
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES Law equivalence of Ornstein–Uhlenbeck
processes driven by a Lévy process

Grzegorz Bartosz

Tomasz Kania

Preprint No. 10-2018

PRAHA 2018





LAW EQUIVALENCE OF ORNSTEIN–UHLENBECK PROCESSES
DRIVEN BY A LÉVY PROCESS

GRZEGORZ BARTOSZ AND TOMASZ KANIA

Abstract. We demonstrate that two Ornstein–Uhlenbeck processes, that is, solutions to
certain stochastic differential equations that are driven by a Lévy process L have equivalent
laws as long as the eigenvalues of the covariance operator associated to the Wiener part
of L are strictly positive. Moreover, we show that in the case where the underlying Lévy
process is a purely jump process, which means that neither it has a Wiener part nor the
drift, the absolute continuity of the law of one solution with respect to another forces
equality of the solutions almost surely.

1. Introduction and the main result

Let H be a real separable Hilbert space and let L = (Lt)t>0, L̃ = (L̃t)t>0 be H-valued

Lévy processes. We fix two bounded linear operators A, Ã on H; should the space H

have finite dimension d, we think of A and Ã as d × d real matrices in some fixed basis.

We consider the corresponding H-valued Ornstein–Uhlenbeck processes driven by a Lévy

process, that is, solutions to the following stochastic differential equations:

(1.1)

{
dXt = AXt dt+ dLt,

dX̃t = ÃX̃t dt+ dL̃t

with the initial conditions X0 = X̃0 = 0. (The reader will find all the required definitions

as well as proofs of the results to be presented in the subsequent sections.)

It is customary to view sample paths of such processes (truncated to some initial interval

[0, T ] for T > 0) as elements of the Hilbert space HT := L2

(
[0, T ], H

)
. On the other hand,

we may be more restrictive and regard these processes as random variables assuming values

in DH,T , the space of H-valued càdlàg functions on [0, T ] furnished with the Skorohod

topology. This topology is induced by the so-called Skorohod metric; the Borel σ-algebra
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of DH,T coincides then with the cylindrical σ-algebra, that is, the smallest σ-algebra making

the point evaluations

pt(f) = f(t) (t ∈ [0, T ], f ∈ DH,T )

measurable–this is an important feature unavailable in the Hilbert space HT . A natural

question then arises.

In which circumstances such two processes have equivalent laws?

This line of research concerning the study of equivalence of laws was initiated by Kozlov

([11]) in the setting where A, Ã are elliptic and self-adjoint operators on a smooth mani-

fold without boundary and the equations are driven by a Brownian motion. This theory

was developed further by Zabczyk ([19]) in much greater generality (see also the seminal

monograph [5]), Peszat ([8, 17]), and other authors ([4], [14]).

The aim of this paper is to extend and complement already existing results for Ornstein–

Uhlenbeck processes driven by a (cylindrical) Wiener processes that take values in a finite-

or infinite-dimensional Hilbert space to Ornstein–Uhlenbeck processes driven by Lévy pro-

cesses that possibly have jumps. Our results appear to be new also in the case where

H = Rd for some d ∈ N. Hereinafter, we shall be concerned with the case where L = L̃.

We fix a real separable Hilbert space H and a H-valued Lévy process L = (Lt)t>0

on some probability space (Ω,F ,P) that is expressed in the Lévy–Itô decomposition as

Lt = bt + Wt + Zt (t > 0), where b ∈ H, W = (Wt)t>0 is a (possibly degenerate) Wiener

process with the covariance operator Q, and (Zt)t>0 is the jump part of L (see Theorem 2.5

for more details).

Theorem A. Let T > 0. Suppose that the eigenvalues of the covariance operator Q

corresponding to W are strictly positive. Let X, X̃ : Ω → DH,T be the Ornstein–Uhlenbeck

processes solving

(1.2)


dXt = AXt dt+ dLt,

dX̃t = ÃX̃t dt+ dLt,
X0 = 0,

X̃0 = 0.

Then the the laws of X and X̃ are equivalent.

Note. When the Hilbert space H is finite-dimensional, the main hypothesis of Theorem A

is equivalent to invertibility of the covariance matrix corresponding to W .

In the case where the underlying Lévy process L is a purely jump process, solutions to

(1.2) with respect to L exhibit a remarkably rigid behaviour.
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Theorem B. Let T > 0. Suppose that L is a purely jump process, that is, L = Z as

written in the Lévy–Itô decomposition. Let XJ , X̃J : Ω→ DH,T be the Ornstein–Uhlenbeck

processes solving (1.2). If the law of XJ is absolutely continuous with respect to the law of

X̃J , then the processes XJ and X̃J are equal to each other almost surely.

