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Abstract The paper discusses the fractional operators

∇αÙ divαÙ �−á�α¤2Ù

where α is a real number, the order of the operator. A definition of the fractional gradient
of a function f employed frequently in the literature is

∇αf �x� ¨ ÿ
α
ξ1

f �x�e
1
+Ü+ÿ

α
ξn

f �x�en

where e1ÙÜÙ en is an orthonormal basis in the physical space V andÿ
α
ξ1

f Ù ÜÙ ÿ
α
ξn

f

are one-dimensional fractional derivatives applied to the coordinate variables ξ1ÙÜÙ ξn
of the point x in the basis e

1
ÙÜÙ en.Unfortunately, this definition iswrong: it will be shown

that it depends on the chosen basis, i.e., ∇αf does not transform as a vector under rotations.

The sameobjection applies to any other fractional differentialoperator defined in a similar
manner. As a reaction to that fact, the paper presents a novel approach to the operators
of fractional vector analysis based on elementary requirements, viz.,

• translational invariance,
• rotational invariance,
• homogeneity of degree α X R under isotropic scaling;
• certain weak requirement of continuity.

Using methods of the theory of homogeneous distributions the paper

• proves that these requirements determine the fractional operators uniquely to within
a multiplication by a scalar factor;

• derives explicit formulas for these operators.

For �−á�α¤2 we recover the standard formulas for the Riesz-Bochner-Feller fractional
laplacean. For the fractional gradient the requirements lead to the following formula:
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∇α f �x� ¨

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

µα lim
ε↓0

�
@h@³ε

hf �x + h�
@h@n+α+1

d h if 0 ² α ° 1Ù

∇f �x� if α ¨ 1Ù

µα �
Rn

h�f �x + h� − f �x� −∇f �x� ċ h	
@h@n+α+1

d h if 1 ° α ² 2Ù

x X R
nÙ where µα is a normalization factor to be determined below from extra addi-

tional requirements. (The general case −ð ° α ° ð is treated in Section 4.) The paper
then proceeds to prove some basic properties of the fractional operators, such as, e.g., the
identity

divα�∇βf � ¨ −�−á��α+β�¤2f Ù

which generalizes the classical case div�∇f � ¨ áf Ø

Keywords fractional gradient, divergence, and laplacean, translation invariance, rotation
invariance, positive homogeneity of degree α, fractional vector identities, distributions
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1 A frequent fundamental error in the definition of the

fractional gradient

The isotropy of space plays central rôle in all branches of physics. The success and
importance of the classical differential operators of the vector analysis, i.e., the gra-
dient, divergence, and laplacean,

∇Ù divÙ áÙ
derives from their invariance under rotations, a concrete manifestation of isotropy.¡

Recent works on long-range forces and on other nonlocal aspects of continuum
mechanics employ the fractional analogs

∇αÙ divαÙ �−á�α¤2

¡ The importance of symmetry and invariance principles for continuum mechanics was
fully recognized for the first time byWalter Noll.
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of the classical operators of non-integral orders α.¡ The Riesz-Bochner-Feller frac-
tional laplacean is classical; the literature is extremely large. In contrast, the fractional
gradient and divergence are relatively new and only in a preliminary stage of develop-
ment. Frequent approaches to the fractional gradient are based on a blind analogywith
the integral-order: choose an orthonormal basis in the physical space V and represent
the fractional gradient of a scalar function f on V by an n-tuple of one-dimensional
“partial” fractional derivatives along the co-ordinate axes.¡¡This definition has a fatal
flaw: the gradient∇αf constructed in this manner depends on the chosen coordinate

system.

To see it, let f be a scalar-valued function on the n-dimensional real inner product
space V . In an orthonormal basis  e1ÙÜ Ùen( in V , the function f is represented by
a function � of the coordinates ξ

1
ÙÜ Ùξn of a general point x in V ,

f �x� ¨ � �ξ1ÙÜ Ùξn�Ø
The fractional gradient of f is then defined by

∇α f ¨ ÿ
α
ξ1
� e

1
+Ü+ÿ

α
ξn

� en

whereÿα
ξi
f are the one-dimensional partial fractional derivatives with respect to ξiÙ

1 ² i ² n. For example, for 0 ° α ° 1 one can use Marchaud’s derivative [36;
Chapter 2]:

ÿ
α
ξi
f �ξ

1
ÙÜ Ùξn� ¨

α

Γ�1 − α�
ð

�
0

��ξi� − ��ξi − η�
ηα+1

dη

where Γ is the gamma function and for the given iÙ � is a function of one scalar
variable ξÙ defined by

��ξ� ¨ � �ξ
1
ÙÜ Ùξi−1

ÙξÙξi+1
ÙÜ Ùξn�

with ξj for j © i frozen. No further formula needs to be written to see that this

definition depends on the basis. Indeed, to evaluate, say,∇αf �0�Ù one needs to know
only the behavior of f along the coordinate axes given by the basis, the rest of the
landscape of f is irrelevant. In a different basis, the same recipe sees the behavior of f
in a different, totally unrelated n-tuple of directions, which, thanks to the nonlocality
ofÿα

ξi
, leads to a different result in general. For example, one can have∇f �0� ¨ 0

in one basis and ∇f �0� © 0 in a different basis. Paradoxically, the reason for this
flaw is not that the adopted definition is nonlocal, but that it is not nonlocal enough
to encompass the behavior of f in all directions.¡¡¡

¡ There are many papers on the subject in the past 10–15 years, which differ in rigor and
clarity. See, e.g., [28, 27, 32, 18, 7, 6] for some applications and [2–4, 10, 24, 5, 25, 40, 26, 41, 9,
1, 8, 42, 29–30, 33] for the theory and discussions of general aspects.

¡¡ The exceptions are [24–26, 8, 33].
¡¡¡An analogous coordinate definition of the fractional laplacean,

�−á�α¤2u Ú¨ −�ÿα
ξ1
u +Ü+ÿ

α
ξn

u	

results in a highly coordinate-dependent fractional wave equation

utt − �−á�α¤2u ¨ f Ù

with obvious undesirable consequences. Fractional Maxwell’s equations occurring in the liter-
ature are subject to the same criticism.
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In this paper I formulate natural “qualitative” requirements on the fractional op-
erators: the invariance under translations and rotations, homogeneity of order α under
isotropic scaling (to fix the order of the operator), and somemild continuity. The paper

• proves that these requirements determine the fractional operators uniquely to
within a multiplication by a scalar factor;

• derives explicit formulas for these operators.

See Sections 2 and 4. The derivation uses aspects of the theory of homogeneous of
distributions; references are given in Sections 4 to 8.

Outline of the paper. Section 2 describes the fractional operators of orders 0 ²
α ² 2 on infinitely differentiable functions with compact support. Section 3 intro-
duces two kinds of function spaces for the fractional operators used here, the spaces
of type D and TØ The central section of the paper, Section 4, defines the fractional
operators of all orders −ð ° α ° ð (or even of all complex orders), and establishes
their position as the only operators satisfying our requirements. Section 5 presents
fractional generalizations of the main classical vector identities and analytic depen-
dence of the fractional operators on the order α X CØ Section 6 outlines weak defini-
tions of fractional operators which extend them to less regular functions (actually to
distributions from the dual ofT). The last two sections are devoted to proofs. Section
7 establishes the convergence of the integrals occurring in the definitions fractional
operators and other analytical aspects. Finally, Section 8 shows that every operator
meeting our qualitative requirements is a multiple of the fractional operators defined
in Section 4.

2 Fractional gradient, divergence, and laplacean:

the case 0 ² α ² 2

We work in a real inner product space of dimension nÙ which we represent by R
n.

