
139 (2014) MATHEMATICA BOHEMICA No. 2, 373–380

A MATHEMATICAL MODEL FOR THE RECOVERY OF HUMAN

AND ECONOMIC ACTIVITIES IN DISASTER REGIONS

Atsushi Kadoya, Hiroshima, Nobuyuki Kenmochi, Kyoto

(Received September 30, 2013)

Abstract. In this paper a model for the recovery of human and economic activities
in a region, which underwent a serious disaster, is proposed. The model treats the case
that the disaster region has an industrial collaboration with a non-disaster region in the
production system and, especially, depends upon each other in technological development.
The economic growth model is based on the classical theory of R.M. Solow (1956), and the
full model is described as a nonlinear system of ordinary differential equations.
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1. Introduction

In this paper we discuss a design for the recovery process of human and economic

activities in the disaster region Ω1, getting support from the government and a (non-

disaster) collaborative region Ω2. In our model the basic assumptions and ideas for

recovery are mentioned as follows:

(i) The recovery of economy is designed simultaneously with that of human living

conditions in the disaster region, and the supply of labor force relies on it.

(ii) For a moment after the disaster, the recover of living conditions and economy

of Ω1 is supported by the public funds, v = v(t), but it is temporary.

(iii) The region Ω1 has an industrial collaboration with a (non-disaster) region Ω2,

and the region Ω2 contributes part of its capital to the economic recovery of Ω1.
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(iv) It is expected that the industrial relationship between Ω1 and Ω2 goes back to

the usual one as soon as possible, and it is finally important to establish a self-reliant

recovery system only in Ω1.

2. State problems

We begin with explaining the meanings of the unknown functions. Let s :=

(s1, s2, . . . , sN ) be the environmental order parameters in Ω1, with constraint −1 6

si 6 1, i = 1, 2, . . . , N , and w := (w1, w2) the vector function of capitals of Ω1 and

Ω2. Moreover, let A := (A1, A2) be the vector function describing technological order

parameters of Ω1 and Ω2 and L1 := L1(s) the labor force depending on s in Ω1. Our

model is described in three time intervals [0, T1], [T1, T2], [T2, T3] and their terminals

T1, T2 and T3 are unknown, too, and they are determined by some optimization

conditions mentioned later in detail. Assume that s and w are governed by a system

of ordinary differential inclusions or equations of the following form:

s′i + ∂I[0,∞)(s
′
i) + Fi(s) + ∂I(−∞,0](si) ∋











ξ0iv, t ∈ [0, T1],

ξ1iw1, t ∈ [T1, T2], 1 6 i 6 N,

ξ̂1iw1, t ∈ [T2, T3],

(1)

w′
1 + b1w1 = σ1(A1L1(s))

1−αwα
1 +











−κ12w1 + η0v, t ∈ [0, T1],

−(κ11 + κ12)w1 + κ21w2, t ∈ [T1, T2],

−(κ11 + κ12)w1, t ∈ [T2, T3],

(2)

w′
2 + b2w2 = σ2(A2l2)

1−βwβ
2 +











−κ22w2, t ∈ [0, T1],

−(κ21 + κ22)w2, t ∈ [T1, T2],

−κ22w2, t ∈ [T2, T3],

(3)

A′
1 + c1A1 = g1(κ22w2), A′

2 + c2A2 = g2(κ12w1), t ∈ [0, T3],(4)

with

(5) si(0) = −1, 1 6 i 6 N, wk(0) = wk0, Ak(0) = Ak0, k = 1, 2,

where

(6) L1(s) :=
l1
2N

N
∑

i=1

(si + 1), ({ξ0i}, η0) ∈ U1, {ξ1i} ∈ U2, {ξ̂1i} ∈ U3.