2. Preliminaries

Let (Ω,F ,P) be a probability space and let (S,S) be a measurable space. A function

X : Ω → S is an S-valued random variable when X−1(E) ∈ F for every E ∈ S. The

law of X is the pull-back measure PX on (S,S) given by PX(E) = P(X−1(E)) (E ∈ S).

When S carries the structure of a metric space, by default we will take S = BorS, the

σ-algebra of Borel subsets of S. For two measures µ and ν we denote by µ⊗ ν the product

measure defined on the product σ-algebra, that is, the smallest σ-algebra containing all

measurable rectangles from the respective measure spaces. For a separable metric space S,

or more generally, a second-countable Hausdorff space, the product σ-algebra BorS⊗BorS
coincides with BorS × S (see, e.g., [3, Lemma 6.4.2]).

2.1. The Skorohod metric. Let (S, d) be a separable metric space and let T > 0 be

given. Let DS,T denote the space of all S-valued càdlàg functions, that is, right-continuous

functions f : [0, T ] → S with the property that for each t > 0 the left limit at t, f(t−),

exists. Denote by ΛT the family of all strictly increasing functions φ from [0, T ] onto itself

with φ(0) = 0 and φ(T ) = T . Then the formula

dS(f, g) = inf
φ∈ΛT

max
{

sup
t∈[0,T ]

|φ(t)− t|, sup
t∈[0,T ]

d
(
f(φ(t), g(t)

)} (
f, g ∈ DS,T

)
defines a metric on DS,T , called the Skorohod metric ([10, p. 265 & Proposition 1.6]).

The Borel σ-algebra of the space of càdlàg functions with the Skorohod metric, BorDS,T ,

coincides with the σ-algebra of cylindrical sets–in other words, it is the smallest σ-algebra

on DS,T for which the point evaluations pt(f) = f(t) (t ∈ [0, T ], f ∈ DS,T ) are measurable

([10, Corollary 2.4]). We shall frequently invoke the following consequence of this fact.

Proposition 2.1. Let (Ω,F) be a measurable space. Then a function X : Ω → DS,T is

measurable if and only if, for every t ∈ [0, T ] the composite map πt ◦X is measurable.

2.2. Absolute continuity of measures. Let µ, ν be measures on a measurable space

(S,S). The measure µ is called absolutely continuous with respect to ν (in short, µ� ν),

when ν(E) = 0 (E ∈ S) implies that µ(E) = 0. Two measures are equivalent when

they are mutually absolutely continuous. Let us record the following corollary to Fubini’s

theorem concerning absolute continuity of product measures ([7, p. 92]). Suppose that
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µi, νi are σ-finite measures on measurable spaces (Si,Si) such that µi � νi (i = 1, 2).

Then µ1 ⊗ µ2 � ν1 ⊗ ν2. We will make use of this fact stated in the following form.

Lemma 2.2. Let (Ω,F ,P) be a probability space and let (S,S) be a measurable space.

Suppose that X, Y1, Y2 : Ω→ S are random variables such that

(i) PY1 � PY2,

(ii) the variables X, Yi are independent (i = 1, 2).

Then the law P(X,Y1) is absolutely continuous with respect to P(X,Y2).

Proof. Independence of X and Yi is equivalent to P(X,Yi) = PX ⊗ PYi (i = 1, 2) (see, e.g.,

[15, Théorème IV.1.3]). �

2.3. Lévy processes. Let B be a separable Banach space. A stochastically continuous,

B-valued process L = (Lt)t>0, is Lévy, when L0 = 0 almost surely, the increments of L

are independent and stationary, and every sample path f(t) := Lt(ω) (ω ∈ Ω) of L is

a B-valued càdlàg function.

Let E ∈ BorB \ {0}, t > 0 and f ∈ DB. We then define

(2.1) πt(E, f) = card{s 6 t : ∆f(s) := f(s)− f(s−) ∈ E}.

