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Abstract

We present a description of rigid models of Presburger arithmetic (i.e., Z-groups). In

particular, we show that Presburger arithmetic has rigid models of all infinite cardinalities up

to the continuum, but no larger.

1 Introduction

Starting with the classical Galois theory, it has been a common technique in algebra, logic, and
other fields of mathematics to investigate structures by means of their automorphisms. This works
well for structures with rich automorphism groups; in first-order logic, such models abound: for ex-
ample, all structures have homogeneous (and highly saturated) elementary extensions, and by the
Ehrenfeucht–Mostowski theorem, we can find structures with arbitrarily complex automorphism
groups that in a sense control the structures.

On the opposite side of the spectrum, we have structures with only a few automorphisms, and in
particular, rigid structures (i.e., having no automorphisms save the identity). Unlike models with
many automorphisms, the existence of rigid models is a rather mysterious and whimsical property.
On the one hand, many theories have no rigid models at all: this is true of theories as simple as
the theory of the infinite set with no further structure, but we can construct arbitrary complex
such theories just by throwing in a new function symbol denoting a nontrivial automorphism. On
the other hand, many theories of interest do have rigid models, even arbitrarily large.

For example, there are rigid linear orders (e.g., well orders), and consequently, rigid structures
in any class that is “sufficiently universal” so that it can suitably represent all other relational
structures (e.g., the theory of graphs). What is more surprising is that there are rigid dense linear
orders or Boolean algebras of any uncountable cardinality (cf. [5]).

Interestingly, some theories have a limited amount of certain “trivial” rigid models, but also
many other rigid models for non-trivial reasons. For instance, any completion of Peano arithmetic
has a unique prime model where each element is definable; these models are clearly rigid. But
in fact, Peano arithmetic has many more rigid models: every its model has a rigid elementary
end-extension of the same cardinality (see Kossak and Schmerl [2, Thm. 3.3.14]). For an example
involving a more tame theory: archimedean real-closed fields are rigid for trivial reasons, but
as proved by Shelah [4], it also follows from certain combinatorial principles consistent with set
theory that there are large, non-archimedean real-closed fields.
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In this note, we will have a look at another tame theory: Presburger arithmetic, or equivalently,
the theory of Z-groups. Models of Presburger arithmetic with rich automorphism groups were
studied by Llewellyn-Jones [3]. We will instead have a look at rigid models of the theory; in fact,
we will present their complete description. We will see that there are, in a sense, both “trivial”
and “non-trivial” rigid models, but the amount of non-triviality is limited, which manifests in a
cardinality bound: Presburger arithmetic only has rigid models of sizes up to 2ℵ0 . We also discuss
the simpler case of “unordered Presburger arithmetic” Th(〈Z,+, 1〉), which turns out to have only
“trivial” rigid models.

We note that the tamest theory of ordered abelian groups, namely of the divisible ones, has no
rigid models (e.g., x 7→ 2x is always an automorphism). The theory of Z-groups, which are just
extensions of Z by divisible ordered groups, can thus be thought of as the first nontrivial case in
these parts.

2 Preliminaries

In this paper, all groups are commutative, and all ordered structures are linearly ordered.
We assume familiarity with basic properties of ordered groups. We specifically mention that a

group can be ordered iff it is torsion-free; more generally, if G is a torsion-free group, and H ⊆ G

an ordered subgroup, the order on H extends to an order on G. A subgroup H of an ordered
group G is convex if −y ≤ x ≤ y and y ∈ H imply x ∈ H. If H is a convex subgroup of G, the
order on G induces an order on G/H. Conversely, if H is a subgroup of G, ≤H is an order on H,
and ≤G/H an order on G/H, then there exists a unique order ≤G on G that makes 〈H,≤H〉 a
convex subgroup of 〈G,≤G〉, and that induces the order ≤G/H on G/H. Since ≤G is explicitly
defined by

0 ≤G g ⇐⇒ 0 <G/H g + H or (g ∈ H and 0 ≤H g),

we will call it the lexicographic order induced by ≤H and ≤G/H , even though strictly speaking we
should reserve this term for the case where G is a direct sum of H and G/H.

