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RECOVERING A COMPACT HAUSDORFF SPACE X FROM THE
COMPATIBILITY ORDERING ON C(X)

TOMASZ KANIA AND MARTIN RMOUTIL

Abstract. Let f and g be scalar-valued, continuous functions on some topological space.
We say that g dominates f in the compatibility ordering if g coincides with f on the
support of f . We prove that two compact Hausdorff spaces are homeomorphic if and
only if there exists a compatibility isomorphism between their families of scalar-valued,
continuous functions. We derive the classical theorems of Gelfand–Kolmogorov, Mil-
gram and Kaplansky as easy corollaries to our result as well as a theorem of Jarosz
(Bull. Canad. Math. Soc. 1990) thereby building a common roof for these theorems.
Sharp automatic-continuity results for compatibility isomorphisms are also established.

1. Introduction and the main result

Let X be a topological space and denote by C(X) the family of all scalar-valued, con-
tinuous functions on X. In the case where X is compact, C(X) carries a wealth of extra
structure; indeed C(X) may be already viewed as a ring or an algebra (here compactness
is not essential), a metric or a Banach space when furnished with the supremum metric,
a Banach or a C*-algebra when the algebraic and metric structures are combined or as
a lattice when equipped with the pointwise ordering. Over the past century, a plethora
of results recovering the underlying compact space X from C(X) was obtained, i.e., re-
sults where one seeks the existence of a homeomorphism between the two compact spaces
in the presence of an isomorphism between families of continuous functions in one of the
above-listed categories.

Probably the best-known result in this direction is the Gelfand–Kolmogorov theorem
([6]), which asserts that two compact Hausdorff spaces X and Y are homeomorphic if
and only if C(X) and C(Y ) are isomorphic as rings. The Banach–Stone theorem says
that the same is true if C(X) and C(Y ) are isometric ([2, Théorème IX.4.3] in the metric
case and [20] in the general case); in the light of the Mazur–Ulam theorem ([17]), it is
not relevant whether the isometry is linear or not. Milgram’s theorem ([18, Theorem A])
recovers C(X) from the multiplicative semigroup of C(X), which means that X and Y
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are homeomorphic if and only if there exists a multiplicative bijection between C(X) and
C(Y ). Finally, a theorem of Kaplansky ([11]) yields the same conclusion in the presence of
a bijection between C(X) and C(Y ) which respects the pointwise ordering. As remarked
by Kaplansky himself, his result subsumes the Gelfand–Kolmogorov theorem, Milgram’s
theorem as well as the Banach–Stone theorem ([11, p. 622]).

The main result of this paper is exactly in the same spirit and implies Kaplansky’s theo-
rem as an easy consequence (so that we derive also all the previously mentioned theorems).
Curiously, en route to the proof, we have managed to circumvent the need of alluding ex-
plicitly to the fact saying that maximal ideals of C(X), regarded as a ring, where X is a
compact Hausdorff space, are kernels of evaluations at points from X (this observation is
crucial for most of the proofs of the previously mentioned theorems that we are aware of).
In order to explain the declared main result, we require to introduce some terminology.

Given two scalar-valued functions f and g on a topological space X, we write

f � g whenever f(x) = g(x) for every x ∈ supp f,

where supp f stands for the closure of the set of points in X where f is non-zero (here
we used a fixed scalar field either of real or complex numbers). It is readily seen that
� is an ordering in C(X) with the least element being the zero function. For brevity,
we have decided to term it the compatibility ordering and we do hope this name is self-
explanatory. This ordering is therefore another piece of structure that may be imposed on
C(X). In addition to the ordering itself, we shall be concerned with morphisms between
families of continuous functions which preserve it (without assuming any extra properties
such as linearity or continuity). Thus, a map T : C(X) → C(Y ) is a compatibility mor-
phism if Tf � Tg whenever f � g for f, g ∈ C(X). We will call bijective compatibility
morphisms whose inverses are also compatibility morphisms compatibility isomorphisms.
In other words, compatibility isomorphisms are isomorphisms between families of contin-
uous functions regarded as partially ordered sets when furnished with the compatibility
ordering.

We are now in a position to phrase the first main result of the paper. The proofs are
postponed to Section 3.

Theorem 1.1. Let X and Y be compact Hausdorff spaces. Then X and Y are homeomor-
phic if and only if there exists a compatibility isomorphism between C(X) and C(Y ).

Theorem 1.1 nicely complements a recent result of Li and Wong ([16]), where the authors
recover a compact Hausdorff space X from linear bijections that preserve functions which
do not assume the value zero. It follows from the considerations in the previous paragraph
that compatibility isomorphisms ignore such functions and recover the space from functions
which do assume the value zero.

At this point it is reasonable to ask whether compatibility isomorphisms may be de-
scribed by formulae involving the homeomorphism produced in the proof of Theorem 1.1
and some other auxiliary functions. Sometimes this can be done, as we prove in Section 2
that, for example, ring isomorphisms T : C(X)→ C(Y ) are compatibility morphisms and
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it is known that every such isomorphism is given by composition with a homeomorphism
between Y and X. We also prove that multiplicative bijections and pointwise-ordering
isomorphisms are compatibility isomorphisms too. Milgram has observed in [18] that if X
and Y are compact Hausdorff spaces, ϕ : X → Y is a homeomorphism and p is a positive
function on X, then the mapping T : C(Y )→ C(X) defined by

(Tf)(z) = |f(ϕ(z))|p(z) · sgnf(ϕ(z)) (f ∈ C(Y ), z ∈ X)

is multiplicative and if X does not have isolated points, then every multiplicative bijection
is of this form. (See [15] for description of general continuous multiplicative maps be-
tween algebras of continuous functions.) Kaplansky ([12, p. 629]) exhibited a discontinuous
pointwise-ordering automorphism of C(βN), where βN is the Čech–Stone compactification
of the discrete space of natural numbers. However Kaplansky’s paper also contains cer-
tain positive results (for example, he established an automatic-continuity result in the case
where X is first-countable). Thus, our results constitute a common roof for many classical
results in the area, yet in general it is impossible to express an a priori given compatibility
isomorphism by a more concise formula. This ought to be therefore regarded as the cost
of the aimed generality.

