e ∈ S. Applying (1) to the S-arrow h,
we find ` ≥ k and an S arrow j : y → u` such that j ◦ h ◦ umn = u`n. Finally, we have

u`n = j ◦ h ◦ umn = j ◦ g ◦ f ◦ i ◦ e ◦ umn = (j ◦ g) ◦ f ◦ ukn,

which shows (G2).

The concept of a weak Fräıssé sequence is (as the name suggests) a natural
generalization of the notion of a Fräıssé sequence from [7], where it is required that
m = n in condition (G2). On the other hand, we have:

Proposition 4.4. Assume K has the amalgamation property and ~u is a weak Fräıssé
sequence in K. Then ~u is a Fräıssé sequence in K.
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Proof. Fix n and a K-arrow f : un → y. Let m ≥ n be such that (G2) holds. Using
the AP, find f ′ : y → w and g : um → w such that f ′ ◦ f = g ◦ umn . Using (G2), find
h : w → uk with k ≥ m such that h ◦ g ◦ umn = ukn. Finally, h ◦ f ′ ◦ f = ukn.

The property of being a Fräıssé sequence is not stable under isomorphisms of
sequences, unless the category in question has the AP. It turns out that the property
of being weak Fräıssé is stable.

Proposition 4.5. Assume ~u, ~v are isomorphic sequences in K. If ~u is weak Fräıssé
then so is ~v.

Proof. Let ~p : ~u → ~v and ~q : ~v → ~u be arrows of sequences whose compositions are
equivalent to the identities. Assume ~u is weak Fräıssé. Obviously, ~v satisfies (G1).
It remains to check that ~v satisfies (G2).

Fix n ∈ ω and let n′ ≥ n be such that qn : vn → un′ . Let m ≥ n′ be such that
(G2) holds for ~u, namely, for every f : um → x there are k ≥ m and g : x → uk
satisfying g ◦ f ◦ umn′ = ukn′ . Let m′ ≥ m be such that pm : um → vm′ . Then m′ ≥ n.
We claim that m′ is “suitable” for condition (G2) concerning the sequence ~v. For
this aim, fix a K-arrow f : vm′ → y. Applying (G2) to the sequence ~u and to the
arrow f ◦ pm, we obtain k ≥ m and a K-arrow g : y → uk satisfying

g ◦ f ◦ pm ◦ umn′ = ukn′ .

Let k′ ≥ k be such that pk : uk → vk′ . Note that

pm ◦ umn′ ◦ qn = vm
′

n and pk ◦ ukn′ ◦ qn = vk
′

n ,

because the composition of ~p with ~q is equivalent to the identity of ~v, as shown in
the following diagram.

· · · un′ um uk · · ·

· · · vn vm′ vk′ · · ·

y

pm pkqn

f

g

Thus

(pk ◦ g) ◦ f ◦ vm′n = pk ◦ g ◦ f ◦ pm ◦ umn′ ◦ qn = pk ◦ ukn′ ◦ qn = vk
′

n .

This shows (G2) and completes the proof.

We shall later see that two sequences that are weak Fräıssé in the same category
are necessarily isomorphic. It remains to show their existence. We shall say that K is
a weak Fräıssé category, if it is directed, has the weak amalgamation property, and
is weakly dominated by a countable subcategory.
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Theorem 4.6. Let K be a category. The following properties are equivalent:

(a) K is a weak Fräıssé category.

(b) There exists a weak Fräıssé sequence in K.

Proof. Implication (b) =⇒ (a) is the content of Lemmas 4.1 and 4.2. It remains to
show (a) =⇒ (b). By Lemma 4.3, we may assume that K itself is countable.

Instead of constructing a weak Fräıssé sequence, we shall use the following simple
claim, known in set theory as the Rasiowa-Sikorski Lemma:

Claim 4.7. Let 〈P,≤〉 be a partially ordered set and let D be a countable family of
cofinal subsets of P . Then there exists a sequence p0 ≤ p1 ≤ p2 ≤ · · · in P such that
D ∩ {pn : n ∈ ω} 6= ∅ for every D ∈ D .

Let K<ω denote the set of all finite sequences in K, that is, all covariant functors
from n = {0, 1, . . . , n − 1} into K, where n ∈ ω is arbitrary. We shall use the same
convention as for infinite sequences, namely, if ~x : n → K then we shall write xi
instead of x(i) and xji instead of x(〈i, j〉). Given ~a,~b ∈ K<ω, define ~a ≤ ~b if ~b extends
~a. Clearly, 〈K<ω,≤〉 is a partially ordered set. An increasing sequence in K<ω gives
rise to an infinite sequence in K, as long as it does not stabilize. Let P be the subset
of K<ω consisting of all sequences ~x : n → K such that xji is amalgamable in K
whenever i < j. We shall work in the partially ordered set 〈P,≤〉.

Given x ∈ Obj(K), define Ux to be the set of all ~x ∈ P such that there is a
K-arrow from x to xi for some i < dom(~x). As K is directed and has the weak
AP, Ux is cofinal in 〈K<ω,≤〉. This follows from the fact that every K-arrow can be
prolonged to an amalgamable one (see Lemma 3.2).