Here we denote by s′i, w
′
k, A

′
k the time derivatives of si, wk, Ak, and
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⊲ Fi : [−1, 1]N → R, i = 1, 2, . . . , N , are Lipschitz continuous and non-increasing,

I[0,∞) and I(−∞,1] are the indicator functions of the intervals [0,∞) and (−∞, 1],

respectively, and ∂I[0,∞) and ∂I(−∞,1] are their subdifferentials in R;

⊲ 0 < α < 1, 0 < β < 1, bk > 0 (depreciation rate), ck > 0, 0 < σk < 1 (saving rate),

lk > 0 (normal labor force), k = 1, 2, and κkj > 0 (support ratio), k, j = 1, 2,

are economic constants; in economics, (A1L1)
1−α and (A2l2)

1−β are called the

production functions of Cobb-Douglas type;

⊲ U1, U2, U3 are control spaces used to determine T1, T2 and T3; they are, respec-

tively, given by

U1 :=

{

({ξ0i}, η0); ξ0i > 0, i = 1, 2, . . . , N, η0 > 0,

N
∑

i=1

ξ0i + η0 = 1

}

,

U2 = U3 :=

{

{ξ1i}; ξ1i > 0, i = 1, 2, . . . , N,

N
∑

i=1

ξ1i = κ11

}

;

⊲ gk : [0,∞) → [0,∞), k = 1, 2, are Lipschitz continuous, bounded and non-

decreasing functions such that gk(0) > 0, g∗k := max gk = gk(r
∗
k) and g′k > 0 on

(0, r∗k); note that in real cases, each of functions g1 and g2 depend on both of w1

and w2, but we treat unusual cases as above in order to emphasize the influence

of technological collaboration between Ω1 and Ω2.

In general, for two vectors u = (u1, u2, . . . , uM ) and ũ = (ũ1, ũ2, . . . , ũM ), we

simply denote by u 6 ũ or u < ũ the inequalities “ui 6 ũi” or “ui < ũi”, respectively,

i = 1, 2, . . . ,M .

One of the characteristics of our model is the setup of check points {s(k), w(k),

A(k)}, k = 1, 2, with s(k) := (s
(k)
1 , s

(k)
2 , . . . , s

(k)
N ), w(k) := (w

(k)
1 , w

(k)
2 ) and A(k) :=

(A
(k)
1 , A

(k)
2 ) such that

{

0 < s(1) < s(2) 6 (1, 1, . . . , 1),

0 < w(1) < w(2) 6 (r∗1/κ12, r
∗
2/κ22), 0 < A(1) < A(2) 6 (g∗1/c1, g

∗
2/c2),

(7)



























(b1 + κ11 + κ12)w
(1)
1 6 σ1{A

(1)
1 L1(s

(1))}1−α(w
(1)
2 )α + κ21w

(1)
2 ,

(b2 + κ21 + κ22)w
(1)
2 6 σ2{A

(1)
2 l2}

1−β(w
(1)
2 )β ,

c1A
(1)
1 6 g1(κ22w

(1)
2 ), c2A

(1)
2 6 g2(κ12w

(1)
1 ),

N
∑

i=1

max
s>s(1)

Fi(s) + ε0 6 κ11w
(1)
1 for some constant ε0 > 0,

(8)

and










(b1 + κ11 + κ12)w
(2)
1 6 σ1{A

(2)
1 L1(s

(2))}1−α(w
(2)
1 )α,

(b2 + κ22)w
(2)
2 6 σ2{A

(2)
2 l2}

1−β(w
(2)
2 )β ,

c1A
(2)
1 6 g1(κ22w

(2)
2 ), c2A

(2)
2 6 g2(κ12w

(2)
1 ).

(9)
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3. Main theorems

By virtue of the theory of ODEs (cf. [5], [1], [2] and [3]), for given parameters

({ξ0i}, η0) ∈ U1 and any T1 > 0, P1(0, T1) (hence P1(0,∞)) has a unique solution

{s, w,A}. We define t1({ξ0i}, η0) by

t1({ξ0i}, η0) := min{t > 0; s(t) > s(1), w(t) > w(1), A(t) > A(1)},

if {t > 0; s(t) > s(1), w(t) > w(1), A(t) > A(1)} is nonempty, and define

t1({ξ0i}, η0) = ∞ otherwise.

