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Lq-SOLUTION OF THE NEUMANN, ROBIN AND
TRANSMISSION PROBLEM FOR THE SCALAR OSEEN

EQUATION

DAGMAR MEDKOVÁ†

Abstract. We find necessary and sufficient conditions for the existence of an

Lq-solution of the Neumann problem, the Robin problem and the transmission
problem for the scalar Oseen equation in three-dimensional open sets. As a

consequence we study solutions of the generalized jump problem.

1. Introduction

The Oseen equations represent a mathematical model describing the motion
of a viscous incompressible fluid flow around an obstacle. They are obtained by
linearizing the steady Navier-Stokes equations around a nonzero constant vector
u = u∞, where u∞ represents the velocity at infinity, and have the form

−ν∆u + u∞ · ∇u +∇p = F, ∇ · u = 0 in R3 \ Ω.(1.1)

Here Ω ⊂ R3 denotes a bounded obstacle and R3\Ω the domain containing the fluid.
The velocity field u and the pressure function p are unknown, while the viscosity
ν > 0 and the external force density F acting on the fluid are given. Choosing
u∞ = (λ, 0, 0) and taking the divergence of the first equation in (1.1) we obtain
the Poisson equation ∆p = ∇ ·F for the pressure p, and each component uj of the
velocity satisfies the equation −ν∆uj + λ

∂uj

∂x1
= Fj − ∂p

∂xj
. Thus we see that the

Oseen equations (1.1) can be reduced to the scalar equation

(1.2) − ν∆u+ λ∂1u = f in R3 \ Ω

with scalar functions u and f = Fj −
∂π

∂xj
.

The system (1.1) introduced by C. W. Oseen [28] has mostly been studied in
exterior domains with Dirichlet boundary conditions. Early works are due to Finn
who considered these equations in two- and three-dimensional exterior domains
using a weighted L2-approach [10], [11]. Further important contributions are due
to Farwig [7], Farwig, Sohr [8], and Kračmar, Novotný, Pokorný [16] in weighted
Sobolev spaces. Galdi [12] considered the system in Wm,p

loc -spaces, and Enomoto,
Shibata [5] and Kobayashi, Shibata [15] investigated the corresponding Oseen semi-
group. Concerning the scalar equation (1.2), important results in weighted Sobolev
spaces are given by Amrouche, Bouzit [1], [2] and Amrouche, Razafison [3]. All
these results concern the exterior Dirichlet problem. Lately classical solutions of
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2 DAGMAR MEDKOVÁ

the Dirichlet problem, the Neumann problem and the Robin problem for the scalar
Oseen equation has been studied by the integral equation method ([23], [24]).

In this paper we study so called Lq-solution of the Neumann problem, the Robin
problem and the transmission problem for the scalar Oseen system. It means that
we look for a solution such that the nontangential maximal function of u and ∇u
are in Lq(∂Ω) and boundary conditions are fulfilled in the sense of nontangential
limits. We find necessary and sufficient conditions for the existence of an Lq-
solution of the Neumann and Robin problem for bounded and unbounded domains
with compact Lipschitz boundary. We solve also uniqueness of the problem and a
continuous dependence on boundary conditions. Similar results we get also for the
transmission problem. Remark that the essential difference between the Neumann
problem for the Laplace equation and for the scalar Oseen equation is that the
Neumann problem for the scalar Oseen equation −∆u + λ∂1u = 0 with λ 6= 0 is
uniquely solvable.

P. Krutitskii studied in [17], [18] classical solutions of the jump problem for the
Laplace equation

∆u = 0 in R2 \ Γ, [u]+ − [u]− = f, [∂u/∂n]+ − [∂u/∂n]− = g on Γ,

where Γ is a smooth open curve. Later he studied the generalized jump problem

∆u = 0 in R2 \ Γ, [u]+ − [u]− = f, [∂u/∂n]+ − [∂u/∂n]− + h[u]+ = g on Γ.

(See [19].) As a consequence of our result for the transmission problem we prove
the existence of an Lq-solution of the generalized jump problem for the scalar Oseen
equation corresponding to a crack Γ ⊂ R3. This result is new even for the Laplace
equation.

2. Formulation of the problems

We shall look for so called Lq-solution of boundary value problems. For these
reasons we need to define a nontangential limit and a nontangential maximal func-
tion.

Let Ω ⊂ R3 be an open set with compact Lipschitz boundary. If x ∈ ∂Ω, a > 0
denote the nontangential approach regions of opening a at the point x by

Γa(x) = {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.

If now v is a function defined in Ω we denote the nontangential maximal function
of v on ∂Ω by

Ma(v)(x) = MΩ
a (v)(x) := sup{|v(y)|; y ∈ Γa(x)}.

It is well known that there exists c > 0 such that for a, b > c and 1 ≤ q <∞ there
exist C1, C2 > 0 such that

‖Mav‖Lq(∂Ω) ≤ C1‖Mbv‖Lq(∂Ω) ≤ C2‖Mav‖Lq(∂Ω)

for any measurable function v in Ω. (See, e.g. [14] and [30, p. 62].) We shall
suppose that a > c and write Γ(x) instead of Γa(x). Next, define the nontangential
limit of v at x ∈ ∂Ω by

v(x) = [v]Ω(x) = lim
Γ(x)3y→x

v(y)

whenever the limit exists.
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If Ω+ ⊂ R3 is an open set with compact Lipschitz boundary, Ω− = R3\Ω+, v is a
function defined on Ω+∪Ω−, and x ∈ ∂Ω+, we denote by [v(x)]± the nontangential
limit of v at x with respect to Ω±.

Let now Ω ⊂ R3 be an open set with compact Lipschitz boundary, λ ∈ R,
1 < q < ∞, h ∈ L∞(∂Ω), g ∈ Lq(∂Ω). We say that u is an Lq-solution of the
Robin problem for the scalar Oseen equation

(2.1) −∆u+ λ∂1u = 0 in Ω,
∂u

∂n
− λ

2
n1u+ hu = g on ∂Ω,

if u ∈ C∞(Ω), −∆u + λ∂1u = 0 in Ω, Ma(u) + Ma(|∇u|) ∈ Lq(∂Ω), there exist
nontangential limits of u and ∇u at almost all points of ∂Ω, and the boundary
condition ∂u/∂n − λn1u/2 + hu = g is fulfilled in the sense of the nontangential
limit at almost all points of ∂Ω. If h ≡ 0 we say about the Neumann problem for
the scalar Oseen equation. Here n = nΩ is the unit exterior normal of Ω.

Let now Ω ⊂ R3 be a bounded open set with compact Lipschitz boundary,
λ+, λ− ∈ R, 1 < q < ∞, h+, h− ∈ L∞(∂Ω), g ∈ Lq(∂Ω), f ∈ W 1,q(∂Ω). Let a+,
a−, b+, b− be positive constants. Denote Ω+ = Ω, Ω− = R3 \ Ω, and by n denote
the unit exterior normal of Ω. We say that u is an Lq-solution of the transmission
problem for the scalar Oseen equation

(2.2)

−∆u+ λ±∂1u = 0 in Ω±,
a+[u]+ − a−[u]− = f on ∂Ω,
b+

[
∂u
∂n −

λ+
2 n1u

]
+
− b−

[
∂u
∂n −

λ−
2 n1u

]
−

+ h+[u]+ + h−[u]− = g on ∂Ω,

if u ∈ C∞(Ω±), −∆u + λ±∂1u = 0 in Ω±, MΩ+
a (u) + M

Ω+
a (|∇u|) + M

Ω−
a (u) +

M
Ω−
a (|∇u|) ∈ Lq(∂Ω), there exist nontangential limits of u and ∇u with respect to

Ω+ and Ω− at almost all points of ∂Ω, and the transmission conditions a+[u]+ −
a−[u]− = f , b+[∂u/∂n−λ+n1u/2]+−b−[∂u/∂n−λ−n1u/2]−+h+[u]++h−[u]− = g
are fulfilled in the sense of the nontangential limit at almost all points of ∂Ω.

3. Potentials for the scalar Oseen equation

We shall look for solutions of the Robin problem and the transmission problem
for the scalar Oseen equation by the integral equation method. For that reason we
need to define scalar Oseen boundary potentials and study their properties.