Fix n ∈ ω and f ∈ K. Define Vn,f to be the set of all ~x ∈ P such that n + 1 ∈
dom(x) and the following implication holds:

(∗) If xn+1 = dom(f) then there are k > n and g ∈ K such that g ◦ f ◦ xn+1
n = xmn .

We check that Vn,f is cofinal in P . Fix ~a ∈ P . First, we extend ~a by using amalgam-
able arrows so that n + 1 < dom(~a). Now if an+1 6= dom(f) then already ~a ∈ Vn,f ,
so suppose an+1 = dom(f). Let k = dom(~a) and assume f : an+1 → y. Knowing
that an+1

n is amalgamable, we can find K-arrows g : y → w, h : ak−1 → w such that
g ◦f ◦an+1

n = h◦ak−1n+1 ◦an+1
n . Extend ~a by adding the arrow h on the top, so that (∗)

holds. The extended sequence is a member of Vn,f . This shows that Vn,f is cofinal
in 〈P,≤〉.

Finally, observe that a sequence ~p0 ≤ ~p1 ≤ ~p2 ≤ · · · satisfying the assertion of
the Rasiowa-Sikorski Lemma (with D consisting of all possible Ux and Vf,n) yields
a weak Fräıssé sequence in K. This completes the proof.

A weak Fräıssé sequence ~u is normalized if for every n condition (G2) holds with
m = n + 1. More precisely, for every n, for every arrow f : un+1 → y there are
k > n and and an arrow g : y → uk such that g ◦ f ◦ un+1

n = ukn. The sequence
obtained in the proof above is normalized. Clearly, every weak Fräıssé sequence
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contains a subsequence that is normalized. In a normalized weak Fräıssé sequence
all non-identity bonding arrows are amalgamable. It turns out that the converse is
true as well:

Lemma 4.8. Let ~u be a weak Fräıssé sequence in K such that un+1
n is amalgamable

for every n ∈ ω. Then ~u is normalized.

Proof. Fix a K-arrow f : un+1 → y. Let m > n + 1 be as in condition (G2) applied
to n + 1 instead of n. Using the fact that un+1

n is amalgamable, we find K-arrows
h : y → z and f ′ : um → z such that h ◦ f ◦ un+1

n = f ′ ◦ umn+1 ◦ un+1
n . Using (G2), we

find k ≥ m and a K-arrow g′ : z → uk satisfying g′ ◦ f ′ ◦umn+1 = ukn+1. Let g := g′ ◦h.
Then

g ◦ f ◦ un+1
n = g′ ◦ h ◦ f ◦ un+1

n = g′ ◦ f ′ ◦ umn+1 ◦ un+1
n = ukn+1 ◦ un+1

n = ukn,

showing that ~u is normalized.

The following fact will be essential for proving a variant of homogeneity of generic
objects.

Lemma 4.9. Assume ~u, ~v are normalized weak Fräıssé sequences in K and f : u1 →
v1 is a K-arrow. Then there exists an isomorphism of sequences ~h : ~u→ ~v extending
f ◦ u10.

Proof. We construct the following (not necessarily commutative!) diagram

uk1 uk1+1 uk2 uk2+1 uk3 · · ·

v0 v`1 v`1+1 v`2 v`2+1 · · ·
f1 f2g1 g2

in which k1 = 0, `1 = 1, and f1 = f . Furthermore,

(1) gi ◦ v`i+1
`i
◦ fi ◦ uki+1

ki
= u

ki+1

ki
,

(2) fj+1 ◦ u
kj+1+1
kj+1

◦ gj ◦ v
v`j+1

`j
= v

`j+1

`j

holds for all i, j ∈ ω. The construction is possible, because both sequences are
normalized weak Fräıssé, and hence (1), (2) are straightforward applications of the
normalized variant of (G2). Define

hi = fi ◦ uki+1
ki

and qj = gj ◦ v
`j+1
`j

.

Equations (1) and (2) give qi ◦ hi = u
ki+1

ki
and hj+1 ◦ qj = v

`j+1

`j
for i, j ∈ ω. Thus

~h = {hn}n∈ω is an isomorphism from ~u to ~v and it extends h1 = f ◦ u10.

Corollary 4.10. A category may have, up to isomorphisms, at most one weak
Fräıssé sequence.
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Proof. Let ~u, ~v be weak Fräıssé in K. Replacing them by subsequences, we may
assume that they are normalized. By (G1), there exists a K-arrow f : u1 → vk
for some k. Further refining ~v, we may assume k = 1. Now Lemma 4.9 yields an
isomorphism from ~u to ~v.

We finish this section by proving the following weakening of cofinality (in model
theory usually called universality).

Lemma 4.11. Let ~u be a weak Fräıssé sequence in K and let ~x be a sequence in K
such that xn+1

n is amalgamable in K for every n ∈ ω. Then there exists a σK-arrow
~e : ~x→ ~u.

Proof. For simplicity, we assume that the sequence ~u is normalized. We construct
inductively K-arrows en : xn → us(n) so that the following conditions are satisfied.

(1) u
s(n+1)
s(n) ◦ en = en+1 ◦ xn+1

n .

(2) en = e′n ◦ xn+2
n for some K-arrow e′n : xn+2 → us(n).

