HOMOMORPHISMS BETWEEN ALGEBRAS OF HOLOMORPHIC FUNCTIONS IN INFINITE DIMENSIONAL SPACES

LUCIANO O. CONDORI, M. LILIAN LOURENÇO, São Paulo

(Received February 8, 2006)

Abstract. It is shown that a homomorphism between certain topological algebras of holomorphic functions is continuous if and only if it is a composition operator.

Keywords: holomorphic function, continuous homomorphism

MSC 2000: 46G20, 46E15, 47B33

1. Introduction

Let E and F be complex locally convex spaces. Let H(U) denote the algebra of all holomorphic functions on an open subset U of E. Let τ_w denote the compact-ported topology introduced by Nachbin [7] on the space H(U). Let V be an open subset in F. In [4] Isidro has characterized the spectrum of the topological algebra $(H(U), \tau_w)$, when E is a complete locally convex space with the approximation property and U is a balanced convex open subset of E. Using this result, in this note we prove that if E is complete and has the approximation property then a homomorphism A: $(H(U), \tau_w) \to (H(V), \tau_w)$ is continuous if and only if A is a composition operator. As a consequence we prove that if E is the Tsirelson space each continuous homomorphism between topological algebras of germs of holomorphic functions is a composition operator.

We refer to the books of Dineen [2] or Mujica [6] for background information from infinite dimensional complex analysis.

The research was supported by CNPq-Brazil.

2. Results

Before stating our results, let us fix some notation and terminology. By a homomorphism between algebras we mean an algebra homomorphism which is not identically zero. A topological algebra is an algebra and a topological vector space such that ring multiplication is separately continuous.

Let U and V be open subsets of complex locally convex spaces E and F respectively. We say that a homomorphism $A\colon H(U)\to H(V)$ is a composition operator if there exists a holomorphic function $g\colon V\to E$ such that $g(V)\subset U$ and for each $f\in H(U)$ we have $A(f)=f\circ g$.

A seminorm p on H(U) is ported by a compact set $K \subset U$ if for each open set W with $K \subset W \subset U$, there exists a constant c(W) > 0 such that $p(f) \leq c(W) \|f\| = \sup_{x \in W} |f(x)|$ for all $f \in H(U)$. The Nachbin topology on H(U), denoted by τ_w , is the locally convex topology defined by all such seminorms. It is known that for any open set U of E, $(H(U), \tau_w)$ is a locally m-convex algebra. We denote by τ_0 the topology on H(U) of the uniform convergence on the compact sets $K \subset U$.

We recall that a complete locally convex space E has the approximation property, if for each neighbourhood of zero V in E and each compact set $K \subset E$ there exists a continuous linear mapping $T \colon E \to E$ with $\dim(T(E)) < \infty$ such that $T(x) - x \in V$, for every $x \in K$.

In [4] Isidro has proved that every complex homomorphism on $(H(U), \tau_w)$ is an evalution at a point of U, where U is a balanced convex open set of E. Using this result we can prove the next proposition.

Proposition 2.1. Let E and F be complex locally convex spaces such that E is complete and has the approximation property. Let $U \subset E$ be a convex balanced open subset, and let V be an open subset of F. Then for each homomorphism $A \colon H(U) \to H(V)$ the following statements are equivalent.

- (a) $A: (H(U), \tau_w) \to (H(V), \tau_w)$ is continuous.
- (b) A: $(H(U), \tau_w) \to (H(V), \tau_0)$ is continuous.
- (c) A is a composition operator.

Proof. (a) \Rightarrow (b). Let A: $(H(U), \tau_w) \rightarrow (H(V), \tau_w)$ be a continuous homomorphism. Since the natural inclusion $(H(V), \tau_w) \hookrightarrow (H(V), \tau_0)$ is continuous we have that A: $(H(U), \tau_w) \rightarrow (H(V), \tau_0)$ is a continuous homomorphism.