Recall that a subgroup H of G is pure if for any n > 0 (w.l.o.g. prime), and any element a ∈ H,
if a = nb for some b ∈ G, then a = nb for some b ∈ H. If G is torsion free, b is defined uniquely,
hence we can restate the condition as follows: b ∈ H whenever nb ∈ H for some integer n > 0. In
particular, if H is a subgroup of a torsion-free group G, then {a ∈ G : ∃n ∈ N>0 na ∈ H} is the
least pure subgroup of G that includes H.

We will use the fact that divisible groups are injective: in particular, a divisible subgroup
H ⊆ G is always a direct summand of G, and more generally, if K ⊆ G is a subgroup with trivial
intersection with H, we can write G = H ⊕K ′ for some K ′ ⊇ K.

Presburger arithmetic is officially the theory of the monoid 〈N, +〉, but this structure is bi-
interpretable with the more convenient ordered group 〈Z,+,≤〉, and we will work exclusively with
the latter. (Bi-interpretation preserves the automorphism group, among many other things, hence
this change is transparent for our purposes.)

Models of Th(〈Z,+,≤〉) are called Z-groups, and they may be characterized as discretely
ordered groups G such that G/Z is divisible. Here, an ordered group is discrete if there exists a
least positive element, conventionally denoted 1; the subgroup generated by 1, which is the least
nontrivial convex subgroup of G, gives a canonical embedding of the ordered group Z in G, and
G/Z denotes the corresponding quotient group.

The theory of Z-groups admits partial quantifier elimination: any formula ϕ(~x) is equivalent
to a Boolean combination of linear inequalities

∑
i nixi ≥ n, where ni, n ∈ Z, and congruences

xi ≡ k (mod m), where 0 ≤ k < m ∈ N.
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Let G be a Z-group. For any integer n > 0, the residue map x 7→ (x mod n) is a unique group
homomorphism rn : G → Z/nZ such that rn(1) = 1. These maps combine to a unique group
homomorphism r: G→ Ẑ such that r(1) = 1, where

Ẑ = lim←−
n

Z/nZ =
∏

p prime

Zp

is the profinite completion of Z, and Zp denotes the p-adic integers.
We will also consider models of the theory Th(〈Z,+, 1〉), which we will call unordered Z-groups.

If G is a torsion-free group with a distinguished element 1 6= 0, let Z denote the subgroup of G

generated by 1; then G is an unordered Z-group iff G/Z is divisible, and 1 is not p-divisible for
any p (equivalently: Z is a pure subgroup of G; equivalently: G/Z is torsion-free).

If 〈G,+,≤〉 is a Z-group with least positive element 1, then 〈G,+, 1〉 is an unordered Z-group,
and the convexity of Z ⊆ G ensures that ≤ induces an order ≤′ on the quotient group G/Z.
Conversely, if 〈G,+, 1〉 is an unordered Z-group, the torsion-free group G/Z can be ordered, and
for any order on G/Z, the corresponding lexicographic order on G that makes Z convex gives G

the structure of a Z-group. That is, any unordered Z-group expands to a Z-group, and these
expansions are in 1–1 correspondence with orders on G/Z.

Quantifier elimination for unordered Z-groups takes the form that every formula ϕ(~x) is equiv-
alent to a Boolean combination of linear equalities

∑
i nixi = n, and congruences xi ≡ k (mod m).

The residue maps rn : G → Z/nZ and r: G → Ẑ can be also defined for unordered Z-groups
just like before.

If 〈G,+, 1〉 is an unordered Z-group, a substructure H ⊆ G is elementary iff it is itself an
unordered Z-group iff it is a pure subgroup of G. We will call such substructures Z-subgroups
of G. Likewise, if 〈G,+,≤〉 is a Z-group, its elementary substructures are its Z-subgroups, and
these are exactly the substructures containing 1 that are Z-groups.