Our notion of a compatibility morphism is much more general as for every connected
compact Hausdorff space X (including the one-point space) there exist at least 2c distinct
compatibility automorphisms of C(X). To see this, choose a self-bijection Φ of the set

GL(C(X)) = {f ∈ C(X) : f(x) 6= 0 for all x ∈ X}.

(This set has cardinality at least continuum so it has at least 2c self-bijections.) We define
T by setting Tf = f if f ∈ C(X) \GL(C(X)) and Tf = Φ(f) otherwise. Then there are
2c such discontinuous maps T .

Quite surprisingly from the point of view of automatic-continuity theory, compatibility
isomorphisms from C(X) for certain infinite compact spaces are automatically continuous
even though this is not the case when one considers the simplest possible compact Hausdorff
space, i.e., the one-point space. To state the results we employ the notion of a component
of a topological space.

Let X be a topological space and x ∈ X. The component of x is the union of all
connected subspaces of X which contain x; the component of x is connected itself (we
consider singletons to be connected subsets of X). Components of two distinct points in
X are either equal or disjoint so components of points X form a decomposition of X into
pairwise disjoint sets. For brevity of notation we call a component of X the component of
some point in X.

Theorem 1.2. Let X and Y be compact Hausdorff spaces and suppose that X is sequen-
tially compact and that every component of X is nowhere dense. Then every compatibility
isomorphism T : C(X)→ C(Y ) is norm-continuous.

We point out that the prototypical example of a compact space X which meets the
hypotheses of the above theorem is the Cantor set ∆, however there are numerous further



4 T. KANIA AND M. RMOUTIL

examples that are not zero-dimensional too, just to mention spaces of the form ∆ × Z,
where Z is any connected, compact metric space.

Theorem 1.2 is in a sense optimal as there always exists a discontinuous compatibility
isomorphism whenever the space a has a component with non-empty interior, as stated in
the following theorem.

Theorem 1.3. Let X be a compact Hausdorff space which has at least one component with
a non-empty interior. Then there exists a compatibility isomorphism T : C(X) → C(X)
which is not continuous as a map on C(X) either with the norm topology or the topology
of pointwise convergence.

Uncountable chains with respect to the compatibility ordering have been investigated
by the first-named author together with Hart and Kochanek ([7]) and together with Smith
([10]) in relation to weakly compact operators on spaces of continuous functions. Krupski
then worked on and solved in his PhD thesis ([14]) certain problems left open in [7].
The authors are not aware of any other occurrences (neither explicit nor implicit) of the
compatibility ordering in the literature. Having thus entered a virgin territory, we find
ourselves obliged to uncover some basic properties of the compatibility ordering.

Acknowledgments. We are indebted to Juan Francisco Camasca Fernández (São Paulo)
and Luiz Gustavo Cordeiro (Ottawa) for attentive reading of the preliminary version of
the manuscript and for detecting certain slips that were lurking in the draft. We also
wish to express our deepest gratitude to Luiz Gustavo Cordeiro who managed to discover
a substantial gap in the proof of the main theorem. He also provided us with detailed notes
on a possible fix, convincing us to return to our original idea of employing lattice theory.
In addition to that, he gave us his kind permission to use and publish some of his elegant
ideas present in the current version of the first proof of Theorem 1.1.

2. Consequences of Theorem 1.1

Before we list the promised consequences of Theorem 1.1, let us make some preliminary
observations. First of all, we note that they map the zero function to the zero function.
Secondly, we observe that if f, g ∈ C(X) for some topological space X, then f � g implies
that fg = f 2. The converse also holds so we have got the following proposition.

Proposition 2.1. Let X be a topological space and suppose that f, g ∈ C(X). Then f � g
if and only if fg = f 2.

Proof. We only need to show (⇐). Suppose that fg = f 2. Pick x ∈ supp f . Then there
exists a net (xα)α∈Λ in X which converges to x and such that f(xα) 6= 0 for all α ∈ Λ.
As fg = f 2, for each α ∈ Λ we have f(xα)g(xα) = f(xα)f(xα) so f(xα) = g(xα). By
continuity of f and g, we conclude that f(x) = g(x). �

Armed with this simple but useful algebraic description of the compatibility ordering,
we are now ready to list some consequences of Theorem 1.1.
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The theorems of Gelfand–Kolmogorov ([6]) and Milgram ([18]) are immediate conse-
quences of Theorem 1.1 combined with Proposition 2.1 because every bijection between
C(X) and C(Y ) which preserves multiplication (for instance, a ring isomorphism) neces-
sarily preserves the compatibility ordering and the inverse of a bijection which preserves
multiplication preserves multiplication too. Let us record these consequences formally.

Corollary 2.2 (The Gelfand–Kolmogorov theorem). Let X and Y be compact Hausdorff
spaces. Then X and Y are homeomorphic if and only if C(X) and C(Y ) are isomorphic
as rings.

Corollary 2.3 (Milgram’s theorem). Let X and Y be compact Hausdorff spaces. Then X
and Y are homeomorphic if and only if there exists a multiplicative bijection between C(X)
and C(Y ).

We specialise now to the case of real scalars. We define for a function f : X → R, the
positive and the negative part of f , by setting f+ = max{f, 0} and f− = −min{f, 0},
respectively, pointwise. Of course, if X is a topological space and f is continuous, then
so are f+, f−. Moreover, the pointwise ordering on C(X) makes it a lattice with lattice
operations min{f, g} and max{f, g} (f, g ∈ C(X)) defined pointwise.

Let us then record the following simple fact which links the usual pointwise ordering
with the compatibility ordering.

Lemma 2.4. Let X be a topological space and suppose that f, g ∈ C(X). Then
(i) f � g if and only if f+ � g+ and f− � g−,
(ii) if f, g > 0, then f � g if and only if f 6 g and max{g − f, f} > g,
(iii) if f, g 6 0, then f � g if and only if f > g and min{g − f, f} 6 g.