(b) \Rightarrow (c). Let $A \colon (H(U), \tau_w) \to (H(V), \tau_0)$ be a continuous homomorphism. For each $y \in V$ we consider the evaluation function at $y, \delta_y \colon (H(V), \tau_0) \to \mathbb{C}$ given by $\delta_y(f) = f(y)$, for every $f \in H(V)$. Thus $\delta_y \circ A \colon (H(U), \tau_w) \to \mathbb{C}$ is a continuous

homomorphism and by [4, Corollary 2], there exists a unique $x(y) \in U$ such that $\delta_y \circ A(f) = f(x(y))$, for all $f \in H(U)$, $y \in V$.

Therefore, we can define a mapping $\Phi \colon V \to U$ by $\Phi(y) = x(y)$, for all $y \in V$ and consequently $A(f) = f \circ \Phi$, for all $f \in H(U)$.

(c) \Rightarrow (a). Let $A: (H(U), \tau_w) \to (H(V), \tau_w)$ be a composition operator. This means, there exists a holomorphic function $\Phi: V \to U$ such that $A(f) = f \circ \Phi$, for all $f \in H(U)$.

Let $q \colon H(V) \to \mathbb{R}$ be a seminorm on H(V) ported by a compact subset L of V. We consider the mapping $p \colon H(U) \to \mathbb{R}$ given by p(f) = q(A(f)), for $f \in H(U)$. Since A is a linear mapping we have that p is a seminorm on H(U). We claim that p is ported by the compact subset $\Phi(L)$ of U. Since q is ported by L we obtain a constant $C_{U_1} > 0$ such that $q(g) \leqslant C_{U_1} \|g\|_{\Phi^{-1}(U_1)}$, for all $g \in H(V)$, thus $p(f) = q(A(f)) \leqslant C_{U_1} \|f \circ \Phi\|_{\Phi^{-1}(U_1)} \leqslant C_{U_1} \|f\|_{U_1}$, for all $f \in H(U)$. It follows from [3, Proposition 2, pg. 97] that A is continuous.

Our next proposition shows that in the case E to be the Tsirelson space (defined by B. Tsirelson in [9]), every continuous homomorphism between algebras of holomorphic germs is a composition operator. Before proving the proposition 2.2 we need some preparation. Let E be a Banach space. Let $\mathscr{H}(K)$ denote the space of all germs of holomorphic functions on a compact subset K of E and let us also denote by τ_w the locally convex inductive limit topology on $\mathscr{H}(K)$ which is defined by $(\mathscr{H}(K), \tau_w) = \lim_{U \supset K} (H(U), \tau_w)$. It is known that $(H(K), \tau_w)$ is an m-locally convex algebra.

Proposition 2.2. Let E be a Tsirelson space and F be a Banach space. Let $K \subset E$ be an absolutely convex and compact subset and $L \subset F$ a compact subset. Let $A: (\mathcal{H}(K), \tau_w) \to (\mathcal{H}(L), \tau_w)$ a homomorphism. Then A is continuous if and only if A is a composition operator.

Proof. Let $A: (\mathcal{H}(K), \tau_w) \to (\mathcal{H}(L), \tau_w)$ be a continuous homomorphism. By [1, Corollary 3.3] we have that A is a composition operator.

Conversely, if A is a composition operator then there exist an open subset $V_0 \supset L$ and a holomorphic function $\Phi \colon V_0 \to E$ such that $\Phi(L) \subset K$ and $A([f]) = [f \circ \Phi]$ for each holomorphic function f defined on a neighbourhood of K.

Thus, for each open subset $U \supset K$, by Theorem 3.2 in [1] there exists an open subset V such that $L \subset V \subset V_0$ with $\Phi(V) \subset U$ and a composition operator $\tilde{A}_U \colon (H(U), \tau_w) \to (H(V), \tau_w)$ given by $\tilde{A}_U(f) = f \circ \Phi$, for $f \in H(U)$. Therefore,

 $A \circ \mathscr{I}_U^K = \mathscr{I}_V^L \circ \tilde{A}_U$. That is, we obtain the commutative diagram

So, by the proposition 2.1 (c) \longrightarrow (a) we have that \tilde{A}_U is continuous. Then A is continuous by a result of Nachbin [8, Proposition 45]. This completes the proof. \square

Now, we need some additional notation and terminology. Let E be a complex Banach space. For each $m \in \mathbb{N}$ let $\mathscr{P}(^mE)$ denote the space of all continuous m-homogeneous polynomials on E. As usual the space $\sum\limits_{n=0}^{\infty}\mathscr{P}(^nE)$ is denoted by $\mathscr{P}(E)$. We denote by $\mathscr{P}_f(^mE)$ the space generated by all m-homogeneous polynomials of the form $P(x) = \psi(x)^m$, with $\psi \in E'$.