For a Lévy process L = (Lt)t>0 we may then set

(2.2) πt(E,L)(ω) = πt(E, f) (ω ∈ Ω),

where f(t) = Lt(ω) is a sample path of L. Put simply, πt(E,L)(ω) counts the number

of jumps of size at most t that the sample path of L at ω has in the set E. The family

{πt(·, L) : t > 0} is called the Poisson random measure of L. The formula

µ(E) = E [πt(E,L)] (E ∈ BorB \ {0})

defines a Borel measure on B \ {0}, called the intensity measure of L. For a bounded below

Borel set E ⊂ B, that is a set with dist(0, E) > 0, and f ∈ DB we set

π̂t(E, f) = πt(E, f)− t · µ(E) (t > 0).

Whenever E is bounded below, the expression

(2.3) Z1
E(f, t) :=

∑
06s6t

∆f(s)∈E

∆f(s) =

∫
E

u πt(du, f)

defines a function in DB,T . If E is also bounded

(2.4) Z2
E(f, t) := Z1

E(f, t)−
∫
E

uµ(du)
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defines an element in DB,T ; we shall be primarily concerned with the valued DB,T -valued

random variables of the form Z2
E(L, t).

For every Borel set E ⊂ B that is bounded below, the map Z1
E : DB,T → DB,T is Borel.

We are indebted to Mateusz Kwaśnicki for sharing with us a direct proof of this fact

([12]); this argument replaces our previous, overly roundabout reasoning. Note that Borel

measurability of Z2
E follows from Borel measurability of Z1

E as the former is a translation

of the latter function. Let us then record these findings for the future reference.

Lemma 2.3. Fix T > 0 and E ⊂ H be a non-empty Borel set that is bounded below. Then,

the transformation Z1
E : DB,T → DB,T given by (2.3) is Borel.

When E is also bounded, the same is true for Z2
E : DB,T → DB,T given by (2.4) being a

translation of Z1
E.

Remark 2.4. As observed by Applebaum ([2, Section 4]), for any t > 0 and for every

sequence (En)∞n=1 of Borel sets in the unit ball B1 of B such that Ec
n = B1 \En (n ∈ N) is

bounded below and the sets En decrease to {0}, the random variables

Z2
Ec

n
(L, t) =

∫
Ec

n

π̂t(du, L),

converge almost surely as n→∞ to a random variable

Z2
B1

(L, t) :=

∫
B1

π̂t(du, L)

([1, Section 2.3]; see also [2, p. 80]). Moreover the above limit does not depend on the

choice of (En)∞n=1.

Under this framework, one recovers the Lévy–Itô decomposition for B-valued Lévy pro-

cesses (see [2, Theorem 4.1], [6, Theorem 2.1], and [18, Theorem 6.3]).

Theorem 2.5 (Lévy–Itô decomposition). Let B be a separable Banach space and let (Lt)t>0

be a B-valued Lévy process with the corresponding Poisson random measure

{πt(·, L) : t > 0}

that has intensity measure µ. Then there are b ∈ B and a Wiener process WQ with

a (possibly degenerate) covariance operator Q such that

Lt = bt+WQ(t) +

∫
B1

π̂t(du, L) +

∫
B\B1

πt(du, L) (t > 0).
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We term

Zt =

∫
B1

π̂t(du, L) +

∫
B\B1

πt(du, L) = Z1
B\B1

(L, t) + Z2
B1

(L, t) (t > 0)

the jump part of L. The Wiener process WQ and the jump part Z are independent ([18,

Theorem 6.3]).

3. Proof of Theorem A

We consider a H-valued Lévy process L = (Lt)t>0 on a probability space (Ω,F ,P) that

is expressed in the Lévy–Itô decomposition as Lt = bt+Wt +Zt (t ∈ [0, T ]), where b ∈ H,

W = (Wt)t>0 is a (possibly degenerate) Wiener process and (Zt)t>0 is the jump part of L.

Let X, X̃ : Ω → DH,T be the Ornstein–Uhlenbeck processes solving (1.1). Moreover, we

consider solutions XJ and X̃J to the auxiliary equations without the Wiener part:

(3.1)

{
dXJ

t = AXJ dt+ dLt,

dX̃J
t = ÃX̃J dt+ dL̃t

with the initial conditions XJ(0) = X̃J(0) = 0. Let us take a note that XJ and X̃J (can

be modified to) have càdlàg sample paths, which we will employ later.

Proposition 3.1. The processes X and XJ +W have equivalent laws.

Proof. Let (FWt )t>0 be the natural filtration of W and let us consider the process

W ∗
t = Xt −XJ

t =

t∫
0

A(Xs −XJ
s ) ds+Wt

(
t ∈ [0, T ]

)
.