We say that E is a fundamental solution of the scalar Oseen equation

(3.1) −∆u+ λ∂1u = 0

if −∆u + λ∂1u = δ0 in the sense of distribution. The fundamental solution of the
scalar Oseen equation (3.1) is

(3.2) Eλ(x) :=
1

4π|x|
e−(|λx|−λx1)/2.

(Remark that E0(x) is a fundamental solution of the Laplace equation.) Clearly
Eλ(−x) = E−λ(x). We have

(3.3) |Eλ(x)− E0(x)| = O(1), |∇Eλ(x)−∇E0(x)| = O(|x|−1) as |x| → 0

by [24, Lemma 3.2]. If α = (α1, α2, α3) is a multiindex and λ 6= 0 then

(3.4) |∂αEΩ
0 ϕ(x)| = O(|x|−1−|α|) as |x| → ∞,

(3.5) |∂αEΩ
λ ϕ(x)| = O(e−(|λx|−λx1)/2|x|−1) as |x| → ∞,
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where |α| = α1 + α2 + α3.
If Ω ⊂ R3 is an open set with compact Lipschitz boundary and ϕ ∈ Lq(∂Ω) with

1 < q <∞ denote

EΩ
λ ϕ(x) =

∫
∂Ω

Eλ(x− y)ϕ(y) dσ(y)

the scalar Oseen single layer potential with density ϕ. (If λ = 0 then Eλϕ is a
classical single layer potential for the Laplace equation.) Easy calculations yield
that EΩ

λ ϕ ∈ C∞(R3 \ ∂Ω) and −∆EΩ
λ ϕ+ λ∂1E

Ω
λ ϕ = 0 in R3 \ ∂Ω.

Let now y ∈ ∂Ω be such that the unit exterior normal nΩ(y) of Ω there exists at
y. For x ∈ R3 \ {y} define

KΩ
λ (x, y) = nΩ(y) · ∇Eλ(x− y)− λ

2
nΩ

1 (y)EΩ(x− y).

For ϕ ∈ Lq(∂Ω) with 1 < q <∞ denote

DΩ
λϕ(x) =

∫
∂Ω

KΩ
λ (x, y)ϕ(y) dσ(y)

the scalar Oseen double layer potential with density ϕ. (If λ = 0 then Dλϕ is
a classical double layer potential for the Laplace equation.) Since KΩ

λ (·, y) is a
solution of the scalar Oseen equation (3.1) in R3 \ {y}, the double layer potential
DΩ

λϕ is a solution of the scalar Oseen equation (3.1) in R3 \ ∂Ω.

Proposition 3.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q <∞. Then there exists a constant C such that

‖Ma(DΩ
λϕ)‖Lq(∂Ω) ≤ C‖ϕ‖Lq(∂Ω)

for all ϕ ∈ Lq(∂Ω). If ϕ ∈ Lq(∂Ω) and x ∈ ∂Ω, we define

KΩ
λ ϕ(x) = lim

r↓0

∫
∂Ω\B(x;r)

KΩ
λ (x, y)ϕ(y) dσ(y)

whenever this integral makes sense. (Here B(x; r) = {y ∈ R3; |x − y| < r}.) Then
KΩ

λ is a bounded linear operator on Lq(∂Ω). Denote Ω+ = Ω, Ω− = R3 \ Ω. If
ϕ ∈ Lq(∂Ω) then

[DΩ
λϕ(x)]± = ±1

2
ϕ(x) +KΩ

λ ϕ(x)

for almost all x ∈ ∂Ω.

(See [25], Theorem 2.9.)

Proposition 3.2. Let Ω ⊂ R3 be an open set with compact Lispchitz boundary,
λ ∈ R, 1 < q <∞. Denote by EΩ

λ ϕ the restriction of EΩ
λ ϕ onto ∂Ω. If ϕ ∈ Lq(∂Ω),

then Eλϕ
Ω(x) is the nontangential limit of EΩ

λ ϕ at x for almost all x ∈ ∂Ω, and

(3.6) ‖Ma(EΩ
λ ϕ)‖Lq(∂Ω) ≤ C‖ϕ‖Lq(∂Ω)

with a constant C depending only on Ω, λ and q.

Proof. Since |Eλ(x)| = O(|x|−1) as |x| → 0, and |Eλ(x)| → 0 as |x| → ∞, the
proposition follows from [22, Proposition 1]. �
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Proposition 3.3. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q < ∞. If ϕ ∈ Lq(∂Ω), then there exists the nontangential limit of
∇EΩ

λ ϕ at x for almost all x ∈ ∂Ω, and

‖Ma(∇EΩ
λ ϕ)‖Lq(∂Ω) ≤ C‖ϕ‖Lq(∂Ω)

with a constant C depending only on Ω, λ and q. Denote by (KΩ
λ )′ the adjoint

operator of KΩ
λ . Then (KΩ

λ )′ is a bounded linear operator on Lq(∂Ω),

(3.7) (KΩ
λ )′ϕ(x) = lim

r↓0

∫
∂Ω\B(x;r)

KΩ
λ (y, x)ϕ(y) dσ(y)

for almost all x ∈ ∂Ω. Denote Ω+ = Ω, Ω− = R3 \ Ω. If ϕ ∈ Lq(∂Ω) then

(3.8)
[(

∂

∂n
− λ

2
n1

)
EΩ

λ ϕ(x)
]
±

= ±1
2
ϕ(x)− (KΩ

−λ)′ϕ(x)

for almost all x ∈ ∂Ω.

(See [25], Theorem 2.9.)

Proposition 3.4. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q < ∞. Then EΩ

λ , KΩ
λ − KΩ

0 and (KΩ
λ )′ − (KΩ

0 )′ are compact linear
operators on Lq(∂Ω).

Proof. The operators EΩ
λ , KΩ

λ −KΩ
0 and (KΩ

λ )′− (KΩ
0 )′ are integral operators with

weakly singular kernels by (3.3). So, these operators are compact in Lq(∂Ω) by [9,
§4.5.2, Satz 2]. �

Proposition 3.5. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q < ∞. Then EΩ

λ : Lq(∂Ω) → W 1,q(∂Ω) is a bounded operator,
EΩ

λ −EΩ
0 : Lq(∂Ω) →W 1,q(∂Ω) is a compact operator, [∂j(EΩ

λ −EΩ
0 )]Ω is a compact

operator on Lq(∂Ω).

Proof. EΩ
λ maps Lq(∂Ω) to W 1,q(∂Ω) by Proposition 3.4 and Lemma 11.2 in Ap-

pendix.. Since EΩ
λ is a continuous operator on Lq(∂Ω) by Proposition 3.3, the

Closed graph theorem [29, Theorem 3.10] gives that EΩ
λ : Lq(∂Ω) →W 1,q(∂Ω) is a

bounded operator.
Since |∂jEλ(x)− ∂jE0(x)| ≤ C|x|−1, [22, Proposition 1] gives

[∂jEλg − ∂jE0g]Ω(x) =
∫

∂Ω

[∂jEλ(x− y)− ∂jE0(x− y)]g(y) dσ(y)

for g ∈ Lq(∂Ω). So, g 7→ [∂jEλg− ∂jE0g]Ω is a compact operator on Lq(∂Ω) by [9,
§4.5.2, Satz 2].
EΩ

λ −EΩ
0 is compact on Lq(∂Ω) by Proposition 3.4. Proposition 3.3 and Lemma 11.2

in Appendix gives that

∂τjk
(EΩ

λ −EΩ
0 )g := (nj∂k−nk∂j)(EΩ

λ −EΩ
0 )g = nj [∂k(EΩ

λ −EΩ
0 )g]Ω−nk[∂j(EΩ

λ −EΩ
0 )g]Ω.

Since all tangential derivatives operators ∂τjk
(EΩ

λ − EΩ
0 ) are compact on Lq(∂Ω),

the operator (EΩ
λ − EΩ

0 ) : Lq(∂Ω) →W 1,q(∂Ω) is compact. �



6 DAGMAR MEDKOVÁ

4. Behaviour at infinity

If Ω is an unbounded domain with compact Lipschitz boundary, then there exists
r > 0 such that Γa(x) ⊃ {y ∈ R3; |y| > r} for all x ∈ ∂Ω. If u is an Lq-solution of
the Robin problem in Ω, then MΩ

a u ∈ Lq(∂Ω). This forces that u is bounded on
the set {y ∈ R3; |y| > r}. In this section we shall study a behaviour of bounded
solutions of the scalar Oseen equation. We need the following Liouville’s theorem:

Theorem 4.1. Let u be a tempered distribution in R3, λ ∈ R. If −∆u+ λ∂1u = 0
in R3 in the sense of distributions, then u is a polynomial.

