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Abstract. It is well known that the Prandtl-Ishlinskii hysteresis operator is

locally Lipschitz continuous in the space of continuous functions provided its
primary response curve is convex or concave. This property can easily be

extended to any absolutely continuous primary response curve with derivative

of locally bounded variation. Under the same condition, the Prandtl-Ishlinskii
operator in the Kurzweil integral setting is locally Lipschitz continuous also in

the space of regulated functions. This paper shows that the Prandtl-Ishlinskii

operator is still continuous if the primary response curve is only monotone
and continuous, and that it may not even be locally Hölder continuous for

continuously differentiable primary response curves.

1. Introduction. The Prandtl-Ishlinskii operator was introduced in the classical
monograph [8] by Krasnosel’skii and Pokrovskii (under the name “Ishlinskii opera-
tor”) as a finite or infinite linear combination of the so-called play operators defined
as solution operators of rate independent variational inequalities and describing,
following Prandtl in [17] and Ishlinskii in [7], elementary uniaxial parallel constitu-
tive models of elastoplasticity. More about mathematical questions related to the
Prandtl-Ishlinskii operator can be found in the monographs [2, 9]. Engineers ap-
preciate the fact that it admits an explicit inverse, which is a feature that allows for
constructing simple and robust algorithms for inverse control of technical processes
with the goal to eliminate the undesired influence of hysteresis, see [1, 15, 18].

The classical theory deals with input functions which are either continuous or
piecewise constant. More recent applications in modeling economic processes, where
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jump discontinuities may spontaneously occur during the evolution, as for example
in [3, 4, 5, 6, 11, 12], require to consider a more general class of inputs. A good
candidate seems to be the space G(0, T ) of regulated functions, that is, functions
f : [0, T ] → R that admit both one-sided limits f(t−), f(t+) with the convention
f(0−) = f(0), f(T+) = f(T ). The Kurzweil integral introduced in [16] offers
an analytical tool for this study and a corresponding theory of rate independent
integral variational inequalities with regulated inputs has been developed in [14]. A
further extension to an even larger subspace of L∞ has been done in [13].

The shape of the Prandtl-Ishlinskii hysteresis loops and the analytical proper-
ties of the operator are determined by one single nondecreasing function called
the generating function or the primary response curve. It is well known that the
Prandtl-Ishlinskii hysteresis operator is locally Lipschitz continuous in the space
of continuous functions provided its primary response curve is convex or concave.
This property can easily be extended to any absolutely continuous primary response
curve with derivative of locally bounded variation. Under the same condition, the
Prandtl-Ishlinskii operator in the Kurzweil integral setting is locally Lipschitz con-
tinuous also in the space of regulated functions. Indeed, no continuity can be ex-
pected if the primary response curve is discontinuous. The main result of this paper
consists in proving that the necessary condition for continuity, namely the continu-
ity of the primary response curve, is also sufficient for right continuous regulated
inputs. We also present examples showing that even continuous differentiability of
the primary response curve may not be sufficient for local Hölder continuity of the
Prandtl-Ishlinskii operator.

The structure of the paper is as follows. In Section 2 we recall some basic notions
of the Kurzweil integral variational inequalities. Section 3 is devoted to the proof
of the main continuity results, and Section 4 contains some counterexamples.

2. The play operator in the space of regulated functions. The play oper-
ator was defined in [8] first for continuous piecewise monotone inputs and it was
shown that it can extended to a Lipschitz continuous operator in the space C[0, T ]
of continuous functions on [0, T ]. Brokate and Sprekels proved in [2, Theorem
2.7.7] that the play operator is the main building block for all hysteresis operators
satisfying the Madelung memory rules (nowadays called return point memory opera-
tors). Roughly speaking, their result says that every return point memory operator
can be represented by a functional on the space of memory curves generated by
the system of play operators. Note that linear functionals correspond exactly to
Prandtl-Ishlinskii operators which constitute the main topic of this paper.