Then W ∗ is the unique strong solution to dW ∗
t = AW ∗

t dt + dWt with W ∗
0 = 0 that is

adapted to the filtration (FWt )t>0.

Since Z and W are independent processes, so are Z and W ∗. By Girsanov’s theorem

(see [13, Theorem 1] for a version of Girsanov’s theorem for H-valued processes; this is

where we apply the hypothesis that the eigenvalues of the covariance operator are strictly

positive), there is a probability measure P̃ for which W ∗ is a Wiener process on (Ω,F , P̃)

with the same covariance operator as W and so the laws PW and PW ∗ are equivalent.

The processes XJ and W are independent. Let us observe that the processes XJ and W ∗

are independent too. Indeed, W ∗ being adapted to (FWt )t>0 is FW -measurable, and thus

independent from (XJ
t )t>0 (see also [9, Theorem II.6.3]).

We are now in a position to apply Lemma 2.2 to conclude that the laws P(XJ ,W ) and

P(XJ ,W ∗) are equivalent. Consequently, the laws PXJ+W and PXJ+W ∗ = PX are equivalent

as well, which completes the proof. �
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Thus, in order to establish Theorem A, it is enough to prove the following proposition.

Proposition 3.2. The processes XJ +W and X̃J +W have equivalent laws.

Proof. We will demonstrate that the law of XJ +W is absolutely continuous with respect

to the law of X̃J +W as the other direction would be completely analogous.

For given R > 0 consider the set

ΩR := {ω ∈ Ω: sup
t∈[0,T ]

‖AXt(ω)− ÃX̃t(ω)‖ 6 R}

and note that ΩR ∈ F (cf. Proposition 2.1). We may then consider the ‘truncated’ process

WR
t = Wt +

t∫
0

(
AXt − ÃX̃t

)
· 1ΩR

(t ∈ [0, T ]).

By Girsanov’s theorem, there is a probability measure PR equivalent to P, for which WR

is a Wiener process on (Ω,F ,PR) with the same covariance operator as W ; in particular

the laws PW and PWR are equivalent. Arguing as in the proof of Proposition 3.2, we infer

that the processes X and WR are independent. By Lemma 2.2 applied to (X̃J ,W ) and

(X̃J ,WR), we deduce that the processes X̃J +W and X̃J +WR have equivalent laws.

Since

XJ
t − X̃J

t =

t∫
0

(
AXs − ÃX̃s

)
ds

we see that X̃t+W
R
t andXJ

t +Wt agree on the set ΩR. It follows that for every E ∈ BorDH,T
the condition P(X̃J

t +W ∈ E) = 0 implies that for all R > 0 we have P
(
ΩR∩(XJ

t +W )
)

= 0.

The processes XJ , X̃J have càdlàg sample paths, which implies that they are bounded on

bounded intervals. In particular, for any ω ∈ Ω the function

t 7→ AXt(ω)− ÃX̃t(ω) (t ∈ [0, T ]),

is bounded, which means that Ω =
⋃
R>0 ΩR. Thus PXJ+W � PX̃J+W . �

4. Proof of Theorem B

This time we consider a purely jump Lévy process L, that is L = Z using the notation

of Theorem 2.5. Let XJ , X̃J : Ω→ DH,T be solutions to (1.1), which now take the form

(4.1)

{
dXJ

t = AXJ
t dt+ dZt,

dX̃J
t = ÃX̃J

t dt+ dZt
(t ∈ [0, T ])

with the initial conditions XJ
0 = X̃J

0 = 0.
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Lemma 4.1. For any t ∈ [0, T ] and E ∈ BorH \ {0} we have

(4.2) P
(
πt(E,XJ) = πt(E,Z)

)
= 1.

Proof. Since

XJ
t = A

t∫
0

XJ
s ds+ Zt,

we have

{s 6 t : XJ
s −XJ

s− ∈ E} = {s 6 t : A
s∫

0

XJ
u du+ Zs − A

s−∫
0

XJ
u du− Zs− ∈ E}

= {s 6 t : Zs − Zs− ∈ E}
almost surely. �

We may then derive the following conclusion.

Corollary 4.2. For every non-negative integer k, t ∈ [0, T ], and E ∈ BorH \ {0} we have

PXJ

(
{f ∈ DH,T : πt(E, f) = k}

)
= P

(
πt(E,X

J) = k
)

= P
(
πt(E,Z) = k

)
.