Proof. (i) is immediate. For (ii), suppose that f, g are non-negative. If f � g, then as
f and g are non-negative we must have f 6 g. If x ∈ supp f , we have f(x) = g(x) so
max{g(x)− f(x), g(x)} = g(x). Otherwise, max{g(x)− 0, 0} = g(x), hence we are done.

Conversely, suppose that f 6 g and max{g − f, f} > g. Let us pick x ∈ supp f . We
have f(x) 6 g(x). If f(x) > 0, then g(x)−f(x) < g(x). As max{g(x)−f(x), f(x)} > g(x)
we must have f(x) > g(x), so f(x) = g(x). By continuity, f(x) = g(x) for x ∈ supp f .

The proof of (iii) is completely analogous. �

We are now ready to show that Theorem 1.1 implies Kaplansky’s theorem which recovers
a compact Hausdorff space from the pointwise ordering on the family of all real-valued
continuous functions on it. To this end, it is enough to show that lattice isomorphisms
between C(X) and C(Y ) (where X and Y are compact Hausdorff spaces) are translations
of compatibility morphisms by the value at 0. Since C(X) is a lattice under the pointwise
ordering, a bijective order homomorphism T : C(X)→ C(Y ) is a lattice isomorphism, i.e.,
it preserves the lattice operations:

T (max{f, g}) = max{Tf, Tg} and T (min{f, g}) = min{Tf, Tg} (f, g ∈ C(X))

and the inverse of T also has this property (see Lemma 3.12).
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Proposition 2.5. Let X and Y be compact Hausdorff spaces and let S : C(X)→ C(Y ) be
a lattice isomorphism. Then Tf = Sf − S0 (f ∈ C(X)) is a lattice isomorphism between
C(X) and C(Y ) which is also a compatibility isomorphism.

Proof. Certainly, T is a lattice isomorphism as

Sf − S0 6 Sg − S0 ⇐⇒ Sf 6 Sg ⇐⇒ f 6 g
(
f, g ∈ C(X)

)
.

Since T−1 is also a (bijective) lattice homomorphism, it is enough to show that for
f, g ∈ C(X) with f � g one has Tf � Tg. By Lemma 2.4(i), it is enough to consider the
case where f, g are both non-negative (then so are Tf and Tg).

So suppose that f, g > 0 and f � g. Then we clearly have that

0 6 g − f 6 g, f 6 g, max{g − f, f} > g and min{g − f, f} 6 0.

Consequently, since T is a pointwise-ordering isomorphism with T (0) = 0, it respects these
inequalities, which means that

0 6 T (g − f) 6 Tg, 0 6 Tf 6 Tg;

max{T (g − f), T f} > Tg and min{T (g − f), T f} 6 0.

We obtain that max{T (g − f), T f} = Tg and it also follows that the functions T (g − f)

and Tf are orthogonal (i.e., T (g − f) · Tf = 0) as their minimum is equal to the zero
function. Hence, Tg = max{T (g − f), T f} = T (g − f) + Tf , and one can readily see that
this means Tf � Tg. Indeed, the orthogonality of T (g − f) and Tf together with the
continuity of T (g − f) imply that T (g − f) vanishes in the support of Tf . �

Consequently, we obtain Kaplansky’s theorem.

Corollary 2.6 (Kaplansky’s theorem). Let X and Y be compact Hausdorff spaces. Then
X and Y are homeomorphic if and only if there exists bijection between C(X) and C(Y )
which preserves the pointwise ordering.

A (possibly non-linear) map T : C(X)→ C(Y ) is called disjointness preserving provided
that Tf · Tg = 0 whenever f · g = 0. Lemma 3.1 says that compatibility isomorphisms
are disjointness preserving. Jarosz studied linear, disjointness preserving maps between
spaces of continuous functions on compact Hausdorff spaces and proved that every such
map is a weighted composition operator ([9], see also [1, Theorem 3.1]). He also obtained
the following result, which now becomes another corollary to Theorem 1.1.

Corollary 2.7 (Jarosz’s theorem). Let X and Y be compact Hausdorff spaces. Then X and
Y are homeomorphic if and only if there exists a linear, disjointness preserving bijection
between C(X) and C(Y ).

Proof. Let T : C(X)→ C(Y ) be a disjointness preserving linear bijection. Inverses of such
maps are automatically linear and disjointness preserving ([8], [13, Theorem 3.6]), so in
the light of Theorem 1.1, it is enough to show that T is a compatibility morphism. To this
end, fix two functions f, g ∈ C(X) such that f � g. Then (g−f)f = 0, so T (g−f) and Tf
are orthogonal, i.e., T (g− f) · Tf = 0. Thus, by linearity, Tg = T (g− f) + Tf � Tf . �
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3. Auxiliary results and the proof of Theorem 1.1

We call two scalar-valued functions f, g defined on the same space orthogonal when
f · g = 0. This, of course, does not necessarily mean that the supports of f and g are
disjoint.

Lemma 3.1. Let X and Y be topological spaces. Suppose that T : C(X) → C(Y ) is
a compatibility isomorphism and f, g ∈ C(X). Consider the following conditions:
(i) f and g are orthogonal,
(ii) Tf and Tg are orthogonal,
(iii) T (f + g) = Tf + Tg.
Then (i) and (ii) are equivalent and imply (iii).

Proof. (i) =⇒ (ii). Suppose that f, g ∈ C(X) are orthogonal functions. We then have
f, g � f + g, whence Tf, Tg � T (f + g), and setting A := suppTf ∩ suppTg we obtain
that Tf(x) = Tg(x) for every x ∈ A. Define a function ϕ on Y by ϕ := (Tf) · 1A, where
1A stands for the indicator function of A. We claim that ϕ is continuous on Y .

To see this, let us first note that ϕ = (Tf) · 1suppTg. In order to demonstrate the
continuity of ϕ it is therefore enough to show that Tf vanishes on ∂ suppTg, the boundary
of suppTg. To this end, fix x ∈ ∂ suppTg; then Tg(x) = 0. Let (xα)α∈Λ be a net in Y
that converges to x such that Tg(xα) 6= 0 for each α ∈ Λ. As Tg � T (f + g), we see that
Tg(xα) = (T (f + g))(xα) for each α ∈ Λ. Consequently,

0 = Tg(x) = lim
α
Tg(xα) = lim

α
(T (f + g))(xα) = (T (f + g))(x).