Here, we follow the formalism of [10] and restrict ourselves to the space GR(0, T )
of right continuous regulated functions. Then the play operator with threshold r > 0
is defined as the mapping pr which with a given input function u ∈ GR(0, T ) and
with an initial condition λ−1 associates the solution ξr ∈ GR(0, T ) of the Kurzweil
integral variational inequality

|u(t)− ξr(t)| ≤ r, ∀t ∈ [0, T ] ,

ξr(0) = min{u(0) + r,max{λ−1(r), u(0)− r}} ,∫ T
0

(u(t)− ξr(t)− z(t)) dξr(t) ≥ 0, ∀z ∈ G(0, T ) , |z(t)| ≤ r ∀t ∈ [0, T ].

 (1)

The definition is meaningful provided λ−1 : [0,∞) → R, is chosen to be Lipschitz
continuous with |λ′−1(r)| ≤ 1 a. e., and there exists a constant K > 0 such that
λ−1(r) = 0 for r ≥ K. Here, we restrict ourselves to the canonical initial condition
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λ−1(r) = 0 ∀r ≥ 0 (2)

and write simply ξr(t) = pr[u](t) for u ∈ GR(0, T ) and t ∈ [0, T ]. If u is a right
continuous step function of the form

u(t) =

m∑
j=1

uj−1χ[tj−1,tj)(t) + umχ{T}(t)

corresponding to a division 0 = t0 < t1 < · · · < tm = T of the interval [0, T ], where
χA for A ⊂ [0, T ] denotes the characteristic function of the set A, that is, χA(t) = 1
if t ∈ A and χA(t) = 0 if t /∈ A, then ξr has the same form

ξr(t) =

m∑
j=1

ξrj−1χ[tj−1,tj)(t) + ξrmχ{T}(t)

with

ξrj = min{uj + r,max{ξrj−1, uj − r}} for j = 0, . . . ,m , ξr−1 = λ−1(r) , (3)

see [14].
As a special case of [12, Lemma 3.2] we have the following comparison result.

Lemma 2.1. Let u, v ∈ GR(0, T ) be given, and let ξr = pr[u], ηr = pr[v]. Assume
that u(t) ≥ v(t) for all t in an interval [a, b] ⊂ [0, T ], and that ξr(a) ≥ ηr(a). Then
ξr(t) ≥ ηr(t) for all t ∈ [a, b].

We sketch here the proof of the following property of the play operator with
right continuous regulated inputs which is known for step functions from [2] and for
continuous functions from [9, Chapter II].

Lemma 2.2. Let u ∈ GR(0, T ), t ∈ [0, T ], and t ∈ [0, t] be given, and let us denote
ξr = pr[u], λ(r) := min{ξr(t−), ξr(t)}. Set

t̄ = max{τ ∈ [t, t] : ū := max{u(τ−), u(τ)} = sup{u(s); s ∈ [t, t]}} .
Assume that

u(τ) ≥ u := min{u(t−), u(t)} ∀τ ∈ [t, t] .

Then λ̄(r) := max{ξr(t̄−), ξr(t̄)} = max{ū− r, λ(r)}.

Proof. We define

v(t) =

{
u for t ∈ [t, t̄) ,
ū for t = t̄,

v̄(t) = ū for t ∈ [t, t̄],

pr[v](t) = λ(r) , pr[v̄](t) = max{ū− r, λ(r)}.
By (3) we have pr[v](t̄) = pr[v̄](t̄) = max{ū− r, λ(r)}, and since u ≤ u ≤ ū in [t, t̄],
the assertion follows from Lemma 2.1.

The same argument, where we interchange the local maxima and minima, yields
the following reverse statement.

Lemma 2.3. Let u ∈ GR(0, T ), t ∈ [0, T ], and t̄ ∈ [0, t] be given, and let us denote
ξr = pr[u], λ̄(r) := max{ξr(t̄−), ξr(t̄)}. Set

t = max{τ ∈ [t̄, t] : u := min{u(τ−), u(τ)} = inf{u(s); s ∈ [t̄, t]}} .
Assume that

u(τ) ≤ ū := max{u(t̄−), u(t̄)} ∀τ ∈ [t̄, t] .