Given a compact set $K \subset E$ we define its polynomially convex hull $\widehat{K}_{\mathscr{P}(E)}$ by

$$\widehat{K}_{\mathscr{P}(E)} = \big\{ x \in E \colon \left| P(x) \right| \leqslant \sup_{y \in K} \left| P(y) \right| \ = \| P \|_K, \ \forall \, P \in \mathscr{P}(E) \big\}.$$

The compact set K is said to be *polynomially convex* if $\widehat{K}_{\mathscr{P}(E)} = K$. Let U be an open set in E. We say that U is *polynomially convex* if for each compact set $K \subset U$, the set $\widehat{K}_{\mathscr{P}(E)} \cap U$ is compact.

Corollary 2.3. Let E be a reflexive Banach space such that $\mathscr{P}_f(^nE)$ is dense in $\mathscr{P}(^nE)$ for each $n \in \mathbb{N}$. Let $K \subset E$ be an absolutely convex and compact subset of E. Let F be a Banach space and $L \subset F$ be a compact subset. Let A: $(\mathscr{H}(K), \tau_w) \to (\mathscr{H}(L), \tau_w)$ be a homomorphism. Then, A is continous if and only if A is a composition operator.

Proof. The result follows arguing as in Proposition 2.2 and using a result of the authors [1, Corollary 3.4]. \Box

In [5] Mujica has extended the Corollary 2 of Isidro [4] for polynomially convex open set in locally convex space quasi-complete with the approximation property. As a consequence of Mujica's results we get the next proposition.

Proposition 2.4. Let E be a quasi-complete space with the approximation property and let F be a locally convex space. Let $U \subset E$ be a polynomially convex open subset and $V \subset F$ an open subset. Let $A \colon H(U) \to H(V)$ a homomorphisms. The following statements are equivalent.

- (a) $A: (H(U), \tau_w) \to (H(V), \tau_w)$ is continuous.
- (b) $A: (H(U), \tau_w) \to (H(V), \tau_0)$ is continuous.
- (c) A is a composition operator.

Proof. The proof here is similar to the proof of the proposition 2.1. \Box

References

- [1] L. O. Condori, M. L. Lourenço: Continuous homomorphism between topological algebras of holomorphic germs. Rocky Moutain J. Math. 36(5) (2006), 1457–1469.
- [2] S. Dineen: Complex Analysis on Infinite Dimensional Spaces. Springer, 1999.
- [3] J. Horvath: Topological Vector Spaces and Distributions Vol. 1. Addison-Wesley, 1966. zbl
- [4] J. M. Isidro: Characterization of the spectrum of some topological algebras of holomorphic functions. Advances in Holomorphy, (ed. J.A. Barroso), North-Holland, 1979, pp. 407–416.
- [5] J. Mujica: The Oka-Weil theorem in locally convex spaces with the approximation property. Séminaire Paul Krée 1977/1978. Institute Henri Poincaré, Paris, 1979.
- [6] J. Mujica: Complex Analysis in Banach Spaces. Math. Stud. Vol. 120, North-Holland, 1986.
- [7] L. Nachbin: On the topology of the space of all holomorphic functions on a given open subset. Indag. Math. 29 (1967), 366–368.
- [8] L. Nachbin: Topics on Topological Vector Spaces. Textos de Métodos Matemáticos da Universidade Federal do Rio de Janeiro, 1974.
- [9] B. Tsirelson: Not every Banach space contains an imbedding of ℓ_p or c_0 . Funct. Anal. Appl. 8 (1974), 138–144.

Authors' addresses: L. O. Condori, ICET, Universidade Paulista—CEP: 06500-000 São Paulo, Brazil, e-mail: lch@ime.usp.br; M. L. Lourenço, Departamento de Matemática, Universidade de São Paulo, CP 66281—CEP: 05315-970 São Paulo, Brazil, e-mail: mllouren@ime.usp.br.