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Limits of dense graph sequences

Motivation:

Find a compactification of the space of finite graphs (so that every
sequence of finite graphs has a convergent subsequence).

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, 2006:

The elements of the compactification are graphons = symmetric
Lebesgue measurable functions from [0, 1]2 to [0, 1] (or more
generally from Ω2 to [0, 1] where Ω is a given probability space).



Limits of dense graph sequences

Motivation:

Find a compactification of the space of finite graphs

(so that every
sequence of finite graphs has a convergent subsequence).

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, 2006:

The elements of the compactification are graphons = symmetric
Lebesgue measurable functions from [0, 1]2 to [0, 1] (or more
generally from Ω2 to [0, 1] where Ω is a given probability space).



Limits of dense graph sequences

Motivation:

Find a compactification of the space of finite graphs (so that every
sequence of finite graphs has a convergent subsequence).

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, 2006:

The elements of the compactification are graphons = symmetric
Lebesgue measurable functions from [0, 1]2 to [0, 1] (or more
generally from Ω2 to [0, 1] where Ω is a given probability space).



Limits of dense graph sequences

Motivation:

Find a compactification of the space of finite graphs (so that every
sequence of finite graphs has a convergent subsequence).

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, 2006:

The elements of the compactification are graphons = symmetric
Lebesgue measurable functions from [0, 1]2 to [0, 1] (or more
generally from Ω2 to [0, 1] where Ω is a given probability space).



Limits of dense graph sequences

Motivation:

Find a compactification of the space of finite graphs (so that every
sequence of finite graphs has a convergent subsequence).

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, 2006:

The elements of the compactification are graphons

= symmetric
Lebesgue measurable functions from [0, 1]2 to [0, 1] (or more
generally from Ω2 to [0, 1] where Ω is a given probability space).



Limits of dense graph sequences

Motivation:

Find a compactification of the space of finite graphs (so that every
sequence of finite graphs has a convergent subsequence).

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, 2006:

The elements of the compactification are graphons = symmetric
Lebesgue measurable functions from [0, 1]2 to [0, 1]

(or more
generally from Ω2 to [0, 1] where Ω is a given probability space).



Limits of dense graph sequences

Motivation:

Find a compactification of the space of finite graphs (so that every
sequence of finite graphs has a convergent subsequence).

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, 2006:

The elements of the compactification are graphons = symmetric
Lebesgue measurable functions from [0, 1]2 to [0, 1] (or more
generally from Ω2 to [0, 1] where Ω is a given probability space).



Graphons

How do we represent a graph by a graphon?



Graphons

How do we represent a graph by a graphon?



Graphons

How do we represent a graph by a graphon?



Graphons

How do we represent a graph by a graphon?



Basic example

Kn,n ..... the complete bipartite graph with both partitions of size n

There are many possible representations of Kn,n. Here are two of
them:

When n is large then the chessboard on the left looks like the
constant graphon W ≡ 1

2 . But the chessboard on the right does
not depend on n at all!
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Cut-norm and cut-distance

The cut norm

compares the density of edges inside any vertex set:

d�(U,W ) := sup
A⊂[0,1]

∣∣∣∣∫
A×A

(U(x , y)−W (x , y))

∣∣∣∣ .
The cut-distance allows any permutations of the vertex sets:

δ�(U,W ) := inf
ϕ
d�(U,W ϕ)

where the infimum is taken over all measure preserving bijections
ϕ : [0, 1]→ [0, 1] and W ϕ(x , y) := W (ϕ(x), ϕ(y)).
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Compactness of the cut-distance

Recall the cut-distance:

δ�(U,W ) := inf
ϕ
d�(U,W ϕ).

We say that two graphons are equivalent if their cut-distance is 0.
Then δ� gives us a metric on the space of all equivalence classes.