Then λ(r) := min{ξr(t−), ξr(t)} = min{u+ r, λ̄(r)}.
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By induction following the argument of [9, Proposition II.2.5] we thus construct
at each time t a decreasing sequence (finite or infinite) {u2i−1} of local suprema
and an increasing sequence {u2i} of local infima of the function u such that

pr[u](t) =

{
0 for r > σ̄ := supτ∈[0,t] |u(τ)|,
uj + (−1)jr for r ∈ (σj+1, σj ]

(4)

with

σj+1 =
(−1)j

2
(uj+1 − uj), (5)

and

u2i = min{u(t2i), u(t2i−)} ,
u2i−1 = max{u(t2i−1), u(t2i−1−)}, i = 1, 2, . . . , t1 > t2 > · · · ≥ 0.

(6)

3. A continuity theorem. For a nondecreasing right continuous function ψ :
[0,∞) → [0,∞) such that ψ(0) = 0 called the generating function or the primary
response curve, we define the Prandtl-Ishlinskii operator generated by ψ by the
Kurzweil integral formula

F [u](t) = −
∫ ∞

0

∂−

∂r
pr[u](t) dψ(r), (7)

where ∂−

∂r denotes the left derivative. It was shown in [12] that if |u|[0,T ] ≤ K and

λ−1(r) = min{0,−K + r}, (8)

then F [u] ∈ GR(0, T ). Here, we prove the following continuity result.

Theorem 3.1. Let ψ : [0,∞) → [0,∞) be a nondecreasing continuous function,
ψ(0) = 0, and let λ−1(r) = 0. Then the operator F : GR(0, T ) → GR(0, T ) given
by (7) is continuous.

Indeed, no continuity can be expected if ψ is discontinuous. Before passing to
the proof of Theorem 3.1, we state and prove an easy Lemma.

Lemma 3.2. Under the hypotheses of Theorem 3.1, the function w(t) = F [u](t)
given by (7) belongs to GR(0, T ) for every u ∈ GR(0, T ), and belongs to C[0, T ] for
every u ∈ C[0, T ].

Proof of Lemma 3.2. Let u ∈ GR(0, T ) be given, and set K := |u|[0,T ]. Since ψ is

nondecreasing and continuous, there exists a sequence {ψn} of nondecreasing C2-
functions such that ψn(0) = 0 and supr∈[0,K] |ψn(r) − ψ(r)| → 0 as n → ∞. For

n ∈ N and t ∈ [0, T ] set

wn(t) = Fn[u](t) := −
∫ ∞

0

∂−

∂r
pr[u](t) dψn(r) = ψ′n(0)u(t) +

∫ K

0

pr[u](t)ψ′′n(r) dr.

We first check that all wn belong to GR(0, T ). Indeed, let t ∈ (0, T ] and 0 < β <
α < t be arbitrary. We have

wn(t− β)− wn(t− α) =ψ′n(0)(u(t− β)− u(t− α))

+

∫ K

0

(pr[u](t− β)− pr[u](t− α))ψ′′n(r) dr,
(9)
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hence, using the Lipschitz continuity result of the play operator in [10, Theorem
2.1], one has

|wn(t− β)− wn(t− α)| ≤ sup
τ∈[t−α,t−β]

|u(τ)− u(t− α)|

(
ψ′n(0) +

∫ K

0

|ψ′′n(r)|dr

)
,

and we conclude that wn(t−) exists for all t ∈ (0, T ]. Similarly, for t ∈ [0, T ) and
0 < α < T − t we have

wn(t+ α)− wn(t) = ψ′n(0)(u(t+ α)− u(t)) +

∫ K

0

(pr[u](t+ α)− pr[u](t))ψ′′n(r) dr,

hence

|wn(t+ α)− wn(t)| ≤ sup
τ∈[t,t+α]

|u(τ)− u(t)|

(
ψ′n(0) +

∫ K

0

|ψ′′n(r)|dr

)
,

and we see that wn(t+) exists and equals wn(t) for every n.
To complete the proof, it suffices to check that wn converge uniformly to w. In

other words, we have to prove the following implication.