As to the problem in the first period, we have:

Theorem 3.1. Assume that the initial data wk0, Ak0 are positive and close to 0

for k = 1, 2 so that

(b1 + κ11 + κ12)w10 6 κ21w20, (b2 + κ21 + κ22)w20 6 σ2(A20l2)
1−βwβ

20,(10)

c1A10 6 g1(0), c2A20 6 g2(0),(11)

and the public fund v satisfies

(12) (b1 + κ11 + κ12)w
(1)
1 +

N
∑

i=1

max
s∈[−1,1]N

Fi(s) + δ0 6 v for some constant δ0 > 0.

Then there exist a parameter ({ξ∗0i}, η
∗
0) ∈ U1 and a finite time T

∗
1 > 0 such that

(13) T ∗
1 = t1({ξ

∗
0i}, η

∗
0) = inf

({ξ0i},η0)∈U1

t1({ξ0i}, η0).

We denote by P ∗
1 the problem to find ({ξ∗0i}, η

∗
0) ∈ U1 and a finite time T

∗
1 > 0

satisfying (13) and the solution {s∗, w∗, A∗} of (1)–(5) on [0, T ∗
1 ] associated with

the parameter ({ξ0i}, η0) = ({ξ∗0i}, η
∗
0). The set {{s

∗, w∗, A∗}; {ξ∗0i}, η
∗
0 ;T

∗
1 } is called

a solution of P ∗
1 .

Next, we consider the second period problem. Let {{s∗, w∗, A∗}; {ξ∗0i}, η
∗
0 ;T

∗
1 } be

a solution of P ∗
1 as obtained by Theorem 3.1 and let us fix it. Given any parameter

{ξ1i} ∈ U2 and any T2 > T ∗
1 , by the theory of ODEs (cf. [5], [1], [2] and [3]) again

we see that (1)–(4) has a unique solution {s, w,A} on [T ∗
1 , T2] associated with the

initial conditions s(T ∗
1 ) = s∗(T ∗

1 ), w(T
∗
1 ) = w∗(T ∗

1 ), A(T
∗
1 ) = A∗(T ∗

1 ). Just as in the

first period problem, we define t2({ξ1i}) by

(14) t2({ξ1i}) := min{t > T ∗
1 ; s(t) > s(2), w(t) > w(2), A(t) > A(2)},
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if {t > T ∗
1 ; s(t) > s(1), w(t) > w(1), A(t) > A(1)} is nonempty, and define time

t2({ξ0i}) = ∞ otherwise.

In order to discuss the second period problem we need additional assumptions as

follows: Fixing s ∈ [−1, 1]N as a parameter, we consider two curves in the w1w2-plane

C1(s) : (b1 + κ11 + κ12)w1 = σ1

{L1(s)

c1
g1(κ22w2)

}1−α

wα
1 + κ21w2,

C2 : (b2 + κ21 + κ22)w2 = σ2

{ l2
c2
g2(κ12w1)

}1−β

wβ
2 .

These curves C1(s) and C2 are described in the explicit forms:

C1(s) : w2 = Γs
1(w1), C2 : w2 = Γ2(w1) :=

( σ2

b2 + κ21 + κ22

)1/(1−β) l2
c2
g2(κ12w1).

Theorem 3.2. Assume that Γs(2)

1 (w1) < Γ2(w1) for all w1 ∈ [w
(1)
1 , w

(2)
1 ]. Let

{{s∗, w∗, A∗}; {ξ∗0i}, η
∗
0 ;T

∗
1 } be a solution of P

∗
1 and let us fix it, and let t2(·) be the

function on U2 defined by (14). Then there exist a parameter {ξ
∗
1i} ∈ U2 and a finite

time T ∗
2 > T ∗

1 such that

(15) T ∗
2 = t2({ξ

∗
1i}) = inf

{ξ1i}∈U2

t2({ξ1i}).

We denote by P ∗
2 the problem to find {ξ∗1i} ∈ U2 and a finite time T ∗

2 > T ∗
1

satisfying (15) and the solution {s̃∗, w̃∗, Ã∗} of (1)–(4) on [T ∗
1 , T

∗
2 ] with the parameter

{ξ1i} = {ξ∗1i} and initial conditions s̃
∗(T ∗

1 ) = s∗(T ∗
1 ), w̃

∗(T ∗
1 ) = w∗(T ∗

1 ), Ã
∗(T ∗

1 ) =

A∗(T ∗
1 ). The set {{s̃

∗, w̃∗, Ã∗}; {ξ∗1i};T
∗
1 , T

∗
2 } is called a solution of P

∗
2 .