In particular, for a sequence (En)∞n=1 of Borel sets in the unit ball H, as in the statement

of Remark 2.4, the random variables Z2
Ec

n
(XJ , t) converge almost surely to Z2

H1
(Z, t) as

n→∞ (t ∈ [0, T ]).

For t ∈ [0, T ] and f ∈ DH,T we set

S(f, t) =

t∫
0

f(s) ds.

Consequently, the assignment f 7→ S(f, ·) defines a function DH,T → DH,T as it takes

continuous values.

Lemma 4.3. For a bounded linear operator V : H → H, the assignment DH,T → DH,T
given by f 7→ V S(f, ·) (f ∈ DH,T ) is Borel.

Proof. Observe that if a sequence (fn)∞n=1 in DH,T converges to some f ∈ DH,T , then for

almost all s ∈ [0, T ] (with respect to the Lebesgue measure) we have fn(s) → f(s) as

n → ∞. Since the sequence (fn)∞n=1 is bounded with respect to the supremum norm, by

the dominated convergence theorem (for Bochner-integrable functions) we conclude that

for all t ∈ [0, T ]
t∫

0

fn(s) ds→
t∫

0

f(s) ds
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as n → ∞. Consequently, the map Φ(f) = V S(·, f) (f ∈ DH,T ) is Borel-measurable

because it is continuous as a map from DH,T with the Skorohod topology to DH,T (actually

even to C([0, T ], H)) endowed with the topology of pointwise convergence. Indeed, by

Proposition 2.1, Φ is Borel because for each t ∈ [0, T ], the map Φ(·)(t) : DH,T → H is

continuous, hence Borel. �

Definition 4.4. For a bounded linear operator V : H → H we define

ΞV =
{
f ∈ DH,T : lim

n→∞
‖f(t)− V S(f, t)− Z1

H\H1
(f, t)− Z2

Ec
n
(f, t)‖ = 0 for all t ∈ [0, T ]

}
.

By Lemma 4.3, the assignment f 7→ V S(f, ·) (f ∈ DH,T ) is Borel measurable. Similarly,

by Lemma 2.3, the assignments f 7→ Z1
E(f, ·), Z2

E(f, ·) (f ∈ DH,T ) are Borel measurable

for every bounded below set E ⊂ H (in the latter case, E is assumed to be additionally

bounded). Let us invoke Proposition 2.1 to see that in order to establish measurability of

ΞV it is enough to show measurability of pt[ΞV ] for each t ∈ [0, T ]. We have thus proved

the following proposition.

Proposition 4.5. For a bounded linear operator V : H → H, the set ΞV is Borel with

respect to the Skorohod topology on DH,T .

Lemma 4.6. PXJ (ΞA) = 1 = PX̃J (ΞÃ).

Proof. By Corollary 4.2, Z1
H\H1

(XJ , t) + Z2
Ec

n
(XJ , t) converges almost surely as n→∞ to

Z(L, t) (t ∈ [0, T ]). Thus, PXJ (ΞA) is equal to

P
(
XJ
t − AS(XJ , t) = Z(XJ , t) (t ∈ [0, T ])

)
= P

(
XJ
t − A

t∫
0

XJ
s ds = Zt (t ∈ [0, T ])

)
= 1.

The same proof applies for ΞÃ. �

We are now ready to prove Theorem B.

Proof of Theorem B. Assume that PXJ � PX̃J . By Lemma 4.6, PXJ (ΞA) = 1 = PX̃J (ΞÃ).

Consequently, by absolute continuity we must have PXJ (ΞÃ) = 1, which means that

XJ
t = Ã

t∫
0

XJ
s ds+ Zt

(
t ∈ [0, T ]

)
almost surely. We have thus proved that XJ solves the stochastic differential equation

dYt = AYtdt+ dZt, so by the uniqueness of solutions, XJ = X̃J almost surely. �
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4.1. Closing remarks. In the case of stochastic processes in infinite dimensions it is

customary to work with generators of infinitesimal semigroups rather than merely bounded

linear operators. However, the proof methods employed in this paper required the operators

A and Ã appearing in (1.1) to be bounded (cf. the proofs of Proposition 3.2 and Lemma 4.3).

It is thus natural to ask whether Theorems A and B have their counterparts in the setting

of generators of infinitesimal semigroups too. From this point of view, it is also desirable to

investigate classes of those Feller processes for which analogous results can be established.

Acknowledgements. We wish to express our gratitude to Mateusz Kwaśnicki (Wroc law)

for sharing with us a direct proof of Lemma 2.3.
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