Theorem (Lovász & Szegedy, 2006)

The metric δ� on the equivalence classes of graphons is compact.
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Proofs of the Lovász-Szegedy theorem

Known proofs of the Lovász-Szegedy theorem:

I Lovász & Szegedy, 2006: using Szemerédis regularity lemma

I Elek & Szegedy, 2012: using ultraproducts

I Diaconis & Janson and (independently) Austin, 2008: using
Aldous-Hoover theorem on exchangeable arrays (1981)

I Our proof: using the weak* convergence

Definition
A sequence (Wn)n of graphons weak* converges to a graphon W if
for every A ⊂ [0, 1] it holds lim

n→∞

∫
A×AWn(x , y) =

∫
A×AW (x , y).
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Comparing the three convergence notions

Wn
w∗→W ⇔ sup
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lim
n→∞
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Therefore if Wn
d�→W then Wn
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δ�→W ⇔ there are measure preserving bijections

ϕn : [0, 1]→ [0, 1] such that W ϕn
n

d�→W
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Our proof of compactness

Let (Wn)n be a sequence of graphons.

We need to find a
cut-distance accumulation point W of (Wn)n. We already know
that for every such W there are measure preserving bijections
ϕn : [0, 1]→ [0, 1] such that W is a weak* accumulation point of
(W ϕn

n )n.

ACCw∗((Wn)n) := {W : there are measure preserving

bijections ϕn : [0, 1]→ [0, 1] such that W

is a weak* accumulation point of (W ϕn
n )n}

Note that ACCw∗((Wn)n) is nonempty by Banach-Alaoglu theorem.
We want to take the ‘most structured’ element of ACCw∗((Wn)n)
and prove that it is a cut-distance accumulation point of (Wn)n.
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Our proof of compactness

But the ‘most structured’ element of ACCw∗((Wn)n) does not
need to exist!

Recall that

ACCw∗((Wn)n) = {W : there are measure preserving

bijections ϕn : [0, 1]→ [0, 1] such that W

is a weak* accumulation point of (W ϕn
n )n}

and define

LIMw∗((Wn)n) := {W : there are measure preserving

bijections ϕn : [0, 1]→ [0, 1] such that W

is a weak* limit of (W ϕn
n )n}.

Unfortunately, LIMw∗((Wn)n) can be empty.
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Key Theorem A

For every sequence (Wn)n of graphons there is a subsequence
(Wnk )k of (Wn)n such that

ACCw∗((Wnk )k) = LIMw∗((Wnk )k).

Key Theorem B

For every sequence (Wn)n of graphons the following conditions are
equivalent:

I ACCw∗((Wn)n) = LIMw∗((Wn)n),

I (Wn)n is cut-distance Cauchy.

If one of these conditions holds then (Wn)n converges in the
cut-distance to the most structured element of ACCw∗((Wn)n).
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Structuredness order

What does it mean to be the ‘most structured’ element of
ACCw∗((Wn)n)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊂ 〈W 〉.

It turns out that the mapping W 7→ 〈W 〉 is a homeomorphism of
(W, δ�) onto a closed subset of the hyperspace of all weak*
compact subsets of graphons. As the hyperspace is compact,
(W, δ�) is compact as well.
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How to find the most structured graphons?

Suppose that ACCw∗((Wn)n) = LIMw∗((Wn)n).

Is there an easy
way to tell which W ∈ ACCw∗((Wn)n) is the most structured
element of ACCw∗((Wn)n)?

Yes!

Fix an arbitrary strictly concave function f : [0, 1]→ R. Define

INTf (W ) :=

∫
[0,1]2

f (W (x , y)).

Then the most structured W is that one which minimizes INTf .
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Basic example once more

Let (Wn) be the sequence of the chessboards on the left. Then
ACCw∗((Wn)n) = LIMw∗((Wn)n). The constant graphon W ≡ 1

2
and the graphon U on the rigth are both elements of
ACCw∗((Wn)n). The graphon U on the right is more structured
than the constant graphon W ≡ 1

2 as

INTf (W ) = f
(
1
2

)
> 1

2 (f (0) + f (1)) = INTf (U).
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Thank you for your attention!