We start with e0 = e′0◦x20, where e′0 is an arbitrary K-arrow from xn+2 into some us(0),
which exists by (G1). Suppose e0, . . . , en have been constructed. Let f : xn+3 → w
and g : us(n)+1 → w be K-arrows such that

f ◦ xn+3
n+2 ◦ xn+2

n+1 = g ◦ us(n)+1
s(n) ◦ e′n ◦ xn+2

n+1.

This is possible, because xn+2
n+1 is amalgamable in K. Using (G2) and the fact that ~u

is normalized, we find a K-arrow h : w → us(n+1), with s(n + 1) > s(n), such that

h ◦ g ◦ us(n)+1
s(n) = u

s(n+1)
s(n) . Define e′n+1 := h ◦ f and en+1 := e′n+1 ◦ xn+3

n+1. Then

en+1 ◦ xn+1
n = h ◦ f ◦ xn+3

n+1 ◦ xn+1
n = h ◦ g ◦ us(n)+1

s(n) ◦ e′n ◦ xn+2
n+1 ◦ xn+1

n = u
s(n+1)
s(n) ◦ en.

It follows that the construction can be carried out, obtaining a σK-arrow ~e : ~x→ ~u
with ~e = {en}n∈ω.

5 Generic objects

The previous section was somewhat technical, as we were working in the rather ab-
stract category of sequences. We now prepare the setup suitable for investigating
generic objects. For obvious reasons, they could be called limits of weak Fräıssé cat-
egories. Another possible name would be weak Fräıssé limit, however, in our opinion
this would be inappropriate, because we only relax the axioms of Fräıssé, showing
that the limit is still unique and may only have somewhat weaker properties. After
all, a weak Fräıssé category may contain a weakly dominating Fräıssé subcategory,
having the same limit. In any case, we shall avoid the word limit, adapting the ter-
minology from set-theoretic forcing, calling the limit of a weak Fräıssé sequence a
generic object. The formal definition (stated below) does not use sequences.
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In this section K will denote, as before, a fixed category. Now we also assume
that L ⊇ K is a bigger category such that K is full in L and the following conditions
are satisfied:

(L0) All L-arrows are monic.

(L1) Every sequence in K has co-limit in L and every L-object is the co-limit of
some sequence in K.

(L2) Every K-object is ω-small in L.

Recall that an object x is ω-small in L if for every Y = lim ~y, where ~y is a sequence
in L, for every L-arrow f : x→ Y there are n and an L-arrow f ′ : x→ yn such that
f = y∞n ◦ f ′, where y∞n denotes the nth arrow from the co-limiting co-cone. We will
actually need this property for sequences ~y in K only. We shall use the following
convention: The L-objects and L-arrows will be denoted by capital letters, while the
K-objects and arrows will be denoted by small letters.

Typical examples of pairs 〈K,L〉 satisfying (L0)–(L2) come from model theory: K
could be any class of finite structures of a fixed first order language while L should be
the class of all structures isomorphic to the unions of countable chains of K-objects.
The arrows in both categories are typically all embeddings.

It turns out that for every category K in which all arrows are monic, the sequence
category σK can play the role of L, however in applications one usually has in mind
a more concrete and natural category satisfying (L0)–(L2).

We say that U ∈ Obj(L) is weakly K-injective if for every L-arrow e : a → U
there exists a K-arrow i : a → b such that for every K-arrow f : b → y there is an
L-arrow g : y → U satisfying g ◦ f ◦ i = e, as shown in the following diagram.

a b y

U

i

e

f

g

We say that U ∈ Obj(L) is generic over K (or K-generic) if the following conditions
are satisfied.

(U) Every K-object has an L-arrow into U (in other words: L(x, U) 6= ∅ for every
x ∈ Obj(K)).

(WI) U is weakly K-injective.

As one can expect, this concept is strictly related to weak Fräıssé sequences. Recall
that we always assume (L0)–(L2).

Theorem 5.1. Let U = lim ~u, where ~u is a sequence in K. Then U is K-generic if
and only if ~u is a weak Fräıssé sequence in K.
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Proof. Assume first that U is generic over K. Condition (U) combined with (L2)
shows that the sequence ~u satisfies (G1). In order to check (G2), fix n ∈ ω and
apply the weak K-injectivity of U to the arrow u∞n : un → U . We obtain a K-arrow
i : un → b such that for every L-arrow f : b → y there is an L-arrow g : y → U
satisfying g ◦ f ◦ i = u∞n . Taking f = idb, we obtain an L-arrow j : b→ U such that

j ◦ i = u∞n .

Applying (L2), we get m > n and a K-arrow k : b→ um such that j = u∞m ◦ k. Thus

u∞m ◦ umn = u∞n = j ◦ i = u∞m ◦ k ◦ i.

By (L0), u∞m is a monic, therefore

k ◦ i = umn .

We claim that m is a witness for (G2). Fix a K-arrow f : um → y. Applying weak
K-injectivity to the arrow f ◦ k, we find g : y → U such that

g ◦ f ◦ k ◦ i = u∞n .

