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1. Introduction

Let E and F be complex locally convex spaces. Let H(U) denote the algebra of all

holomorphic functions on an open subset U of E. Let τw denote the compact-ported

topology introduced by Nachbin [7] on the space H(U). Let V be an open subset in

F . In [4] Isidro has characterized the spectrum of the topological algebra (H(U), τw),

when E is a complete locally convex space with the approximation property and U

is a balanced convex open subset of E. Using this result, in this note we prove

that if E is complete and has the approximation property then a homomorphism

A : (H(U), τw) → (H(V ), τw) is continuous if and only if A is a composition oper-

ator. As a consequence we prove that if E is the Tsirelson space each continuous

homomorphism between topological algebras of germs of holomorphic functions is a

composition operator.

We refer to the books of Dineen [2] or Mujica [6] for background information from

infinite dimensional complex analysis.

The research was supported by CNPq-Brazil.
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2. Results

Before stating our results, let us fix some notation and terminology. By a ho-

momorphism between algebras we mean an algebra homomorphism which is not

identically zero. A topological algebra is an algebra and a topological vector space

such that ring multiplication is separately continuous.

Let U and V be open subsets of complex locally convex spaces E and F respec-

tively. We say that a homomorphism A : H(U) → H(V ) is a composition operator

if there exists a holomorphic function g : V → E such that g(V ) ⊂ U and for each

f ∈ H(U) we have A(f) = f ◦ g.

A seminorm p on H(U) is ported by a compact set K ⊂ U if for each open set W

with K ⊂ W ⊂ U , there exists a constant c(W ) > 0 such that p(f) 6 c(W )‖f‖ =

sup
x∈W

|f(x)| for all f ∈ H(U). The Nachbin topology on H(U), denoted by τw, is the

locally convex topology defined by all such seminorms. It is known that for any open

set U of E, (H(U), τw) is a locally m-convex algebra. We denote by τ0 the topology

on H(U) of the uniform convergence on the compact sets K ⊂ U.

We recall that a complete locally convex space E has the approximation property,

if for each neighbourhood of zero V in E and each compact set K ⊂ E there exists a

continuous linear mapping T : E → E with dim(T (E)) <∞ such that T (x)−x ∈ V ,

for every x ∈ K.

In [4] Isidro has proved that every complex homomorphism on (H(U), τw) is an

evalution at a point of U , where U is a balanced convex open set of E. Using this

result we can prove the next proposition.

Proposition 2.1. Let E and F be complex locally convex spaces such that E

is complete and has the appoximation property. Let U ⊂ E be a convex balanced

open subset, and let V be an open subset of F . Then for each homomorphism

A : H(U) → H(V ) the following statements are equivalent.

(a) A : (H(U), τw) → (H(V ), τw) is continuous.

(b) A : (H(U), τw) → (H(V ), τ0) is continuous.

(c) A is a composition operator.

P r o o f. (a) ⇒ (b). Let A : (H(U), τw) → (H(V ), τw) be a continuous homo-

morphism. Since the natural inclusion (H(V ), τw) →֒ (H(V ), τ0) is continuous we

have that A : (H(U), τw) → (H(V ), τ0) is a continuous homomorphism.

(b) ⇒ (c). Let A : (H(U), τw) → (H(V ), τ0) be a continuous homomorphism. For

each y ∈ V we consider the evaluation function at y, δy : (H(V ), τ0) → C given by
δy(f) = f(y), for every f ∈ H(V ). Thus δy ◦ A : (H(U), τw) → C is a continuous
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homomorphism and by [4, Corollary 2], there exists a unique x(y) ∈ U such that

δy ◦A(f) = f(x(y)), for all f ∈ H(U), y ∈ V .

Therefore, we can define a mapping Φ: V → U by Φ(y) = x(y), for all y ∈ V and

consequently A(f) = f ◦ Φ, for all f ∈ H(U).

(c) ⇒ (a). Let A : (H(U), τw) → (H(V ), τw) be a composition operator. This

means, there exists a holomorphic function Φ: V → U such that A(f) = f ◦ Φ, for

all f ∈ H(U).

Let q : H(V ) → R be a seminorm on H(V ) ported by a compact subset L of V .

We consider the mapping p : H(U) → R given by p(f) = q(A(f)), for f ∈ H(U).