(See [4], Chapter XI, §2, Theorem 1.)

Proposition 4.2. Let Ω ⊂ R3 be an unbounded open set with compact boundary,
λ ∈ R, u ∈ C∞(Ω) be a bounded solution of the scalar Oseen equation (3.1) in Ω.
Then there exists u∞ ∈ R such that u(x) → u∞ as |x| → ∞. If α is a multiindex
then

(4.1)
∂α[u(x)− u∞] = O(|x|−1−|α|) as |x| → ∞ for λ = 0,
∂α[u(x)− u∞] = O(e−(|λx|−λx1)/2|x|−1) as |x| → ∞ for λ 6= 0.

Proof. Fix ϕ ∈ C∞(R3 with compact support such that ϕ = 1 on a neighbourhood
of R3 \ Ω. Define v = u(1 − ϕ) in Ω, v = 0 elsewhere. Then v ∈ C∞(R3) and
g = −∆v + λ∂1v has compact support. Define w by the convolution w = g ∗ Eλ.
Then −∆w+ λ∂1w = g. According to (3.4), (3.5), we have ∂αw(x) = O(|x|−1−|α|)
as |x| → ∞ for λ = 0, ∂αw(x) = O(e−(|λx|−λx1)/2|x|−1) as |x| → ∞ for λ 6= 0. Since
v−w is bounded, it is a tempered distribution. Since −∆(v−w) +λ∂1(v−w) = 0
in R3, Theorem 4.1 gives that v −w is a polynomial. Since v −w is bounded, it is
constant. Since u = v in a neighbourhood of infinity, we obtain the proposition. �

5. Integral representation

In this section we prove a formula for an integral representation of solutions of
the scalar Oseen equation.

Proposition 5.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q < ∞. Let u be a solution of the scalar Oseen equation (3.1) in Ω.
Suppose that Ma(u) +Ma(|∇u|) ∈ Lq(∂Ω), and there exist nontangential limits of
u and ∇u at almost all points of ∂Ω. If Ω is unbounded suppose that u(x) → 0 as
|x| → ∞. Denote by g the Neumann condition

g =
∂u

∂n
− λ

2
nΩ

1 u on ∂Ω

(in the sense of a nontangential limit). Then

(5.1) EΩ
λ g(x) +DΩ

λ u(x) =
{
u(x) x ∈ Ω,
0 x ∈ R3 \ Ω.

Proof. Suppose first that Ω is bounded and u ∈ C2(Ω). For x ∈ R3 denote hx(y) =
Eλ(x− y). Then ∆hx + λ∂1hx = 0 in R3 \ {x}.

Let x ∈ R3 \ Ω. According to Green’s formula

EΩ
λ g(x) +DΩ

λ u(x) =
∫

∂Ω

[
h

(
∂u

∂n
− λ

2
nΩ

1 u

)
+ u

(
−∂h
∂n

− λ

2
nΩ

1 h

)]
dσ
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=
∫

Ω

[h(∆u− λ∂1u)− u(∆h+ λ∂1h)] dy = 0.

Let now x ∈ Ω. Using (5.1) for Ω(r) = Ω \B(x; r)

0 = lim
r↓0

[
E

Ω(r)
λ

(
∂u

∂n
− λ

2
nΩ

1

)
(x) +D

Ω(r)
λ u(x)

]
= EΩ

λ g(x) +DΩ
λ u(x)

− lim
r↓0

[
E

B(x;r)
λ

(
∂u

∂n
− λ

2
nΩ

1

)
(x) +

∫
∂Ω

(KB(x;r)
λ (x, y)−K

B(x;r)
0 (x, y))u(y) dσ(y)

]
− lim

r↓0

∫
∂B(x;r)

u

4πr2
dσ = EΩ

λ g(x) +DΩ
λ u(x)− u(x).

Let now Ω be bounded and u be general. Let Ωj be the sequence of sets from
Lemma 11.1 in Appendix. We have proved (5.1) for Ωj . Letting j →∞ we obtain
(5.1) for Ω by the Lebesgue lemma.

Let now Ω be unbounded. Fix x ∈ Ω. Choose r > 0 such that ∂Ω ⊂ B(x; r).
We have proved

(5.2) u = E
Ω∩B(x;r)
λ (∂u/∂n− λn1u/2) +D

Ω∩B(x;r)
λ u in Ω ∩B(x; r).

Define

v(y) =
{
EΩ

λ g(y) +DΩ
λ u(y)− u(y), y ∈ Ω,

E
B(x;r)
λ (∂u/∂nB(x;r) − λn

B(x;r)
1 u/2)(y) +D

B(x;r)
λ u(y), y 6∈ Ω.

According to (5.2) we have EB(x;r)
λ (∂u/∂nB(x;r)−λnB(x;r)

1 u/2)+DB(x;r)
λ u = EΩ

λ g+
DΩ

λ u− u in Ω ∩B(x; r). Thus v is a solution of the scalar Oseen equation (3.1) in
R3. So, v is a polynomial by Theorem 4.1. Since v(x) → 0 as |x| → ∞, we deduce
that v ≡ 0. By the definition of v we see that (5.1) holds for x ∈ Ω. Let now x 6∈ Ω.
Choose r > 0 such that B(x; r) ∩ Ω = ∅. Define u = 0 on B(x; r). Then

0 = u(x) = E
Ω∪B(x;r)
λ (∂u/∂nΩ∪B(x;r) − λn

Ω∪B(x;r)
1 u/2)(x) +D

Ω∪B(x;r)
λ u(x)

= EΩ
λ g(x) +DΩ

λ u(x).

�

Corollary 5.2. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary, λ ∈ R,
1 < q < ∞. Denote Ω+ = Ω, Ω− = R3 \ Ω+. Let u be a solution of the scalar
Oseen equation (3.1) in Ω+∪Ω−. Suppose that MΩ+

a (u)+M
Ω+
a (|∇u|)+M

Ω−
a (u)+

M
Ω−
a (|∇u|) ∈ Lq(∂Ω), and there exist nontangential limits of u and ∇u with respect

to Ω+ and with respect to Ω− at almost all points of ∂Ω. Suppose that u(x) → 0 as
|x| → ∞. Denote

f = [u]+ − [u]−, g± =
[
∂u

∂n
− λ

2
nΩ

1 u

]
±
, g = g+ − g−,

where n is the unit outward normal of Ω. Then

(5.3) u = EΩ
λ g +DΩ

λ f in Ω+ ∪ Ω−.

Proof. According to Proposition 5.1

±EΩ
λ g±(x)±DΩ

λ [u]±(x) =
{
u(x) x ∈ Ω±,
0 x ∈ Ω∓.

Adding we get (5.3). �
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6. Derivatives of a double layer potential

Lemma 6.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary, λ ∈ R3,
1 < q <∞, f ∈W 1,q(∂Ω). If x ∈ Ω then

(6.1) ∂jD
Ω
λ f(x) =

3∑
k=1

∂kE
Ω
λ (∂τjk

f)(x)− λ∂1E
Ω
λ (fnj)(x)−

λ

2
∂jE

Ω
λ (fn1)(x),

where ∂τjk
= nΩ

j ∂k − nΩ
k ∂j.