The conclusion now follows as we also have Tf � T (f + g).
Now, we observe that ϕ � Tf, Tg and so T−1(ϕ) � f, g. Recalling that f and g are

orthogonal, we infer that T−1(ϕ) = 0 as 0 is the only element of C(X) that is dominated in
the compatibility ordering by two orthogonal functions. Thus, ϕ = 0 as each compatibility
isomorphism maps 0 to 0. Consequently, A has empty interior (otherwise we would have
found a point x ∈ A such that ϕ(x) 6= 0) and thus (Tf) · (Tg) = 0.

(ii) =⇒ (i). Apply the previous implication to T−1.
(ii) =⇒ (iii). By the above, we know that whenever Tf and Tg are orthogonal, then

so are f and g. From these facts we clearly have

sup�{f, g} = f + g and sup�{Tf, Tg} = Tf + Tg,

and the fact that T is a compatibility isomorphism easily implies that

T
(
sup�{f, g}

)
= sup�{Tf, Tg}.

The desired conclusion follows. �

In general (iii) does not imply (i) because the identity map on C(X) is plainly an additive
compatibility isomorphism.
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Remark 3.2. Let Y be a compact metric space which contains at least two points and let
X be the one-point space. For f, g ∈ C(X) one has f � g if and only if either f = g or
f = 0. Let us then fix a bijection T : C(X)→ C(Y ) which maps the zero function to the
zero function. Then T is a compatibility morphism whose inverse is not a compatibility
morphism. Thus, the requirement that the inverse of a compatibility isomorphism be a
compatibility morphism is not redundant.

Definition 3.3. Let X be a topological space. For f ∈ C(X) we define

σ(f) = int supp f,

the interior of the support of f , and

%(f) = int f−1(0).

Remark 3.4. We note that %(f) = X \ σ(f) for f ∈ C(X). Indeed,

σ(f) = intX \ f−1(0) = int(X \ int f−1(0)) = X \ int f−1(0) = X \ %(f).

Remark 3.5. We can now add another clause to Lemma 3.1 which is equivalent to (i):
(iv) σ(f) ∩ σ(g) = ∅.
Obviously (iv) =⇒ (i); to see that the opposite implication holds as well, assume that
σ(f) ∩ σ(g) 6= ∅. Let U = {x ∈ X : f(x) 6= 0} and V = {x ∈ X : g(x) 6= 0}. Then

U ∩ V ⊇
(
σ(g) ∩ σ(f)

)
\ (∂U ∪ ∂V ) 6= ∅

as boundaries of open sets are nowhere dense. Consequently, f ·g assumes non-zero values.

The following lemma is a standard fact from point-set topology. We include a proof for
the reader’s convenience.

Lemma 3.6. Let X be a completely regular space. Then the family {σ(f) : f ∈ C(X)}
forms an open base for X.

Proof. Let V be a non-empty open subset of X and let x ∈ V . We assumed X to be
(completely) regular so there exists an open neighbourhood U of x such that U ⊆ V . By
complete regularity, there exists f ∈ C(X) such that f(x) = 1 and f(y) = 0 for y ∈ X \U .
Then σ(f) ⊆ supp f ⊆ U ⊆ V and we are done. �

Proposition 3.7. Let X and Y be completely regular spaces and let T : C(X)→ C(Y ) be
a compatibility isomorphism. If f, g ∈ C(X) and σ(f) ⊆ σ(g), then σ(Tf) ⊆ σ(Tg). In
particular, σ(f) = σ(g) if and only if σ(Tf) = σ(Tg).

Proof. Without loss of generality we may take a non-zero function f ∈ C(X) as σ(T0) is
empty. Assume, in search of a contradiction, that σ(f) ⊆ σ(g) and σ(Tf) 6⊆ σ(Tg). We
note that if σ(Tf) ⊆ suppTg, then, by openness of σ(Tf), σ(Tf) ⊆ σ(Tg), however we
have excluded this possibility.

Set V = σ(Tf) \ suppTg. Then V is a non-empty open set as f is non-zero. Pick any
point v ∈ V with Tf(v) 6= 0 (the set of such points is dense in V ) and choose a function
h ∈ C(X) such that Th(v) = 1 and suppTh ⊆ V (such a function exists because T is a
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bijection and Y is completely regular). Then Th and Tg are orthogonal; by Lemma 3.1, h
and g must be orthogonal too. Since σ(f) ⊆ σ(g), we also have that h and f are orthogonal
and one more application of Lemma 3.1 gives us that the same must be true for Th and
Tf , which contradicts Th(v) · Tf(v) 6= 0. �

Proposition 3.8. Let X and Y be completely regular spaces and let T : C(X)→ C(Y ) be
a compatibility isomorphism. Then the map

τ(σ(f)) = σ(Tf)
(
f ∈ C(X)

)
is a (well-defined) bijection between {σ(f) : f ∈ C(X)} and {σ(g) : g ∈ C(Y )}, which
preserves the inclusion.

Proof. Suppose that f, g ∈ C(X) are such that σ(f) = σ(g). Then, by Proposition 3.7,
σ(Tf) = σ(Tg) so τ is a well-defined map.

To demonstrate that the map τ is surjective, take g ∈ C(Y ) and so T−1g ∈ C(X). Then
σ(g) = τ(σ(T−1g)) is in the range of τ . Define ι : {σ(g) : g ∈ C(Y )} → {σ(f) : f ∈ C(X)}
by

ι
(
σ(g)

)
= σ(T−1g).

Then ι is well-defined by the same argument that we have used for τ , and it is clear that
ι = τ−1. Therefore τ is injective. Proposition 3.7 also ensures us that both τ and ι = τ−1

preserve inclusion, and the proof is complete. �

In the light of Remark 3.4, the following is an immediate corollary to Proposition 3.8.