∀ε > 0 ∃n0 ∈ N ∀t ∈ [0, T ] : n > n0 ⇒ |wn(t)− w(t)| < ε . (10)

Let ε > 0 be given. We fix r0 > 0 such that ψ(r0) < ε/4 and an integer n1 ∈ N such
that supr∈[0,K] |ψn(r) − ψ(r)| < ε/4 for n > n1. In particular, for every t ∈ [0, T ]
we have∣∣∣∣∫ r0

0

∂−

∂r
pr[u](t) d(ψn − ψ)(r)

∣∣∣∣ ≤ Var
[0,r0]

(ψn − ψ) ≤ ψn(r0) + ψ(r0) <
3

4
ε. (11)

On [r0,K], the function λ′(r) = ∂−

∂r pr[u](t) is a step function for each t ∈ [0, T ].
More specifically, by (4), there exists a sequence r0 < r1 < · · · < rm ≤ K such that
λ′(r) = 0 for r > rm and λ′(r) = ±1 in (rj−1, rj ]. Since u is regulated, the number
m is bounded above by some M independent of t. Hence, Var [r0,K] λ

′ ≤ 2M + 2,
so that∣∣∣∣∣
∫ K

r0

∂−

∂r
pr[u](t) d(ψn − ψ)(r)

∣∣∣∣∣ ≤
(
|λ′(r0)|+ Var

[r0,K]
λ′
)

sup
r∈[r0,K]

|ψn(r)− ψ(r)|

≤ (2M + 3) sup
r∈[r0,K]

|ψn(r)− ψ(r)|. (12)

It remains to choose n0 ≥ n1 such that supr∈[0,K] |ψn(r)−ψ(r)| < ε/(8M + 12) for

n > n0 and combine (12) with (11) to obtain the assertion. If u ∈ C[0, T ], then we
similarly prove that wn belong to C[0, T ] for all n ∈ N, and the uniform convergence
argument completes the proof.

Proof of Theorem 3.1. Let u ∈ GR(0, T ) and ε > 0 be given. We want to prove
the following statement:

∃δ0 > 0 ∀û ∈ GR(0, T ) : |u−û|[0,T ] < δ0 ∀t0 ∈ [0, T ] : |F [u](t0)−F [û](t0)| < ε. (13)

We proceed as follows. We fix t0 ∈ [0, T ] and show that it is possible to choose
δ0 ∈ (0, 1) independent of t0 satisfying the implication

δ := |u− û|[0,T ] < δ0 ⇒ |F [u](t0)−F [û](t0)| < ε. (14)

With this given t0, we denote λ(r) = pr[u](t0) and fix r0 = r0(ε) > 0 such that

Var
[0,r0]

ψ = ψ(r0) <
ε

4
. (15)
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We fix some K ≥ |u|[0,T ] + 1. According to (4)–(5), there exists a sequence r0 <
r1 < · · · < rm ≤ rm+1 = K such that λ(r) = 0 for r ≥ rm, and either

λ(r) = uj + (−1)jr for r ∈ [rj−1, rj ], j = 1, . . . ,m , (16)

or

λ(r) = uj − (−1)jr for r ∈ [rj−1, rj ], j = 1, . . . ,m , (17)

where uj = u(tj) or uj = u(tj−) for some t0 ≥ t1 > tj > · · · > tm ≥ 0. Let us
consider only the case (16), case (17) is similar.

We have λ(rj) = uj + (−1)jrj = uj+1 + (−1)j+1rj for j = 1, . . . ,m − 1, hence
uj+1 − uj = 2(−1)jrj . In particular, |uj+1 − uj | ≥ 2r0 = 2r0(ε). Since u is
regulated, there exists a number M = M(ε) depending only on r0(ε) (in particular,
independent of t0) such that

m ≤M(ε). (18)

Let now û ∈ GR(0, T ) be arbitrary such that δ := |u− û|[0,T ] ≤ 1, and put λ̂(r) =
pr[û](t0). We have by definition

|F [u](t0)−F [û](t0)| =
∣∣∣∣∫ ∞

0

(λ′(r)− λ̂′(r)) dψ(r)

∣∣∣∣ , (19)

where we set

λ′(r) =
∂−

∂r
pr[u](t0) , λ̂′(r) =

∂−

∂r
pr[û](t0). (20)

The situation is depicted at Figure 1. We first observe that |λ′(r)| ≤ 1, |λ̂′(r)| ≤ 1
for every r > 0, hence∣∣∣∣∫ r0

