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Abstract

In 1933 [6], Godel introduced a provability interpretation of the
propositional intuitionistic logic to establish a formalization for the
BHK interpretation. He used the modal system, S4, as a formaliza-
tion of the intuitive concept of provability and then translated IPC
to S4. His work suggested the problem to find a concrete provability
interpretation of the modal logic S4. In this paper, we will try to
answer this problem. In fact, we will generalize Solovay’s provability
interpretation of the modal logic GL to capture other modal logics
like K4, KD4 and S4. Then we will use these results to find a for-
malization for the BHK interpretation and we will show that with
different interpretations of the BHK interpretation, we can capture
some of the propositional logics like Intuitionistic logic, minimal logic
and Visser-Ruitenburg’s basic logic.

Moreover, we will show that there is no provability interpretation for
any extension of KD45 and also there is no BHK interpretation for
the classical propositional logic.

1 Introduction

BHK interpretation

In the intuitionistic tradition, mathematics is considered as a theory of men-
tal constructions and hence, truth naturally means the existence of a proof.
Thus, provability is the core stone of the whole intuitionistic paradigm. With
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this fact in mind, like any other logic, the intuitionistic logic would be a cal-
culus to describe the behavior of truth, which in this case, is the concept of
provability. In other words, intuitionistic logic is a meta-theory of the concept
of provability. Now let us explain the role of connectives in this logic. Again
like any other logic, a connective is an operation on the truth content of its
inputs, which in the case of intuitionistic logic means the operations on the
proofs. Now, if we want an intuitive semantics for intuitionistic logic, we have
to find out what the meaning of a connective is. The answer to this question
is the well-known BHK interpretation. Its propositional part is the following;:

e a proof for A A B is a pair of a proof for A and a proof for B.

e a proof for AV B is a proof for A or a proof for B.

e a proof for A — B is a construction which transforms any proof of A to a
proof for B.

e a proof for = A is a construction which transforms any proof of A to a proof
for L.

e | does not have any proof.

Clearly, what we proposed as the BHK interpretation is just an infor-
mal interpretation and we need to find its exact formalization, if we want
to use it as a mathematical tool. For instance, if we want to establish an
argument which shows that Heyting’s formalization of IPC is an adequate
formalization for intuitionistic viewpoint, we have to prove the soundness
and completeness of IPC with respect to the BHK interpretation and it
obviously needs its exact formalized version. Now, to formalize the interpre-
tation, we firstly need a formalization of the concept of proof and based on
the extensive works in proof theory, which have been done so far, it seems
quite possible to find an appropriate formalization for the proof and hence for
the BHK interpretation. But unfortunately, despite all the attempts which
have been made, the BHK interpretation has not been formalized so far (for
an extensive history of the problem see [1]). Why does this natural and
simple interpretation resist to become formalized? To find an answer to the
question, let us investigate one of the key properties of the interpretation.
Think about a proposition like A — B. Its proof is a construction which
transforms any proof of A to a proof of B. It is clear that this construction
would be a meta-proof and not just a proof, because it talks about proofs
and therefore it should belong to the meta-language of A and B. In other
words, we could claim that the act of introducing an implication increases
the layer of the meta-language which we argue in. Therefore, in BHK in-
terpretation all levels of our meta-languages involve and this is the reason
why this interpretation is so complex to be formalized. Now, since we need



to formalize the meaning of a proof, we have to extend our task to find a
meaning of a proof in any level of the meta-languages.

There are two different approaches to implement this idea. In the first
approach, we could be faithful to the intuitionistic paradigm and find an
intuitionistically valid interpretation of the proofs. However, in the second
approach we could change our viewpoint and construct a bridge to find an
appropriate classical interpretation of the concept of a proof to formalize
the BHK interpretation. The first approach is Heyting’s approach and the
second one is Kolmogorov’s. At the first glance, the first approach seems
very natural to try but there is a huge problem there; a conceptual vicious
circle which forces us to understand the semantics of the paradigm, the BHK
interpretation, in terms of itself and it makes the whole process very com-
plicated. We want to emphasize that this vicious circle does not mean that
the first approach is philosophically invalid, but it just shows how complex
it could be. (Think about classical logic and its semantics which is based
on the classical meta-theory and this is an obvious vicious circle. But these
kinds of vicious circles are the inherent properties of any paradigm in the
philosophy of mathematics and they should not be avoided.) In this paper
we follow the second approach and interpret all proofs as the classical proofs
in different layers of meta-languages. But this is not an easy task to do and
in the forthcoming part of the introduction we will investigate the problems
in this approach.

The last thing we wanted to mention here is that what we are going to
formalize, is actually an implicit version of the BHK interpretation, instead
of the original one. In the original interpretation we interpret all the connec-
tives as operations on explicitly mentioned proofs. But we could somehow
eliminate the proofs from the interpretation and just talk about the prov-
ability of a sentence. For instance, the disjunction case in the original BHK
interpretation transforms to the following one: AV B is provable if A is prov-
able or B is provable. The problem here, is the case of implication which
is not reducible to a simpler one. In order to solve this problem, we need
a primitive connective to formalize the concept of provability. A role which
would be played by the connective “box” in modal logics and this is one of
the most important contributions to the problem, which was made by Kurt
Godel. Now, Godel’s contribution.



Godel’s Translation

In 1933 [6], Gddel introduced a provability interpretation of IPC that can
be seen as an implicit version of the well-known BHK interpretation of the
intuitionistic logic. By this interpretation he could justify the fact that Heyt-
ing’s formalization of IPC is sound and complete for its intended semantics
which is the BHK interpretation. Let us review some steps of his work.

1. Giving a proof interpretation: Before Giving any provability interpre-
tation of IPC, we should explain our intention of the concept of provability
and the properties that we want to have. As you expect, Godel began his
work exactly from this point. He used the language of modal logics, in which
the symbol “[0” is interpreted as a provability predicate. In the next step,
he formalized the expected properties of this provability predicate by some
axioms which have made the well-known modal system S4. Notice that in
contrast with using a concrete interpretation of provability, he used a theory
for formalizing this concept (S4). In fact, his system just characterizes the
properties of our intuitive provability predicate by some formal system, and
is totally silent about its real nature.

By this introduction, we are ready to give the definition of his interpretation.
Consider the translation function b : £ — L4 as follows:
L and L are the languages of IPC and S4 respectively. !

(1) p®* =0Opand Lb=0 L

ii) (ANB) = AP\ B
iii) (AV B)" = Abv B

(
(
(iv) (A — B)®=0(A" — BY)
(

v) (AP =D0(A >0 1)

Now it is clear that A° is the implicit BHK interpretation of A. In fact, the
definition of b is the natural paraphrase of the original BHK interpretation
in terms of the provability instead of the proofs.

Now, it is time to investigate the soundness-completeness property of the
interpretation.

n fact, our translation is different from the translation of the paper [6]. The differences
are the following: p* = p, 1b=1, (A — B)® = 0A® — OB®, and (-A)" = -0A". While,
both of these two translations basically do the same task, we use the first one, because it
is more compatible with our intuition of intuitionistic semantics and it is adequate for the
systems weaker than S4.



2. Soundness and Completeness: Consider the following theorem:
Theorem 1.1. For any proposition A € L, IPC - A iff S4 - Ab.

Proof. For the complete investigation of this theorem and some related re-
sults? see [6]. O

Now we have the system S4 which formalizes what we expect from a
provability predicate and based on the mentioned soundness-completeness
result we can reduce the problem of finding a formalization of the implicit
BHK interpretation to the problem of finding a provability interpretation
for S4. Therefore, our task will be to find a concrete interpretation of this
provability predicate (the connective box) in terms of the classical provabil-
ity in classical theories. But, consider the fact that the problem of finding a
provability interpretation for S4 has its own importance itself, independent
on its relation to the BHK interpretation.