3 Leibnizian models

What structures can be said to be rigid for trivial reasons? One case that immediately springs
to mind are pointwise definable models: i.e., structures M such that every element a ∈ M is
definable in M without parameters. Clearly, a complete theory may have only one pointwise
definable model up to isomorphism (if at all). In our case, the unique pointwise definable Z-
group is the standard model 〈Z,+,≤〉. We are, however, more interested in non-standard (i.e.,
non-archimedean) examples.

We may, in fact, loosen the condition a bit: in the obvious argument that pointwise definable
structures are rigid, we do not really need that each element be isolated by a single formula from
the rest of the model—it is enough if we can tell apart any pair of distinct elements. Thus, we are
led to the class of pointwise type-definable models; following Enayat [1], we will call them more
concisely Leibnizian models, as they are models that validate one reading of Leibniz’s law of the
identity of indiscernibles.

Definition 3.1 A structure M is Leibnizian if for any a 6= b ∈ M , there exists a formula ϕ(x)
(without parameters) such that M � ϕ(a) and M 2 ϕ(b). In other words, distinct elements have
distinct parameter-free 1-types.

For example, a real-closed field is Leibnizian if and only if it is archimedean. Notice that a
Leibnizian structure in a countable language must have cardinality at most 2ℵ0 . An elementary
substructure of a Leibnizian model is Leibnizian.
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Observation 3.2 Leibnizian structures are rigid. �

Now, how do Leibnizian models of Presburger arithmetic look like? Curiously, the answer does
not depend on availability of the order.

Theorem 3.3 For any Z-group 〈G,+,≤〉, the following are equivalent:

(i) 〈G,+,≤〉 is Leibnizian.

(ii) The unordered Z-group 〈G,+, 1〉 is Leibnizian.

(iii) The residue map r : G→ Ẑ is an embedding.

Proof:
(ii)→ (i) is obvious.
(iii) → (ii): Let a 6= b ∈ G. By assumption r(a) 6= r(b), hence rn(a) 6= rn(b) for some n > 0;

thus, the formula x ≡ k (mod n) separates a from b, where k = rn(a).
(i) → (iii): If the group homomorphism r is not injective, there is a 6= 0 such that r(a) = 0.

We claim that a 6= 2a have the same types, witnessing that G is not Leibnizian.
This is clear for formulas of the form x ≡ k (mod m), as a ≡ 0 ≡ 2a (mod m) by the choice

of a. As for linear inequalities, they become somewhat degenerate in one variable: nx ≥ m is
equivalent to x ≥ dm/ne if n > 0, and to x ≤ bm/nc if n < 0. Thus, all nonstandard elements of
the same sign (such as a and 2a) satisfy the same inequalities. �

Thus, any Leibnizian Z-group embeds in Ẑ; to see that there are plenty such groups, we only
need to observe that Ẑ itself already works:

Lemma 3.4 Ẑ is an unordered Z-group.

Proof: Ẑ is torsion-free as each Zp is a domain of characteristic 0. Notice that for any prime p,
an element a ∈ Ẑ is p-divisible iff a ≡ 0 (mod p). On the one hand, this ensures that 1 is not
p-divisible; on the other hand, for any a ∈ Ẑ, one of a, a + 1, . . . , a + p− 1 is. �

Corollary 3.5

(i) Up to isomorphism, Leibnizian unordered Z-groups are exactly the Z-subgroups of Ẑ.

(ii) Up to isomorphism, Leibnizian Z-groups are exactly the Z-subgroups of 〈Ẑ,≤〉, where ≤ is a
lexicographic order induced by an order on Ẑ/Z.

In particular, for any ℵ0 ≤ κ ≤ 2ℵ0 , there are non-archimedean Leibnizian Z-groups and unordered
Z-groups of cardinality κ. �

Notice that distinct Z-subgroups of Ẑ are non-isomorphic, as they are the images of their own
residue maps.