Corollary 3.9. Let X and Y be completely regular spaces and let T : C(X) → C(Y ) be
a compatibility isomorphism. Then the map

ϑ(%(f)) = %(Tf)
(
f ∈ C(X)

)
is a well-defined bijection between {%(f) : f ∈ C(X)} and {%(g) : g ∈ C(Y )}, which pre-
serves the inclusion.

3.1. Regularly open and regularly closed sets. Let X be a completely regular space.
A subset A ⊆ X is regularly open if A = intA and regularly closed if A = intA. It is
a triviality that a set is regularly closed if and only if its complement is regularly open.
For example, for every f ∈ C(X), the set σ(f) is regularly open. As it is well-known and
easy to verify, the family RO(X) consisting of all regularly open sets forms a complete,
distributive lattice with operations

U ∨ro V = intU ∪ V and U ∧ro V = U ∩ V.
Similarly, the family RC(X) of all regularly closed sets forms a complete, distributive
lattice with operations

F ∨rc G = F ∪G and F ∧rc G = intF ∩G.

Proposition 3.10. Let X be a completely regular space. Then for any f, g ∈ C(X) we
have

σ(f) ∨ro σ(g) = σ(|f |+ |g|) and σ(f) ∧ro σ(g) = σ(fg)
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and
%(f) ∧rc %(g) = %(|f |+ |g|) and %(f) ∨rc %(g) = %(fg).

Proof. Given the duality between the operations σ and %, it is enough to prove the latter
two equalities only.

We have

%(f) ∧rc %(g) ⊆ %(f) ∩ %(g) = int f−1(0) ∩ int g−1(0) ⊆ f−1(0) ∩ g−1(0) = (|f |+ |g|)−1(0).

For the converse inclusion, it is enough to notice that

(|f |+ |g|)−1(0) ⊆ f−1(0) and (|f |+ |g|)−1(0) ⊆ g−1(0),

so by performing first the operation of taking the interior and then taking the closure, the
conclusion follows (this is clear, e.g., from the fact that the lattice ordering on RC(X) is
the inclusion—cf. Remark 3.13).

As for the second equality, the inclusion %(f) ∨rc %(g) ⊆ %(fg) is clear for %(f) ⊆ %(fg)
and %(g) ⊆ %(fg). In order to prove the converse inequality, set

V = int(fg)−1(0) \ %(f).

We will be finished when we prove that V ⊆ int g−1(0). Indeed, in this case we shall have
int(fg)−1(0) ⊆ %(f) ∪ %(g). To see that V ⊆ int g−1(0), take any x ∈ V . Clearly, for any
open neighbourhood U ⊆ V of x we have points y ∈ U \f−1(0) because otherwise we would
have U ⊆ int f−1(0), which contradicts V ∩ %(f) = ∅. However y ∈ V ⊆ int(fg)−1(0),
so g(y) = 0 (as f(y) 6= 0), and it follows from the continuity of g that g(x) = 0. Thus
V ⊆ g−1(0), and the openness of V now implies the desired conclusion. �

We note that σ(0 · 1X) = ∅ = %(1X) and σ(1X) = X = %(0 · 1X), hence both lattices
{σ(f) : f ∈ C(X)} and {%(f) : f ∈ C(X)} have neutral elements with respect to their
operations of join and meet, that is to say, they are bounded.

Corollary 3.11. Let X be a completely regular space. Then the families {σ(f) : f ∈ C(X)}
and {%(f) : f ∈ C(X)} are sublattices of the lattice of all regularly open and regularly closed,
respectively. Consequently, they are a posteriori, bounded distributive lattices.

3.2. A detour to abstract lattice theory. Let (A,∧,∨) be an abstract lattice. Then
A is also a partially ordered set when equipped with the lattice ordering

(3.1) a 6 b ⇐⇒ a ∧ b = a ⇐⇒ a ∨ b = b (a, b ∈ A)

(see, e.g., [4, Lemma 2.8]). It is a remarkable property of lattices that in a sense, the lattice
order remembers the lattice structure. More formally, we have the following characterisa-
tion of lattice isomorphisms (see, e.g., [4, Lemma 2.19]).

Lemma 3.12. Let A and B be lattices and let ϑ : A → B be a bijection. Then ϑ is
a lattice isomorphism if and only if ϑ respects the lattice ordering, that is to say, it satisfies
the relation

a 6 b =⇒ ϑ(a) 6 ϑ(b) (a, b ∈ A).
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Remark 3.13. It is to be noted that the join operation ∧ro in the lattice of regularly open
sets and the meet operation ∨rc in the lattice of regularly closed sets are nothing but
set-theoretic intersection and union, respectively, so by (3.1), the lattice ordering in either
lattice is just the ordinary inclusion of sets.

Let A be a lattice. A proper subset U of A is a prime filter if for a ∈ A and b ∈ U

such that b 6 a we have a ∈ U, a ∧ b ∈ U for all a, b ∈ U and at least one of the elements
a, b ∈ A belongs to U whenever a ∨ b ∈ U. Let us denote by SpecA the spectrum of A,
that is the set of all prime filters of A.

Given a bounded, distributive lattice A, the spectrum of A may be topologised by the
base

(3.2) Ua := {U ∈ SpecA : a /∈ U} (a ∈ A).

This is a base for a topology G on SpecA. To see this note first that SpecA = U0. Secondly,
for a, b ∈ A one has Ua ∩ Ub = Ua∨b. Indeed Ua ∩ Ub = {U ∈ SpecA : a /∈ U and b /∈ U}.
However for a given U ∈ SpecA, by primarity, a ∨ b ∈ U if and only if a ∈ U or b ∈ U.
Consequently, Ua ∩ Ub = Ua∨b.

Note. The just-defined topology G is not the same as the usual Zariski topology on SpecA,
which is defined as the topology generated by the base {U ∈ SpecA : a ∈ U} (a ∈ A).

Every ultrafilter in a bounded distributive lattice is prime ([4, Theorem 10.11]), hence
the set Ult (A) comprising all ultrafilters in A is a subset of the spectrum of A (in general
proper), hence it inherits the topology G from SpecA.