Using (L2), we find ` > m and an L-arrow g′ : y → u` such that g = u∞` ◦ g′. Now
we have

u∞` ◦ g′ ◦ f ◦ umn = u∞` ◦ g′ ◦ f ◦ k ◦ i = g ◦ f ◦ k ◦ i = u∞n = u∞` ◦ u`n.

As u∞` is a monic, we conclude that g′ ◦ f ◦ umn = u`n, showing (G2).
Now suppose that ~u is a weak Fräıssé sequence in K. Then (G1) implies that U

satisfies (U). It remains to show that U is weakly K-injective. Fix e : a→ U . Using
(L2), find n and a K-arrow e′ : a→ un such that e = u∞n ◦e′. Let m > n be such that
the assertion of (G2) holds. Define i = umn ◦ e′. Fix a K-arrow f : um → y. There are
k ≥ m and a K-arrow g′ : y → uk such that g′ ◦ f ◦ umn = ukn. Let g = u∞k ◦ g′. Then

g ◦ f ◦ i = u∞k ◦ g′ ◦ f ◦ umn ◦ e′ = u∞k ◦ ukn ◦ e′ = u∞n ◦ e′ = e.

Thus, i witnesses the weak K-injectivity of U .

Recall that K has a weak Fräıssé sequence if and only if it is a weak Fräıssé
category, i.e., it is directed, has the weak amalgamation property, and is weakly
dominated by a countable subcategory.

Corollary 5.2. A K-generic object exists if and only if K is a weak Fräıssé category.

Proof. If K is a weak Fräıssé category then it has a weak Fräıssé sequence, whose
co-limit in L is a K-generic object by Theorem 5.1. Conversely, if U is a K-generic
object then, by (L1), U = lim ~u for some sequence ~u in K. The sequence ~u is weak
Fräısséin K by Theorem 5.1. Hence K is a weak Fräıssé category by Theorem 4.6.
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Corollary 5.3. A K-generic object, if exists, is unique up to isomorphism.

Proof. Suppose U , V are K-generic. By (L1), U = lim ~u, V = lim~v, where ~u, ~v are
sequences in K. By Theorem 5.1, both ~u and ~v are weak Fräıssé in K. By Corol-
lary 4.10, there exists an isomorphism from ~u to ~v in the category of sequences. This
leads to an isomorphism between U and V .

Corollary 5.4. Let U be a K-generic object. If X = lim ~x, where ~x is a sequence
in K such that each bonding arrow xn+1

n is amalgamable in K, then there exists an
L-arrow from X to U .

Proof. Knowing that U = lim ~u, where ~u is a weak Fräıssé sequence in K, it suffices
to apply Lemma 4.11.

We now turn to the question of homogeneity.

Theorem 5.5. Let U be a K-generic object and let e : a→ b be an amalgamable ar-
row in K. Then for every L-arrows i : b→ U , j : b→ U there exists an automorphism
h : U → U satisfying h ◦ i ◦ e = j ◦ e.

This is illustrated in the following diagram in which the triangle is not necessarily
commutative.

U

a b

U

e

j

i

h

Proof. Assume U = lim ~u, where ~u is a normalized weak Fräıssé sequence in K. By
(L2), there are k, ` ∈ ω such that i = u∞k ◦ i′ and j = u∞` ◦ j′. We may assume
that ` > 0, replacing j′ by u`+1

` ◦ j′, if necessary. We may also assume that i′ is
amalgamable, replacing it by uk+1

k ◦ i′ (and increasing k), if necessary. Now

a b uk uk+1 · · ·e i′ uk+1
k

and

u`−1 u` u`+1 · · ·
u`
`−1 u`+1

`

are normalized weak Fräıssé sequences and j′ : b→ u` is a K-arrow. By Lemma 4.9,
there is an isomorphism of sequences ~h extending j′◦e. This leads to an isomorphism
h : U → U satisfying h ◦ i ◦ e = j ◦ e.

Note that if ida is amalgamable in K then this is indeed homogeneity (with respect
to a). In particular, if K has the amalgamation property then the K-generic object is
homogeneous, that is, for every L-arrows a : i→ U , j : a→ U with a ∈ Obj(K) there
exists an automorphism h : U → U satisfying h ◦ i = j. In general, the property of
U described in Theorem 5.5 can be called weak homogeneity. We will elaborate this
in the next section.
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6 Weak homogeneity

In the classical (model-theoretic) Fräıssé theory, an important feature is that the
Fräıssé class can be reconstructed from its limit U , simply as the class of all finitely
generated substructures (called the age of U). Actually, a countably generated model
U is the Fräıssé limit of its age K if and only if U is homogeneous with respect to
K, in the sense described above, where K is treated as a category with embeddings.
That is why a Fräıssé class is always assumed to be hereditary (i.e., closed under
finitely generated substructures). This cannot be formulated in category theory,
however it becomes in some sense irrelevant, as we can always work in the category
of all finitely generated structures of a fixed language, or in a selected (usually full)
subcategory. On the other hand, we can consider subcategories of a fixed category
K and define the concept of being hereditary with respect to K. By this way we can
talk about objects that are generic relative to a subcategory of K. We can also look
at homogeneity and its weakening in a broader setting.