4 Non-Leibnizian models

As shown by the example of real-closed fields mentioned in Section 1, non-Leibnizian rigid models
may be more elusive than Leibnizian models. Before we get to them, we first need to know a little
about the general structure of non-Leibnizian models of Presburger arithmetic, or more precisely,
of unordered Z-groups.
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Proposition 4.1 Let G be an unordered Z-group. We can write G = D⊕L, where D = ker(r) is
a divisible subgroup of G, and L is a Leibnizian Z-subgroup of G.

Proof: Put D = ker(r) as indicated. If a ∈ D and n ∈ N>0, we have in particular rn(a) = 0,
hence a = nb for some b ∈ G. Then n r(b) = r(a) = 0, hence r(b) = 0 as Ẑ is torsion-free. Thus,
D is divisible.

Since D ⊆ G is divisible, and Z ∩D = 0, we have G = D ⊕ L for some subgroup L ⊆ G such
that Z ⊆ L. Since direct summands are necessarily pure, this makes L a Z-subgroup of G, and it
is Leibnizian as L ∩ ker(r) = 0. �

Remark 4.2 Thus, D (or its dimension as a Q-linear space, if we want it numeric) can serve as
a measure of non-Leibnizity of G.

In a decomposition G = D⊕L with D divisible and L a Leibnizian Z-subgroup, D is uniquely
determined as ker(r), and also as the largest divisible subgroup of G. On the other hand, L is not
unique as a subgroup of G, though it is of course unique up to isomorphism as L ' G/D ' im(r).

We stress that the direct sum decomposition in Proposition 4.1 only works at the level of
groups; if G is ordered, there is no telling how the orders of D and L interact.

With no order to complicate matters, Proposition 4.1 lends itself to an easy description of
automorphisms. But first a bit of notation:

Definition 4.3 If G is an unordered Z-group, and H ⊆ G a subgroup, we will write H ′ for
H/(Z ∩H). If moreover f : H → G is a homomorphism such that f [Z ∩H] ⊆ Z, let f ′ : H ′ → G′

be the induced homomorphism f ′(a + Z) = f(a) + Z.

Lemma 4.4 Let G be an unordered Z-group, and D and L as in Proposition 4.1.
Any automorphism f of G induces an automorphism f ′ of the group G′ such that f ′(a)−a ∈ D′

for all a ∈ G′. In other words, f ′ can be represented (in a unique way) as

f ′(d + l) = g(d) + h(l) + l (d ∈ D′, l ∈ L′),

where g is an automorphism of D′, and h : L′ → D′.
Conversely, any f ′ as above is induced by a unique automorphism f of G, namely

f(d + l) = g(d) + h(l + Z) + l (d ∈ D, l ∈ L).

We are identifying D with D′ here, which is allowed in view of D ∩Z = 0. We also stress that
in the statement above, the language of the structure G includes the constant 1, hence it is fixed
by all automorphism (whereas f ′ and g are just group automorphisms).
Proof: An automorphism f of G has to fix Z pointwise, hence it indeed induces a group homo-
morphism f ′ : G′ → G′, which is in fact an automorphism as f−1 induces its inverse. Moreover, f

must preserve congruence formulas, i.e., the residue map r: G → Ẑ; thus, f(a) − a ∈ D = ker(r)
for all a ∈ G, and likewise for f ′.

Since G′ = D′⊕L′, f ′ can be uniquely represented as f ′(d+l) = g(d)+h0(l), where g : D′ → G′,
and h0 : L′ → G′. The condition f ′(a) − a ∈ D′ further ensures that g : D′ → D′, and that
h(l) = h0(l)− l is a homomorphism h : L′ → D′. Since f ′ is an automorphism, so is g.

The converse direction is likewise easy to check. �

Corollary 4.5 The only rigid unordered Z-groups are the Leibnizian ones.

Proof: If G is a non-Leibnizian unordered Z-group, the divisible torsion-free group D in the
decomposition G = D ⊕ L is nontrivial. But then D = D′ has a nontrivial automorphism g, for
instance g(x) = 2x. By Lemma 4.4, this lifts to a nontrivial automorphism of G, using, e.g., h = 0.

