Objectives:
The goal of the project is to deepen present knowledge concerning existence of weak solutions for hyperbolic systems of partial differential equations arising from conservation laws in multiple space dimensions, study of uniqueness and nonuniqueness of entropic weak solutions, analysis of admissibility criteria (maximization of entropy production or inviscid limit) or even designing other suitable admissibility criteria.
A convenient test problem for admissibility criteria is the so called Riemann problem, i.e. problem with initial data consisting of a jump discontinuity separating two constant states. As such initial data are onedimensional, one can use standard theory to find a onedimensional selfsimilar solution which is unique in the class of BV functions. In a broader class of functions (in particular in the class of essentialy bounded functions), other weak solutions may exist as is in the case of compressible Euler equations. In the framework of this project I will study also Riemann problems for various hyperbolic systems concerning uniqueness or nonuniqueness of weak solutions in the class of essentialy bounded functions and in the case of nonuniqueness, admissibility criteria will be tested.
Site map | Author | Webmaster