The first attempt to find a concrete provability interpretation for S4 was
made by Godel himself. In a very negative way, he showed that the natural
expected interpretation of the provability predicate is not sound for S4. Let
us explain his result in a more detailed way:

The most natural choice to interpret the box operator is the provability pred-
icate of a formal theory ®. Let T be a formal system; therefore, the meaning
of 0JA would be Prr(A) such that Pry(-) is a provability predicate for T.
(Notice that in this case we suppose our formal system, 7', to be sufficiently
strong to be able to formalize some parts of the meta-mathematics.) Now,
consider the theorem 0= L of S4. Its interpretation is Pry(—Prp(L)) and
if it would be true we have 7'+ —Pry(L) which contradicts Godel’s second
incompleteness theorem.

Therefore, we know that on the one hand, the natural way to formalize the
concept of proof and provability in the BHK interpretation is to fix a formal
system and interpret all the proofs as the proofs in that theory. And on the
other hand, the logic S4 is not sound with this natural interpretation. This
is for the case of S4. However, we could claim that the natural formalization
for the BHK interpretation is not sound as well. For instance, if you try to
interpret the sentence A A (A — B) — B in intuitionistic logic, you find out
that it is more or less the same as the modal formula O(Cp — p) and you

2While this theorem is the heart of Godel’s work, he only stated it and left it without
any proof. The soundness part is an easy consequence of induction on the length of the
proof, but the completeness part was finally proved in 1947 by Tarski and McKinsey by
the algebraic semantics for S4.

3The system T is formal iff the set of its consequences is recursively enumerable.



will encounter with the same problem in intuitionistic logic. In sum, we can
say that the natural formalization of the BHK interpretation and also the
natural interpretation of S4 do not work. Based on these observations, we
have an intuition why finding a formalization for the BHK interpretation is
complicated and hard to grasp.

Now there is a natural question to ask. If the theory S4 is intuitively valid
and we know that we can not interpret the box as a provability predicate in
some formal system, then, what could be a natural provability interpretation
of S47 Unfortunately, despite a lot of attempts which have been made so
far, this question remains open. For instance, Kripke [7] introduced a prov-
ability interpretation which is based on his Kripke models and just captures
our provability intuition for formulas without nested modalities. Or in [3],
Buss introduced the “pure provability” which has the same problem with the
nested modalities. Actually, the only successful attempt to find a provability
interpretation, is Artemov’s “logic of proofs” which is based on the idea of
introducing all explicit proofs, investigating the intended behavior of proofs
in a theory (logic of proofs) and then interpreting the box as the existence
of the proof. These explicitly mentioned proofs could empower us to avoid
non-standard proofs which has the main role in Godel’s second incomplete-
ness theorem and all counter-intuitive theorems in meta-mathematics which
make some problems to interpret S4. In the section eight we will come back
to Artemov’s logic of proofs and we will investigate its advantages and dis-
advantages.

Now, as this long introduction shows, the main problem is to find a prov-
ability interpretation for the modal logic S4 to formalize the BHK interpre-
tation. In this paper, we will try to solve this problem and in the forthcoming
part of the introduction we will sketch the idea of our semantics and our key
results.

The Main Idea and the Main results

Why doesn’t the mentioned natural proof interpretation work? The answer
is the fact that this interpretation does not distinguish between languages
and metalanguages. Let us illuminate this fact by an example. Suppose p is
an atom. What should be an intended interpretation of p? p is an atomic
sentence about the real world, it is just a description of the world and this
description is in the first level. But how about [p? The intended interpre-
tation of this formula is the provability of p in some theory. But, what is
important here, is the level of the theory and the level of this sentence. Since



p is a fact about the real world, the theory in which p is proved, should be a
first level theory, i.e. a theory about the world. However, the sentence (Cp)
is not about the real world; it is about the provability and hence it should
be characterized as a sentence in the second level. Therefore, the intended
meaning of this second level sentence is Prp, (p). Now let us ask about the
interpretation of [Jlp. This is about the provability of the provability of p.
The first box refers to a first level theory Tj. But the second box is about
the provability of the provability, which has higher order, and it means the
provability should be investigated in a second level theory like T7. Now, the
important thing is the fact that there is no reason to assume that T} = Tj.
Actually, our experience in mathematical logic shows that it is genuinely im-
portant to distinguish the meta-theory and the object theory, and in most
cases the power of the meta-theory should be more than the theory itself. For
instance, Godel’s incompleteness theorems show that to answer a very basic
meta-mathematical question about the system, i.e. its consistency, we need
a more powerful meta-theory. Based on these investigations, the natural way
to interpret boxes in a modal sentence is interpreting them in different theo-
ries with respect to the complexity of the occurrence of a box. To formalize
this idea, we need two different objects. First, a model for the real world
to interpret atoms as the facts about the world and second a hierarchy of
theories which plays the role of the hierarchy of the meta-theories. Hence,
the intended model would be (M, {T,}52,) in which M is a classical model
and T, is a theory in the n-th level of the hierarchy. (We call these models,
the provability models.) Moreover, we need a way of witnessing all boxes as
the provability predicates of these theories in an appropriate way. This is
the complex part of the formalization and we will talk about it in the next
section. But for now, just think about the interpretation intuitively in the
sense that any outer box should be interpreted as the provability predicate of
a bigger theory. Therefore, our main result for modal logics is the following:

Theorem 1.2. (i) The logic K4 is sound and complete with respect to the
provability interpretation in all provability models.

(13) The logic KD4 is sound and complete with respect to the provability
interpretation in consistent provability models, i.e. (M,{T,}5°,) where
for any n, M thinks that T,, is consistent and T,+1 F Cons(T},).

(1i1) The logic S4 is sound and complete with respect to the provability in-
terpretation in all reflexive provability models, i.e. (M,{T,}°,) where
for any n, M thinks that T}, is sound and T,., F Rin(T},).

(iv) The logic GL is sound and complete with respect to the provability in-
terpretation in all constant provability models, i.e. (M,{T,}2,) where
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for any n, M thinks that T,, = Tj.

(v) The logic GLS is sound and complete with respect to the provability in-
terpretation in all sound constant provability models, i.e. (M,{T,}5°,)
where for any n, M thinks that T, is sound and T, = Tj.

(vi) The extensions of the logic KD45 are not sound in any provability
model.

There are some remarks about this main theorem. First of all, it shows

that the use of a hierarchy of meta-theories instead of just one theory to
witness the box operators, could define a brand new framework to capture
different modal logics in terms of the provability interpretations. In fact, it
shows that modal logics could be seen as the formal theories to describe the
relation between the real world and the theories in the hierarchy of meta-
theories which we use; in other words, they are theories for the whole dis-
course of the provability. Moreover, in the case of the logics K4, KD4 and
S4 it shows that they describe the relation of the model and meta-theories
in a natural and expected way. For instance, in an informal reading of the
axiom [JA — A in S4, we mean that our proofs are sound. And this is
exactly one of the conditions we put on the models to capture the logic S4.
It is similar for all other axioms, logics and conditions in the aforementioned
result.
Secondly, the result shows that if we restrict the whole hierarchy of meta-
theories to just one theory, we could reconstruct Solovay’s results for GL
and GLS. Therefore, it shows that our provability interpretation is a gener-
alization of Solovay’s interpretation and our main result is a generalization
of Solovay’s results.

Now, if we combine this provability interpretations with Gdédel transla-
tion, we will have different BHK interpretations with respect to different
powers of meta-theories. Consider that by weak BHK interpretation, we
informally mean the usual BHK interpretation without the consistency con-
dition. This is the last condition in BHK interpretation which assumes that
there is not any proof for 1. We have:

Theorem 1.3. (i) The logic BPC is sound and complete with respect to
the BHK interpretation in all provability models.

(i) The logic BPC 4+ (T — 1) = L is sound and complete with re-
spect to the BHK interpretation in all consistent provability models,
i.e. (M, {T,}>2,) where for any n, M thinks that T, is consistent and
Tni1 F Cons(T,,).



(1it) The logic MPC is sound and complete with respect to the weak BHK in-
terpretation in all reflexive provability models, i.e. (M,{T,}°,) where
for any n, M thinks that T), is sound and T,.1 F Rin(T},).

(1v) The logic IPC is sound and complete with respect to the BHK interpre-
tation in all reflexive provability models, i.e. (M,{T,}>,) where for
any n, M thinks that T, is sound and T,.1 F Rin(T},).