For each a X R
n, λ ± 0Ù and q X O�n� (¨ the group of orthogonal transformations

in Rn) we denote by τaÙ ηλ and ρq the transformations in Rn given by

τax ¨ x − aÙ ηλx ¨ λxÙ ρqx ¨ q−1xÙ x X R
nØ

We use the symbol � to denote the composition of mappings, defining the composite
map φ � ψ by �φ � ψ��x� ¨ φ�ψ�x�� for any two mappings φ and ψØ

We characterize the fractional gradient of order α X R as a linear transformation
G which associates with each “nice” complex-valued function f on R

n a complex-
vector-valued function Gf ª G�f � on Rn satisfying the following requirements

G�f � τa� ¨ �Gf � � τaÙ (2.1)

G�f � ρq� ¨ q�Gf � � ρqÙ (2.2)

G�f � ηλ� ¨ λα�Gf � � ηλ (2.3)

for any nice f , any q X O�n�Ù a X R
nÙ and λ ± 0Ø The translation invariance

(2.1) need not be commented; Condition (2.2) is the independence on the basis in
R
n. Condition (2.3) fixes the order of the operator in analogy with the derivatives
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of integer orders. When augmented with a mild continuity requirement, Conditions
(2.1)–(2.3) determine the operatorG uniquely to within a constant multiplicative fac-
tor, as shown in Theorems 2.2 and 4.2. Analogous results for the fractional divergence
and laplacean are presented in Theorems 2.4, 2.6 and 4.6.

We shall define the fractional operators on three types of spaces, viz., on scalar-
and vector-valued versions of the spaces DÙ on scalar- and vector-valued versions of
the spaces TÙ and on duals of T′ of the spaces TØ The definitions of D and T

are given in Section 3; the differences in the behavior of the fractional operators are
described at the beginning of Section 4. We use the terms scalar- or vector-valued
operator onD orT for any linear transformation from these domains into the spaces
of all complex-valued or complex-vector-valued (¨C

n-valued) functions on Rn. We
use the modifiers ‘translationally invariant’ and ‘α-homogeneous’ for any scalar- or
vector-valued operator satisfying (2.1) and (2.3), respectively. We use the symbols
∇ and div (without exponents) for the classical differential operators; the symbol
�−á�k with k a nonnegative integer is the power of the classical laplacean.

For nonnegative values of α the formulas for fractional operators display certain
periodicity with period 2Ø In this section we treat only the first period, 0 ² α ² 2.
Throughout this section, we assume tacitly this restriction on α.

2.1 Definition The fractional gradient∇α of order α is a vector-valued operator on
D�Rn� defined by

∇αf �x� ¨

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

µα lim
ε↓0

�
@h@³ε

hf �x + h�
@h@n+α+1

dh if 0 ² α ° 1Ù

∇f �x� if α ¨ 1Ù
µα �

Rn

h�f �x + h� − f �x� − ∇f �x� ċ h	
@h@n+α+1

dh if 1 ° α ² 2

for any f X D�Rn� and any x X R
n, where

µα Ú¨ 2
α
π
−n¤2

Γ��n + α + 1�¤2	¤Γ��1 − α�¤2	Ø (2.4)

The normalization factor µα (as well as the factor να to be introduced below) is not
important for most of the discussion in this paper. It is important only for the factional
vector identities and for the analyticity to be discussed in Section 5.

It will be shown below that the definition of∇α is consistent in the sense that the
involved integrals converge and the limits exist. The same remarks apply to Defini-
tions 2.3 and 2.5, below.

Examples 6.2 and 6.3 evaluate the fractional gradient of Dirac’s delta function
∇αδ�x� and the one-dimensional fractional gradientÿαθ�x� of the Heaviside func-
tion θ for 0 ° α ° 1Ø
2.2 Theorem The operator G Ú¨ ∇α is

(i) D-continuous,¡
(ii) translationally invariant,

¡ That is, for any x X R
nÙ the function f w G�f ��x� is a Schwartz distribution. See

Section 3.
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(iii) rotationally invariant in the sense of (2.2), and
(iv) α-homogeneous.
Conversely, any vector-valued operator G on D�Rn� satisfying Conditions (i)–(iv)
is a scalar multiple of ∇αÙ i.e.,

Gf �x� ¨ c∇αf �x�
for all f X D�RnÙCn�, all x X R

n and some c X C.

2.3 Definition The fractional divergence divα of order α is a scalar-valued operator
onD�RnÙCn� defined by

divα v�x� ¨

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

µα lim
ε↓0

�
@h@³ε

h ċ v�x + h�
@h@n+α+1

dh if 0 ² α ° 1Ù
divv�x� if α ¨ 1Ù
µα �

Rn

hċ�v�x + h� − v�x� − ∇v�x� ċ h	
@h@n+α+1

dh if 1 ° α ² 2

for any v X D�RnÙCn� and any x X R
nØ

2.4 Theorem The operator S Ú¨ divα is

(i) D-continuous,

(ii) translationally invariant,
(iii) rotationally invariant in the sense that

S�q�v � ρq�	 ¨ S�v� � ρq (2.5)

for any v X D�RnÙCn� and any q X O�n�Ù and
(iv) α-homogeneous.
Conversely, any scalar-valued operator S on D�RnÙCn� satisfying Conditions (i)–
(iv) is a scalar multiple of divαÙ i.e.,

Sv�x� ¨ c divα v�x�
for all v X D�RnÙCn�, all x X R

n and some c X C.

2.5 Definition The fractional laplacean �−á�α¤2 of order α¤2 is a scalar-valued
operator onD�Rn� defined by

�−á�α¤2f �x� ¨

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

f �x� if α ¨ 0Ù
να �

Rn

f �x� − f �x + h�
@h@n+α

dh if 0 ° α ° 1Ù

να lim
ε↓0

�
@h@³ε

f �x� − f �x + h�
@h@n+α

dh if 1 ² α ° 2Ù

−áf �x� if α ¨ 2

for any f X D�Rn� and any x X R
n, where

να Ú¨ 2
α
π
−n¤2

Γ��n + α�¤2	¤Γ�−α¤2�Ø (2.6)
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2.6 Theorem The operator L Ú¨ �−á�α¤2 is

(i) D-continuous,

(ii) translationally invariant,
(iii) rotationally invariant in the sense that

L�f � ρq� ¨ �Lf � � ρqÙ (2.7)

for any f X D�Rn� any q X O�n�Ù and
(iv) α-homogeneous.
Conversely, any scalar-valued operator L onD�Rn� satisfying Conditions (i)–(iv) is
a scalar multiple of �−á�α¤2 i.e.,

Lf �x� ¨ c�−á�α¤2f �x�
for all f X D�Rn�, all x X R

n and some c X C.

3 The spacesD�RnÙZ� and T�RnÙZ�

Throughout, Z denotes a finite-dimensional complex normed vector space, mostly a
placeholder of C or Cn. Further, we denote byN0 andN the sets of all nonnegative
and all positive integers, respectively.