Proof. Fix x ∈ Ω. Suppose first that f ∈ C∞(Rm). Choose ϕ ∈ C∞(R3) with
compact support such that ϕ = 1 on ∂Ω, ϕ = 0 on a neighbourhood of x and put
f̃ = fϕ. By virtue of the Green formula

3∑
k=1

∂kE
Ω
λ (∂τjk

f)(x) =
3∑

k=1

∫
∂Ω

[−∂kEλ(x− ·)][nj∂kf̃ − nk∂j f̃ ] dσ

=
3∑

k=1

∫
∂Ω

[nk∂j(f̃∂kEλ(x− ·))− nj∂k(f̃∂kEλ(x− ·))] dσ

+
∫

∂Ω

f̃
[
nj∆Eλ(x− ·)−

3∑
k=1

nk∂k∂jEλ(x− ·)
]

dσ

=
∫

Ω

3∑
k=1

[∂j∂k(f̃Eλ(x− ·))− ∂k∂j(f̃Eλ(x− ·))] dy

−
∫

∂Ω

f̃njλ∂1E
Ω
λ (x− ·) dσ + ∂jD

Ω
λ f(x) + ∂j

∫
∂Ω

f̃
λ

2
n1Eλ(x− ·) dσ

= ∂jD
Ω
λ f(x) + λ∂1E

Ω
λ (fnj)(x) +

λ

2
∂jE

Ω
λ (fn1)(x).

Let now f ∈ W 1,q(∂Ω). Choose fk ∈ C∞(R3) such that fk → f in W 1,q(∂Ω).
We have proved (6.1) for fk. Letting k →∞ we obtain (6.1) for f . �

Proposition 6.2. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q < ∞. If f ∈ W 1,q(∂Ω), then there exists a nontangential limit of
∇DΩ

λ f at almost all points of ∂Ω and

(6.2) ‖Ma(∇DΩ
λ f)‖Lq(∂Ω) ≤ C‖f‖Lq(∂Ω)

with a constant C depending only on Ω, q and a. The operator

[∂jD
Ω
λ ]Ω − [∂jD

Ω
0 ]Ω : W 1,q(∂Ω) → Lq(∂Ω)

is compact.

Proof. Let f ∈ W 1,q(∂Ω). We have (6.1) by Lemma 6.1. According to Proposi-
tion 3.3 there exists a nontangential limit of ∇DΩ

λ f at almost all points of ∂Ω and
(6.2) holds.
g 7→ [∂jEλg]Ω − [∂jE0g]Ω is a compact operator on Lq(∂Ω) by Proposition 3.5.

By virtue of (6.1) we deduce that [∂jD
Ω
λ ]Ω − [∂jD

Ω
0 ]Ω : W 1,q(∂Ω) → Lq(∂Ω) is

compact. �

Proposition 6.3. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q < ∞. Then KΩ

λ is a bounded linear operator on W 1,q(∂Ω) and
KΩ

λ −KΩ
0 is a compact operator on W 1,q(∂Ω).
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Proof. If f ∈ W 1,q(∂Ω) then 1
2f + KΩ

λ f is the nontangential limit of DΩ
λ f with

respect to Ω. (See Proposition 3.1.) Proposition 6.2 and Lemma 11.2 in Appendix
give that 1

2f +KΩ
λ f ∈W 1,q(∂Ω). Hence KΩ

λ f ∈W 1,q(∂Ω). Since KΩ
λ is a continu-

ous operator in Lq(∂Ω), Closed graph theorem ([29, Theorem 3.10]) gives that KΩ
λ

is a bounded linear operator on W 1,q(∂Ω).
KΩ

λ −KΩ
0 is a compact operator on Lq(∂Ω) by Proposition 3.4. For the tangential

derivative
∂τjk

[KΩ
λ −KΩ

0 ]f := (nΩ
j ∂k − nΩ

k ∂j)[KΩ
λ −KΩ

0 ]f
one has by Lemma 11.2

∂τjk
[KΩ

λ −KΩ
0 ]f = nj [∂k(DΩ

λ −DΩ
0 )f ]Ω − nk[∂j(DΩ

λ −DΩ
0 )f ]Ω.

So, ∂τjk
[KΩ

λ − KΩ
0 ] : W 1,q(∂Ω) → Lq(∂Ω) is compact by Proposition 6.2. Hence

KΩ
λ −KΩ

0 is a compact operator on W 1,q(∂Ω). �

Proposition 6.4. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, 1 < q <∞. Denote Ω+ = Ω, Ω− = R3 \ Ω.

• There exists a bounded linear operator HΩ
λ : W 1,q(∂Ω) → Lq(∂Ω) such that[

∂DΩ
λ f(x)
∂n

− λ

2
n1(x)DΩ

λ f(x)
]
+

=
[
∂DΩ

λ f(x)
∂n

− λ

2
n1(x)DΩ

λ f(x)
]
−

= HΩ
λ f(x)

for almost all x ∈ ∂Ω.
• HΩ

λ −HΩ
0 : W 1,q(∂Ω) → Lq(∂Ω) is a compact operator.

Proof. Let f ∈W 1,q(∂Ω). Define

HΩ
λ f =

[
∂DΩ

λ f

∂n
− λ

2
n1D

Ω
λ f

]
+

.

Then HΩ
λ : W 1,q(∂Ω) → Lq(∂Ω) is a bounded linear operator by (6.2).

Define u = DΩ
λ f . Denote g± = [∂u/∂n − λn1u/2]±, g = g+ − g−. Since

[u]+ − [u]− = f by Proposition 3.1, Corollary 5.2 gives

DΩ
λ f = u = EΩ

λ g +DΩ
λ f in Ω+ ∪ Ω−.

Hence EΩ
λ g = 0 in Ω+ ∪ Ω−. According to Proposition 3.3

0 =
[(

∂

∂n
− λ

2

)
EΩ

λ g

]
+

−
[(

∂

∂n
− λ

2

)
EΩ

λ g

]
−

= g.

Thus

HΩ
λ f = g+ = g− =

[
∂DΩ

λ f

∂n
− λ

2
n1D

Ω
λ f

]
−
.

(6.1), Proposition 6.2, Proposition 3.1 and Proposition 3.4 give that HΩ
λ −HΩ

0 :
W 1,q(∂Ω) → Lq(∂Ω) is a compact operator. �

7. Regular Lq-solutions of the Dirichlet problem

In this auxiliary section we study regular Lq-solutions of the Dirichlet problem
of the scalar Oseen equation.

Let now Ω ⊂ R3 be an open set with compact Lipschitz boundary, λ ∈ R,
1 < q <∞, g ∈ W 1,q(∂Ω). We say that u is a regular Lq-solution of the Dirichlet
problem for the scalar Oseen equation

(7.1) −∆u+ λ∂1u = 0 in Ω, u = g on ∂Ω,
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if u ∈ C∞(Ω), −∆u + λ∂1u = 0 in Ω, Ma(u) + Ma(|∇u|) ∈ Lq(∂Ω), there exist
nontangential limits of u and ∇u at almost all points of ∂Ω, and the boundary
condition u = g is fulfilled in the sense of the nontangential limit at almost all
points of ∂Ω.

Lemma 7.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary, λ ∈ R,
h ∈ L∞(∂Ω), g ∈ L2(∂Ω). Let u be an L2-solution of the Robin problem for the
scalar Oseen equation (2.1). If Ω is unbounded suppose moreover that u(x) → 0 as
|x| → ∞. Then

(7.2)
∫

∂Ω

gu dσ =
∫

Ω

|∇u|2 dx+
∫

∂Ω

hu2 dσ.

If λ 6= 0, h ≥ 0 and ug = 0 on ∂Ω then u ≡ 0.

Proof. Suppose first that Ω is bounded. Let Ω(k) be a sequence of open sets from
Lemma 11.1 in Appendix. According to the Gauss-Green theorem and the Lebesgue
lemma ∫

∂Ω

gu dσ =
∫

∂Ω

hu2 dσ + lim
k→∞

∫
∂Ω(k)

(
u
∂u

∂n
− λ

2
n1u

2

)
dσ

=
∫

∂Ω

hu2 dσ + lim
k→∞

∫
Ω(k)

[∇u|2 + u(∆u− λ∂1u)] dx =
∫

∂Ω

hu2 dσ +
∫

Ω

|∇u|2 dx.

Let now Ω be unbounded. Put h = 0 outside ∂Ω. Using (7.2) for G(r) :=
Ω ∩B(0; r)∫

∂G(r)

hu2 dσ +
∫

G(r)

|∇u|2 dx =
∫

∂Ω

gu dσ +
∫

∂B(0;1)

wr(x) dσ

where wr(x) = r2u(rx)[∂u(rx)/∂n−(λ/2)n1u(rx)]. Proposition 4.2 gives |wr(x)| ≤
C and wr(x) → 0 as r → ∞ for x ∈ ∂B(0; r). Letting r → ∞ we obtain (7.2) by
Lebesgue’s lemma.