(v) The logic FPL is sound and complete with respect to the BHK inter-
pretation in all constant provability models, i.e. (M,{T,}2,) where
for any n, M thinks that T,, = T,,.

(vi) The logic CPC does not admit any BHK interpretations.

There are some remarks about this result. First of all, it shows that
there are different BHK interpretations instead of just one. This observation,
somehow contradicts the folklore belief and it is surprising. The reason is
that the BHK interpretation just defines the meaning of a connective in terms
of the provability in different levels of meta-languages. But, it is silent about
what kinds of commitments we impose on our meta-theories.

Therefore, we can impose different philosophical conditions on the be-
havior of meta-theories to capture different propositional logics, all of them
valid under the BHK interpretation. For instance, we can choose the minimal
possible commitment which means that there is not any non-trivial condition
on the hierarchy of meta-theories. Then the BHK interpretation leads to the
logic BPC. On the other hand, if we suppose that our meta-theories are
strong enough to prove the reflection principle for lower theories and all the
theories are sound, then the BHK interpretation leads to the logic IPC. This
observation shows a key fact: There is a web of different intuitionistic logics
according to the BHK interpretation; the logics IPC and BPC are just two
examples of these intuitionistic logics and both of them are philosophically
valid. In sum, we have to talk about intuitionistic logics instead of the intu-
itionistic logic.

Secondly, the result shows that this framework of the provability interpreta-
tion can capture different propositional logics and just like the case of modal
logics, we are able to say that propositional logics are logics to describe the
behavior of the real world and the hierarchy of meta-theories. This formal-
izes the intuitionist claim that the intuitionistic mathematics is a way to talk
and only talk about proofs.

Thirdly, it is possible to define different kinds of Godel’s translation. Hence,
it is possible to capture different propositional logics via these different trans-
lations. But it is important to consider that the translation we used in the



above result is the valid translation to formalize the BHK interpretation and
those different kinds of translations may not be rooted in the usual BHK
interpretation. However, they are still provability interpretations and could
be useful.

2 Provability models

In this section we will introduce a provability model as a formalization of
the intuitive combination of a model and a hierarchy of theories. Then, we
will define the satisfaction relation between modal formulas and provability
models. And as a conclusion, we will justify our notion of provability inter-
pretation.

First of all we have a modal formula A, and we want to interpret any box
in the formula as a provability predicate. This is the core idea of a prov-
ability interpretation for A. The second idea is what we talked about in the
introduction. Intuitively, when you have two boxes in A such that one box
is in the scope of the other box, our intuition forces us to accept that the
outer box talks about the provability in the meta-theory while the inner box
is just capturing the provability in the lower theories. Based on these two
ideas, we can claim that the natural model for the provability interpretation
of modal logics is a pair of one first order structure to interpret the atoms
of the language, and a hierarchy of theories to play the role of a hierarchy
of meta-theories. Moreover, we choose our structure and our theories as a
model and theories for arithmetic, respectively, because in these theories we
have a natural way of coding the language, the meta-language, the meta
meta language and so on. Furthermore, we suppose that all of our theories
include I3, to have enough power to formalize the basic meta-mathematics
of the theories. And, for the same reason we assume M F I3, because we
want to have the true meta-mathematical properties obviously.

Definition 2.1. A provability model is a pair (M, {7,}32,) where M is a
model of I3, and {T,,}5%, is a hierarchy of arithmetical r.e. theories such
that for any n, I3, C T, C T, provably in 3.

Now we define an extension of a modal formula.

Definition 2.2. F(A), the set of all extensions of A, is inductively defined
as follows:

e If Ais an atom, F(A) = {A}.
e If A= Bo(C, then E(A) ={DoE | D € E(B) and E € E(C)} for
oe{NV,—}.
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e If A=—B, then E(A) = {~D | D € E(B)}.
o If A=0B, then E(A) = {0V}, D;|V1<i<k, D;c E(B)}.

Moreover, if I is a sequence of modal formulas, by a sequence of extensions
of I', we mean a sequence such that for any formula in I', it has at least one
of its extensions and at most finitely many of them. We will denote these
sets by I

Informally speaking, an extension of a formula A is a formula resulted
by changing any formula after a box with a bunch of disjunctives of the
extensions of the formula.

Example 2.3. For instance, the formula O(=0O(0p v Op) v -O00(p V p)) is
an extension of the formula J-CCp

So far, we have justified the definition 2.1. Now let us to investigate the
intuitive meaning of the witnesses. We claim that a natural interpretation
is based on the interpretion of the outer boxes as meta-theories of the inner
boxes. For simplicity, we call this kind of interpretation as the ordered inter-
pretation. Therefore, to have an ordered interpretation we need to interpret
all of the boxes in A as the provability predicates of the theories in an ordered
way. And, since for any theory we have a number which shows its layer in
the hierarchy, it is enough to assign a natural number to a box. Consider
that if we assign n to a box, the intended meaning is that the interpretation
of that box is the provability predicate for the theory 7,,. This role is played
by the concept of witness. In fact, a witness is just an assignment for the
boxes in an ordered way.

Notation 2.4. If w;s are sequences of the natural numbers, by (wy, ws, ..., w,)
we mean the concatenation of w;s.

Definition 2.5. Let w be a sequence of natural numbers and A be a modal
formula. Then the relation w I A, which means w is a witness for A, is
inductively defined as follows:

e If Ais an atom, () |- A.

o If A= Bo(C, then (wy,ws) IF Aifw; IF Band ws I C foro € {A,V,—}
o [f A=-B, thenwlF Aif wlF B.

o If A=0B, then (n,w) IF A if w - B and n > m for all m which are

appeared in w.

11



Moreover, if I is a sequence of modal formulas, by a witness for I' we mean, a

sequence of witnesses, such that any witness w; in the sequence, is a witness
for A; in I'.

Informally, a witness for a formula A means a sequence of numbers which
we assign to occurrences of the boxes in A such that the number for outer
box is greater than all numbers of inner boxes. This condition, formalizes
the idea that any outer box refers to the meta-theories in the hierarchy.

Example 2.6. For instance, w = (n,m,k,r) is a witness for O(p — ¢q) V
O(=0p — Oq) if m > k,r.

The next definition is about evaluating a modal formula under an arith-
metical substitution for atoms and a witness for the boxes in the formula.

Definition 2.7. Let w be a witness for A and ¢ be an arithmetical sub-
stitution which assigns an arithmetical sentence to a propositional variable.
And also let (M, {T,}5°,) be a provability model. By A7(w) we mean an
arithmetical sentence which is resulted by substituting the variables by o and
interpreting any box as the provability predicate of T,, if the correspondent
number in the witness for this box was n. The interpretation of boolean
connectives are themselves. Moreover, if I' is a sequence of modal formulas
A;, and w = (w;); is its witness, by I'?(w) we mean the sequence of A7 (w;).

Example 2.8. For the witness and the formula A of the last example, A% (w)
would be Pry, (p” — ¢%) V Prg, (—Prr, (p7) — Prr.(¢79)).

Now, we are ready to introduce the concept of the satisfiability of a for-
mula in a provability model.

Definition 2.9. A sequent I' = A is true in (M, {7, }5°,) when there are
sequences of extensions of I' and A, like I and A, and also witnesses u and
v for I' and A respectively, such that for any arithmetical substitution o,
M = T9(u) = A%(v). Moreover, we say a sequent I' = A is true in a class
of models C', when there are uniform sequences of extensions and witnesses
for all models. In a more precise way, we write C' F I' = A, if there are
sequences of extension I' and A and witnesses u and v such that for all
arithmetical substitutions o and all provability models (M, {T,,}°,) in C,
M E=T7(u) = A%(v).

Informally speaking, truth means the existence of extensions and wit-
nesses such that the interpretation of a formula (or sequent) becomes true,
independent of the use of the arithmetical substitutions.

12



Remark 2.10. Note that our definition of satisfiability allows us to use a
disjunction of finitely many extensions of the formula instead of the original
formula itself. In other words, if we want to show that (M, {T,,}°,) E A, we
could use finitely many extensions of A like By, Bs, ..., By, and find a witness
for \/f:1 B;. The same is true for the sequents.

Let us illuminate the definition 2.9 with some examples.