We denote byD�RnÙZ� the Schwartz space of infinitely differentiable complex-
valued functions f Ú R

n r Z with compact support. We abbreviate D�Rn� Ú¨
D�RnÙC� and simplify the notation in the same way also for other function spaces
below. A sequence f k of elements ofD�RnÙZ� is said toD-converge to an element
f ofD�RnÙZ� if there is a compact subset K ofRn such that the supports of all f k are
contained in K and all gradients ∇if k uniformly converge to ∇if , i ¨ 0Ù 1ÙÜ Let
X be another finite-dimensional complex normed vector space. A linear map U from
D�RnÙZ� into the space of X-valued functions on R

n is said to be D-continuous if
for any fixed x X R

n one has

U�f k��x� r U�f ��x� (3.1)

for any sequence f k thatD-converges to f Ø
Following [22–23], we introduce the space T�RnÙZ� of all infinitely differen-

tiable maps f Ú Rn r Z such that the gradient∇if of any order i X N
0
satisfies

�
Rn

@∇if �x�@ d x ° ð and ∇if �x� r 0 as @x@ r ðØ

We endowT�RnÙZ� with a countable system of norms @ ċ @mÙm X N
0
Ù defined by

@f @m ¨ max!B∇if B
1
Ù B∇if Bð Ú l X N

0
Ù 0 ² i ² m)

where B ċ B
1
and B ċ Bð are the standard norms on the spaces L1�RnÙZ� and Lð�RnÙZ�.

Here Lp�RnÙZ� is the Lebesgue space of Z-valued maps on R
n integrable with p th

power, 1 ² p ² ðØWe have the following embeddings:

T�RnÙZ� ⊂ Lp�RnÙZ� for each p X �1Ùð�Ø
A sequence f k of elements of T�RnÙZ� is said to T-converge to an element

f X T�RnÙZ� if
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@f k − f @m r 0 as k r ð for each m X N0Ø
A linear mapU from a subsetA ofT�RnÙZ� into the space of functions on Rn with
values in a finite dimensional vector space X is said to be T-continuous if for any
fixed x X R

n we have (3.1) for any sequence f k of elements of A thatT-converges
to an element f X AØ

4 Fractional gradient, divergence, and laplacean:

the general case

The objective of this section is to extend previous results on∇αÙ divαÙ and �−á�α¤2
to all orders α X RÙ eventually satisfying α ³ −nØWe shall consider these operators
on the spaces of typeD andT. There are twomain differences in the behavior of the
fractional operators on D and on T. First, while there are nontrivial translationally
and rotationally invariant, α-homogeneous, and continuous operators on the spaceD
for all α X R, on the larger space T such nontrivial operators exist only for α ³ −n.
The second, and more important difference is that for α ³ 0 the fractional operators
map the spacesT intoTÛ there is no counterpart of that for the spaces of the typeD.
The mapping property for T is necessary for the weak definitions of the fractional
operators on irregular functions in Section 6.

If � Ú Rn r Z is a Lebesgue measurable map, we define the principal value of
the integral �Rn ��h� dh by

Pv �
Rn

��h� dh Ú¨ lim
ε↓0

�
@h@±ε

��h� dh
provided the integrals on the right-hand side converge for all ε ± 0 and the limit exists
and is finite. If � is absolutely integrable on Rn then

Pv �
Rn

��h� dh ¨ �
Rn

��h� dh
but of course the principal value can exist even when the integral does not exist.

If f X T�RnÙZ�, x X R
nÙ i X N

0
Ù and h X R

n, we write

∇if �x� ċ hi Ú¨ ∇if �x� �hÙÜ Ùh�
| {z }

i times

(4.1)

where on the right-hand side,∇if �x� is interpreted as a symmetric Z-valued i-linear
form on f Ø We denote by �α� the integral part of a complex number αÙ defined as
�α� ¨ �Re α�Ø

SinceΓ is defined onC« −k Ú k X N
0(, the normalization factor µα from (2.4)

is defined for all α X C except for the elements of the set

 −n − 1Ù−n − 3ÙÜ( T  1Ù3ÙÜ(
and the normalization factor να from (2.6) is defined for all α X C except for the
elements of the set

 −nÙ−n − 2ÙÜ(T  0Ù2ÙÜ(Ø
Let us put

Eµ Ú¨  −n − 1Ù−n − 3ÙÜ(Ù Eν Ú¨  −nÙ−n − 2ÙÜ(Ø
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4.1 Definitions (Fractional gradient and divergence) The fractional gradient∇α of
order α X R« Eµ is a vector-valued operator on D�Rn� defined by

∇αf �x� ¨

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

µα �
Rn

hf �x + h�
@h@n+α+1

dhÙ

µα Pv �
Rn

h�f �x + h� −
2��α−1�¤2�+1

�
i¨0

∇if �x� ċ hi
i! �

@h@n+α+1
dhÙ

á�α−1�¤2∇f �x�

(4.2)

for every f X D�Rn� and x X R
nÛ the three regimes in (4.2) correspond to the

following three conditions on α X R« Eµ:

(i) Ú α ° 0Ù (ii) Ú α ³ 0 not odd, (iii) Ú α ³ 0 odd, (4.3)

respectively. The fractional divergence divα of order α X R« Eµ is a scalar-valued
operator onD�RnÙCn� defined by

divα v�x� ¨

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

µα �
Rn

h ċ v�x + h�
@h@n+α+1

dhÙ

µα Pv �
Rn

hċ�v�x + h� −
2��α−1�¤2�+1

�
i¨0

∇iv�x� ċ hi
i! �

@h@n+α+1
dhÙ

á�α−1�¤2 divv�x�Ù

(4.4)

for every v X D�RnÙCn� and x X R
nÛ the three regimes in (4.4) correspond to

Conditions (i), (ii), and (iii) in (4.3).
We shall see in Section 7 that the integrals in (4.2), (4.4) and in (4.5), below,

converge and the principal values exist. Furthermore, recall that the restriction α Z Eµ

comes from the fact that µα is undefined on EµÛ it we omit that factor, then the right-
hand sides of (4.2) and (4.4) are meaningful for all α X RØWe use the symbols∇α

� f Ù
and divα� v for the so simplified expressions.

We have the following two generalizations of Theorem 2.2.

4.2 Theorem If α X R then ∇α
� is a vector-valued, translationally and rotationally

invariant, α-homogeneous, and D-continuous operator on D�Rn�; conversely, any
operator with these properties is a multiple of ∇α

� .

The rotational invariance in Theorems 4.2 and 4.3 is interpreted in the sense of (2.2).
The proofs of all resutls in this section are deferred to Sections 7 and 8. The following
theorem strengthens Theorem 4.2 if α ³ −n.
4.3 Theorem If α ³ −n then Equation (4.2) is meaningful for all f X T�Rn�,
which defines ∇α as a translationally and rotationally invariant, α-homogeneous,

andT-continuous vector-valued operator onT�Rn�; conversely, any operator with
these properties is a multiple of ∇α.
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4.4 Remark If α − 2��α − 1�¤2� ± 1Ù i.e., if α X �1Ù2� T �3Ù4� T �5Ù6� TÜÙ
and f X T�Rn�, then the principal value symbol in (4.2)

2
can be omitted.

With this assertion we see that the fractional gradient introduced in Definition 4.1
reduces to that from Definition 2.1 if 0 ² α ² 2Ø

For completeness, we note that if α ° −nÙ there is no nontrivial translationally
and rotationally invariant, α-homogeneous, andT-continuous vector-valued operator
on T�Rn�. Briefly and roughly, the reason is that the T-continuity enforces that
the operator must be given by (4.2)

1
for all f X T�Rn�Ø However, if α ° −n then

T�Rn� contains many elements f for which the integral in (4.2)
1
diverges. The same

applies to scalar-valued operators onT�Rn� and onT�RnÙCn�Ø
There are analogs of Theorems 4.2 and 4.3 and of Remark 4.4 for the fractional

divergence. These analogs generalize Theorem 2.4 and show that the fractional di-
vergence introduced in Definition 4.1 reduces to that in Definition 2.3 if 0 ² α ² 2Ø
Since the modifications are obvious, explicit statements are omitted.