Let λ 6= 0, h ≥ 0 and ug = 0 on ∂Ω. We can suppose that Ω is connected.
The relation (7.2) gives ∇u = 0 in Ω, hu2 = 0 on ∂Ω. So, there exists a constant
c such that u ≡ c. Suppose that c 6= 0. Then 0 = ug = cg forces g ≡ 0. Since
0 = hu2 = c2h we infer that h ≡ 0. Thus 0 = g = ∂u/∂n−(λ/2)n1u+hu = c(λ/2)n1

on ∂Ω. Hence n1 = 0 on ∂Ω, what is impossible. Therefore u ≡ 0. �

Proposition 7.2. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
1 < q ≤ 2, λ ∈ R. Then EΩ

λ : Lq(∂Ω) →W 1,q(∂Ω) is an isomorphism.

Proof. EΩ
0 : Lq(∂Ω) → W 1,q(∂Ω) is a Fredholm operator with index 0 by [13,

Theorem 2.2.22]. Since EΩ
0 is injective (see [20, Chapter I, Theorem 1.15]), it is an

isomorphism.
Let λ 6= 0. Proposition 3.5 gives that EΩ

λ −EΩ
0 : Lq(∂Ω) →W 1,q(∂Ω) is compact.

So, EΩ
λ : Lq(∂Ω) → W 1,q(∂Ω) is a Fredholm operator with index 0 by [27, § 16,

Theorem 16]. Let f ∈ Lq(∂Ω), EΩ
λ f = 0. Then f ∈ L2(∂Ω) by [26, Lemma 11.9.21].

Denote Ω+ = Ω, Ω− = R3\Ω. Then EΩ
λ f is an L2-solution of the Neumann problem

−∆u+ λ∂1u = 0 in Ω±,
∂u

∂n
− λ

2
n1u = g± on ∂Ω±

for some g± ∈ L2(∂Ω). (See Proposition 3.2 and Proposition 3.3.) Lemma 7.1 gives
that EΩ

λ f = 0 in Ω±. Thus

f = [f/2− (KΩ
−λ)′f ]− [−f/2− (KΩ

−λ)′f ] = 0
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by Proposition 3.3. Therefore EΩ
λ : Lq(∂Ω) →W 1,q(∂Ω) is an isomorphism. �

Theorem 7.3. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary, 1 < q ≤
2, λ ∈ R1. If g ∈ W 1,q(∂Ω) then u = EΩ

λ (EΩ
λ )−1g is a unique regular Lq-solution

of the Dirichlet problem (7.1). Moreover,

(7.3) ‖MΩ
a (u)‖Lq(∂Ω) + ‖MΩ

a (∇u)‖Lq(∂Ω) ≤ C‖g‖W 1,q(∂Ω)

where C does not depend on g.

Proof. EΩ
λ : Lq(∂Ω) → W 1,q(∂Ω) is an isomorphism by Proposition 7.2. So, u =

EΩ
λ (EΩ

λ )−1g is a regular Lq-solution of the Dirichlet problem (7.1) by Proposition 3.2
and Proposition 3.3.

Let now u be a regular Lq-solution of the Dirichlet problem (7.1) with g ≡ 0.
Denote f = ∂u/∂n − (λ/2)n1u on ∂Ω. Then f ∈ Lq(∂Ω). Proposition 5.1 gives
that u = EΩ

λ f +DΩ
λ g = EΩ

λ f . Since EΩ
λ f = u = 0 on ∂Ω, Proposition 7.2 gives that

f ≡ 0. Thus u = EΩ
λ f ≡ 0.

The estimate (7.3) is a consequence of Proposition 3.2 and Proposition 3.3. �

Theorem 7.4. Let Ω ⊂ R3 be an unbounded open set with Lipschitz boundary,
1 < q ≤ 2, λ ∈ R1, g ∈ W 1,q(∂Ω). If u is a regular Lq-solution of the Dirichlet
problem (7.1) then there exists u∞ ∈ R1 such that u(x) → u∞ as |x| → ∞. On
the other hand, if u∞ ∈ R1 is given then u = EΩ

λ (EΩ
λ )−1(g − u∞) + u∞ is a unique

regular Lq-solution of the Dirichlet problem (7.1) such that u(x) → u∞ as |x| → ∞.
Moreover,

(7.4) ‖MΩ
a (u)‖Lq(∂Ω) + ‖MΩ

a (∇u)‖Lq(∂Ω) ≤ C
[
‖g‖W 1,q(∂Ω) + u∞|

]
where C does not depend on g and u∞.

Proof. Let u be a regular Lq-solution of the Dirichlet problem (7.1). Since u is
bounded in a neighbourhood of infinity, Proposition 4.2 gives that there exists
u∞ ∈ R1 such that u(x) → u∞ as |x| → ∞.
EΩ

λ : Lq(∂Ω) → W 1,q(∂Ω) is an isomorphism by Proposition 7.2. If u∞ is given
then u = EΩ

λ (EΩ
λ )−1(g−u∞)+u∞ is a regular Lq-solution of the Dirichlet problem

(7.1) by Proposition 3.2 and Proposition 3.3.
Let now u be a regular Lq-solution of the Dirichlet problem (7.1) with g ≡ 0 such

that u(x) → 0 as |x| → ∞. Denote f = ∂u/∂n−(λ/2)n1u on ∂Ω. Then f ∈ Lq(∂Ω).
Proposition 5.1 gives that u = EΩ

λ f + DΩ
λ g = EΩ

λ f . Since EΩ
λ f = u = 0 on ∂Ω,

Proposition 7.2 gives that f ≡ 0. Thus u = EΩ
λ f ≡ 0.

The estimate (7.4) is a consequence of Proposition 3.2 and Proposition 3.3. �

8. Neumann and Robin problem

We shall look for a particular solution of the Robin problem (2.1) in the form of
a single layer potential. If ϕ ∈ Lq(∂Ω) then EΩ

λ ϕ is an Lq-solution of the problem
(2.1) if 1

2ϕ− (KΩ
−λ)′ϕ+ hEΩ

λ ϕ = g. (See Proposition 3.2 and Proposition 3.3.)

Proposition 8.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
λ ∈ R, h ∈ L∞(∂Ω), 1 < q < ∞. Suppose that q ≤ 2 or ∂Ω is of class C1. Then
1
2I − (KΩ

−λ)′ + hEΩ
λ is a Fredholm operator with index 0 in Lq(∂Ω). If λ 6= 0 and

h ≥ 0 then 1
2I − (KΩ

−λ)′ + hEΩ
λ is an isomorphism in Lq(∂Ω).
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Proof. For λ = 0 and h ≡ 0 see [6, Theorem 1.2] and [13, Theorem 2.2.22]. The
operator (KΩ

0 )′ − (KΩ
−λ)′ + hEΩ

λ is compact on Lq(∂Ω) by Proposition 3.4. So,
T := 1

2I − (KΩ
−λ)′ + hEΩ

λ is a Fredholm operator with index 0 in Lq(∂Ω) by [29,
Theorem 5.10].

Let now λ 6= 0 and h ≥ 0. Let ϕ ∈ Lq(∂Ω), Tϕ = 0. Since T is a Fredholm
operator with index 0 in Lq(∂Ω) and in L2(∂Ω), [21, Lemma 9] gives that ϕ ∈
L2(∂Ω). Thus EΩ

λ ϕ is an L2-solution of the problem (2.1) with g ≡ 0. Moreover,
EΩ

λ ϕ(x) → 0 as |x| → ∞. Lemma 7.1 gives that EΩ
λ ϕ = 0 in Ω. The function EΩ

λ ϕ

is an L2 solution of the problem −∆u+λ∂1u = 0 in R3 \Ω, ∂u/∂n− (λ/2)n1u = g
on ∂(R3 \Ω) for some g ∈ L2(∂Ω). Since EΩ

λ ϕ = 0 on ∂(R3 \Ω) by Proposition 3.2,
Lemma 7.1 gives that EΩ

λ ϕ = 0 in R3 \ Ω. According to Proposition 3.3

ϕ =
[
1
2
ϕ− (KΩ

−λ)′ϕ
]
−

[
−1

2
ϕ− (KΩ

−λ)′ϕ
]

= 0.