Example 2.11. Let (N,{7,}>°,) be a provability model where 7, = PA
and for any n, T,,41 = T, + Rin(7},). Based on the definition, this pair
is obviously a provability model. Now, we want to show that the sentence
O(OA — A) is true in the model. To do this, we need some extensions of
the formula and a witness for them. For the extensions, just use the formula
itself, and for a witness, first find a witness for A and call it w; if n is a
number greater than all the numbers in w, then the sequence (n+1,n, w, w)
is a witness for (A — A). Now, for any arithmetical substitution o, we
have N E Prq,, (Prg, (A7 (w)) — A%(w)) since the theory 7,41 can prove
the reflection for T},. As you can see, the idea of introducing a hierarchy to
witness the boxes in modal sentences could kill the effect of Godel’s second
incompleteness theorem.

Now, let us illuminate the importance of the extensions with an example.
Consider the sentence =[J(—-JA A A). We want to show that this sentence
is true in the above mentioned provability model. (Note that this formula is
provable in S4.) Pick a witness w for the sentence A, a number n greater
than all numbers in w and the formula itself as its extension. In this case
we need two copies of the sentence, therefore we have to find a witness for
B =-0(-0AANA) v -0O-0AANA). Tt is easy to verify that the sequence
(n+2,n+1,w,w,n+1,n,w,w) is a witness for B. Now, for any arithmetical
interpretation like o, we have

N ~Prya(=Pross (A7(w)) A A”(w)) V =Py (<P (A7 (w)) A A7 (w)

Because if we have both

P, o (=Pr 41 (A% (w)) A A7(w))

and
Pr, i1 (=P, (A7 (w)) A A%(w))

then from the first part and the soundness of 7,2 we have =Pr, (A% (w))
and from the second part and the fact that the provability predicate com-
mutes with A, we have Pr,1(A%(w)), which is a contradiction. Therefore,
the sentence is true in N. It is easy to see that if we want to show the truth
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of the sentence O(—-0O(=0OA A A)), we should use OB as an extension of the
formula. This observation shows the importance of the extensions, but is it
possible to avoid them?

Example 2.12. In this example we want to argue that some sentences do not
have a witness in some provability models. Finding these kinds of examples
is not a hard task to do. It is enough to think about formulas like p or
Up. However, what we want to show here is finding an example to show the
importance of the extensions in the definition. Think about the provability
model of the last example and consider the formula -O(=CpAp). We showed
that if we use two different copies of the formula, then the disjunction of
those different copies have a witness in the provability model. Now, we
want to show that if we just use one copy, it is impossible to witness the
formula. Assume that w = (n,m) is a witness for =[J(=Cp A p) in the above
mentioned provability model. Then since w is a witness, we have n > m.
On the other hand, we know that for any arithmetical substitution, we have
N E =Pr,(=Pr,,,(p?) A p?). Use the arithmetical substitution which sends p
to Cons(7,,). Therefore, we have

N E =Pr,,(=Pr,,(Cons(T},,)) A Cons(T},))
Based on the formalized Godel’s second incompleteness theorem
I3, + Cons(T,,,) = —Pr,,(Cons(T},))
since I%; C T,,,41 and T, 41 F Cons(T,,) we have
Tons1 F —Pr,,(Cons(T,,))

hence N E Pr,,11(=Pr,,(Cons(7},))) and since T},,+1 has the reflection prin-
ciple for T,,, N F Pr,,,1(Cons(7},)). Now since n > m we have

N & Pr,,(=Pr,,(Cons(T},,))) A Pr,,(Cons(7},))

which contradicts our assumption. As you can see, our provability interpre-
tation is sensitive to the use of extensions and also to the numbers of copies
of extensions. In the following discussion, we will show that this property is
an inherent property of the informal intuition behind the modal formulas.

Discussion

One of the complexities of our provability interpretation is the use of exten-
sions and in this discussion, we want to justify its role. But before that, we
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need some observations. First of all, it seems that if we use the intuitive
interpretation of the boxes as the provability predicates of different theories
in the hierarchy of theories, meta-theories, meta-meta theories and so on, the
natural provability interpretation will be the following:

A sentence A is true in a provability model (M,{T,}>°,), if there is a
witness w for A such that for all o, M = A% (w).

Which informally says that if you could witness the boxes in the formula A in
the provability model, then it is true. Note that this definition is more simple
than ours and does not use any kinds of extensions. Now, let us concentrate
on S4 as the theory for our intuitive provability, and temporarily use the
above definition as the definition of the truth. To interpret all axioms of
the system S4, it is easy to see that we need two natural conditions on our
model. First of all 7, should be powerful enough to prove the reflection of
the theory 7}, and secondly, all T},s should be sound with respect to our model
M (This is what the nature of the provability in S4 assumes; think about
O(OA — A) and OOA — A respectively.) Now, the sentence =0J(-A A A)
is a theorem of S4 and we expect that it should be true in any model with
those two conditions. But in example 2.12 we showed that there is not any
witness for the sentence and hence, with the definition above, the sentence
is not true. Why does it happen? The answer is that it is because of the
different roles of one occurrence of box in modal formulas. To illuminate
this fact, let us investigate the intuitive proof of the sentence —[J(-CA A A)
in S4. The proof is a proof by contradiction. Assume [J(—=JA A A), then
because all theorems are true (axiom T'), we have =[JA A A and hence —[JA.
On the other hand, since the provability commutes with the conjunction (a
consequence of the axiom K), we have JA, which is a contradiction. Now
consider the fact that the box in =[JA is inherited from the inner box in
—JA A A and the box in [JA is inherited from the outer box in =[JA A A.
Therefore, to reach the contradiction, we need these two boxes refer to one
layer in the hierarchy of theories which is impossible because the inner one
is the theory and the other is the meta-theory and it is impossible to have
T,+1 = T,, because T, should prove the reflection for T,.

What these investigations show, is actually the fact that one box in S4 could
have different roles. (In the above sentence, the outer box has two different
roles, one as the meta-theory of the inner box and the other, as the theory
itself.) Therefore, the natural way to interpret these boxes, is an approach
which captures the different roles of a box at the same time, and this is not
possible with the above simplified semantics; because it is obviously based on
the assumption that any box has just one role which needs just one witness.
Now, here is where we need extensions. In fact, the intended meaning of the
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extensions, is using different copies of the formula in a disjunction and if you
witness this disjunction, you have the power to witness one box in finitely
different ways; this technique empowers us to capture different roles of one
box. (See example 2.11 to find out how this technique works.)

Now there is another question to ask. Why do we need this kind of iterative
extension method and why is just the simple disjunction of the formula not
enough? The answer is that for any fixed role available for one box, it is also
possible to have different roles for inner boxes. Therefore, after any box you
need a new disjunction. (Think about the sentence O(=C(-OAA A)).) This
is just what we call extensions.

As a conclusion for this discussion, let us compare our situation here in modal
logic with the first order logic. In the first order logic, if we have a theorem
of the form Vz3yA(z,y) where A(z,y) is quantifier-free and if we want to
witness y, the Herbrand’s theorem gives the answer; we can witness y by
terms in our language. However, we know that one term is not enough. The
reason is simple. The existentially quantified y could have different values
(roles) and these different values (roles) can be captured by a disjunction
of sentences A(z,t(x)) for some finite possible set of terms ¢(z). Now, the
situation in modal logic is the same. We read boxes as the existence of
theories and we want to witness them. Since there are different roles for any
box, we need a disjunction to capture these different roles. In other words,
we could interpret the extensions as some kind of Herbrandization of the
modal formulas.

3 The Logic K4

Intuitively, the logic K4 is sound with respect to all kinds of provability
interpretations. The reason is very simple. K4 has two important modal
axioms; the axiom K which means that the provability predicate is closed
under modus ponens, and the axioms 4 which means that the provability
of a sentence is also provable. The first axiom is a very easy fact and all
strong enough meta-theories can prove it. On the other hand, if we have the
minimum power in our meta-theory (¥;-completeness), the axiom 4 would
be also easily proved. Now, consider the fact that these axioms are not only
true but also provable and it justifies the use of the necessitation rule. Hence,
K4 is valid in all provability interpretations.