0

(λ′(r)− λ̂′(r)) dψ(r)

∣∣∣∣ ≤ 2 Var
[0,r0]

ψ <
ε

2
(21)

by virtue of (15). Similarly, for j = 1, . . . ,m, we have∣∣∣∣∣
∫ rj+2δ

rj−2δ

(λ′(r)− λ̂′(r)) dψ(r)

∣∣∣∣∣ ≤ 2(ψ(rj + 2δ)− ψ(rj − 2δ)). (22)

Let η = η(ε) be such that

0 < r < r̂ ≤ K, r̂ − r < η(ε) ⇒ ψ(r̂)− ψ(r) <
ε

d(ε)
(23)

with d(ε) ≥ 1 which will be specified later. Then, choosing

δ < δ0 :=
η(ε)

4
(24)

we have ∣∣∣∣∣
∫ rj+2δ

rj−2δ

(λ′(r)− λ̂′(r)) dψ(r)

∣∣∣∣∣ ≤ 2ε

d(ε)
for j = 0, . . . ,m. (25)

Let Jδ := {j ∈ {1, . . . ,m} : rj − rj−1 ≥ 2δ}. We have indeed λ(r) = λ̂(r) = 0 for
r ≥ K. Hence, it remains to estimate the integrals∫ rj−δ

rj−1+δ

(λ′(r)− λ̂′(r)) dψ(r) for j ∈ Jδ. (26)
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The function λ′ is constant in (rj−1 + δ, rj − δ), and we may assume that λ′(r) = 1
there. The case that λ′(r) = −1 for r ∈ (rj−1 + δ, rj − δ) is similar (see Figure 1).
Then, ∣∣∣∣∣

∫ rj−δ

rj−1+δ

(λ′(r)− λ̂′(r)) dψ(r)

∣∣∣∣∣ =

∫ rj−δ

rj−1+δ

(1− λ̂′(r)) dψ(r). (27)

e0
û2i−2

rr0

rj−1

rj

4δ

4δ

2δ

Figure 1. The memory curves λ(r) (the bold solid line) and λ̂(r)
(the thin solid line).

There are at most finitely many points in [rj−1 + δ, rj − δ] in which λ̂′ changes
sign. Let rj−1 + δ ≤ r̂0 < r̂1 < · · · < r̂2k−1 ≤ rj − δ be all such points for which

λ̂′(r) = 1 in (r̂2i−1, r̂2i), λ̂
′(r) = −1 in (r̂2i−2, r̂2i−1), i = 1, . . . , k (see Figure 1).

We have for all r ≥ 0 that
|λ(r)− λ̂(r)| ≤ δ, (28)

hence

2δ ≥
∫ rj−δ

rj−1+δ

(1− λ̂′(r)) dr = 2

k∑
i=1

(r̂2i−1 − r̂2i−2) (29)

Furthermore, ∫ rj−δ

rj−1+δ

(1− λ̂′(r)) dψ(r) = 2

k∑
i=1

(ψ(r̂2i−1)− ψ(r̂2i−2)). (30)

On the other hand, for every i = 1, . . . , k we have again by (4)–(5) that

λ̂(r) = û2i−1+r for r ∈ [r̂2i−1, r̂2i), λ̂(r) = û2i−2−r for r ∈ [r̂2i−2, r̂2i−1), (31)

where ûl = û(t̂l) or ûl = û(t̂l−) for l = 0, . . . , 2k and for some sequence t0 ≥ t̂1 >
. . . t̂2k ≥ 0. In particular, we have

λ̂(r2i−1) = û2i−1 + r̂2i−1 = û2i−2 − r̂2i−1, (32)

hence û2i−2−û2i−1 = 2r̂2i−1 ≥ 2(rj+δ). By virtue of the assumption |u−û|[0,T ] = δ,
the corresponding values of u2i−1, u2i−2 satisfy

u2i−2 − u2i−1 ≥ 2r0 (33)



3790 WEI LIU, PAVEL KREJČÍ AND GUOJU YE

and an argument similar to (18) yields

k ≤M(ε). (34)

By (29), we have r̂2i−1 − r̂2i−2 ≤ δ, and from (23)–(24) and (30) it follows that∫ rj−δ

rj−1+δ

(1− λ̂′(r)) dψ(r) ≤ 2M(ε)

d(ε)
ε. (35)

Putting together (21), (25), and (35), we obtain

|F [u](t0)−F [û](t0)| =
∣∣∣∣∫ ∞

0

(λ′(r)− λ̂′(r)) dψ(r)

∣∣∣∣
≤
(

1

2
+

2(M(ε) +M(ε)2)

d(ε)

)
ε.