We continue using the framework from the previous section, namely, we assume
that K ⊆ L is a pair of categories satisfying (L0)–(L2). Given a class of objects
F ⊆ Obj(K), we can say that it is hereditary in K if for every x ∈ F , for every K-
arrow f : y → x we have that y ∈ F . Thus, the notion of being hereditary strongly
depends on the category K we are working with (the bigger category L plays no role
here). Actually, it is more convenient, and within the philosophy of category theory,
to define this concept for arbitrary subcategories (note that a class of objects may
be viewed as a subcategory in which the arrows are identities only). Namely, we say
that a subcategory S of K is hereditary if for every compatible K-arrows f, g the
following equivalence holds:

f ◦ g ∈ S⇐⇒ f ∈ S.

Note that a hereditary subcategory S is necessarily full. Indeed, if f : a → b is
such that b ∈ Obj(S) then idb ∈ S, therefore f = idb ◦ f ∈ S. It is very easy to
check that a family of objects F is hereditary if and only if the full subcategory S
with Obj(S) = F is hereditary (as a subcategory). Conversely, if S is a hereditary
subcategory of K, then Obj(S) is a hereditary class.

Natural examples of hereditary subcategories of K are of the form

KV := {f ∈ K : L(cod(f), V ) 6= ∅},

where V ∈ Obj(L). One could call KV the age of V relative to K. It is natural to ask
when KV is a weak Fräıssé category and when V is its “limit”. The answer is given
below.

Fix V ∈ Obj(L). We say that V is weakly homogeneous if for every L-arrow
f : a→ V with a ∈ Obj(K) there exist a K-arrow e : a→ b and an L-arrow i : b→ V
such that f = i ◦ e and for every L-arrow j : b → V there is an automorphism
h : V → V satisfying f = h ◦ j ◦ e. This is shown in the following diagram in which,
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again, the triangle may not be commutative.

V

a b

V

e

i

j

h

Note that in this case, if j′ : b→ V is another L-arrow, then there exists an automor-
phism h′ : V → V such that f = h′ ◦ j′ ◦ e. Thus, k := h−1 ◦ h′ is an automorphism
of V satisfying k ◦ j′ ◦ e = j ◦ e. This, by Theorem 5.5, shows that the K-generic
object is weakly homogeneous. The following result says that weakly homogeneous
objects are generic with respect to their age.

Theorem 6.1. Let V ∈ Obj(L) and let S := KV be the age of V , as defined above.
The following conditions are equivalent.

(a) V is weakly homogeneous.

(b) V is weakly S-injective.

(c) S is a weak Fräıssé category and V is S-generic.

Proof. (a) =⇒ (b) Fix an L-arrow f : a → V . Let i : b → V and e : a → b be as in
the definition of weak homogeneity. Fix an arbitrary S-arrow g : b→ y. There exists
an L-arrow k : y → V . Apply the weak homogeneity to j := k ◦ g. By this way we
obtain an automorphism h : V → V satisfying h ◦ k ◦ g ◦ e = f .

(b) =⇒ (c) By definition, V is S-generic, as it is S-cofinal. Corollary 5.2 says
that S is a weak Fräıssé category (formally, one should replace L by a suitable
subcategory, so that (L1) will hold).

(c) =⇒ (a) Trivial, by the comment after the definition of weak homogeneity.

7 The Banach-Mazur game

In this section we explore connections between generic objects and a natural infinite
game which is a generalization of the classical Banach-Mazur game in topology.

We fix a category K. The Banach-Mazur game played on K is described as follows.
There are two players: Eve and Odd. Eve starts by choosing a0 ∈ Obj(K). Then Odd
chooses a1 ∈ Obj(K) together with a K-arrow a10 : a0 → a1. More generally, after
Odd’s move finishing with an object a2k−1, Eve chooses a2k ∈ Obj(K) together with
a K-arrow a2k2k−1 : a2k−1 → a2k. Next, Odd chooses a2k+1 ∈ Obj(K) together with a
K-arrow a2k+1

2k : a2k → a2k+1. Thus, the result of the play is a sequence

~a : ω → K.
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Of course, one needs to add the objective of the game, namely, a condition under
which one of the players wins. So, let us assume that K is a subcategory of a bigger
category L, so that some sequences in K have co-limits in L. For the moment,
we do not need to assume neither of the conditions (L0)–(L2). Now choose a family
W ⊆ Obj(L). We define the game BM (K,W ) with the rules described above, adding
the statement that Odd wins the game if and only if the co-limit of the resulting
sequence ~a is isomorphic to a member of W . So, Eve wins if either the sequence ~a
has no co-limit in L or its co-limit is isomorphic to none of the members of W .

We are particularly interested in the case W = {W} for some W ∈ Obj(L),
where the game BM (K,W ) will be denoted simply by BM (K,W ). Before we turn
to it, we discuss some basic properties of the Banach-Mazur game.

Recall that a strategy of Odd is a function Σ assigning to each finite sequence
~s : n → K of odd length a K-arrow Σ(~s) : sn−1 → s, called Odd’s response to ~s. We
say that Odd plays according to Σ if the resulting sequence ~a satisfies an+1

n = Σ(~a � n)
for every odd n ∈ ω. Odd’s strategy Σ is winning in BM (K,W ) if lim~a is isomorphic
to a member of W whenever Odd plays according to Σ, no matter how Eve plays.
These concepts are defined for Eve analogously. A strategy Σ of Eve is defined on
sequences of even length, including the empty sequence, where Σ(∅) is simply a
K-object a0, the starting point of a play according to Σ.