4.5 Definition (Fractional laplacean) The fractional laplacean of order α¤2Ù where
α X R« EνÙ is a scalar-valued operator onD�Rn� defined by

�−á�α¤2 f �x� ¨

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

−να �
Rn

f �x + h�
@h@n+α

dhÙ

να Pv �
Rn

2�α¤2�

�
i¨0

∇if �x� ċ hi
i! − f �x + h�
@h@n+α

dhÙ

�−á�α¤2f �x�

(4.5)

for every f X D�Rn� and x X R
n; the three regimes in (4.5) correspond to the

following three conditions on α X R« Eν:

(i) Ú α ° 0Ù (ii) Ú α ³ 0 not even, (iii) Ú α ³ 0 even,

respectively.
Recall that the restriction α Z Eν comes from the fact that να is undefined onEνÛ

it we omit that factor, then the right-hand side of (4.5) is meaningful for all α X RØ
We use the symbol �−á�α¤2� f for the so simplified expression.

The following two theorems generalize Theorem 2.6.

4.6 Theorem If α X R then �−á�α¤2� is a scalar-valued, translationally and ro-

tationally invariant, α-homogeneous, and D-continuous operator on D�Rn�; con-
versely, any operator with these properties is a multiple of �−á�α¤2� .

In Theorems 4.6 and 4.7, the rotational invariance is interpreted in the sense of (2.7).

4.7 Theorem If α ± −n then Equation (4.5) is meaningful for all f X T�Rn�,
which defines �−á�α¤2 as a translationally and rotationally invariant, α-homogeneous,
andT-continuous scalar-valued operator onT�Rn�; conversely, any operator with
these properties is a multiple of �−á�α¤2.
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The following remark shows that the fractional laplacean introduced in Definition
4.5 reduces to that in Definition 2.5 if 0 ² α ² 2Ø
4.8 Remark If 0 ° α− 2�α¤2� ° 1Ù i.e., if α X �0Ù 1�T�2Ù3�T�4Ù5�TÜ Ù and
f X T�Rn�, then the principal value symbol in (4.5)

2
can be omitted.

We conclude this section with a discussion of the definitions in this section.
Formulas (4.5) are standard; if −n ° α ° 0 then �−á�α¤2f callled is M. Riesz’s

fractional integral of f of order β ¨ −α while if α ³ 0 then �−á�α¤2f is cal-
lled Riesz-Bochner-Feller’s fractional power of the laplacean or M. Riesz’s fractional
derivative of f of order α. The term ‘fractional power’ is in harmony with the Balakr-
ishnan theory of fractional powers of nonnegative operators, see, e.g., [22]. Equations
(4.5)

2Ù3 are particular cases of the formulas for the power Aγ of a general operator A
with A ¨ −á and γ ¨ α¤2. There is a large literature on Riesz’s fractional integro-
differentiation and on fractional powers of operators, see [36] and [22] for detailed
expositions of the theory, history and bibliography of these subjects. A recent pa-
per [19] reviews possible definitions of the fractional laplacean and describes their
relationships in various function spaces.

The fractional gradient∇0 of order α ¨ 0 is the classical Riesz’s tranform,which
has numerous applications in analysis. The generalization to all α, i.e., the object de-
noted here by ∇αf Ù is due to J. Horváth [16–17], although he did not interpret his
construction as the fractional gradient. Horváth defines ∇α equivalently as the dis-
tributional gradient of Riesz’s fractional derivative. The interpretation of Horváth’s
distribution as the fractional gradient appears under the name Riesz’s fractional gra-
dient in the recent papers [39, 37]. The notion of fractional divergence seems to be
new, but it is analogous to the fractional gradient.

There are several equivalent formulas for the fractional laplacean, which include
those containing iterated finite differences [36; Chapter 5, Equation (25.61)], and the
formulas splitting the integration overRn into those near the origin and over the rest of
R
n, with a simultaneous introduction of regularizing terms [36; Chapter 5, Equation

(26.66)]. We also refer to [16, 31] and the references therein. Similar alternatives can
be constructed for the fractional gradient and divergence.

5 Analyticity, ranges, and fractional vector identities

As mentioned in Section 2, the normalization factors µα and να are introduced to get
suitable analyticity properties of ∇αÙ divα and �−á�α¤2 and simple forms of frac-
tional vector identities for them. The present section briefly discusses these questions.

5.1 Theorem (Analyticity)
(i) For each f X D�Rn�, v X D�RnÙCn� and x X R

n the functions which asso-

ciate with any α X R« Eµ the values

∇αf �x�Ù divα v�x�Ù (5.1)

and with any α X R« Eν the number

�−á�α¤2f �x� (5.2)
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have analytic extensions to the set C« Eµ and C« Eν, respectively.

(ii) If v X T�RnÙCn� and f X T�Rn�, the expressions in (5.1) and (5.2) have an-
alytic extensions from the set  α X R Ú α ± −n( to the set  α X C Ú Re α ± −n(Ø

The extensions of (5.1) are given by the right-hand sides of (4.2) and (4.4) without
any modification for all α X C« Eµ except for the “punctuated vertical lines” in C

constituting the set

Fµ Ú¨  α X C Ú Re α ¨ 1Ù3ÙÜ Ù Im α © 0(Ø
The extension of (5.2) is given by the right-hand side of (4.5) for all α X C « Eν

except for the punctuated vertical lines in C constituting the set

Fν Ú¨  α X C Ú Re α ¨ 0Ù2ÙÜ Ù Im α © 0(Ø
Detailed formulas for the extensions on these exceptional lines are omitted.

The analyticity is a standard tool for classes of problems like the present one, dat-
ing back to the foundational works of M. Riesz [34], L. Schwartz [38], I. M. Gel’fand
and G. E. Shilov [13–14], N. S. Landkof [20] and others.

5.2 Proposition (Ranges) If Re α ± 0Ù then the operators ∇α and �−á�α¤2 map

the space T�Rn� into the spaces T�RnÙCn� and T�Rn�, respectively, while the
operator divα mapsT�RnÙCn� intoT�Rn�Ø
This invariance of the spaces of the type T opens the way to the fractional vector
identities and to the weak definitions of the fractional operators in Section 6. This
is the main motivation for the spaces of type TØ The classical test function spaces
D�Rn� or S�Rn� do not enjoy similar invariances. Also note that Proposition 5.2
does not hold for Re α ° 0Ø We refer to [23] for the proof of Proposition 5.2 in the
case �−á�α¤2; the cases of∇α and divα follow by easy modifications.

5.3 Theorem (Fractional vector identities) If αÙ β X C satisfy Re α ± −n and

Reβ ³ 0Ù we have the following identities:
∇α�−á�β¤2 ¨ ∇α+βÙ (5.3)

divα�−á�β¤2 ¨ divα+βÙ (5.4)

�−á�α¤2�−á�β¤2 ¨ �−á��α+β�¤2Ù (5.5)

divα∇β ¨ −�−á��α+β�¤2 (5.6)

for arguments from the spaces T�Rn� and T�RnÙCn�Ø Formulas (5.5) and (5.6)
imply the following inversion formulas if 0 ² Re α ° n Ú

�−á�−α¤2�−á�α¤2 ¨ idT�Rn�Ù
− div−α∇α ¨ id

T�Rn�

where id
T�Rn� is the identity map on T�Rn�Ø

Our restrictions on α and β come from our choice of the test functions spaces TØ
Different choices lead to less restrictive conditions, see [16–17, 31] and the refer-
ences therein. Equation (5.5) is standard while (5.3) is due to Horváth (in a different
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notation). We conclude the discussion with the following particular cases of (5.3) and
(5.4): If −n + 1 ² α ° ð then

∇αf �x� ¨ −∇�−á��α−1�¤2f �x�Ù
divα v�x� ¨ − div�−á��α−1�¤2v�x�Ø

These formulas can be used to define∇α and divα in terms of the fractional laplacean.