Thus T is an isomorphism on Lq(∂Ω). �

Theorem 8.2. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary, λ ∈
R \ {0}, h ∈ L∞(∂Ω), h ≥ 0, 1 < q < ∞. Suppose that q ≤ 2 or ∂Ω is of class
C1. Fix g ∈ Lq(∂Ω). Put ϕ = [ 12I − (KΩ

−λ)′ + hEΩ
λ ]−1g. Then EΩ

λ ϕ is a unique
Lq-solution of the Robin problem (2.1). Moreover,

(8.1) ‖MΩ
a (u)‖Lq(∂Ω) + ‖MΩ

a (∇u)‖Lq(∂Ω) ≤ C‖g‖Lq(∂Ω)

where C does not depend on g.

Proof. 1
2I − (KΩ

−λ)′ + hEΩ
λ is an isomorphism in Lq(∂Ω) by Proposition 8.1. So,

EΩ
λ ϕ is an Lq-solution of the Robin problem (2.1).
Let now u be an Lq-solution of the Robin problem (2.1) with g ≡ 0. We can

suppose that q ≤ 2. Then u is a regular Lq-solution of the Dirichlet problem in
Ω. According to Theorem 7.3 there exists ψ ∈ Lq(∂Ω) such that u = EΩ

λ ψ. So,
[ 12I − (KΩ

−λ)′ + hEΩ
λ ]ψ = g ≡ 0, what forces ψ ≡ 0. Thus u = EΩ

λ ψ ≡ 0.
The estimate (8.1) is a consequence of Proposition 3.2 and Proposition 3.3. �

Theorem 8.3. Let Ω ⊂ R3 be an unbounded open set with compact Lipschitz
boundary, λ ∈ R \ {0}, h ∈ L∞(∂Ω), h ≥ 0, 1 < q < ∞. Suppose that q ≤ 2 or
∂Ω is of class C1. Fix g ∈ Lq(∂Ω). If u is an Lq-solution of the Robin problem
(2.1) then there exists a constant u∞ such that u(x) → u∞ as |x| → ∞. Let u∞ be
given. Put ϕ = [ 12I − (KΩ

−λ)′ + hEΩ
λ ]−1[g − u∞(h− n1λ/2)]. Then EΩ

λ ϕ+ u∞ is a
unique Lq-solution of the Robin problem (2.1) such that u(x) → u∞ as |x| → ∞.
Moreover,

(8.2) ‖MΩ
a (u)‖Lq(∂Ω) + ‖MΩ

a (∇u)‖Lq(∂Ω) ≤ C
(
‖g‖Lq(∂Ω) + |u∞|

)
where C does not depend on g.

Proof. 1
2I − (KΩ

−λ)′ + hEΩ
λ is an isomorphism in Lq(∂Ω) by Proposition 8.1. If u∞

is given then EΩ
λ ϕ + u∞ is an Lq-solution of the Robin problem (2.1) such that

u(x) → u∞ as |x| → ∞.
Let u be an Lq-solution of the Robin problem (2.1). Put p = min(q, 2). Then u

is a regular Lp-solution of the Dirichlet problem in Ω. According to Theorem 7.4
there exists a constant u∞ such that u(x) → u∞ as |x| → ∞. Let now u∞ = 0,
g ≡ 0. According to Theorem 7.4 there exists ψ ∈ Lq(∂Ω) such that u = EΩ

λ ψ. So,
[ 12I − (KΩ

−λ)′ + hEΩ
λ ]ψ = g ≡ 0, what forces ψ ≡ 0. Thus u = EΩ

λ ψ ≡ 0.
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The estimate (8.2) is a consequence of Proposition 3.2 and Proposition 3.3. �

9. Transmission problem

Let now Ω ⊂ R3 be a bounded open set with Lipschitz boundary, λ+, λ− ∈ R,
1 < q < ∞, h+, h− ∈ L∞(∂Ω). Let a+, a−, b+, b− be positive constants. Denote
Ω+ = Ω, Ω− = R3 \ Ω, and by n denote the unit exterior normal of Ω.

Lemma 9.1. Let u be an L2-solution of the transmission problem for the scalar
Oseen equation (2.2) such that u(x) → 0 as |x| → ∞. If h± ≥ 0 and f ≡ 0, g ≡ 0
then u ≡ 0.

Proof. Since [u]+ = (a−/a+)[u]− on ∂Ω and −n is the outward normal to Ω−,
Lemma 7.1 gives

0 =
∫

∂Ω

[u]+

{
b+

[
∂u

∂n
− λ+

2
n1u

]
+

− b−

[
∂u

∂n
− λ−

2
n1u

]
−

+ h+[u]+ + h−[u]−

}
dσ

= b+

∫
Ω+

|∇u|2 dx+
b−a−
a+

∫
Ω−

|∇u|2 dx+
∫

∂Ω

[
h+[u]2+ + h−

a−
a+

[u]2−

]
dσ.

Hence ∇u ≡ 0 and u is constant on each component of R3 \ ∂Ω. The condition
u(x) → 0 as |x| → ∞ forces that u = 0 on the unbounded component of R3 \ ∂Ω.
Since a+[u]+ = a−[u]− on ∂Ω, we infer that u ≡ 0. �

Lemma 9.2. Let ψ, g ∈ Lq(∂Ω) and ϕ, f ∈W 1,q(∂Ω). Define

(9.1) T1(ϕ,ψ) = a+(EΩ
λ+
ψ +

1
2
ϕ+KΩ

λ+
ϕ)− a−(EΩ

λ−ψ −
1
2
ϕ+KΩ

λ−ϕ),

(9.2)
T2(ϕ,ψ) = b+[ 12ψ − (KΩ

−λ+
)′ψ +HΩ

λ+
ϕ]− b−[− 1

2ψ − (KΩ
−λ−

)′ψ +HΩ
λ−
ϕ]

+h+(EΩ
λ+
ψ + 1

2ϕ+KΩ
λ+
ϕ) + h−(EΩ

λ−
ψ − 1

2ϕ+KΩ
λ−
ϕ),

T (ϕ,ψ) = [T1(ϕ,ψ), T2(ϕ,ψ)]. Then

(9.3) u = EΩ
λ±ψ +DΩ

λ±ϕ in Ω±

is an Lq-solution of the transmission problem for the scalar Oseen equation (2.2) if
and only if T (ϕ,ψ) = (f, g).

Proof. Lemma is a consequence of Proposition 3.1, Proposition 3.2, Proposition 3.3,
Proposition 6.2 and Proposition 6.4. �

Proposition 9.3. Let a+ = a− = 1, h+ ≥ 0, h− ≥ 0. Let T be an operator from
Lemma 9.2. Suppose that one from the following conditions is satisfied:

• b+ = b−,
• q = 2,
• ∂Ω is of class C1.

Then T is an isomorphism on W 1,q(∂Ω)× Lq(∂Ω).

Proof. We prove that T is a Fredholm operator with index 0. Denote T̃ (ϕ,ψ) =
[T̃1(ϕ,ψ), T̃2(ϕ,ψ)] = [ϕ, b+[ 12ψ− (KΩ

0 )′ψ+HΩ
0 ϕ]− b−[− 1

2ψ− (KΩ
0 )′ψ+HΩ

0 ϕ], i.e
the operator T for λ+ = λ− = 0, h+ ≡ h− ≡ 0. Clearly, T̃ is a Fredholm operator
with index 0 on W 1,q(∂Ω) × Lq(∂Ω) if and only if Sψ := b+[ 12ψ − (KΩ

0 )′ψ] −
b−[− 1

2ψ − (KΩ
0 )′ψ] is a Fredholm operator with index 0 on Lq(∂Ω). If b+ = b−
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then Sψ = b+ψ. If b+ 6= b− then S is a Fredholm operator with index 0 in L2(∂Ω)
by [6, Theorem 2.5]. If ∂Ω is of class C1 then (KΩ

0 )′ is a compact operator on Lq(∂Ω)
by [6, Theorem 1.8] and thus S is a Fredholm operator with index 0 on Lq(∂Ω).
Since T̃ is a Fredholm operator with index 0 in W 1,q(∂Ω) × Lq(∂Ω) and T − T̃ is
compact by Proposition 3.4, Proposition 3.5, Proposition 6.3 and Proposition 6.4,
the operator T is a Fredholm operator with index 0 in W 1,q(∂Ω)× Lq(∂Ω).