Now, in this section we want to formalize this intuitive argument and show
that the logic K4 is sound and also strongly complete with respect to the
class of all provability models. First, the soundness theorem. If we show the
class of all provability models by PrM, then we have:
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Theorem 3.1. (Soundness) If T' kg A then PtM E T = A.

Proof. To prove the soundness theorem for K4, we will use the cut-free se-
quent calculus for K4 ie. GK4 (see [8]). To simplify the proof, we use
the following conventions: Firstly, if ® and ¥ are sequences of arithmeti-
cal sentences and T is an arithmetical theory, by 7' - & = ¥, we mean
T+H AP — V. Secondly, without loss of generality, we assume that the
main formulas in all of the rules, except the exchange rule, are just the right-
most formulas in the sequent. We just use this assumption for the sake of
brevity and clearance of the proof.

Now, we want to prove the following claim by induction on the length of the
proof in GK4.

Claim. If I' = A is provable in GK4, then there are sequences of exten-
sions like I' and A and also witnesses w; and w, for I' and A respectively,
such that for any provability model (M, {T,,}5°,) and any arithmetical sub-
stitution o, IS F T9(w;) = A%(w,).

1. The case of axioms and structural rules. For the axiom A = A, it is
enough to use A as its extension in both sides and just an arbitrary witness
for A in both sides, again.

For the exchange rule, just use the same extensions and witnesses after
the application of the correspondent exchange.

For the weakening rule, if we prove '’ A = A from I' = A, by IH,
we could find extensions I, A and witnesses w; and w,. Pick an arbi-
trary witness for A like w. Now for ', A = A, use the sequences I', A
and A, and for the witnesses use (w;,w) and wy. It is easy to show that
I3 F T9(w;), A%(w) = A(wy). The case for the right weakening is the
same.

For the contraction rule, if we prove I') A = A from I'; A, A = A, then by
IH, there are sequences of extensions {I', {A;1 }7_g, {A;2}5_} and A and also
witnesses wi = (u, (vi1)j—g, (vj2)5=9) and wy. Now for the sequent I', A = A,
use the sequences of extensions {I', { A }i_o, {Aj2}_} and A and for the
witnesses just use the same witnesses. In this case, because of the use of a
finite set of different extensions instead of just one extension, we can say that
the semantics absorbs the contraction rule. The case for the right contraction

is the same.
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2. The case of propositional rules. In this case we just prove the case that
the last rule is RA; the other rules are similar and the argument is the same.
IfI', Iy = Ay, Ay, AAB, is proved from I'y = Ay, Aand I'ys = A,, B then by
IH we have the sequences of extensions I'y, {Ay, {A;}7_y}, Ta, {Ag, {Bj}jfzo}
and witnesses wy and wy = (u, (7;)j—) and wy, wy = (v', (y;)3-y). Now, for
the sequent I'y, I'y = Ay, Ay, AA B use the sequences of extensions {I';, T2},
{A1, Ay, {A; A B;}Zp'—0} and witnesses (wy, w)), (u, v, ((i,9;))i=0"—0)-

3. The case of modal rules. If OI' = A is proved from I',(0" = A,
then by IH, we have the sequences of extensions {I';, 0Ty} and {4;}/_, and
witnesses wy = ((u;)5—g, (Vr)j—o) and wa = (2;)j_y where u; is a witness for
the jth formula in 'y and vy, is a witness for the kth formula in OL. Pick
number n greater than all the numbers in w; and wy. Now, for the sequent
Or = A use the sequences of extensions {{JT';, T2} and O\/;_, 4; and
for the witnesses use ((n,u;)5—¢, (V&)j—o) and (n, (2;)i—s). By IH, we know
that for any arithmetical substitution o,

s t T
s B AT () A N\ O () = \/ A7 ().
k=0 1=0

J=0

Since 1Y, C T, we have

T. b AT (u) A\ O (0r) = \/ A7 ().

j=0 k=0 i=0
Therefore, by ¥;-completeness in 1Y, we have

s t

ISy F Pro( A\ (07 (u)) A A\ (O3 (w))) — \/A?(xi)),

j=0 k=0

hence

IS F Pro(\ T (uy)) A Pro( \ OT5 (0r)) — Pro(\/ A7 (2:)).

7=0 k=0 =0

Now, by formalized ¥;-completeness of T}, in I¥; we have
t t
15y =\ O (vk) — Pro( \ O (vk))
k=0 k=0
and hence

ISy B N\ Proa(T9(uy)) A A\ O (0) = Pro(\/ A7 (2:)),

j=0 k=0 =0
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which is what we wanted to prove and it completes the proof of the claim.

For the proof of the soundness theorem, if I' Fi4 A then there exist a finite
set A C I' such that A Fxgy4 A. Therefore, GK4 - A = A. By claim
there are some extensions of A and A like A and {4;}7_, and witnesses u
and {w;}I_, such that for any arithmetical substitution o, we have I%;
A% (u) = \i_y A7 (w;). Since M F I, we have M E A%(u) = \/|_; A7 (w;).
Now, pick I' the same as I' after changing the part of A to A. Moreover,
choose v as a witness for ' as an arbitrary extension of u to I'. Hence,
M ET7(v) = \i_, AZ(w;) which completes the proof of the soundness. [J

For the completeness theorem, the idea is reducing the completeness of
K4 to the completeness of GL which is the well-known Solovay’s theorem.
(See [10].) To do that, we need some kind of translation from K4 to GL which
could transfer the provability behavior of K4 to the provability behavior of
GL.

Definition 3.2. Let A be a modal formula with & boxes. And Q = {¢;}3°,
is a sequence of atoms which are not used in A. Then, a translation ¢ based
on () for the modal sentence A, is a sequence of k& numbers which assigns
natural numbers to boxes in A such that the number assigned to the outer
box is greater than all the numbers for the inner boxes. And A’ is defined
as follows:

(i) If A is an atom, A" = A.

(~B) =B

)
(ii) (BoC)t = Bto (! for all o € {A,V, —}
(vi1)

)

(OB)" = O(A\_, ¢ — B") where n is the assigned number to the box
in ?.

(v

Informally, if we interpret a box as the provability predicate for the theory
S, then the translation ¢ is just changing the provability predicate of the
theory S to the provability predicate of the theory S + {qo,...,¢.} where
n is the assignment of the box under ¢. For instance, if ¢t = (1,2,1) and
A = Op — OOp, then A* will be the following modal formula:

O(goAqr —p) = Olgo Aqr Aga = O(go Aqw — p))
Now, we want to show that this translation is complete, i.e.

Theorem 3.3. If GL - At for some translation t, then K4 F A.
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The natural proof should be based on a technique of the transformation of
transitive Kripke models to conversely well-founded transitive Kripke models,
which is implemented by the following lemma.

Lemma 3.4. Let (K, R,V) be a finite transitive Kripke tree with clusters,
A be a modal formula and t a translation. Then there is a finite transitive
irreflexive Kripke model (K', R', V') such that for any node k € K, there is
a node k' € K’ such that if k= A then k' E A’

Proof. First of all, for all subformulas B of A, define the complexity of B,
C(B), as follows: If B is box-free, define C(B) = —1. Otherwise, define
C(B) as the maximum assigned number in B by ¢. Moreover, suppose that
C(A) = n. Now, to simplify the proof, let us make some conventions. We
will use I for clusters and for any k € K, by I(k) we mean the cluster of k.
By a path, we mean a sequence of nodes in K, and if all the nodes of the
path p belong to the cluster I, we write p C I. Moreover, we write p < p/,
when p is a proper first segment of p’. Finally, by e(p) we mean the rightmost
element of p, or in other words, the end of p.

Now, for any cluster I define X (I) as follows: If I consists of one irreflex-
ive node k, X (I) = {k} and if I consists of some finite reflexive nodes, define
X (1) as the subset of all paths p C I with length less than or equal to n + 2.
The idea is simple. We want to transform a transitive model to a nonreflexive
transitive model. To accomplish this, we will unwind the reflexive clusters
by some paths of nodes in that cluster and we will use ¢’s to have a way to
refer to a copy of the node instead of itself, when we check the truth of the
modal formulas.