6 Weak definitions of ∇αÙ divαÙ and �−á�α¤2

In this section we briefly discuss the extension of the fractional operators to larger
classes of objects than functions fromD�Rn� orT�Rn�Ø

The definitions are based on the duality between the fractional gradient and di-
vergence and on the formal self-adjointness of the fractional laplacean, i.e., on the
easily verifiable relations

�
Rn

f divα vdx ¨ − �
Rn

v ċ ∇αf d x

and

�
Rn

f �−á�α¤2g d x ¨ �
Rn

g�−á�α¤2f d x

for every f Ùg X T�Rn�Ù v X T�RnÙCn�Ù and α ³ 0.

We denote by T
′�RnÙZ� and D

′�RnÙZ� the spaces of continuous functionals
onT�RnÙZ� and D�RnÙZ�. The space T′�RnÙZ� can be interpreted as the set of
all distributions fromD

′�RnÙZ� that have aT-continuous extension toT�RnÙZ�.
In this interpretation, for example, Dirac’s δ-function belongs to T

′�Rn� since the
formula δ�f � ¨ f �0� gives a continuous functional on T�Rn�Ø The difference be-
tween D

′�RnÙZ� and T
′�RnÙZ� can be seen on distributions represented by func-

tions. It is well-known that the distribution H X D
′�RnÙZ�Ù given by

H�g� ¨ �
Rn

f �x� ċ g�x� d xÙ (6.1)

for every g X D�Rn� is well defined if f is a locally integrable function on R
nØ

On the other hand, the Banach space duality theory shows that the distributionH can
be extended to a continuous functional on T�Rn� if and only if f can be written
as f ¨ f

1
+ f ð where f

1
X L1�Rn� and f ð X Lð�Rn�Ø The latter fact is written

symbolically as

f X L1�Rn� + Lð�Rn�Ø

Thus, e.g., the functional (6.1) with, say, f �x� ¨ @x@βÙ belongs to D
′�Rn� for all β

satisfying −n ° β ° ð but toT′�Rn� only if −n ° β ² 0Ø
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6.1 Definition Let Re α ³ 0Ø If f X T
′�Rn� and v X T

′�RnÙCn�Ùwe define∇αf

as an element ofT′�RnÙCn� and �−á�α¤2f and divα v as elements ofT′�Rn� by
the formulas

�∇αf��w� ¨ −f�divα w�Ù
��−á�α¤2f	�g� ¨ f��−á�α¤2g	Ù
�divα v��g� ¨ −v�∇αg�Ù

for every g X T�Rn� and w X T�RnÙCn�Ø
Ordinary functions are covered by these definitions by associating with any f X

L1�Rn� + Lð�Rn� and any v X L1�RnÙCn� + Lð�RnÙCn� the functionals f X
T

′�Rn� and v X T
′�RnÙCn� given by

f�g� ¨ �
Rn

gf d xÙ v�w� ¨ �
Rn

w ċ vdx

for any g X T�Rn� and w X T�RnÙCn�.
The widened scope of the fractional operators allows us to present the following

examples.

6.2 Example Let us calculate ∇αδ for 0 ² α ° 1Ø The Definitions 6.1 and 2.1 give

�∇αδ��v� ¨ −�divα v��0� ¨ −µα Pv �
Rn

x ċ v�x�
@x@n+α+1

d x

for every v X T�Rn�; this can ve written symbolically as

∇αδ�x� ¨ −µα Pv
x

@x@n+α+1
Ø

6.3 Example Let n ¨ 1 and let θ Ú R r R be the Heaviside function,

θ�x� ¨
8
><

>:

0 if x ² 0Ù
1 if x ± 0Ø

We shall show that the fractional gradient (derivative)ÿα Ú¨ ∇α of θ for 0 ° α ° 1

is given by

ÿ
αθ�x� ¨ να−1

@x@α (6.2)

where να−1 is given by (2.6) with n ¨ 1Ù i.e.,

να−1 ¨
2
α−1

Γ�α¤2�
π1¤2Γ��1 − α�¤2	 Ø

Note thatÿαθ�x� approaches ÿθ�x� ¨ δ�x� as α approaches 1Ù i.e.,
να−1

@x@α r δ�x� in T
′�R� as α r 1Ø

Thus the family of functions gα�x� Ú¨ να−1
¤@x@αÙ 0 ° α ° 1Ù is an approximation of

the delta function in the sense that
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�
R

gα�x�f �x� d x r f �0� as α r 1 (6.3)

for every f X T�R�Ø Unlike the usual family of Friedrich’s mollifiers

gρ�x� ¨ ρ−1��x¤ρ�Ù 0 ° ρ ° 1Ù
with the support of � ⊂ �−1Ù 1� and �R��x� d x ¨ 1Ù here the support of gα ¨ R and
�R gα�x� d x ¨ ðØWe shall see that to establish (6.3), it suffices to use the localization
properties saying that for any ε ± 0 and any f X T�R�Ù

ε

�
−ε

gα�x� d x r 1 and �
@x@±ε

gα�x�f �x� d x r 0 as α r 1Ø (6.4)

These, in turn, follow from the asymptotics

να−1 « �α − 1�¤2 near α ¨ 1Ù (6.5)

which is a consequence of Γ�z� « 1¤z near z ¨ 0Ø Of course, alternatively, (6.3)
follows from the analyticity of ÿαθ asserted by Theorem 5.1.

Proof We have

ÿ
αθ�v� ¨ −θ�divα v� ¨ −θ��−á��α−1�¤2 divv	

for each v X T�R�Ùwhere the first equality is the definition and the second equality
follows from the identity divα v ¨ �−á��α−1�¤2 divvÙ a particular case of (5.4).
Using

�−á��α−1�¤2 divv�x� ¨ να−1 �
R

v′�x + h�
@h@α dh

we find

ÿ
αθ�v� ¨ −να−1 �

R

θ�x� �
R

v′�x + h�
@h@α dh d xØ

Exchanging the orders of integration and evaluating the inner integral according to
�R θ�x�v′�x + h� d x ¨ −v�h� we find, finally,

ÿ
αθ�v� ¨ να−1 �

R

v�h� @h@−α dhÙ

which is (6.2).
Next, we prove (6.4). Assertion (6.4)

1
follows by combining the equality

�ε−ε @x@−α d x ¨ 2ε1−α¤�1 − α� with (6.5). Further, we observe that
∣

∣ �
@x@±ε

gα�x�f �x� d x
∣

∣ ² να−1
ε−α �

@x@±ε

@f �x�@ d xÛ

since the integral on the right-hand side is finite, the limit α r 1 using (6.5) provides
(6.4)

2
Ø We now employ (6.4) to prove (6.3). To this end, we choose η ± 0 and use

the continuity of f at 0 to find ε ± 0 such that @f �x� − f �0�@ ° η for all @x@ ° εØ
Then @ �ε−ε gα�x��f �x� − f �0�	 d x@ ² η �ε−ε gα�x� d x. We now use the estimate

∣

∣�
R

gα�x�f �x� d x − f �0�∣∣ ² ∣

∣

ε

�
−ε

gα�x��f �x� − f �0�	 d x
∣

∣

+ ∣

∣f �0� − f �0�
ε

�
−ε

gα�x�
∣

∣ + ∣

∣ �
@x@±ε

gα�x�f �x� d x
∣

∣

(6.6)
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in the following way. By the above, the first term on the right-hand side of (6.6) is es-
timated by η �ε−ε gα�x� d x. By (6.4)1 the last converges to η as α r 1Ø The remaining
two terms on the right-hand side of (6.6) converge to 0 by (6.4)