Theorem 7.1. Let K ⊆ L be two categories and let W ⊆ Obj(L). Let S be a weakly
dominating subcategory of K. Then Odd has a winning strategy in BM (K,W ) if and
only if he has a winning strategy in BM (S,W ). The same applies to Eve.

Proof. Let Σ be Odd’s winning strategy in BM (K,W ). We describe his winning
strategy in BM (S,W ). We denote the resulting sequence of a play in BM (S,W )
by ~s. So, suppose Eve started with s0 ∈ Obj(S). Odd first chooses an S-arrow
i0 : s0 → a0 so that condition (W) of the definition of weak domination holds, namely,
for every K-arrow f : a0 → x there is a K-arrow g : x → t such that g ◦ f ◦ i0 ∈ S.
Let a10 = Σ(a0), so a10 : a0 → a1 with a1 ∈ Obj(K). Using (W), Odd finds a K-arrow
j0 : a1 → s1 and he responds with s10 := j0 ◦ a10 ◦ i0. In general, the strategy is
described in the following commutative diagram.

s0 s1 · · · s2n s2n+1 · · ·

a0 a1 a2n a2n+1

i0 in

a10

j0

a2n+1
2n

jn

Namely, when Eve finishes with s2n, Odd first chooses a suitable S-arrow in : s2n →
a2n realizing the weak domination. Next, he uses Σ to find a K-arrow a2n+1

2n : a2n →
a2n+1. Specifically, a2n+1

2n is Odd’s response to the sequence a0 → a1 → · · · → a2n in
which the arrows are suitable compositions of those from the diagram above. Odd
responds with s2n+1

2n := jn ◦ fn ◦ in, where jn comes from the weak domination of
S (condition (W)). This is a winning strategy, because the resulting sequence ~s is
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isomorphic to the sequence ~a, where

a2k+2
2k+1 = ik+1 ◦ s2k+2

2k+1 ◦ jk

for every k ∈ ω; this sequence is the result of a play of BM (K,W ) in which Odd
was using strategy Σ.

Now suppose Odd has a winning strategy Σ in BM (S,W ). Playing the game
BM (K,W ), assume Eve started with a0 ∈ Obj(K). Odd first uses (C) to find an
arrow i0 : a0 → s0 with s0 ∈ Obj(S). Next, he takes the arrow s10 : s0 → s1 according
to Σ. Specifically, s10 = Σ(s0). He responds with a10 := j0 ◦ s10 ◦ i0, where j0 : s1 → a1
is an S from condition (W), namely, for every K-arrow f : a1 → x there is a K-arrow
g : x→ s satisfying g ◦ f ◦ j0 ∈ S. In general, the strategy described in the following
commutative diagram.

a0 a1 · · · a2n a2n+1 · · ·

s0 s1 s2n s2n+1

i0 in

s10

j0

s2n+1
2n

jn

Here, in comes from condition (W), namely, in ◦ a2n2n−1 ◦ jn−1 ∈ S. Furthermore,
s2n+1
2n = Σ(~v), where ~v is the sequence s0 → s1 → s2 → · · · → s2n obtained from

the diagram above (note that all its arrows are in S). Finally, jn is such that the
assertion of (W) holds, that is, for every K-arrow f : a2n+1 → x there is a K-arrow
g : x → t such that g ◦ f ◦ jn ∈ S. Odd’s response is a2n+1

2n := jn ◦ s2n+1
2n ◦ in. This

strategy is winning in BM (K,W ), because the resulting sequence ~a is isomorphic to
the sequence ~s in which

s2k+2
2k+1 = ik+1 ◦ a2k+2

2k+1 ◦ jk ∈ S

for every k ∈ ω. The sequence ~s results from a play of BM (S,W ) in which Odd
was using his winning strategy Σ.

The case of Eve’s winning strategies is almost the same, as the rules are identical
for both players, except Eve’s first move.

Theorem 7.2. Assume {Wn}n∈ω is such that each Wn ⊆ Obj(L) is closed under
isomorphisms and Odd has a winning strategy in BM (K,Wn) for each n ∈ ω. Then
Odd has a winning strategy in

BM

(
K,
⋂
n∈ω

Wn

)
.

In particular,
⋂

n∈ω Wn 6= ∅.

Proof. Let Σn denote Odd’s winning strategy in BM (K,Wn). Let {In}n∈ω be a par-
tition of all even natural numbers into infinite sets. Let Jn = In ∪ {i + 1: i ∈ In}.
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Given a finite sequence ~s whose length n is odd, let k be such that n − 1 ∈ Ik and
define

Σ(~s) = Σk(~s � (Jk ∩ n)).

We claim that Σ is a winning strategy of Odd in the game BM
(
K,
⋂

n∈ω Wn

)
.

Indeed, suppose ~a is the result of a play in which Odd has been using strategy
Σ. Then ~a � Jk is a sequence resulting from another play in which Odd was using
strategy Σk. Thus lim~a = lim(~a � Jk) ∈ Wk. Hence lim~a ∈

⋂
n∈ω Wn.