Let now (ϕ,ψ) ∈ W 1,q(∂Ω) × Lq(∂Ω), T (ϕ,ψ) = 0. Since T is a Fredholm
operator with index 0 in W 1,2(∂Ω) × L2(∂Ω), [21, Lemma 9] gives that (ϕ,ψ) ∈
W 1,2(∂Ω)× L2(∂Ω). Define

v± = EΩ
λ±ψ +DΩ

λ±ϕ in R3 \ ∂Ω, u = v± in Ω±.

Then u is an L2-solution of the problem (2.2) with g ≡ 0, f ≡ 0 by Lemma 9.2.
Lemma 9.1 gives that v± = 0 in Ω±. According to Proposition 3.1 and Proposi-
tion 3.2

(9.4) [v−]+ = ϕ+ [v−]− = ϕ, [v+]− = −ϕ+ [v+]+ = −ϕ.

Proposition 3.3 and Proposition 6.4 force

(9.5) [∂v−/∂n− (λ−/2)n1v−]+ = ψ + [∂v−/∂n− (λ−/2)n1v−]− = ψ,

[∂v+/∂n− (λ+/2)n1v+]− = −ψ + [∂v+/∂n− (λ+/2)n1v+]− = −ψ.
So, ũ = v− in Ω+, ũ = −v+ in Ω− is an L2-solution of the transmission problem

−∆ũ+ λ∓ũ = 0 in Ω±,

[ũ]+ − [ũ]− = 0,
[
∂ũ

∂n
− λ−

2
n1ũ

]
+

−
[
∂ũ

∂n
− λ+

2
n1ũ

]
−

= 0 on ∂Ω.

Lemma 9.1 gives that v± = 0 in Ω∓. According to (9.4) and (9.5) we obtain
ϕ = [v−]+ = 0, ψ = [∂v−/∂n− (λ−/2)n1v−]+ = 0. Since T is a Fredholm operator
with index 0 in W 1,q(∂Ω)× Lq(∂Ω), it is an isomorphism. �

Theorem 9.4. Let h± ≥ 0. Suppose that one from the following conditions is
satisfied:

• b+/a+ = b−/a−,
• q = 2,
• ∂Ω is of class C1.

Define

S(ψ+, ψ−) = [a+EΩ
λ+
ψ+ − a−EΩ

λ−
ψ−, b+( 1

2ψ+ − (KΩ
−λ+

)′ψ+)
−b−(− 1

2ψ− − (KΩ
−λ−

)′ψ−) + h+EΩ
λ+
ψ+ + h−EΩ

λ−
ψ−].

Then S : Lq(∂Ω) × Lq(∂Ω) → W 1,q(∂Ω) × Lq(∂Ω) is an isomorphism. If u is
an Lq-solution of the transmission problem (2.2), then there exists u∞ ∈ R1 such
that u(x) → u∞ as |x| → ∞. Let now u∞ ∈ R1, f ∈ W 1,q(∂Ω), g ∈ L1(∂Ω)
be given. Put (ψ+, ψ−) = S−1[f − a+u∞ + a−u∞, g − h+u∞ − h−u∞]. Then
u = EΩ

λ±
ψ± + u∞ in Ω± is a unique Lq-solution of the transmission problem (2.2)

such that u(x) → u∞ as |x| → ∞. Moreover,

(9.6) ‖MΩ±
a (u) +MΩ±

a (∇u)‖Lq(∂Ω) ≤ C[‖f‖W 1,q(∂Ω) + ‖g‖Lq(∂Ω) + |u∞|]

where C does not depend on f , g and u∞.
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Proof. If (ψ+, ψ−) ∈ Lq(∂Ω) × Lq(∂Ω), then u = EΩ
λ±
ψ± + u∞ in Ω± is an Lq-

solution of the transmission problem (2.2) such that u(x) → u∞ as |x| → ∞ if and
only if S(ψ+, ψ−) = [f − a+u∞ + a−u∞, g − h+u∞ − h−u∞]. (See Proposition 3.2
and Proposition 3.3.)

Let now u be an Lq-solution of the transmission problem (2.2). Then u is a
regular Lq-solution of some Dirichlet problem in Ω±. According to Theorem 7.4
there exists u∞ ∈ R1 such that u(x) → u∞ as |x| → ∞. If u∞ = 0 then there exists
(ψ+, ψ−) ∈ Lq(∂Ω)× Lq(∂Ω) such that u = EΩ

λ±
ψ± in Ω±. (See Theorem 7.3 and

Theorem 7.4.)
Suppose now that a+ = a− = 1. Let T be the operator from Lemma 9.2.

Then T is an isomorphism on W 1,q(∂Ω)× Lq(∂Ω) by Proposition 9.3. Let (f, g) ∈
W 1,q(∂Ω) × Lq(∂Ω) be given. Put (ϕ,ψ) = T−1(f, g), u = EΩ

λ±
ψ +DΩ

λ±
ϕ in Ω±.

Then u is an Lq-solution of the transmission problem (2.2) such that u(x) → 0
as |x| → ∞. (See Lemma 9.2.) We have proved that there exists (ψ+, ψ−) ∈
Lq(∂Ω)×Lq(∂Ω) such that u = EΩ

λ±
ψ± in Ω±. Hence S(ψ+, ψ−) = (f, g) and thus

S(Lq(∂Ω)× Lq(∂Ω)) = W 1,q(∂Ω)× Lq(∂Ω). Denote p = min(q, 2),

S̃(ψ+, ψ−) = [EΩ
0 ψ+ − EΩ

0 ψ− , b+(ψ+/2− (KΩ
0 )′ψ+)− b−(−ψ−/2− (KΩ

0 )′ψ−)]

i.e. S for λ+ = λ− = 0, h+ ≡ h− ≡ 0. We have proved that S̃(Lq(∂Ω)×Lq(∂Ω)) =
W 1,q(∂Ω)× Lq(∂Ω). Let now ψ± ∈ Lq(∂Ω), S̃(ψ+, ψ−) = 0. Since EΩ

0 ψ+ = EΩ
0 ψ−

and EΩ
0 : Lp(∂Ω) → W 1,p(∂Ω) is an isomorphism by Proposition 7.2, we deduce

that ψ− = ψ+. Denote by T̃ the operator T for λ+ = λ− = 0, h+ ≡ h− ≡ 0. Since
ψ− = ψ+ and S̃(ψ+, ψ−) = 0, we deduce T̃ (0, ψ+) = 0. Since T̃ is an isomorphism
on W 1,q(∂Ω)× Lq(∂Ω) by Proposition 9.3, we infer that ψ− = ψ+ = 0. Therefore
S̃ : Lq(∂Ω) × Lq(∂Ω) → W 1,q(∂Ω) × Lq(∂Ω) is an isomorphism. Since S̃ − S :
Lq(∂Ω)× Lq(∂Ω) →W 1,q(∂Ω)× Lq(∂Ω) is a compact operator by Proposition 3.4
and Proposition 3.5, S : Lq(∂Ω) × Lq(∂Ω) → W 1,q(∂Ω) × Lq(∂Ω) is a Fredholm
operator with index 0. Since S(Lq(∂Ω) × Lq(∂Ω)) = W 1,q(∂Ω) × Lq(∂Ω), the
operator S : Lq(∂Ω)×Lq(∂Ω) →W 1,q(∂Ω)×Lq(∂Ω) is an isomorphism. Let now u
be an Lq-solution of the transmission problem (2.2) such that u(x) → 0 as |x| → ∞
and f ≡ 0 ≡ g. We have proved that there exists (ψ+, ψ−) ∈ Lq(∂Ω)×Lq(∂Ω) such
that u = EΩ

λ±
ψ± in Ω±. Hence S(ψ+, ψ−) = 0 and thus ψ+ ≡ 0 ≡ ψ−. Therefore

u ≡ 0.
Let now a± be arbitrary. Define v = ua± in Ω±. Then u is an Lq-solution of

the transmission problem (2.2) such that u(x) → u∞ as |x| → ∞ if and only if v is
an Lq-solution of the transmission problem