Remark 3.14. Let X be a compact Hausdorff space. Since the family {σ(f) : f ∈ C(X)} is
an open base for X (Lemma 3.6), the family Θ(X) := {%(f) : f ∈ C(X)} is a closed base
for X, which means that every closed subset of X is the intersection of some subfamily of
Θ(X). By compactness of X, every ultrafilter U in the lattice Θ(X) converges. By the
Hausdorff property of X, every ultrafilter converges to a single point x ∈ X, which means
that U = {F ∈ Θ(X) : x ∈ F}.

For a point x ∈ X we set Ux = {F ∈ Θ(X) : x ∈ F}. By Remark 3.14, every ultrafilter
in Θ(X) is of the form Ux for some x ∈ X. The next result is inspired by Wallman’s
theorem ([21]) and is probably well-known.

Proposition 3.15. Let X be a compact Hausdorff space. Then the map Υ: X → Ult Θ(X)
given by

Υ(x) = Ux (x ∈ X),

is a homeomorphism.

Proof. By Lemma 3.6, the family {σ(f) : f ∈ C(X)} is an open base for X. Let us recall
that G is generated by the base {U ∈ Ult Θ(X) : F /∈ U} (F ∈ Θ(X)). Taking into account
the fact that for x ∈ X and f ∈ C(X) we have

x ∈ σ(f) ⇐⇒ x /∈ %(f) ⇐⇒ %(f) /∈ Υ(x) ⇐⇒ Υ(x) ∈ U%(f),
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we arrive at the conclusion that Υ maps basic open sets onto basic open sets of G, hence
it is a homeomorphism. �

3.3. Proofs of Theorem 1.1. We are now in a position to provide a short proof the first
main result of the paper in the form of a string of previously established results.

Proof of Theorem 1.1. Let T : C(X) → C(Y ) be a compatibility isomorphism. By Corol-
lary 3.9, the map ϑ(%(f)) = %(Tf) (f ∈ C(X)) is an inclusion-preserving bijection between
Θ(X) and Θ(Y ). Since the ordinary inclusion is the lattice ordering in Θ(X) and Θ(Y )
(Remark 3.13), by Lemma 3.12, ϑ is a lattice isomorphism between Θ(X) and Θ(Y ). Con-
sequently, Ult Θ(X) and Ult Θ(Y ) are homeomorphic. By Proposition 3.15, X is homeo-
morphic to Ult Θ(X) and Y is homeomorphic to Ult Θ(Y ) so the conclusion follows. �

Let us remark that another endgame in the proof of Theorem 1.1, based on Shirota’s
theorem, is possible. It would avoid us formally introducing the topology on the set of
ultrafilters of Θ(X), yet we believe it would be less elementary and, of course, not self-
contained. Moreover, Shirota’s theorem also relies on topologisation of the ultrafilter space
of a lattice so this strategy is not too different at the core. Nevertheless, we wish to present
this approach too. In order to do so, we require a piece of terminology.

Definition 3.16. A distributive lattice with the least element is called an R-lattice if it
is isomorphic to a sublattice of RO(X) for a locally compact Hausdorff space X whose
members form a base for X and have compact closures.

This is not the original definition of an R-lattice, however [19, Theorem 1] asserts that
it is indeed equivalent, so we take it as a definition. R-lattices have been recently studied
in a broader context by Bice and Starling ([3]). The following result is a restatement of
[19, Theorem 2].

Theorem 3.17 (Shirota). Let X and Y be locally compact Hausdorff spaces. Suppose that
A ⊆ RO(X) and B ⊆ RO(Y ) are R-lattices. If A and B are isomorphic as lattices, then
X and Y are homeomorphic.

An alternative proof of Theorem 1.1. Let T : C(X) → C(Y ) be a compatibility isomor-
phism. By Proposition 3.8, the map τ(σ(f)) = σ(Tf) (f ∈ C(X)) is an inclusion-
preserving bijection between the lattices

A := {σ(f) : f ∈ C(X)} ⊆ RO(X) and B := {σ(f) : f ∈ C(Y )} ⊆ RO(Y ).

Consequently, by Lemma 3.12, τ is a lattice isomorphism. As X and Y are compact,
closures of members of A and B are compact, so A and B are R-lattices. Finally, by
Theorem 3.17, X and Y are homeomorphic. �

4. Automatic continuity of compatibility isomorphisms—Proofs of
Theorems 1.2 and 1.3

This section is devoted to further investigations of the map τ , which appeared in Propo-
sition 3.8, that will finally lead to proofs of Theorems 1.2 and 1.3.
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Proposition 4.1. Let X and Y be completely regular spaces such that there exists a com-
patibility isomorphism T : C(X)→ C(Y ). If U ⊆ X is clopen, then τ(X \ U) = Y \ τ(U).
In particular, τ(U) is clopen.

Proof. Let us start with the easy observation that τ(X) = Y . Assume not. Since we have
τ(X) = σ(T1X), we also have supp(T1X) 6= Y . Thus there exists a non-zero function
g ∈ C(Y ) such that supp g ∩ supp(T1X) = ∅. By applying τ−1 to σ(g) and σ(T1X), one
readily obtains a contradiction.

Further, 1X = 1U + 1X\U , and obviously 1U and 1X\U are orthogonal. By Lemma 3.1,
we have that T1U and T1X\U are orthogonal as well and that T1X = T1U + T1X\U . It
follows that

{y ∈ Y : (T1X)(y) 6= 0} = {y ∈ Y : (T1U)(y) 6= 0} ∪ {y ∈ Y : (T1X\U)(y) 6= 0}

with the union disjoint. By applying closure and interior operations to both sides of the
last equality, we conclude that

σ(T1X) = σ(T1U) ∪ σ(T1X\U),

and it is easy to see from the continuity of both functions on the right-hand side that this
union must be disjoint too. This in turn implies that

Y = τ(X) = τ(U) ∪ τ(X \ U).