�
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This was a rather anticlimactic answer. However, we will see that the situation for ordered
Z-groups is more interesting: some non-Leibnizian Z-groups are rigid after all. The reason is that
some of the automorphisms provided by Lemma 4.4 are not order-preserving. Even so, rigidity
severely constraints D and L, as we will see next.

We will work for a while with divisible subgroups of G′. Recall that a torsion-free divisible
group is nothing else but a Q-linear space, hence we may treat it with methods from linear algebra.
Also notice that a convex subgroup of a divisible ordered group is divisible.

Lemma 4.6 Let G be a rigid Z-group, and D = ker(r). Then G′ has no proper convex subgroup C

such that C + D′ = G′.

Proof: Assume for contradiction that C is such a subgroup. By linear algebra, D′ has a linear
subspace D0 such that D′ = D0 ⊕ (D′ ∩ C), which implies G′ = D0 ⊕ C. Since C is convex, this
is not just a direct sum of groups, but also a lexicographic product of the corresponding orders.
Thus,

f ′(d + c) = 2d + c (d ∈ D0, c ∈ C)

defines an order-preserving automorphism of G′, which is nontrivial as D0 6= 0. Since f ′(a)−a ∈ D′

for all a ∈ G′, f ′ lifts to a (still order-preserving) automorphism of G by Lemma 4.4. �

Lemma 4.7 Let G be a rigid Z-group, and D = ker(r). If C is a convex subgroup of G′ nontrivially
intersecting D′, then C + D′ = G′.

Proof: If not, then G′/(C + D′) and C ∩ D′ are nontrivial Q-linear spaces, hence there exists
a nonzero group homomorphism f0 : G′ → C ∩ D′ that vanishes on C + D′. Define a group
homomorphism f ′ : G′ → G′ by f ′(x) = x + f0(x). Clearly, f ′(x)− x ∈ D′; since f0[D′] = 0, this
means f ′ has an inverse homomorphism x − f0(x), hence it is an automorphism of G′. It is also
order-preserving: assume that x ≥ 0. If x > C, then f0(x) ∈ C implies f ′(x) > C, and a fortiori
f ′(x) ≥ 0. If x ∈ C, then f ′(x) = x ≥ 0. Thus, f ′ lifts to a nontrivial automorphism of G using
Lemma 4.4. �

Theorem 4.8 Let G be a Z-group, and write G = D ⊕ L with D divisible and L a Leibnizian
Z-subgroup of G as in Proposition 4.1. If G is rigid, then

(i) D is archimedean;

(ii) D is cofinal in G, or trivial;

(iii) L is cofinal in G.

Proof:
(i) and (ii): We again identify D with D′ ⊆ G′. If a ∈ D′ is positive, let C be the least convex

subgroup of G′ such that a ∈ C. Then C + D′ = G′ by Lemma 4.7, hence C = G′ by Lemma 4.6.
Thus, integer multiples of a are cofinal in G′ (and in G after lifting back), including D′.

(iii): It suffices to show that L′ is cofinal in G′. Let C be the least convex subgroup of G′ that
includes L′. Then C + D′ = G′, hence C = G′ by Lemma 4.6. �

Notice that in Theorem 4.8, L embeds in Ẑ, and D, being archimedean, embeds in R:

Corollary 4.9 All rigid Z-groups have cardinality at most 2ℵ0 . �
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Theorem 4.8 is not yet the end of the story, as the given conditions are only necessary, not
sufficient. The missing condition is of a rather different (geometric) flavour, putting restrictions on
how D and L sit next to each other inside G. On the one hand, it does not seem very illuminating,
and on the other hand, it tends to be satisfied for typical examples that one comes up with in
practice (as we will see shortly). But anyway, we formulate it here for completeness.

Theorem 4.10 Let G be a Z-group, written as G = D ⊕ L as in Proposition 4.1. Assume that
D is archimedean, and D and L are both cofinal in G.

Let C be the largest convex subgroup of G such that C ∩D = 0. By assumption, the ordered
group G/C is archimedean, hence there is a unique homomorphism of ordered groups ν : G → R
such that ker(ν) = C. Put G′′ = ν[G], D′′ = ν[D], and L′′ = ν[L].