1Ù2Ø Thus
lim sup
αr0

∣

∣�
R

gα�x�f �x� d x − f �0�∣∣ ² η

and the arbitrarines of η ± 0 gives (6.3). è

7 Consistency of the definitions of ∇αÙ divαÙ and �−á�α¤2

In this section we shall show that the right-hand sides of Formulas (4.2), (4.4), and
(4.5) in the definitions of the fractional operators deliver finite numbers and well-
defined vectors. In view of the translational invariance, it suffices to consider only
the special case x ¨ 0 in these formulas. This reduces the proofs in this section
and in Section 8 to the theory of homogeneous distributions, see Schwartz [38],
Gel’fand & Shapiro [12], Gel’fand & Shilov [13; Sections I.3 and III.3], Lemoine
[21], Hörmander [15; Section 3.2] and Estrada & Kanwal [11; Section 2.6]. Even
though the results can be reconstructed from these sources, we present complete
proofs for reader’s convenience.

In addition to setting x ¨ 0Ùwe omit the unessential normalization factors µα and
να and we also change the notation by writing x for the variable previously denoted
by h.

If f is a k-times continuously differentiable function on Rn with values in ZÙwe
denote by T

kf the Taylor expansion of order k of f at 0Ù i.e., a function defined on
R
n with values in Z given by

T
kf �x� ¨

k

�
i¨0

∇if �0� ċ xi
i!

for any x X R
nÙwhere we use the notation (4.1).

7.1 Proposition

(i) If α X R then �−á�α¤2� is D-continuous, α-homogeneous, and translationally

and rotationally invariant scalar operator onD�Rn�.
(ii) If α ± −n then an analogous assertion holds for the operator �−á�α¤2 on

T�Rn�.
(iii) If 0 ° α − 2�α¤2� ° 1Ù the principal value symbol in the second regime in (4.5)

can be omitted for any f X T�Rn�.
Here the rotational invariance is interpreted in the sense of (2.7).

Proof It suffices to prove only Assertions (ii) and (iii); Assertion (i) is proved by
obvious simplifications of the proof of (ii).

Proof of (ii): Let α ± −n and f X T�Rn� and prove that Equation (4.5) gives
a well-defined distribution in T

′�Rn�Ø Since the regime (4.5)3 is clear, we consider
only the regimes (4.5)

1Ù2.
Prove that if α ° 0Ù the integral in (4.5)

1
absolutely converges, i.e., that
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�
Rn

@x@−n−α@f �x�@ d x ° ðØ (7.1)

We split the integral in (7.1) into the sum

�
@x@²1

@x@−n−α@f �x�@ d x + �
@x@±1

@x@−n−α@f �x�@ d xØ

The first integral converges since f is bounded and x w @x@−n−α locally integrable.
To prove that the second integral converges also, we note that 0 ° n + α ° n so that
n¤�n + α� ± 1ØWe choose any p ± n¤�n + α� and use Hölder’s inequality

�
@x@±1

@x@−n−α@f �x�@ d x ²� �
@x@±1

@x@−p�n+α� d x�1¤p� �
@x@±1

@f �x�@q d x�1¤q
(7.2)

where q ¨ p¤�p − 1�Ø The first integral on the right-hand side of (7.2) converges by
our choice of p; the second integral converges also sinceT�Rn� ⊂ Lq�Rn� for any
q ³ 1Ø Thus the integral in (4.5)

1
absolutely converges.

Prove that if α ³ 0 is not even, the principal value in (4.5)
2
exists and is finite.

We shall prove the following formula for the principal value:

lim
ε↓0

�
@x@±ε

f �x� − T
2�α¤2�f �x�

@x@n+α
d x ¨ �

@x@²1

f �x� − T
2�α¤2�+1f �x�
@x@n+α

d x

+ �
@x@±1

f �x� − T
2�α¤2�f �x�

@x@n+α
d x

(7.3)

where the two integrals on the right-hand side absolutely converge.
To establish the convergence of the first integral on the right-hand side of (7.3),

we observe that the order of the singularity at 0 is O�@x@2�α¤2�+2−n−α�. The singu-
larity is integrable since 2�α¤2� + 2− n − α ± −n as a consequence of the definition
of the integral part of a number. To establish the convergence of the second inte-
gral on the right-hand side of (7.3), we note that the order of the integrand at ð is
O�@x@2�α¤2�−n−α�Ø Since α ³ 0 is not even, we have �α¤2� ° α¤2 and thus the ex-
ponent 2�α¤2� − n − α satisfies 2�α¤2� − n − α ° −nØ This proves the convergence
of the second integral.

To prove the equality in (7.3), we note that the convergence of the first integral
on the right-hand side of (7.3) allows us to replace that integral by

lim
ε↓0

�
ε°@x@²1

f �x� − T
2�α¤2�+1f �x�
@x@n+α

d xØ (7.4)

Since the last term in the Taylor expansion T
2�α¤2�+1f �x�, i.e., the term

∇2�α¤2�+1f �0� ċ x2�α¤2�+1¤�2�α¤2� + 1�!
is an odd function of the integration variable x, it is annihilated by the integration
over the symmetric domain in (7.4). So we can replace T

2�α¤2�+1f �x� in (7.4) by
T
2�α¤2�f �x�. Then the right-hand side of (7.3) becomes

lim
ε↓0

�
ε°@x@²1

f �x� − T
2�α¤2�f �x�

@x@n+α
d x + �

@x@±1

f �x� − T
2�α¤2�f �x�

@x@n+α
d x
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which is exactly the left-hand side of that equation. Thus the principal value in (4.5)2
exists and is finite.

To complete the proof of (ii), we already know that the right-hand side of (4.5)
provides a well-defined scalar-valued operator L on T�Rn�. Elementary substitu-
tions in the integrals in (4.5) show that L is translationally and rotationally invariant
and α-homogneous. Also, it is a matter of a routine use Lebesgue’s dominated con-
vergence theorem to establish theT-continuity of LØ These steps are omitted and the
proof of (ii) is complete.

Proof of (iii): We have to establish the absolute convergence of the integral

�
Rn

f �x� − T
2�α¤2�f �x�

@x@n+α
d xØ

In view of the above discussion it suffices to estimate the integrand near the origin.
By the mean value theorem, the integrand is of order O�@x@2�α¤2�+1−n−α�. The inte-
grability near the origin then follows from 2�α¤2� + 1 − n − α ± −n which in turn
follows from the hypothesis 0 ° α − 2�α¤2� ° 1. è
7.2 Proposition

(i) If α X R then ∇α
� and divα� are D-continuous, α-homogeneous, and transla-

tionally and rotationally invariant vector and scalar operators on D�Rn� and

D�RnÙCn�.
(ii) If α ± −n then analogous assertions hold for the operators ∇α and divα on

T�Rn� andT�RnÙCn�.
(iii) If α − 2��α − 1�¤2� ± 1Ù the principal value symbols in (4.2)2 and (4.4)2 can be

omitted.

Here the rotational invariance is interpreted in the sense of (2.2) and (2.5), respec-
tively.

Proof The assertions can be proved in several ways. One possibility is to adapt
the proof of Proposition 7.1 to the present situation. Perhaps a more conceptual and
definitely shorter way is to reduce the present proposition to Proposition 7.1. This is
the way we shall go. The proof will explain, among other things, the shift by −1 in
the regimes of α in (4.2) and (4.4) with respect to those in (4.5).