We now turn to the case where W is the isomorphism class of a single object. As
the reader may guess, generic objects play a significant role here. In the next result
we do not assume (L0)–(L2).

Theorem 7.3. Let K ⊆ L and assume that ~u is a weak Fräıssé sequence in K with
U = lim ~u in L. Then Odd has a winning strategy in BM (K, U).

Proof. We may assume that the sequence ~u is normalized. Odd’s strategy is as
follows. Suppose a0 ∈ Obj(K) is Eve’s first move. Using (G1), Odd finds k ∈ ω
together with a K-arrow f0 : a0 → uk. His response is a10 := uk+1

k ◦ f0. In particular,
a1 = uk+1.

In general, suppose a2n2n−1 was the nth move of Eve. Assume inductively that
a2n−1 = u`+1 and a2n−12n−2 = u`+1

` ◦ fn−1 for some K-arrow fn−1. Using (G2), Odd finds
m > `+ 1 together with a K-arrow fn : a2n → um satisfying

um` = fn ◦ a2n2n−1 ◦ u`+1
` .

Odd’s response is a2n+1
2n := um+1

m ◦ fn. In particular, a2n+1 = um+1. The strategy is
shown in the following diagram.

· · · u` u`+1 um um+1 · · ·

a2n
a2n2n−1

fn

It is clear that the resulting sequence ~a is isomorphic to ~u, therefore lim~a = U .

The proof above is somewhat similar to that of Theorem 7.1. In fact, if the
sequence ~u is one-to-one (that is, un 6= um for n 6= m) then one can use Theorem 7.1
to play the game in the image of ~u, where Odd’s winning strategy is obvious.

Our goal is reversing Theorem 7.3, extending the results of Krawczyk and the
author [6]. We start with a technical lemma. Recall that a category C is locally
countable if C(x, y) is a countable set for every C-objects x, y.

Lemma 7.4. Assume K ⊆ L are two categories satisfying (L0)–(L2), K is locally
countable, V ∈ Obj(L), and suppose e : a → V is an L-arrow with a ∈ Obj(K)
satisfying the following condition.
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(×) For every K-arrow f : a → b there exists a K-arrow f ′ : b → b′ such that for
every L-arrow i : b′ → V it holds that e 6= i ◦ f ′ ◦ f .

Then Eve has a winning strategy in BM (K, V ).

Proof. Eve’s strategy is as follows. She starts with a0 := a. At step n > 0, Eve
chooses a K-arrow fn : a → a2n−1 and responds with a2n2n−1 := f ′, where f ′ comes
from condition (×) applied to f := fn. Thus

(†) (∀ i ∈ L(a2n, V )) e 6= i ◦ a2n2n−1 ◦ fn.

Of course, this strategy depends on the choice of the sequence {fn}n>0. We show
that a suitable choice makes Eve’s strategy winning. Namely, she needs to take care
of all K-arrows from a into the sequence ~a. More precisely, the following condition
should be satisfied.

(‡) (∀ k > 0)(∀ g ∈ K(a, ak))(∃ n > k) fn = a2n−1k ◦ g.

In order to achieve (‡), we use the fact that K is locally countable. Specifically, for
each k > 0, for each g ∈ K(a, ak) we inductively choose an integer ϕ(k, g) > k
in such a way that ϕ(k′, g′) 6= ϕ(k, g) whenever 〈k, g〉 6= 〈k′, g′〉. This is possible,
because for a fixed k there are only countably many possibilities for g (we may first
partition ω into infinite sets Bk and make sure that ϕ(k, g) ∈ Bk for every g). We
set fn := a2n−1k ◦ g whenever n = ϕ(k, g).

Now let A = lim~a ∈ Obj(L) and suppose that h : V → A is an isomorphism in
L. Using (L2), we find a K-arrow g : a → ak such that h ◦ e = a∞k ◦ g, where a∞k
is part of the co-limiting co-cone. By (‡), there is n > k such that fn = a2n−1k ◦ g.
Consider i := h−1 ◦ a∞2n. We have

i ◦ a2n2n−1 ◦ fn = h−1 ◦ a∞2n ◦ a2n2n−1 ◦ a2n−1k ◦ g = h−1 ◦ a∞k ◦ g = h−1 ◦ h ◦ e = e,

contradicting (†). This shows that Eve wins when using the strategy above.

We are ready to prove the main result of this section.

Theorem 7.5. Assume K ⊆ L satisfy (L0)–(L2) and K is locally countable. Given
an L-object V , the following properties are equivalent.

(a) V is K-generic (in particular, K is a weak Fräıssé category).

(b) Odd has a winning strategy in BM (K, V ).

(c) Eve does not have a winning strategy in BM (K, V ).

Proof. (a) =⇒ (b) By (L1), V = lim~v for a sequence ~v in K. By Theorem 5.1, this
sequence is weak Fräıssé in K. Thus (b) follows from Theorem 7.3.