Since A is a linear mapping we have that p is a seminorm on H(U). We claim

that p is ported by the compact subset Φ(L) of U . Since q is ported by L we

obtain a constant CU1
> 0 such that q(g) 6 CU1

‖g‖Φ−1(U1), for all g ∈ H(V ), thus

p(f) = q(A(f)) 6 CU1
‖f ◦ Φ‖Φ−1(U1) 6 CU1

‖f‖U1
, for all f ∈ H(U). It follows from

[3, Proposition 2, pg. 97] that A is continuous. �

Our next proposition shows that in the case E to be the Tsirelson space (defined

by B.Tsirelson in [9]), every continuous homomorphism between algebras of holo-

morphic germs is a composition operator. Before proving the proposition 2.2 we

need some preparation. Let E be a Banach space. Let H (K) denote the space of

all germs of holomorphic functions on a compact subset K of E and let us also de-

note by τw the locally convex inductive limit topology onH (K) which is defined by

(H (K), τw) = lim
−→

U⊃K

(H(U), τw). It is known that (H(K), τw) is an m-locally convex

algebra.

Proposition 2.2. Let E be a Tsirelson space and F be a Banach space. Let

K ⊂ E be an absolutely convex and compact subset and L ⊂ F a compact subset.

Let A : (H (K), τw) → (H (L), τw) a homomorphism. Then A is continuous if and

only if A is a composition operator.

P r o o f. Let A : (H (K), τw) → (H (L), τw) be a continuous homomorphism.

By [1, Corollary 3.3] we have that A is a composition operator.

Conversely, if A is a composition operator then there exist an open subset V0 ⊃ L

and a holomorphic function Φ: V0 → E such that Φ(L) ⊂ K and A([f ]) = [f ◦ Φ]

for each holomorphic function f defined on a neighbourhood of K.

Thus, for each open subset U ⊃ K, by Theorem 3.2 in [1] there exists an open

subset V such that L ⊂ V ⊂ V0 with Φ(V ) ⊂ U and a composition operator

ÃU : (H(U), τw) → (H(V ), τw) given by ÃU (f) = f ◦ Φ, for f ∈ H(U). Therefore,
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A ◦ I K
U = I L

V ◦ ÃU . That is, we obtain the commutative diagram

(H (K), τw)
A

// (H (L), τw)

(H(U), τw)
ÃU

//

?�

I
K

U

OO

(H(V ), τw)
?�

I
L

V

OO

So, by the proposition 2.1 (c) −→ (a) we have that ÃU is continuous. Then A is

continuous by a result of Nachbin [8, Proposition 45]. This completes the proof. �

Now, we need some additional notation and terminology. Let E be a complex

Banach space. For each m ∈ N let P(mE) denote the space of all continuous m-

homogeneous polynomials on E. As usual the space
∞∑

n=0
P(nE) is denoted byP(E).

We denote by Pf (mE) the space generated by all m-homogeneous polynomials of

the form P (x) = ψ(x)m, with ψ ∈ E′.

Given a compact set K ⊂ E we define its polynomially convex hull K̂P(E) by

K̂P(E) =
{
x ∈ E : |P (x)| 6 sup

y∈K

|P (y)| = ‖P‖K , ∀P ∈ P(E)
}
.

The compact set K is said to be polynomially convex if K̂P(E) = K. Let U be an

open set in E. We say that U is polynomially convex if for each compact set K ⊂ U,

the set K̂P(E) ∩ U is compact.

Corollary 2.3. Let E be a reflexive Banach space such that Pf (nE) is dense

in P(nE) for each n ∈ N. Let K ⊂ E be an absolutely convex and compact

subset of E. Let F be a Banach space and L ⊂ F be a compact subset. Let A :

(H (K), τw) → (H (L), τw) be a homomorphism. Then, A is continous if and only

if A is a composition operator.

P r o o f. The result follows arguing as in Proposition 2.2 and using a result of

the authors [1, Corollary 3.4]. �

In [5] Mujica has extended the Corollary 2 of Isidro [4] for polynomially convex

open set in locally convex space quasi-complete with the approximation property.

As a consequence of Mujica’s results we get the next proposition.
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Proposition 2.4. Let E be a quasi-complete space with the approximation prop-

erty and let F be a locally convex space. Let U ⊂ E be a polynomially convex open

subset and V ⊂ F an open subset. Let A : H(U) → H(V ) a homomorphisms. The

following statements are equivalent.

(a) A : (H(U), τw) → (H(V ), τw) is continuous.

(b) A : (H(U), τw) → (H(V ), τ0) is continuous.

(c) A is a composition operator.

P r o o f. The proof here is similar to the proof of the proposition 2.1. �
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