As τ(U) and τ(X \U) are disjoint and open, we conclude that they are in fact clopen. �

Proposition 4.2. Let X and Y be completely regular spaces. Suppose moreover that
T : C(X) → C(Y ) is a compatibility isomorphism. If U ⊆ X is clopen and f, g ∈ C(X)
agree on U , then Tf and Tg agree on τ(U).

Proof. We have

f = f · 1U + f · 1X\U and g = f · 1U + g · 1X\U ,

and so by the hypotheses and using Lemma 3.1 we conclude that

(4.1) Tf = T (f · 1U) + T (f · 1X\U) and Tg = T (f · 1U) + T (g · 1X\U).

Clearly, σ(f · 1X\U) ⊆ σ(1X\U) = X \ U , whence, by Proposition 3.8 and Proposition 4.1

σ(T (f · 1X\U)) ⊆ τ(X \ U) = Y \ τ(U).

Likewise,
σ(T (g · 1X\U)) ⊆ τ(X \ U) = Y \ τ(U).

It is now clear from (4.1) that Tf and Tg coincide on τ(U), which concludes the proof. �

Proof of Theorem 1.2. We shall prove the theorem by contradiction. Let us assume that
T : C(X) → C(Y ) is a discontinuous compatibility isomorphism; this means that there
exist a sequence (fn)∞n=1 in C(X) and η > 0 such that

(4.2) ‖fk − f‖∞ −→ 0 as k →∞ and ‖Tfn − Tf‖∞ > η (n ∈ N).
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We claim that there exist natural numbers n1 < n2 < . . . and pairwise disjoint clopen
sets Vj ⊆ Y such that for each j ∈ N there exists yj ∈ Vj with

(4.3) |Tfnj
(yj)− Tf(yj)| > η.

In order to prove the claim, let us consider the equivalence relation E on Y determined by
the decomposition of Y into its connected components, and the natural quotient mapping
q : X → Y/E; we shall regard q(x) simultaneously as an element of Y/E and as a subset
of Y , and use the notation [x] = q(x) (so [x] is the component of Y containing x). By
[5, Theorem 6.2.24], the quotient space Y/E is zero-dimensional (and compact). Let us
observe that, in addition to that, Y/E is also perfect. Indeed, if [x] ∈ Y/E is isolated, then
{[x]} is a clopen set, and thus so must be [x] when regarded as a subset of Y ; in particular,
[x] has non-empty interior, contrary to our assumption.

From (4.2) we infer that we may choose a sequence (ỹj)
∞
j=1 in Y such that

(4.4) |Tfj(ỹj)− Tf(ỹj)| > η (j ∈ N).

Since X is homeomorphic to Y as asserted by Theorem 1.1, our assumptions imply that
both spaces are sequentially compact, so ([ỹj])

∞
j=1 has an accumulation point [ỹ], say. Now,

consider [ỹ] as a subset of Y . It is possible that ỹ1 ∈ [ỹ]; in fact, we might even have
[ỹj] = [ỹ] for all j. Because of this we need to choose a further auxiliary sequence (z̃j)

∞
j=1.

The recursive construction of this sequence begins by choosing any point z̃1 ∈ Y \ [ỹ]
and a clopen set V1 ⊆ Y/E such that |Tf1(z̃1) − Tf(z̃1)| > η, [z̃1] ∈ V1 and [ỹ] /∈ V1;
this can be done because [ỹ] is nowhere dense by the assumption of the theorem, Tf
and Tf1 are continuous, and Y/E is zero-dimensional. Set n1 = 1. Next, assume we
have chosen natural numbers n1 < n2 < . . . < nk, points z̃1, . . . , z̃k ∈ Y and pairwise
disjoint clopen sets V1, . . . ,Vk ⊆ Y/E such that for each j = 1, . . . , k we have [z̃j] ∈ Vj
and |Tfnj

(z̃j) − Tf(z̃j)| > η, and [ỹ] /∈
⋃k
j=1 Vj. Since [ỹ] is an accumulation point of

([ỹj])
∞
j=1, we can find a natural number nk+1 > nk such that [ỹnk+1

] /∈
⋃k
j=1 Vj. Now,

using the fact that Y/E is perfect, we find the next point z̃k+1 so close to ỹnk+1
that

|Tfnk+1
(z̃k+1) − Tf(z̃k+1)| > η and so that [z̃k+1] /∈

⋃k
j=1 Vj and [z̃k+1] 6= [ỹ]—similarly as

in the first step, we use (4.4), the continuity of Tf and Tfnk+1
, and the nowhere denseness of

[ỹnk+1] to achieve that. We also pick a clopen set Vk+1 disjoint from all Vj, j = 1, . . . , k, and
such that [z̃k+1] ∈ Vk+1 and [ỹ] /∈ Vk+1. Finally, having finished the recursive construction,
we define yj = z̃j and Vj = q−1(Vj), concluding the proof of the claim.

In order to obtain the desired contradiction, we now aim to construct f̃ ∈ C(X)
which cannot be mapped by T to a continuous function on Y . First we need to con-
sider the mapping τ from Proposition 3.8; τ is an inclusion-preserving bijection between
{σ(f) : f ∈ C(X)} and {σ(g) : g ∈ C(Y )} whose inverse also preserves inclusion. Ob-
serve that clopen sets in Y are of the form σ(g) because the corresponding characteristic
functions are continuous. Hence, we may set Uj := τ−1(Vj) (j ∈ N), and we know from
Proposition 4.1 that the sets Uj are clopen. Moreover, by passing to a subsequence, we
can guarantee that the sequence (yj)

∞
j=1 converges to a point z ∈ Y .
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We define the function f̃ as follows:

f̃(x) =

{
fn2j

(x), x ∈ U2j,

f(x), x ∈ X \
⋃∞
j=1 U2j.