The following are equivalent:

(i) G is rigid.

(ii) The only γ ∈ R>0 such that γD′′ = D′′ and (γ − 1)L′′ ⊆ D′′ is γ = 1.

Proof: Notice that since D ∩ C = 0, ν : D → D′′ is an isomorphism.
(i)→ (ii): Let γ > 0 be such that γD′′ = D′′ and (γ − 1)L′′ ⊆ D′′, which implies (γ − 1)G′′ ⊆

D′′. Define fγ : G→ G by
fγ(x) = x + ν−1

(
(γ − 1)ν(x)

)
.

Then fγ is a group homomorphism, and fγ(x)−x ∈ D for each x ∈ G. We also have γ−1D′′ = D′′

and (γ−1 − 1)L′′ = −γ−1(γ − 1)L′′ ⊆ −γ−1D′′ = D′′, hence we can apply the same construction
to γ−1; a straightforward calculation shows that fγ−1 is the inverse of fγ . Thus, fγ is a group
automorphism.

In order to see that it is order-preserving, let x ≥ 0. Notice that ν(fγ(x)) = γν(x). Thus, if
x > C, then fγ(x) > C, and a fortiori fγ(x) ≥ 0. If x ∈ C, then ν(x) = 0, hence fγ(x) = x ≥ 0 as
well.

Thus, fγ is an automorphism of G, hence it is the identity. But then γ = 1.
(ii)→ (i): Let f be an automorphism of G. Using Lemma 4.4, f restricts to an automorphism

of D ' D′′ ⊆ R. Pick any nonzero a ∈ D, and put γ = ν(f(a))/ν(a). Since f is order-preserving,
and ν(a)Q is dense in R, we must have ν(f(x)) = γν(x) for all x ∈ D′′; in particular, γD′′ = D′′.
More generally, the density of ν(a)Q (along with convexity of C) implies that for any x ∈ G,
ν(f(x)) = γν(x), thus (γ − 1)ν(x) = ν(f(x) − x). Since f(x) − x ∈ D by Lemma 4.4, we obtain
(γ − 1)G′′ ⊆ D′′. By (ii), γ = 1. Thus, f(x)− x ∈ C ∩D = 0 for any x ∈ G, i.e., f is the identity
automorphism. �

Remark 4.11 Recall that the subgroup L in the decomposition G = D ⊕ L is not uniquely
determined. In the situation in Theorem 4.10, we may assume without loss of generality that L

is chosen so that it includes the group C defined in the statement of the theorem, as C ∩D = 0.
This makes the choice somewhat more canonical.

Let us mention some convenient sufficient conditions for Theorem 4.10 (ii).

Lemma 4.12 Let D′′ and L′′ be nonzero Q-subspaces of R such that D′′ ∩ L′′ = 0. Then condi-
tion (ii) from Theorem 4.10 is satisfied:

(i) if dimQ(D′′) is finite, or if dimQ(D′′) < dimQ(L′′);

(ii) if L′′ * D′′−1D′′D′′, or more generally, if there is no α ∈ D′′−1D′′ such that L′′⊕D′′ ⊆ αD′′;
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(iii) if D′′ is a subfield of R, or more generally, if there exists a subfield K ⊆ R such that
D′′ ⊆ K ⊆ L′′ ⊕D′′.

Proof:
(i): Either condition ensures dimQ(D′′) < dimQ(L′′ ⊕ D′′). However, if γ 6= 1 is such that

(γ − 1)L′′ ⊆ D′′ = γD′′, then (γ − 1) · − is a Q-linear embedding of L′′ ⊕D′′ in D′′.
(ii): If γ 6= 1 is such that γD′′ = D′′, then γ = a/b for some nonzero a, b ∈ D′′, thus