In the third period problem, fixing a solution {{s̃∗, w̃∗, Ã∗}; {ξ∗1i};T
∗
1 , T

∗
2 } of P

∗
2 ,

we define t3({ξ̂1i}) for each {ξ̂1i} ∈ U3 by

(16) t3({ξ̂1i}) = min{t > T ∗
2 ; s(t) = (1, 1, . . . , 1)},

where {s, w,A} is a unique solution of (1)–(4) on [T ∗
2 , T3] for any T3 > T ∗

2 , associated

with the parameter {ξ̂1i} ∈ U3 and initial conditions s(T
∗
2 ) = s̃∗(T ∗

2 ), w(T
∗
2 ) =

w̃∗(T ∗
2 ), A(T

∗
2 ) = Ã∗(T ∗

2 ).

Theorem 3.3. Let {{s̃∗, w̃∗, Ã∗}; {ξ∗1i};T
∗
1 , T

∗
2 } be a solution of P

∗
2 , and let t3(·)

be the function on U3 defined by (16). Then there exist a parameter {ξ̂
∗
1i} ∈ U3 and

T ∗
3 > T ∗

2 such that

(17) T ∗
3 = t3({ξ̂

∗
1i}) = inf

{ξ̃1i}∈U3

t3({ξ̃1i}).
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We denote by P ∗
3 the problem to find {ξ̂∗1i} ∈ U2 and a finite time T ∗

3 > T ∗
2

satisfying (17) and the solution {ŝ∗, ŵ∗, Â∗} of (1)–(4) on [T ∗
2 , T

∗
3 ] with the parameter

{ξ̂1i} = {ξ̂∗1i} and initial conditions ŝ
∗(T ∗

2 ) = s̃∗(T ∗
2 ), ŵ

∗(T ∗
2 ) = w̃∗(T ∗

2 ), Â
∗(T ∗

2 ) =

Ã∗(T ∗
2 ). The set {{ŝ

∗, ŵ∗, Â∗}; {ξ̂∗1i};T
∗
2 , T

∗
3 } is called a solution of P

∗
3 .

For detailed proofs of Theorems 3.1–3.3, see [2].

After time T ∗
3 , w and A are governed by the system with technological collabora-

tion in the normal situation:

w′
1 + (b1 + κ12)w1 = σ1(A1l1)

1−αwα
1 , t > T ∗

3 ,(18)

w′
2 + (b2 + κ22)w2 = σ2(A2l2)

1−βwβ
2 , t > T ∗

3 ,

A′
1 + c1A1 = g1(κ22w2), A′

2 + c2A2 = g2(κ12w1), t > T ∗
3 ,

since s(t) = (1, 1, ·, 1) for t > T ∗
3 and it is not necessary to consider (1) any longer.

On account of the general result on the asymptotic behaviour (cf. [1], [2]) w(t) and

A(t) converge as t → ∞. Also, it is expected from some economical points of view

that

(19) lim
t→∞

w(t) =
(( σ1

b1 + κ12

)1/(1−α) g∗1 l1
c1

,
( σ2

b2 + κ22

)1/(1−β) g∗2 l2
c2

)

as well as

(20) lim
t→∞

A(t) =
(g∗1
c1

,
g∗2
c2

)

.

These convergences will be proved under some additional assumptions on functions

g1 and g2.