(36)

To complete the proof, it suffices to choose d(ε) = 4(M(ε) +M(ε)2).

4. Counterexamples to Hölder continuity. It is well known that the Prandtl-
Ishlinskii operator F is Lipschitz continuous on bounded sets in GR(0, T ) if ψ is
convex or concave. Since every function of bounded variation can be represented
as a difference of two nondecreasing functions, the Lipschitz continuity holds when-
ever ψ′ has bounded variation. Since F is continuous for every continuous function
ψ according to Theorem 3.1, one might be tempted to believe that the Lipschitz
continuity of ψ suffices for the Lipschitz continuity of F . We show here that this
conjecture is false. In fact, we prove even more, namely that there exists an increas-
ing Lipschitz continuous function ψ such that the operator F is not even locally
α-Hölder continuous for any exponent α > 0. In Theorem 4.1 below we show that
ψ may even be assumed continuously differentiable and the counterexample still
works.

The construction is as follows. We consider a decreasing sequence {rk : k =
0, 1, . . . } of positive numbers, r0 ≤ 1, limk→∞ rk = 0, rk − rk+1 < rk−1 − rk for all
k ≥ 1, set ρk = 1

2 (rk + rk+1) for k ≥ 0, and define

ψ0(r) =


0 for r ≥ r0,
−r0 + r for r ∈ [ρ0, r0),
r2i−1 − r for r ∈ [ρ2i−1, ρ2i−2), i ∈ N,
−r2i + r for r ∈ [ρ2i, ρ2i−1), i ∈ N,
0 for r = 0,

(37)

and ψ(r) = 2r + ψ0(r). Then ψ is indeed increasing and Lipschitz continuous with
Lipschitz constant 3. We now construct functions u, û ∈ GR(0, T ) such that the
norms |u|[0,T ], |û|[0,T ] can be chosen arbitrarily small, and the difference |F [u] −
F [û]|[0,T ] cannot be dominated by any power of |u− û|[0,T ].

We fix some n ∈ N, choose an arbitrary sequence 0 = t0 < t1 < · · · < T ,
limk→∞ tk = T , and define

u(t) = uk for t ∈ [tk, tk+1) , u(T ) = 0, (38)

where

uk = (−1)k+1r2n+k for k = 0, 1, . . . . (39)

The function u indeed belongs to GR(0, T ). We similarly define

û(t) = ûk for t ∈ [tk, tk+1) , û(T ) = 0, (40)
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where

ûk = (−1)k+1r2n+k+1 = −uk+1 for k = 0, 1, . . . . (41)

Note first that uk − ûk = (−1)k+1(r2n+k − r2n+k+1), hence

|u− û|[0,T ] ≤ r2n − r2n+1 . (42)

Set λ(r) = pr[u](T ), λ̂(r) = pr[û](T ) for r ≥ 0, λ′(r) = ∂−

∂r pr[u](T ), λ̂′(r) =
∂−

∂r pr[û](T ) for r > 0. Then we have by (4)–(5) that

λ(r) =


0 for r ≥ r2n,
u0 + r for r ∈ [ρ2n, r2n),
u2i−1 − r for r ∈ [ρ2n+2i−1, ρ2n+2i−2),
u2i + r for r ∈ [ρ2n+2i, ρ2n+2i−1),
0 for r = 0,

(43)

λ̂(r) =


0 for r ≥ r2n+1,
û0 + r for r ∈ [ρ2n+1, r2n+1),
û2i−1 − r for r ∈ [ρ2n+2i, ρ2n+2i−1),
û2i + r for r ∈ [ρ2n+2i+1, ρ2n+2i),
0 for r = 0,

(44)

hence λ̂′(r) = −λ′(r) for r ∈ (0, r2n+1], λ̂′(r) = 0 for r > r2n+1 (see Figure 2).

f0
y

r

y = λ(r)y = λ̂(r)

r2n

ρ2nr2n+1

ρ2n+1

û2i

u2i+2

u2i+1

û2i+1

u2i+3

Figure 2. The memory curves λ(r) (the solid line) and λ̂(r) (the
dashed line).