(b) =⇒ (c) Obvious.
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(c) =⇒ (a) First, note that V satisfies (U), since if x ∈ Obj(K) is such that
L(x, V ) = ∅ then Eve would have an obvious winning strategy, starting the game
with x. Thus, supposing V is not K-generic, we deduce that it is not weakly K-
injective. Hence, there exists e : a→ V with a ∈ Obj(K) such that for every K-arrow
f : a → b there is a K-arrow f ′ : b → y such that no L-arrow j : y → V satisfies
j ◦ f ′ ◦ f = e. This is precisely condition (×) of Lemma 7.4, contradicting (c).

8 Applications

We briefly discuss how the results of previous sections can be interpreted in concrete
categories of models and other structures.

First of all, K could be a fixed category of finitely generated models of a fixed first-
order language while L could be the category of all models representable as unions
of countable chains in Obj(K). In both cases it is natural to consider embeddings as
arrows. It is clear that conditions (L0)–(L2) are satisfied. In this setting, our results
in Sections 5, 6, and in particular Theorem 6.1, are extensions of the classical results
of Fräıssé [2]. Specifically, if Obj(K) is countable up to isomorphisms and all the
models in Obj(K) are countable, then the joint embedding property together with
the weak amalgamation property imply the existence of a unique weakly K-injective
model in L that might be called the limit of Obj(K). Note that the property of being
hereditary is ignored. The main reason is that the weak AP is stable under taking the
hereditary closure. Recall that the joint embedding property is simply the property of
being directed with respect to embeddings. If the models in K are uncountable (this
may happen if the language is uncountable) then we cannot deduce that K is locally
countable, and indeed K might not be weakly dominated by a countable subcategory.
Summarizing, a class M of countable finitely generated models is called a weak
Fräıssé class if it has the joint embedding property and the weak amalgamation
property. Once this happens, it is a weak Fräıssé category (with embeddings as the
class of arrows). This has already been discussed in the recent work [6], also in the
context of the Banach-Mazur game. Our Theorem 7.5 in the special case of models
summarizes the main results of [6]. Recall that if M is a weak Fräıssé class then so
is its hereditary closure, while if M has the AP then its hereditary closure may fail
the AP.

8.1 Projective weak Fräıssé theory

Following Irwin & Solecki [3] we say that a class of finite nonempty models K is a
projective Fräıssé class if it contains countably many types and satisfies the following
two conditions:

(1) For every X, Y ∈ K there exists Z ∈ K having proper epimorphisms onto X
and Y .
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(2) Given proper epimorphisms f : X → Z, g : Y → Z with X, Y, Z ∈ K, there
exist W ∈ K and proper epimorphisms f ′ : W → X, g′ : W → Y such that
f ◦ f ′ = g ◦ g′.

Here, a mapping f : A → B is a proper epimorphism if it is a surjective homomor-
phism and satisfies for every n-ary relation R (in the language of the models from
K) the condition

RB(y1, . . . , yn)⇐⇒ (∃ x1, . . . , xn ∈ A) RA(x1, . . . , xn) and (∀ i ≤ n) yi = f(xi).

It is clear that declaring arrows between A,B ∈ K to be proper epimorphisms from
B onto A, we obtain a Fräıssé category. It is also clear how to change condition (2)
above, in order to obtain the projective weak amalgamation property. Of course,
the category L ⊇ K should consist of all inverse limits of sequences in K, treated as
compact topological spaces with continuous epimorphisms. It is easy to check that
conditions (L0)–(L3) are fulfilled.

As a very concrete example, we may consider K to be the class of all finite
nonempty sets with no extra structure. Then L should be the class of all compact
0-dimensional metrizable spaces. Obviously, K is a Fräıssé category and its limit is
the Cantor set. A much more interesting example (leading to an exciting topological
object, called the pseudo-arc) is contained in [3].

8.2 Droste & Göbel theory

The paper [1] by Droste & Göbel is the first treatment of model-theoretic Fräıssé
limits from the category-theoretic perspective. Roughly speaking, they work in a
category L having the property that λ-small objects are co-dense and there are not
too many of them. Under certain natural conditions, L contains a special object
which is the Fräıssé limit of the subcategory of all λ-small objects. In our case,
λ = ω, however we do not require that K ⊆ L consists of all ω-small objects. We
actually gave necessary and sufficient conditions for the existence of a K-generic
object, assuming conditions (L0)–(L3) only, which are weaker than those of [1]. The
results of Droste & Göbel can be easily extended to the case where the amalgamation
property is replaced by its weak version.

8.3 Uncountable weak Fräıssé theory

There is nothing unusual or surprising in extending the theory of generic objects and
weak Fräıssé sequences to the uncountable setting, namely, working in a category K
closed under co-limits of sequences of length < κ, where κ is an uncountable regular
cardinal. Under certain circumstances, there exists a (unique up to isomorphism)
weak Fräıssé sequence of length κ leading to a generic object in a larger category.
In fact, it suffices to combine the results of Section 4 above with [7, Section 3]. We
leave the details to interested readers.
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[7] W. Kubís, Fräıssé sequences: category-theoretic approach to universal homo-
geneous structures, Ann. Pure Appl. Logic 165 (2014) 1755–1811. 1, 2, 4, 8.3

[8] W. Kubís, Metric-enriched categories and approximate Fräıssé limits, preprint,
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