4. Numerical experiment

In this section we give a numerical experiment of our model with the following

parameters:

b1 = 1, b2 = 0.9, α = 0.5, β = 0.5, σ1 = 0.975, σ2 = 0.945, ξ0 = 0.45, η0 = 0.55,

κ11 = 0.11, κ12 = 0.4, κ21 = 0.12, κ22 = 0.3,

l1 = 64/9, l2 = 2000/81, c1 = 1/8, c2 = 1/3,

v = 5.1, w10 = 0.01, w20 = 0.5, s0 = −1, A10 = 0.1, A20 = 0.3.
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As F (·) := F1(·), g1(·) and g2(·) we choose the following functions:

g1(x) =































0.1, x 6 0,

2
(x

8

)2

+ 0.1, 0 < x 6 4.0,

−2
(x− 8

8

)2

+ 1.1, 4.0 < x 6 8.0,

1.1, 8.0 < x,

g2(x) =



























0.1, x 6 0,

2
(x

3

)2

+ 0.1, 0 < x 6 1.5,

−2
(x− 3

3

)2

+ 1.1, 1.5 < x 6 3.0,

1.1, 3.0 < x,

F (x) =

{

−x+ 1.0, −1.0 6 x 6 0,

−
1

4
x+ 1.0, 0 < x 6 4.0

and we set up the check points as follows:

(w
(1)
1 , w

(1)
2 , s(1), A

(1)
1 , A

(1)
2 ) = (2, 5, 3.5, 0.5, 0.4),

(w
(2)
1 , w

(2)
2 , s(2), A

(2)
1 , A

(2)
2 ) = (7.5, 25, 4, 4, 2).

We remark here that in our numerical experiment the upper threshold value of s

is 4 in place of 1, namely, the range of s is assumed to be −1 6 s 6 4 in place of

−1 6 s 6 1. This treatment is just for the sake of indicating more effectively the

character of our model, and the original one has the same character.

Figure 1 shows the behavior of the economic curve w(t) := (w1(t), w2(t)) in the

case of the above data. The parts of the curve between (0.01, 0.5)–A, A–B and B–

correspond, respectively, to the first period, the second period and the third period.

P is the first check point w(1) = (2, 5), Q is the second check point w(2) = (7.5, 25).

In the first period, both of w1(t) and w2(t) increase in time. The solution curve

{w, s,A} completely gets over the first check point (w(1), s(1), A(1)) at time t = 3.6798

when A1 reaches at the check value 0.5 in this numerical experience. By the way,

w(3.6798) = (3.74, 7.21) =: A, s(3.6798) = 3.79 and A(3.6798) = (0.5, 0.83).

The second period starts with initial time t = 3.6798 and initial data (3.74, 7.21),

3.79 and (0.5, 0.83) for w, s and A. After time t = 3.6798 the capital w1(t) decreases

a little bit, because of the switching of support system. However, as is also seen from

the numerical experiment, we see that w(t) never get lower the first check point.

After a while, both of w1(t) and w2(t) increase in time. This behaviour of w(t)

suggests from the economic point of view that the switching time of support system
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should be made after t = 3.6798, otherwise w(t) might fall down to (0, 0) under less

support system than the one of the first period; note that in general the support

system of the first period is richer than the second period.

At time t = 10.7178 the solution curve {w, s,A} gets over the second check point

(w(2), s(2), A(2)). By the way, w(10.7178) = (13.27, 29.77) =: B, s(10.7178) = 4.00

and A(10.7178) = (4.00, 2.77).
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[3] N.Kenmochi: Monotonicity and compactness methods for nonlinear variational inequal-
ities. Handbook of Differential Equations: Stationary Partial Differential Equations 4.
Elsevier, Amsterdam, 2007, pp. 203–298. zbl MR

[4] R.M. Solow: A contribution to the theory of economic growth. The Quarterly Journal
of Economics 70 (1956), 65–94.

[5] E.Zeidler: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems.
Translated from the German. Springer, New York, 1986. zbl MR

Authors’ addresses: Atsushi Kadoya, Hiroshima Shudo University, 1-1-1 Ohtsukahiga-
shi, Asaminami-ku, Hiroshima 731-3195, Japan, e-mail: kadoya@shudo-u.ac.jp; Nobuyuki
Kenmochi, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto 603-8301,
Japan, e-mail: kenmochi@bukkyo-u.ac.jp.

380

http://www.emis.de/MATH-item?06225655
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3100003
http://www.emis.de/MATH-item?1192.35083
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2569333
http://www.emis.de/MATH-item?0583.47050
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0816732