Since ψ is Lipschitz continuous, we can rewrite (7) as

F [u](T ) = −
∫ ∞

0

λ′(r)ψ′(r) dr , F [û](T ) = −
∫ ∞

0

λ̂′(r)ψ′(r) dr ,

so that

F [û](T )−F [u](T ) = 2

∫ r2n+1

0

λ′(r)ψ′(r) dr +

∫ r2n

r2n+1

λ′(r)ψ′(r) dr . (45)

We have by definition λ(rk) = 0 for all k = 0, 1, . . . , so that the contribution of the
linear part of ψ is zero, and we have

F [û](T )−F [u](T ) = 2

∫ r2n+1

0

λ′(r)ψ′0(r) dr +

∫ r2n

r2n+1

λ′(r)ψ′0(r) dr . (46)
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It follows from (37) and (43) that ψ′0(r) = λ′(r) for all r ∈ (0, r2n], and (46) yields
that

F [û](T )−F [u](T ) ≥
∫ r2n

0

(λ′(r))2 dr = r2n . (47)

Let now α ∈ (0, 1] be arbitrary. By (47), (42) we have

F [û](T )−F [u](T )

|u− û|α[0,T ]

≥ r2n

(r2n − r2n+1)α
. (48)

Choosing for example rk = 1
log(e+k) , we obtain

r2n

(r2n − r2n+1)α
=

logα(e + 2n+ 1)

log1−α(e + 2n) logα(1 + 1
e+2n )

. (49)

We have log(1 + 1
e+2n ) ≤ 1

e+2n , which yields

F [û](T )−F [u](T )

|u− û|α[0,T ]

≥ (e + 2n)α logα(e + 2n+ 1)

log1−α(e + 2n)
. (50)

We see that for each choice of α ∈ (0, 1], the right hand side of (50) can become
arbitrarily large for large n, which proves that the operator F is not α-Hölder
continuous for any exponent α > 0 on the unit ball B1(0) = {u ∈ GR(0, T ) :
|u|[0,T ] ≤ 1}.

We use the above construction to prove the following result.

Theorem 4.1. There exists a C1-function ψ : [0,∞) → [0,∞), 1 ≤ ψ′(r) ≤ 3 for
all r ≥ 0 such that the Prandtl-Ishlinskii operator F defined by (7) is not α-Hölder
continuous on the unit ball B1(0) ⊂ GR(0, T ) for any α ∈ (0, 1).

Proof. We construct ψ0, u, û as in (37)–(41). For a decreasing sequence {νk; k ∈ N}
in (0, 1), limk→∞ νk = 0 we put

ψ1(r) := ψ0(r)

∞∑
k=1

νkχ[rk,rk−1)(r). (51)

By definition (37), we have ψ0(rk) = 0 for every k = 0, 1, . . . , hence ψ1 is continuous
(see Figure 3). Moreover, we have

ψ′1(r) = (−1)kνk for r ∈ (rk, ρk−1) , ψ′1(r) = (−1)k−1νk for r ∈ (ρk−1, rk−1),

hence ψ′1 is regulated, |ψ′1(r)| ≤ 1 for a. e. r > 0, and we may put ψ′1(0) := ψ′1(0+) =
0. The discontinuity points of ψ′1 are {rk; k = 0, 1, . . . } and {ρk; k = 0, 1, . . . }, and
the next step of the proof consists in smoothing the function ψ′1 in a neighborhood
of these points (see Figure 3). We set

ηk−1 :=
νk
16

(rk−1 − rk) for k ∈ N (52)

and define

ψ′2(r) :=



ψ′1(r) for r ∈ [0,∞) \
⋃∞
k=0

(
(ρk − ηk, ρk + ηk) ∪ (rk − ηk, rk + ηk)