Now, define K’ = |J; X(I) and R’ = Ry U Ry where

Ri= |J {@b)]aeX(I(k)andbe X(I()}
(k)ER,I(k)#I()

and
Ry = J{((.0) | p<1ip.p C T},
I

And finally, define
Viiry={pe K'|e(p) e V(r)} U{k | k € V(r)and k is irreflexive}
for all atoms r in A, and

V(g:) = {k | k is irreflexive} U {p | [p| <n +2 —i}.
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Informally speaking, K’ is just the set K when you change the reflexive clus-
ter I with all paths of length less that or equal to n+ 2 of nodes in I; R’ and
V' are the natural relation and valuation induced by R and V, respectively
and ¢; is true in all irreflexive nodes and also in all paths of nodes in reflex-
ive clusters with length bounded by n + 2 — 7. Now, we want to prove the
following two claims.

Claim.1. The model (K', R', V') is a finite transitive irreflexive Kripke
model.

The finiteness follows from the definition. For the transitivity, suppose
that a,b,c € K’ and (a,b) € R and (b,c) € R'. Then, there are two cases.
The first case is when a and b come from the same cluster. Hence, by defini-
tion, this cluster should be a reflexive cluster. Therefore, a and b are paths
in this cluster and a < b. Now, if ¢ comes also from this cluster, we will have
b < c and since < is transitive, we have a < ¢ and hence (a,c) € R'. But, if ¢
comes from another cluster, then the cluster of ¢ should be above the cluster
of b and hence it is also above the cluster of @ which is the same as b’s and
then by definition we have (a,c) € R'.

The proof of the second case, which is when a and b come from different
clusters, is similar to the proof of the first case.

For the irreflexivity, suppose (a,a) € R'. If a is an irreflexive node in K,
then it is impossible, by the definition of R/, to have (a,a) € R'. If a comes
from a reflexive cluster, then again by the definition of R’ the path a should
be a proper segment of itself which is impossible.

Now, we express the second claim.
Claim.2. For all subformulas of A like B, if k E B, then

Vp,lp| <n+1—C(B)Ae(p) =k, pE B" if k is reflexive.
kE Bt if k is irreflexive.

and if £ ¥ B then

Vp,lp| <n+1—C(B)Ae(p) =k, pE B" if k is reflexive.
k¥ Bt if k is irreflexive.

To prove the claim, we use induction on B.
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1. Atomic case. If B is an atom, the claim easily follows from the defini-
tion of V.

2.t B=CADand k= CAD then kF C and k FE D. If k is irreflex-
ive, then by TH, the claim holds. If k is reflexive, then by IH, for all p such
that [p| < n+1—C(C) and e(p) = k, we have p E C*. And also for all
p such that |p| < n+1— C(D) and e(p) = k, we have p £ D' and since
C(CAD) = maz{C(C),C(D)}, then for all p such that |p| < n+1-C(CAD)
and e(p) = k, we have p E C* A D'.

IfkFECAD,then k¥ Cor k¥ D. Wlo.g. assume k F C. If k is irreflex-
ive, the claim is obvious. If k is reflexive, then by IH, for all p such that
lp| < n+1—C(B) and e(p) = k we have p ¥ C*, and again since C(C'AD) =
maz{C(C),C(D)} we have Vp, |p| < n+1—C(BAD)Ae(p) =k, p¥ (CAD)".

3. If B = =, then for irreflexive k, the claim is obvious from IH. Now, if k&
is reflexive and k £ —=C', then k ¥ C, and by IH, Vp, |p| < n+1-C(C) p ¥ C".
Therefore, Vp, [p| < n+1—C(C) pE =C" and since C(C) = C(—=C') we have
what we wanted. The other case is the dual of the first case.

4. The case for disjunction and implication is the same as the cases for
conjunction and negation and we omit them here.

5. The modal case. This is the most important and the most complex
part of the proof.

5.1. If B =0C and k F OC then for all [ which (k,l) € R, [ = C. Now,
define C'(B) = m.
5.1.1. If k is irreflexive, we know that the nodes above k in K’ are of two
forms. The I’s which are irreflexive and (k,l) € R or the p’s where p comes
from a cluster I above k and e(p) = [. For the first kind of nodes, by
IH we know that [ F C, therefore | & A" ¢ — C'. If we were in the
second case, we know that [ F C and again by IH, for all p such that
Ip] < n+1—C(C) and e(p) = I, we have p E C*. Therefore, for all
pp] < n+1—C(C) we have p E C* and hence p F /\f:0 g — C'. If
lp| > n+1—C(C), since C(C) < C(B) = m, we have |p| > n+2 —m,
and then by the definition of the valuation we know that p ¥ ¢, and hence
p¥ Niry ¢ and thus p E A", ¢; — C*. Therefore, for all p above k, we have
pE AL, a — C'. Now since for all nodes above k, A", ¢; — C* is true, we
have k E O(AY, ¢ — C*) which means k = (OC)".

5.1.2. If k is reflexive from the cluster I, pick p such that [p| < n+1—m.
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We want to show that p E O(AZ,¢; — C*). We know that all nodes above
p are of the form irreflexive I’s or p’ C J where J is a cluster above I or
p' C I where p < p/. For the first and second kinds, by a similar proof of
5.1.1, we can show that [ F A\"j¢ — C" and p' E A", ¢ — C'. For the
third case, if |p/| > n + 2 — m, then p’ ¥ ¢, and hence p' ¥ A", ¢ and
thus p' F Aigq — C'. If [p'| < n+2—m then since C(C) < m —1 we
have |p/| < n+1— C(C). On the other hand, k£ F OC, hence all nodes
in I satisfies C, and specially we have e(p’) E C, by IH, and by the fact
that [p'| < n+1— C(C), we have p’ F C' and therefore A" ,q; — C".
Now we proved that for all nodes above p, we have A" ¢ — C" hence
p EO(A~, ¢ — C") which is what we wanted.

5.2. If B=0C and k ¥ OOC, then there is a node like [ such that [ # C.
Define C'(B) = m.
5.2.1. If k is irreflexive, we want to show that k ¥ O(A",¢ — C*). Con-
sider that since (k,[l) € R, and k is irreflexive, then [ # k and it belongs to a
cluster above k. Now, if [ is irrefelexive then by IH, [ ¥ C* and also since it is
irreflexive, for all ¢, [ F ¢;; hence | ¥ A", ¢; — C" since | # k and (k,l) € R,
(k,1) € R'. Therefore, k ¥ O(A;~,q — C*). If [ is a reflexive node of the
cluster I, then define p C I as a path such that [p| =n+2—m and e(p) = [.
Since C(C) < m — 1 then |[p| < n+1—-C(C). By IH, p ¥ C*. (Consider
that m is the complexity of a boxed formula and therefore m > 0, hence
n+2—m < n+ 2 and it means such a p exists.). Moreover, we know that
pE ALy q since [p| < n+2—ifor all i < m, therefore, p ¥ \I“,q — C".
Now since the cluster of k£ and the cluster of [ are different and (k,[) € R,
then (k,p) € R" and it means that k¥ O(A", ¢ — C).

5.2.2. Consider the case that k is reflexive. In this case, if [ belongs to a
cluster above k, then the proof is the same as 5.2.1. If the cluster of [ and &
are the same (say ), we have the following construction: Pick p such that
e(p) = k and |p| <n+1—m. We want to show that p ¥ O(A", ¢ — C*).
Pick p' C I such that e(p’) =1, p < p' and |[p'| = n+ 2 —m. (It is enough to
extend p to a path with the ending [ and the length n + 2 — m. Note that
n+2—m >n+1—m, which guarantee the existence of the extension with
the ending [ possibly different from k. Moreover, this length is less that n+ 2
and therefore p’ exists in our model as a path). We know that C(C) < m—1,
hence |p'| < n+1—C(C). By IH, p’ ¥ C*. On the other hand, p F A", ¢
since |p| < n+2 —i for all ¢ < m, therefore, p # A" ¢ — C*. Now, since
p < P/, we can conclude that p ¥ O(AZ, ¢ — C*).