In the case of∇α the reduction to Proposition 7.1 is accomplished by the follow-
ing formula:

∇αf �0� ¨ −�−á��α+1�¤2v�0�
α + 1

(7.5)

for any f X T�Rn� where v�x� ¨ xf �x�Ù x X R
nØ We note that the case α ¨ −1

must be excluded, but this gap is easily overcome since the value α ¨ −1 is in no way
special for the fractional gradient.

To establish (7.5), in Equation (4.5) we replace the function f by the function v

and the exponent α by α+1ØThis reduces the right-hand side of (4.5) to the right-hand
side of (4.2) by noting that the Leibniz rule for derivatives of order k gives

∇kv�0� ċ xk ¨ k x∇k−1f �0� ċ xk−1

and consequently,
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T
2��α+1�¤2�v�x� ¨ x T

2��α−1�¤2�+1f �x�Ø
The proof is completed by the identity

να+1
¨ −�α + 1�µαÙ (7.6)

which follows from (2.4) and (2.6).
The assertion about divα is reduced to Proposition 7.1 by noting that

divα v�0� ¨ −�−á��α+1�¤2f �0�
α + 1

for any v X T�RnÙCn� where f �x� ¨ x ċv�x�Ù x X R
nØ This is proved by employ-

ing the formula
∇kf �0� ċ xk ¨ k x ċ ∇k−1v�0� ċ xk−1Ù

its consequence

T
2��α+1�¤2�f �x� ¨ x ċ T

2��α−1�¤2�+1v�x�Ù
and (7.6). è

8 Invariant α-homogeneous operators

In this section we complete the proofs of the results in Sections 2 and 4 by proving
that any operatormeeting our requirementsof invariance, homogeneity and continuity
is a multiple of one of the fractional operators of Section 4. The most systematic
and conceptual proof seems to be the one which would combine the description of
a general α-homogeneous distribution by Lemoine [21; Theorem 3.1.1]¡ with the
rotational invariance.Nevertheless, a direct proof is given belowwithout the reference
to Lemoine’s result.

We say that a scalar-valued function � Ú R
n r C is rotationally invariant if

� �qx� ¨ � �x� for every x X R
n and q X O�n�ØWe say that a vector-valued function

- Ú R
n r C

n is rotationally invariant if -�qx� ¨ q-�x� for every x X R
n and

q X O�n�Ø It is well-known that � is rotationally invariant if and only if there exists
a function � Ú �0Ùð� r C such that

� �x� ¨ ��@x@� (8.1)

for every x X R
n and - is rotationally invariant if and only if there exists a rotationally

invariant scalar-valued function � such that

-�x� ¨ x� �x� (8.2)

for every x X R
nØ

We denote byD�Rn
©� the Schwartz space of all complex-valued functions f on

R
n with compact support that is contained in Rn

© Ú¨ R
n «  0( and byD′�Rn

©� the
dual ofD�Rn

©�.
¡ Incidentally, an essentialhypothesis, statedelsewhere inLemoine’spaper, viz. Equation

(1.3.1), is missing in Part b) of [21; Theorem 3.1.1]. See [11; Theorem 18, Section 2.6] for a
complete statement (without proof, though).
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8.1 Lemma Let α X R and let F X D
′�Rn� be a rotationally invariant and α-

homogeneous functional,¡ i.e., let F satisfy

F�f � ρq� ¨ F�f �Ù F�f � ηλ� ¨ λαF�f � (8.3)

for every f X D�Rn�, every q X O�n�Ù and every λ ± 0Ø Then there exists a c X C

such that

F�f � ¨ c �
Rn

f �x�
@x@n+α

d x (8.4)

for every f X D�Rn
©�.

Proof Let us first show that there exists a c X C such that

F�� � ¨ c
ð

�
0

��s�
sα+1

d s (8.5)

for every rotationally invariant function � X D�Rn
©� where � is as in (8.1). We

denote byC the set of all functions� Ú R r Cwith compact support that is contained
in �0Ùð�Ø Let A Ú C r C be defined by

A��� ¨ F�� �
for every � X C where � is given by (8.1). Clearly, A is α-homogeneous, i.e.,

A�ψλ� ¨ λαA�ψ� (8.6)

for any λ ± 0 and ψ X C, where ψλ is given by ψλ�t� ¨ ψ�λt�Ù for t ³ 0Ø We
differentiate (8.6) with respect to λ at λ ¨ 1 to obtain

αA�ψ� ¨ a�ψλ�
dλ

∣

∣

∣

λ¨1

¨ A�dψλ

dλ

∣

∣

∣

λ¨1
�Ø (8.7)

That the differentiation can be absorbed into the argument of the functional is justified
by the continuity of A inherited from theD-continuity of FØ It is easily found that

dψλ

dλ

∣

∣

∣

λ¨1

�t� ¨ tψ′�t�
where the prime denotes the standard differentiationwith respect to tØDenoting bym
the operation of multiplication by the independent variable, i.e., �mψ��t� ¨ tψ�t�Ù
we rewrite (8.7) as

A�mα+1�m−αψ�′	 ¨ 0Ø (8.8)

Let us fix any ω X C such that �ð0 ω�s�¤sα+1 d s ¨ 1Ø Let now � X D�Rn
©� be

rotationally invariant with � as in (8.1). Define ψ Ú R r C by

ψ�t� ¨ tα
t

�
0

��s� − �ω�s�
sα+1

d s (8.9)

for any t ³ 0Ù where
¡ This terminology differs from the standard one, where F is said to be a -homogeneous if

it is �−a − n�-homogeneous in the present terminology. A distribution corresponding to an a -
homogeneous function is a -homogeneous in the standard terminology. The definition adopted
here is more convenient for our purpose.
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� ¨
ð

�
0

��s�
sα+1

d sØ

The choice of � and the fact that both � and ω have bounded supports imply that
ψ�t� vanishes for all sufficiently large tØ Thus ψ X C. Further, a differentiation of
(8.9) yields that

� ¨ m
α+1�m−αψ�′ + �ω

and hence
A��� ¨ A�mα+1�m−αψ�′	 + �A�ω� ¨ �A�ω�

by (8.8). Invoking the definition of �Ùwe obtain (8.5) with c ¨ A�ω�Ø
Let now f X D�Rn

©�Ø The integration of (8.3)1 with respect to the Haar measure
h on O�n� (see, e.g., [35; Theorem 5.14]) provides

F�f � ¨ �
O�n�

F�f � ρq� dh�q� ¨ F� �
O�n�

f � ρq dh�q��

where we have used theD-continuity and linearity of FØ The function
� Ú¨ �

O�n�
f � ρq dh�q�

is rotationally invariant and thus it admits a representation (8.1) where

��r� ¨ 1

κn−1r
n−1 �

Sr

f �y� da�y� (8.10)

for r ± 0Ù where κn−1
is the area of the unit sphere in R

nØ Thus F�� � is given by
(8.5) and hence

F�f � ¨ c
ð

�
0

��s�
sα+1

d sØ

The formula (8.10) and the spherical Fubini’s theorem gives (8.4). è
8.2 Lemma Let α X R and let F X D

′�Rn� be a rotationally invariant and α-

homogeneous functional in the sense of Lemma 8.1. Then there exists a c X C such

that

F�f � ¨ c�−á�α¤2� f �0�
for every f X D�Rn�Ø
Proof The objective is to prove that F is a multiple of the functional given by the
right-hand side of (4.5) with x ¨ 0 where we omit the normalization factor να.