−∆v + λ±∂1v = 0 in Ω±, [v]+ − [v]− = f on ∂Ω,

b+
a+

[
∂v

∂n
− λ+

2
n1v

]
+

− b+
a+

[
∂v

∂n
− λ+

2
n1v

]
+

+
h+

a+
[v]+ +

h−
a−

[v]− = g on ∂Ω

such that v(x) → a−u∞ as |x| → ∞. We have proved that there exists a unique
Lq-solution of this problem. Therefore there exists a unique Lq-solution of the
transmission problem (2.2) such that u(x) → u∞ as |x| → ∞. If u∞ = 0 then there
exist ψ+, ψ− ∈ Lq(∂Ω) such that u = EΩ

λ±
ψ± in Ω±. Since S(ψ+, ψ−) = [f, g], we

deduce that S(Lq(∂Ω)× Lq(∂Ω)) = W 1,q(∂Ω)× Lq(∂Ω). If ψ+, ψ− ∈ Lq(∂Ω) and
S(ψ+, ψ−) = 0, then u = EΩ

λ±
ψ± is an Lq-solution of the transmission problem

(2.2) with f ≡ 0 ≡ g such that u(x) → 0 as |x| → ∞. Thus u ≡ 0. Proposition 3.2
gives EΩ

λ±
ψ± = 0 on ∂Ω. Since Eλ± : Lp(∂Ω) → W 1,p(∂Ω) is an isomorphism for
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p = min(2, q) by Proposition 7.2, we deduce that ψ+ ≡ 0 ≡ ψ−. Thus S : Lq(∂Ω)×
Lq(∂Ω) → W 1,q(∂Ω) × Lq(∂Ω) is an isomorphism. If u∞ ∈ R1, f ∈ W 1,q(∂Ω),
g ∈ Lq(∂Ω) are given and (ψ+, ψ−) = S−1[f − a+u∞ + a−u∞, g− h+u∞ − h−u∞],
then u = EΩ

λ±
ψ± + u∞ in Ω± is a unique Lq-solution of the transmission problem

(2.2) such that u(x) → u∞ as |x| → ∞. The estimate (9.6) is a consequence of
Proposition 3.2 and Proposition 3.3. �

10. Jump problem

Let Ω ⊂ R3 be a bounded open set with compact Lipschitz boundary. Denote
Ω+ = Ω, Ω− = R3 \ Ω, and by n denote the unit exterior normal of Ω. Let Λ be
a closed subset of ∂Ω. Let λ ∈ R, 1 < q < ∞, h+, h− ∈ L∞(∂Ω), g ∈ Lq(∂Ω),
f ∈ W 1,q(∂Ω) be such that f = g = h+ = h− = 0 on ∂Ω \ Λ. We say that u is an
Lq-solution of the generalized jump problem for the scalar Oseen equation

(10.1)
−∆u+ λ∂1u = 0 in R3 \ Λ, [u]+ − [u]− = f on Λ,[

∂u
∂n −

λ
2n1u

]
+
−

[
∂u
∂n −

λ
2n1u

]
− + h+[u]+ + h−[u]− = g on Λ,

if u ∈ C∞(R3 \Λ), −∆u+ λ∂1u = 0 in R3 \Λ, MΩ+
a (u) +M

Ω+
a (|∇u|) +M

Ω−
a (u) +

M
Ω−
a (|∇u|) ∈ Lq(∂Ω), there exist nontangential limits of u and ∇u with respect

to Ω+ and Ω− at almost all points of ∂Ω, and the generalized jump conditions
[u]+− [u]− = f , [∂u/∂n−λ+n1u/2]+− [∂u/∂n−λ−n1u/2]−+h+[u]+ +h−[u]− = g
are fulfilled in the sense of the nontangential limit at almost all points of Λ. If
h+ ≡ 0 ≡ h− we say about the jump problem.

Lemma 10.1. Let a+ = a− = b+ = b− = 1, λ+ = λ− = λ.
(1) If u is an Lq-solution of the generalized jump problem (10.1), then u is an

Lq-solution of the transmission problem (2.2).
(2) Let u be an Lq-solution of the transmission problem (2.2). Define u = [u]+

on ∂Ω\Λ. Then u is an Lq-solution of the generalized jump problem (10.1).

Proof. The first proposition is trivial.
Let now u be an Lq-solution of the transmission problem (2.2) and u = [u]+ on

∂Ω \ Λ. Then

(10.2) u = EΩ
λ f +DΩ

λ (g − h+[u]+ − h−[u]−)

in R3 \ ∂Ω by Corollary 5.2. Since f = 0, (g − h+[u]+ − h−[u]−) = 0 on ∂Ω \ Λ,
the function u is given by (10.2) and it is a solution of the scalar Oseen equation
in R3 \ Λ. Thus u is an Lq-solution of the generalized jump problem (10.1). �

Theorem 10.2. Let Ω ⊂ R3 be a bounded open set with compact Lipschitz bound-
ary. Denote Ω+ = Ω, Ω− = R3 \Ω, and by n denote the unit exterior normal of Ω.
Let Λ be a closed subset of ∂Ω. Let λ ∈ R, 1 < q <∞, h+, h− ∈ L∞(∂Ω), h± ≥ 0,
g ∈ Lq(∂Ω), f ∈ W 1,q(∂Ω) be such that f = g = h+ = h− = 0 on ∂Ω \ Λ. If u
is an Lq-solution of the generalized jump problem (10.1) then there exists u∞ ∈ R1

such that u(x) → u∞. On the other hand, if u∞ ∈ R1 is given then there exists a
unique Lq-solution of the generalized jump problem (10.1) such that u(x) → u∞.
Moreover, the estimate (9.6) holds with a constant C that does not depend on f , g
and u∞.

Proof. The theorem is an easy consequence of Lemma 10.1 and Theorem 9.4. �
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11. Appendix

Lemma 11.1. If Ω ⊂ Rm is an open set with compact Lipschitz boundary then
there is a sequence of open sets Ωj with compact boundaries of class C∞ such that

• Ωj ⊂ Ω.
• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj, such that Λj(y) ∈

Γa(y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|; y ∈ ∂Ω} → 0 as
j →∞.

• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂Ω,

∫
E
ωj dHm−1 =

Hm−1(Λj(E)), and so that ωj → 1 pointwise a.e. and in every Ls(∂Ω),
1 ≤ s <∞.

• The normal vectors to Ωj, n(Λj(y)), converge pointwise a.e. and in every
Ls(∂Ω), 1 ≤ s <∞, to n(y).

(See [31, Theorem 1.12].)

Lemma 11.2. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary,
1 < q < ∞, u ∈ C2(Ω). Suppose that Ma(u),Ma(|∇u|) ∈ Lq(∂Ω) and there exist
nontangential limits of u and ∇u at almost all points of ∂Ω. Define the nontan-
gential derivative ∂τjk

u in the sense of distributions by

〈∂τjk
u, ϕ〉 =

∫
∂Ω

u(nΩ
k ∂jϕ− nΩ

j ∂kϕ) dσ.

Then u ∈ W 1,q(∂Ω) and ∂τjk
u in the sense of distributions coincides with the

nontangential limit nΩ
j ∂ku− nΩ

k ∂ju.

Proof. Let Ω(i) be a sequence of sets from Lemma 11.1. If ϕ ∈ C∞(Rm) has
compact support, then the Gauss-Green theorem and the Lebesgue lemma give

〈∂τjk
u, ϕ〉 = lim

i→∞

∫
∂Ω(i)

u(nΩ
k ∂jϕ− nΩ

j ∂kϕ) dσ = lim
i→∞

∫
Ω(i)

(∂ku∂jϕ− ∂ju∂kϕ) dx

= lim
i→∞

∫
∂Ω(i)

ϕ(nΩ
j ∂ku− nΩ

k ∂ju) dσ =
∫

∂Ω

ϕ(nΩ
j ∂ku− nΩ

k ∂ju) dσ.

Since u, ∂τjk
u ∈ Lq(∂Ω) we infer that u ∈W 1,q(∂Ω). �
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