Now, the lemmas are obvious by the claim 2. For B in the claim, choose
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A itself, then if K F A and k is irreflexive , then k F A'. But if k is reflexive,
pick p = k as a path with length one. Hence [p| =1 <n+1— C(A), since
C(A) = n and therefore, p E A'. Therefore, for any k F A there is a node in
K’ like k" such that k' F A". O

Now for the proof of theorem 3.3 we have:

Proof. 1f K4 ¥ A, then there is a finite transitive Kripke tree with clusters
like (K, R,V) and a node k such that k£ £ —A. If we apply lemma 3.4 for
—A, we can construct a finite transitive irreflexive Kripke model (K’, R, V")
and a node k' such that &' ¥ —A". But (K’, R',V’) is a model of GL and
GL - At. A contradiction. Hence K4 - A. O

Now, based on the completeness of the translations, which we have intro-
duced, we are able to prove the completeness theorem. But, since we want to
establish a more powerful completeness result, i.e. the strong completeness,
we need one more lemma.

Lemma 3.5. There is a hierarchy of theories like {T,}5°, such that for
any n, 13, C T, and T,, C T, 11 provably in 13, and also an arithmetical

substitution x such that for any modal formula A, if there exists a witness w
for A such that (M, {T,,}5°,) E A*(w) for all M E I%;, then K4+ A,

Proof. Add infinitely many new atoms like @ = {¢,}32, to the language
of modal logics. And apply all axioms and rules of the logic K4 to the new
language to construct a new system K4(Q) and also do the same thing for the
logic GL to construct GL(Q). Now, pick the substitution * as the uniform
substitution of Solovay’s theorem (see [2]). It simply says that for any A,
I¥, F A" iff GL(Q) F A, where A* means the combination of substituting
any atom p with p* and interpreting all boxes as the provability predicate
of I¥,. Now, for any n, define T,, = I¥X; + {q/}I*,. We claim that this =
and this hierarchy {7),}>°, works for the claim of the lemma. First of all,
it is easy to show that the hierarchy has the claimed conditions. Secondly,
we have M F A*(w) for all M E I¥;. Therefore, I3, = A*(w). Use ¢’s in
the translations from K4 to GL. Since the interpretation of a box in any
formula like 0D with witness m is Pry, (D), and it is provably equivalent
to Pris, (Aiby ¢ — D), it is easy to see that there is a translation ¢, such
that I3 F A*(w) < (AY)*. (In fact t equals to the witness w.) Therefore,
IY; F (AY)*, by the uniform version of Solovay’s theorem, GL(Q) F A’ and
by theorem 3.3, K4(Q) - A. It means that there exists a proof for A in
K4(Q). Now, since A does not have any ¢; € @, it is enough to put ¢; = T
everywhere in the proof to find a proof for A in K4. O]
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Now we want to prove the strong completeness theorem.
Theorem 3.6. (Strong Completeness) If PtM ET = A, then I' Fgq A.

Proof. We know that there are the sequence of extensions I, and extensions
By,...,B; of A and witnesses u for I', and wq,...,wy for By,..., B such
that for all provability models and all arithmetical substitution o,

M = T7(u) = { B (wi) }eo-

Now, pick the hierarchy and * from lemma 3.5. Then for all M F ¥,
M ET*(u) = {B; (wi)}eo-

Hence

k
IS, + T (u) = \/ By (w)).
=0

Therefore there is a finite subset of I like A and a subset of witnesses v from

u, such that
k

IS+ A (v) F \/ B (w)).
=0

Hence, for all M E 1Y, we have

k
ME N\A* () = \/ B (w).
i=0
By lemma 3.5, K4 - A A — \/f:0 B;, which means T Fgy4 \/f:0 B;. Finally,
since in the presence of the axiom K, all extensions of a formula are equivalent
to itself, I' by A. O

4 The Logic KD4

The logic KD4 is a modal logic resulted by adding the axiom D : JA —
—[0—-A to K4. It is easy to see that we can change this axiomatization
with adding the axiom =[] L instead of D. Now, intuitively, if we have
the consistency of theories and also they are provable in their meta-theories,
then the axioms of KD4 are valid. (Since we have the neccesitation rule, the
sentence [J-[J L is also provable and this is why we need the consistency
statements to be provable, as well.) The formalization of these models is
exactly what we will call consistent provability models and we will show that
the logic KD4 is sound and strongly complete with respect to these models.
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Definition 4.1. A provability model (M, {T},}°,) is called consistent if for
any n, M thinks that T, is consistent and T,; F Cons(T,), i.e. M F
Cons(7},) and M F Pry, ,(Cons(7T},)). Moreover, the class of all consistent
provability models will be shown by Cons.

Now, let us prove the soundness theorem.
Theorem 4.2. (Soundness) If I Fkps A, then Cons F ' = A.

Proof. We use the soundness theorem for K4. If I' Fxpy4 A, then
I'+0-0 1L A=O Lhgg A

Now, based on the soundness of K4, there are sequences of extensions of
I'+0-0 L A=0 L and A like T+ {0O(V/, ~0 L) A =0 L}ier and {Ag}_,
and witnesses u, (1, (mi;);_g, ki) and wy, such that for any provability model
like (M,{T,}5°,) and any arithmetical substitution o,

M ET7(u) + {Prm(\z/ —Prp,,; (L)) A =Pry, (L) }ier = \/ A7 (wy,))
k=0

j=1 =

Now, if we apply this fact on the consistent provability models, since n; > m,;
and for any n, M F Pr,1(=Pr,(L)), we have M F Pr,,(=Pr,, (L)) for all
i <rand j < s;. Moreover, since for any n, M F —Pr,(L), we have M F
—Pry, (L). Therefore, for any consistent provability model like (M, {T,,}5%)
we have

MET?(u) = \t/AZ(wk)

which completes the proof of the soundness for KD4. n

For the completeness theorem, the idea is reducing the completeness of
KD4 to the completeness of K4 which was proved in the previous section.

Theorem 4.3. (Strong Completeness) If Cons E ' = A, then I' Fxpy A.

Proof. We know that there are the multiset I, and extensions By, ..., By, of
A and witnesses u for I', and wy,...,wy for By, ..., B, such that for any
consistent provability model and any arithmetical substitution o,

(M ATa}20) F T7(u) = {B7 (wi) }ip-

Now, define A as a sequence which consists of an infinite number of the
formula (- 1 and also an infinite number of the formula =7 1. We claim
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that I'; A = A is true in the class PrM. For the extensions, use the same
extensions for I' and A, and also use A itself, as its sequence of extensions.
For witnesses, use u, w;’s and for A, for any number n, use (n + 1,n) for
one of the formulas [J=[J L and n for one of the formulas —[J 1. Call this
witness v. Now, let (M,{T,,}>°,) be an arbitrary provability model. We
claim that -
M E T(u), A7(v) = {B7 (w) Yo,
Because when M F T9(u), A°(v) then M E A?(v) which means for any n,
M £ Pry1(=Pry, (L)),

and
M E —=Pr,(1).

Therefore, (M,{T,};°,) is a consistent provability model and since M F

[ (u) we have,
k

(M AT} F ) BY (wy).
i=0
Therefore, for all provability models and all o, we have

M T7(u), A% (v) = {BY (w) Y.

Hence, by the strong completeness of K4, we have I') A Fx4 A and since all
formulas in A are provable in KD4, we have I' Fgp4 A. O

Remark 4.4. Note that the truth of a formula in a class of provability models
means the existence of a uniform sequence of extensions and also a uniform
witness for it. In other words, we have a fix sequence of natural numbers
which works for all provability models in the class. Therefore, we could claim
that sentences just describe the behavior of the natural numbers instead of
some actual theories. What does it mean? It means that sentences do not
describe the behavior of a concrete specific provability model, but instead,
they talk about the roles of these ingredients in the structure (provability
model) which are encoded by the natural numbers. Informally speaking,
sentences just transcend the actual theories to the their abstract roles in
the structure of a provability model. (As an example, think about how the
cardinal numbers transcend the concept of cardinality from the actual sets.)
For instance, in the case of the logic KD4, it describes the relation between
a meta-theory 7,1 and its theory 7,, which is the condition that the meta-
theory is powerful enough to show the consistency of the theory. This is
not about some actual theories which we use; it is about the power of the
meta-theory in comparison to its theory. In other words, KID4 describes the
abstract condition of consistency and provability of consistency. This fact is
true in all soundness-completeness results we propose in this paper.
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5 The Logic S4

Intuitively, if we have the property that all theories are sound and the sound-
ness of theories are also provable in their meta-theories, all axioms of S4,
would be valid. The formalization of these models is exactly what we will
call the reflexive provability models. In fact, we will show that the logic S4
is sound and also strongly complete with respect to the class of all reflexive
provability models.