If α ° 0Ù then F�f � is given by (8.4) and the proof is complete.
Next we consider the case α ³ 0 and not even. By Lemma 8.1 there exists a

c X C such that (8.4) holds for every f X D�Rn
©�. Let � Ú D�Rn� r C be given

by

� �f � ¨ c Pv �
Rn

f �x� − T
2�α¤2�f �x�

@x@n+α
d x (8.11)

for every f X D�Rn�Ø We note that for f X D�Rn
©� we have � �f � ¨ F�f � by

(8.4). The proof of the proposition in the present case will be complete if we show that
F ¨ � on D�Rn�Ø Since F ¨ � on D�Rn

©�, the difference F − � is a distribution
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with the support is contained in  0(Ø It is well-known that such a distribution is a
linear combination of finitely many gradients of the Dirac distribution δ at 0 X R

n,
i.e.,

F − � ¨ k

�
l¨0

cl ċ ∇lδ (8.12)

for some nonnegative integer k and some (tensorial) constants clØHowever, the distri-
bution F−� must be α-homogeneous. Since α ³ 0 is not even, the right-hand side of
(8.12) is inconsistent with α-homogeneity of F − � unless all cl vanish. Thus F ¨ �
onD�Rn�Ø Thus, F is given by the right-hand side of (8.11), which is also a multiple
of the right-hand side of (4.5)

2
with x ¨ 0. The proof of the proposition in the present

case is complete.
Finally, let α ³ 0 be even. Lemma 8.1 says that there exists a c X C such that

F�f � is given by (8.4) for every f X D�Rn
©�. We shall now show that there is no

way to extend the right-hand side of (8.4) to a rotationally invariant, α-homogeneous
and D-continuous functional on D�Rn� unless c ¨ 0Ø To prove the claim, let ω X
D�Rn� be any function satisfying ω ¨ 1 in some neighborhood of 0 X R

n and let
� Ú D�Rn� r C be defined by

� �f � ¨ c �
Rn

@x@−n−α�f �x� − ω�x�T
αf �x�	 d x

for every f X D�Rn�Ø It is not hard to see that � is a well-defined and D-
continuous functional, not necessarily α-homogeneous and rotationally invariant.
Moreover, F�f � ¨ � �f � for every f X D�Rn

©�Ø Thus by the argument similar
to that given above the difference F − � takes the form (8.12). If f is such that

∇lf �0� ¨ 0Ù 0 ² l ² kÙ l © αÙ
then (8.12) takes the form

F�f � ¨ �−1�αcα ċ ∇αf �0� + c �
Rn

@x@−n−α�f �x� −ω�x� ċ ∇αf �0� ċ xα	 d xØ

The condition of α-homogeneity reads

λαF�f � ¨ �−1�αλαcα ċ ∇αf �0�
+ c �

Rn
@x@−n−α�f �λx� − λαω�x� ċ ∇αf �0� ċ xα	 d xØ

The substitution x w y ¨ λx and the division by λα transforms the last equation into

F�f � ¨ �−1�αcα ċ ∇αf �0� + c �
Rn

@x@−n−α�f �y� − ω�y¤λ� ċ ∇αf �0� ċ yα	 d yØ

A differentiation of the last relation with respect to λ at λ ¨ 1 yields

c �
Rn

@x@−n−α�y ċ ∇ω�y�	 ċ ∇αf �0� ċ yα d y ¨ 0

and consequently, taking the trace, noting that tr yα ¨ @y@α, and using the arbitrariness
of∇αf �0� we obtain

c �
Rn

@y@−ny ċ ∇ω�y� d y ¨ 0Ø (8.13)
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We recall that the function ω is completely at our disposal provided ω ¨ 1 in some
neighborhood of 0 X R

n. In particular we can assume that ω�x� ¨ θ�@x@� for every
x X R

n where θ is smooth, θ ¨ 1 in some right neighborhood of 0 X RÙand θ�r� ¨ 0

for all sufficiently large r ± 0Ø Equation (8.13) is then equivalent to
c
ð

�
0

θ ′�r� d r − cθ�0� ¨ −c ¨ 0Ø
Thus � ¨ 0 and (8.12) yields

F�f � ¨ k

�
l¨0

�−1�lcl ċ ∇lf �0�
for every f X D�Rn�. The differential operator on the right-hand side is rotationally
invariant and α-homogeneous only if it reduces, in a standard way, to a multiple of
áα¤2Ø Thus we can write

F�f � ¨ a�−á�α¤2f �0�
for every f X D�Rn� and some a X CØ è
8.3 Lemma Let α X R and let F X D

′�RnÙCn� be a rotationally invariant and

α-homogeneous functional, i.e., let F satisfy

F�qT�v � ρq�	 ¨ F�v�Ù F�v � ηλ� ¨ λαF�v� (8.14)

for every v X D�RnÙCn�, every q X O�n�Ù and every λ ± 0Ø Then there exists a

c X C such that
F�v� ¨ c divα� v�0�

for every v X D�RnÙCn�Ø
Proof Define a G X D

′�Rn� by
G�f � ¨ F�v� (8.15)

for every f X D�Rn�Ùwhere v is given by

v�x� ¨ cf �x�Ù
x X R

nØ Then G is rotationally invariant in the sense of (8.3)
1
and positively homo-

geneous of degree α − 1. By Lemma 8.2 there exists a c X C such that

G�f � ¨ c�−á��α−1�¤2
� f �0� (8.16)

for every f X D�Rn�. The integration of the identity (8.14)
1
over O�n� with respect

to Haag’s measure yields, in the same way as in the proof of Lemma 8.1, the identity

F�v� ¨ F�-�
for every v X D�RnÙCn� where

-�x� ¨ �
O�n�

qTv�qx� dh�q�
for every x X R

nØ Clearly, - is rotationally invariant and hence it has the representa-
tion (8.2) through a rotationally invariant scalar valued function � . Equations (8.15)
and (8.16) then give

F�-� ¨ G�� � ¨ c�−á��α−1�¤2
� � �0�Ø

The proof is completed by showing that �−á��α−1�¤2
� � �0� ¨ divα� v�0�. This fol-

lows from the definitions of �−á�α¤2� and divα� in (4.5) and (4.4) by a straightforward
computation. è
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8.4 Proposition

(i) If α ± −n then any translationally and rotationally invariant, α-homogeneous,

and T-continuous scalar-valued operator on T�Rn� is a multiple of

�−á�α¤2Ø Analogous statements hold for vector-valued operators on T�Rn�
and for scalar-valued operators onT�RnÙCn�Ù which are multiples of ∇α and

of divαÙ respectively.
(ii) If α X R then the operators on D�Rn� and D�RnÙCn� with similar properties

are multiples of �−á�α¤2� ,∇α
� and divα�.

Proof The assertions about scalar-valued operators on the spaces D�Rn� and
D�RnÙCn� follow fromLemmas 8.2 and 8.3 by translation invariance. The assertion
about a vector-valued operator on the spacesD�Rn� is reduced to the preceding case
by duality: if G is a translationally and rotationally invariant, α-homogeneous, and
D-continuous vector-valued operator onD�Rn� then its dual (adjoint) S is a transla-
tionally and rotationally invariant, α-homogeneous, and D-continuous scalar-valued
operator onD�RnÙCn�Ø The application of the result on S gives eventually the result
on GØ

The results for α ± −n on the spaces of the type T are derived from those on
the spaces the type D by density: the restrictions of the operators on T to D are

multiples of �−á�α¤2� and ∇α
� on D. Since the latter space is dense in T the result

extends to T. è
Finally, we note that a combination of the results of Section 7 and of those of the

present section yields the proof of all results of Sections 2 and 4.
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