α := (γ − 1)−1 = b/(a− b) ∈ D′′−1D′′, and L′′ ⊕D′′ ⊆ αD′′.
(iii): If K ( L′′ ⊕D′′, this follows from (ii), as D′′−1D′′D′′ ⊆ K. If K = L′′ ⊕D′′, and γ 6= 1

is such that (γ − 1)L′′ ⊆ D′′ = γD′′, then

(γ − 1)K ⊆ D′′ =⇒ γ − 1 ∈ D′′ ⊆ K =⇒ (γ − 1)K = K =⇒ L′′ ⊆ K ⊆ D′′,

which is a contradiction. �

Example 4.13 In order to see that the condition is not automatic, let L′′ = (π − 1)−1Q, and
D′′ =

∑
n∈Z πnQ = Q[π, π−1]. Clearly, L′′ and D′′ are Q-linear subspaces of R, and γ = π satisfies

γD′′ = D′′ and (γ−1)L′′ ⊆ D′′. That L′′∩D′′ = 0 amounts to πn(π−1)−1 /∈ Q[π] for any n ∈ N,
which follows from the transcendence of π.

While all these classification results are entertaining, we have yet to show the existence of a
single non-Leibnizian rigid Z-group. We are going to remedy this now. We will in fact show that
essentially any choice of the various parameters consistent with Theorems 4.8 and 4.10 (with the
convention from Remark 4.11) can be realized.

Proposition 4.14 Let

• L0 be a Z-subgroup of Ẑ other than Z;

• C0 be a proper Z-subgroup of L0;

• ≤C be an order on the group C0/Z;

• D′′
0 and L′′

0 be trivially intersecting nonzero Q-subspaces of R such that condition (ii) from
Theorem 4.10 holds (for example, using Lemma 4.12), and dimQ(L′′

0) = dimQ(L0/C0).

Then there exists a rigid Z-group G with direct decomposition G = D ⊕ L as in Proposition 4.1,
and largest convex subgroup C trivially intersecting D, such that

• as a group, L is isomorphic to L0;

• C is isomorphic to C0, equipped with the lexicographic order induced by ≤C ;

• the ordered groups D/C and L/C are isomorphic to D′′
0 and L′′

0 , respectively.

(Note that all the above-mentioned isomorphisms are necessarily unique.)

Proof: We endow C0 with the lexicographic order induced by ≤C , making C0 a Z-group. Since
dimQ(L′′

0) = dimQ(L0/C0), we may fix a group isomorphism of L0/C0 to L′′
0 , which allows us to

transfer the archimedean order from L′′
0 to L0/C0. We endow L0 with the lexicographic order

induced by the already constructed orders on L0/C0 and C0, making L0 a Z-group with a convex
subgroup C0.

Put G = L0 ⊕ D′′
0 as a group. We equip G/C0 = (L0/C0) ⊕ D′′

0 with the order induced by
the fixed isomorphism to L′′

0 ⊕D′′
0 ⊆ R, and G with the lexicographic order induced by the orders

on G/C0 and C0, making C0 convex. (This is compatible with the previously constructed order
on L0.)

By construction, G is a Z-group satisfying the listed properties, and by Theorem 4.10, it is
rigid. �
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Corollary 4.15 For any infinite cardinals κ, λ ≤ 2ℵ0 , there are non-Leibnizian rigid Z-groups G

such that |D| = κ and |L| = λ, where G = D ⊕ L are as in Proposition 4.1. �

Remark 4.16 If our goal were to describe the composition of non-Leibnizian rigid Z-groups
uniquely up to isomorphism, the data used in Proposition 4.14 would not be quite satisfactory:
on the one hand, one such Z-group can be described in several different ways because L′′

0 is not
uniquely determined; on the other hand, the given data do not describe a unique Z-group as we
left unspecified the isomorphism of L′′

0 to L0/C0. This is easy to fix: if we want a complete list
of unique invariants, we may replace L′′

0 with G′′
0 (a Q-subspace of R such that D′′

0 ( G′′
0 and

satisfying an appropriate version of Theorem 4.10 (ii)), and a group isomorphism of L0/C0 to
G′′

0/D′′
0 . We leave the details to the reader.
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