)
,

ψ′1(ρk − ηk) + r−(ρk−ηk)
2ηk

(
ψ′1(ρk + ηk)− ψ′1(ρk − ηk)

)
for r ∈ (ρk − ηk, ρk + ηk) ,

ψ′1(rk − ηk) + r−(rk−ηk)
2ηk

(
ψ′1(rk + ηk)− ψ′1(rk − ηk)

)
for r ∈ (rk − ηk, rk + ηk) .
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Then ψ′2 is continuous in [0,∞), |ψ′2(r)| ≤ 1 for all r ≥ 0 (see Figure 3), and we
may set

ψ2(r) :=

∫ r

0

ψ′2(s) ds . (53)

g0
y

rrk rk−1ρk−1

y = ψ′
1(r)

y = ψ′
2(r)

y = ψ1(r)

Figure 3. The primary response curve ψ1 (the bold solid line),
its derivative ψ′1 (the bold dashed line), and the piecewise linear
regularization ψ′2 of ψ′1 (the thin solid line).

With λ, λ̂ as in (43)–(44), we have

ψ′2(r) = νkλ
′(r) for r ∈ (rk + ηk, ρk−1 − ηk−1) ∪ (ρk−1 + ηk−1, rk−1 − ηk−1) (54)

for all k ≥ 2n + 1. Let now F be the Prandtl-Ishlinskii operator generated by the
function

ψ(r) = 2r + ψ2(r) . (55)

In analogy with (46) we have

F [û](T )−F [u](T ) = 2

∫ r2n+1

0

λ′(r)ψ′2(r) dr +

∫ r2n

r2n+1

λ′(r)ψ′2(r) dr . (56)

We write∫ rk−1

rk

=

∫ rk+ηk

rk

+

∫ ρk−1−ηk−1

rk+ηk

+

∫ ρk−1+ηk−1

ρk−1−ηk−1

+

∫ rk−1−ηk−1

ρk−1+ηk−1

+

∫ rk−1

rk−1−ηk−1

.

We have (note that the sequence {ηk} is decreasing)∣∣∣∣∣
(∫ rk+ηk

rk

+

∫ ρk−1+ηk−1

ρk−1−ηk−1

+

∫ rk−1

rk−1−ηk−1

)
λ′(r)ψ′2(r) dr

∣∣∣∣∣ ≤ 4ηk−1 ,

and (54) implies that∫ ρk−1−ηk−1

rk+ηk

λ′(r)ψ′2(r) dr = νk(ρk−1 − rk − 2ηk−1) ,

∫ rk−1−ηk−1

ρk−1+ηk−1

λ′(r)ψ′2(r) dr = νk(rk−1 − ρk−1 − 2ηk−1) ,
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so that by (52) we have for k ≥ 2n+ 1 that∫ rk−1

rk

λ′(r)ψ′2(r) dr ≥ νk(rk−1 − rk)− 8ηk−1 =
νk
2

(rk−1 − rk), (57)

and (56) yields

F [û](T )−F [u](T ) ≥ 1

2

∞∑
k=2n+1

νk(rk−1 − rk). (58)

This yields for α ∈ (0, 1] that

F [û](T )−F [u](T )

|u− û|α[0,T ]

≥
∑∞
k=2n+1 νk(rk−1 − rk)

2(r2n − r2n+1)α
. (59)

It remains to set

rk−1 − rk =
c

(e + k) log2(e + k)
(60)

for k ∈ N with c > 0 such that

r0 = c

∞∑
k=1

1

(e + k) log2(e + k)
= 1 ,

and

νk =
1

logβ(e + k)
(61)

with any β > 0. We have
∞∑

k=2n+1

νk(rk−1 − rk) = c

∞∑
k=2n+1

1

(e + k) log2+β(e + k)

≥ c

∫ ∞
2n+1

dx

(e + x) log2+β(e + x)

=
c

(1 + β) log1+β(e + 2n+ 1)
.

Inequality (59) then yields

F [û](T )−F [u](T )

|u− û|α[0,T ]

≥ c1−α

2(1 + β)
(e + 2n+ 1)α log2α−1−β(e + 2n+ 1) (62)

which tends to ∞ when n tends to infinity. This concludes the proof.
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