Let us observe that f̃ ∈ C(X); this is equivalent to showing that h := f̃ − f is continuous.
To this end, let us take any open set G in the scalar field. We shall distinguish two cases:
if 0 /∈ G, then h−1(G) ⊆

⋃∞
j=1 U2j, so we obtain that

h−1(G) =
∞⋃
j=1

(
h−1(G) ∩ U2j

)
=
∞⋃
j=1

(
(fn2j

− f)−1(G) ∩ U2j

)
,

which is an open set. On the other hand, if 0 ∈ G, then we may pick ε > 0 and j0 ∈ N
such that U(0, ε) ⊆ G and for all j > j0, ‖fn2j

− f‖ < ε. That is, for all j > j0 we have

(fn2j
− f)−1(G) ⊇ (fn2j

− f)−1
(
U(0, ε)

)
= X.

The following computations demonstrate that h−1(G) is open:

h−1(G) =

(
h−1(G) ∩

(
X \

∞⋃
j=1

U2j

))
∪

(
h−1(G) ∩

∞⋃
j=1

U2j

)

=

(
X \

∞⋃
j=1

U2j

)
∪
∞⋃
j=1

(
(fn2j

− f)−1(G) ∩ U2j

)
=

(
X \

∞⋃
j=1

U2j

)
∪
∞⋃
j=j0

U2j ∪
j0−1⋃
j=1

(
(fn2j

− f)−1(G) ∩ U2j

)
=

(
X \

j0−1⋃
j=1

U2j

)
∪
j0−1⋃
j=1

(
(fn2j

− f)−1(G) ∩ U2j

)
.

As f̃ is continuous, T is defined at f̃ . We may now turn our attention to the (a priori
continuous) function T f̃ . By Proposition 4.2, for each j ∈ N,

T f̃ = Tf in V2j−1 = τ(U2j−1) and T f̃ = Tfn2j
in V2j = τ(U2j);

since yj ∈ Vj, we now have for each j,

T f̃(y2j−1) = Tf(y2j−1) and T f̃(y2j) = Tfn2j(y2j).

It follows from the above considerations, the fact that yj −→ z and continuity of Tf that

lim
j→∞

T f̃(y2j−1) = lim
j→∞

Tf(y2j−1) = Tf(z).

On the other hand, by (4.3),

lim
j→∞

T f̃(y2j) = lim
j→∞

Tfn2j
(y2j) 6= lim

j→∞
Tf(y2j) = Tf(z).

This contradicts the continuity of T f̃ , and the proof is complete. �
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The next simple lemma will be useful in the proof of Theorem 1.3.

Lemma 4.3. Let X be a compact Hausdorff space, F ⊆ X be connected, f, g ∈ C(X)
satisfy g � f , and let f(x) 6= 0 for each x ∈ F . Then either g(x) = f(x) for each x ∈ F
or g(x) = 0 in F .

Proof. Set H := {x ∈ F : f(x) = g(x)}; then H is closed in F as both functions are
continuous. On the other hand, from the definition of compatibility ordering it follows
that for each x ∈ X, either g(x) = 0 or g(x) = f(x). Hence, H = F \K where

K = {x ∈ F : g(x) = 0}.
Since K is closed in F , H must be open in F . So H is in fact clopen in F , and from the
connectedness of F it follows that either H = F or H = ∅. �

Proof of Theorem 1.3. Let F be a connected component of X with non-empty interior, set
A = {f ∈ C(X) : f(x) 6= 0 for all x ∈ F}, Ã = {f |F : f ∈ A} and let us pick any bijection
ϕ̃ : Ã→ Ã which is not continuous (with respect to the topology at question) and satisfies
that for any f̃ ∈ Ã,

(4.5) (ϕ̃f̃)|∂F = f̃ |∂F
(of course, ∂F , the boundary of F , is taken with respect to X). One can readily see that
such bijections exist in abundance thanks to the interior of F being non-empty. To give
a very simple example, consider a non-negative continuous bump function g̃ ∈ C(F ) such
that supp g̃ ∩ ∂F = ∅, and define f̃1 to be the constant 1 function on F and f̃2 = f̃1 + g̃.
Then f̃1, f̃2 ∈ Ã and we may define a bijection ϕ̃ : Ã → Ã by simply switching f̃1 and
f̃2, that is, ϕ̃(f̃1) = f̃2, ϕ̃(f̃2) = f̃1 and ϕ̃(f̃) = f̃ for any f̃ ∈ Ã \ {f̃1, f̃2}. Clearly, ϕ̃ is
a bijection satisfying condition (4.5), and if g̃ 6= 0, then it is clearly not continuous (in
either of the two topologies).

Having chosen any ϕ̃ : Ã→ Ã as described above, we can now extend its domain to the
whole of C(F ) using simply the identity, so ϕ̃(f̃) = f̃ for any f̃ ∈ C(F ) \ Ã; finally, we
define ϕ : C(X)→ C(X) as follows.

(ϕf)(x) :=

{
f(x) if x ∈ X \ F,
(ϕ̃(f |F ))(x) if x ∈ F.

Condition (4.5) and the definitions of ϕ̃ and ϕ make it clear that for any f ∈ C(X) it is
true that ϕ(f) ∈ C(X). Furthermore, we know that ϕ̃ is a discontinuous bijection, which
easily makes ϕ : C(X) → C(X) a discontinuous bijection, and we are left to show that ϕ
is also a compatibility isomorphism.

To that end, let us first observe that ϕ(f) = f for all f ∈ C(X) \ A; it is also plain
that (ϕf)|X\F = f |X\F even for f ∈ A. Now, pick any f, g ∈ C(X) with f � g. If
g /∈ A, then f /∈ A, whence ϕ(f) = f � g = ϕ(g). If f, g ∈ A, then (due to Lemma 4.3)
f |F = g|F , whence (ϕf)|F = (ϕg)|F by the definition of ϕ, and above we have observed
(ϕf)|X\F = f |X\F and the same for g; it follows from these three facts that ϕ(f) � ϕ(g).
Finally, if g ∈ A and f /∈ A, then Lemma 4.3 yields that f(x) = 0 for all x ∈ F and (as
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f /∈ A) we know the same to be true for ϕ(f) = f . As ϕ leaves both f and g unchanged in
the complement of F , it is again obvious that ϕ(f) � ϕ(g). This completes the discussion
of possible cases and the proof. �
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