Definition 5.1. A provability model (M, {T,}>°,) is reflexive if for any n,
M thinks that 7T;, is sound and 7}, F Rfn(7,,), i.e. M E Prrg, (A) — A and
M & Prq,,, (Prp,(A) — A) for any sentence A. Moreover, the class of all
reflexive provability models will be shown by Ref.

Now let us prove the soundness theorem.
Theorem 5.2. (Soundness) If I' Fgq A, then Ref ET' = A.

Proof. To prove the soundness theorem, we will use the cut-free sequent cal-
culus for S4, i.e. GS4 (see [8]). And, we will use the conventions of theorem
3.1. Now, we want to prove the following claim:

Claim. If I' = A is provable in GS4, then there are sequences of exten-
sions like I' and A and also witnesses w; and w, for I' and A, respectively
and a number n greater than all the numbers in w; and ws, such that for any
reflexive provability model (M, {T,}:°,) and any arithmetical substitution
o, T, - T7(wy) = A%(wy) is true in M. We will call the number n as the
context number.

The proof of the claim is by induction on the length of the proof of I' = A
and the proof for the non-modal cases are exactly like the proof of theorem
3.1. But the difference is just the presence of the context number n here. To
find this number in all non-modal cases, if the case is the axiom case, any
number works; for contraction and exchange, just use the same number in
the induction hypothesis. For weakening, use the successor of the maximum
of the context number of the induction hypothesis and the arbitrary chosen
witness for the weakening formula. For the other cases, it is enough to use
the maximum numbers of the induction hypothesis. Now we want to prove
the case of the modal rules.

L. If I'OA = A is proved from I'; A = A, then by IH, we can find
sequences of extensions {I',{A4;}/_,}, A and witnesses w; = (u, (z;)]_,)
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and ws and the context number n. Now for the sequent I''JA = A,
use the sequences of extensions {T', {{JA4;}"_,}, A and for the witnesses use
(u, ((n,2;))i_y), we and for the context number use n + 1. By IH, we know
that for all reflexive provability models and all arithmetical substitution o,
M thinks
Ty = 17 (w), {A7 () Fizo = A7 (w2).

Now we claim that there is a proof, formalizable in I3, for the following
statement: If T,, C T}, 41, Tpi1 b Prp(A7(z;)) — AZ(z;) for all ¢ <i < r and

T B T7(wn), {A7 (z:) g = A7 (w)
then
Toir b T7(wn), {Pro (A7 () Hiop = A7 (w2).
The proof is simple. We have T,, C 7,1 and T),41 = Pr, (A7 (z;)) — A7 ().
Therefore,
Tos1 b T7(wr), {Pra (A7 (1)) Fiog = A7 (w2).

The proof just uses the fact that all first order tautologies are provable and
Pr is closed under modus ponens and all of these properties are provable in
IY;. Now since M E I¥;, M thinks that this implication is true. On the
other hand both of premises are true in M, because of IH and the condition
of being a reflexive provability model. Therefore, M thinks

Ti1 BT (wr), {Pry (A7 (2:)) g = A7 (w3),

which completes the proof.

2. t4r :>EI_A is proved from OI" = A, then by IH we have sequences of
extensions like LI and some extensions {A; }7_, and witnesses wy and (x;)_,

and a context number n such that for all arithmetical substitutions like o,
M thinks

T, =007 (wy) = {A7 (2:) }—o-

Now, for the sequent CJI' = [JA, use the extension I and 0(\/|_, A;), and
the witnesses wy and (n, (z;)]_,) and the context number n + 1.
Based on the Y;-completeness available in M, M thinks

IS F Pr(\ OF (wy) = \/ (A7 (2:))).
i=0
Because the provability predicate commutes with the implications provably
in 131, we have this property in M, hence

T

IS Pr(/\ D17 (wr) = Pro(\/ (47 (1))

1=0
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is true in M. Now again by >;-completeness, we have

r

15y = NOT (wi) = Pra(\/ (47 (2:)))

1=0

true in M. And finally since T, is an extension of I3, provably in I3, we
have the inclusion in M, hence

T

Toer = @7 (w1) = Pro(\/ (A7 (2:)))

=0

is true in M which completes the proof of the claim.

Now for the proof of the soundness theorem, if I' kg4 A then there exists
a finite subset A of I' such that A g4 A. Then GS4 F A = A, then
by the claim, there are sequences of extensions like A and {4;}/_, and the
witnesses u and (z;)7_, and a context number n such that for all reflexive
provability models like (M, {T,}52,) and all arithmetical substitution o, we
have T, = A%(u) = \/;_, AZ(z;) in M. Therefore, by soundness of T}, in
M, we have M E A%(u) = \/i_, A7(x;). Now, define T as the sequence of
extensions of I' by using I' and changing the subset A to A and also use any

arbitrary witnesses to extend u to a witness for I'. Call this new witness v.
We have

MET"(v) = \/ A ()

which is what we wanted to prove. O

For the completeness theorem, the idea is the same as the idea of the
original proof of Solovay’s theorem. We will modify the technique of encoding
Kripke models in arithmetic. In this case, we need to encode transitive
reflexive trees with clusters. Therefore we have two tasks. Firstly, finding a
method to encode the clusters and secondly, modifying Solovay’s construction
to work with reflexive trees instead of irreflexive ones.

Lemma 5.3. Let m be a natural number and {T,}_, be an increasing hi-
erarchy of theories such that 1%, C Ty, and for any n, T,41 F Rin(T),).
Therefore, there are arithmetical sentences Ay, As, ..., A,, such that:

(¢) For anyi and j, if i # j then I¥ = A;NA; — L
(i) 1Dy F VT, A,

(731) For anyn < N, and any i < m, T,1 F —Prp, (—A;)
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(1) If we also assume that all theories in the hierarchy are consistent, then
for anyn < N and any i <m, NE =Prp (-A;) and NE A,,.

Proof. First of all, we want to prove the following claim:

Claim. For any increasing reflexive hierarchy like {7}, }2_; and any nat-
ural number 1 < p, there is another increasing hierarchy like {T/L}ano such
that for any n < N, T, = T, and for any i < Np — 1, T},, I Cons(T}).
Moreover, if all of the theories in the T hierarchy are consistent, all of the
theories in the 7" hierarchy will be consistent, as well.

To prove the claim, define 7} as follows: For i = np, define T = T,,,
then for the any np <i < (n+ 1)p — 1 define 77, inductively as the theory
T!4Cons(T}). First of all, we want to show that for any np <1i < (n+1)p—1,
Tiyy € T(,41), and also T, ) proves the reflection principle for 77,,. The
proof is based on the induction on i. If ¢ = np, we know that T(/n H)p
proves the consistency for 77, hence 17, ., C T{,,, . Moreover, since
Tpi1)y | Cons(T},), it is easy to check that T{, ) can prove the reflec-
tion principle for 7, ., = T, + Cons(T},). Now, suppose that we have the
claim for ¢, and we want to prove it for i + 1. By IH, T(’n +1)p Proves the
reflection principle for 77, hence it proves the consistency of I and hence

Ti,1 € 1,11y, Now, again, it is easy to show that since 17, ) Cons(T7),
T(’n +1)p also proves the reflection principle for T/, =T} + Cons(T7).

Now, we claim that for any ¢, 7] C T}, , and T}, , proves the consistency
of T;. The proof is based on two different cases of the definition of 77, . If
we are in the first case, then i + 1 = (n + 1)p for some n. Then by what
we proved so far, the claim is obvious. If we are in the second case, then
T/, = T; + Cons(T7}), and hence the claim is again obvious from the defini-
tion.

Moreover, if the first hierarchy is consistent, then since all T}’s are subtheo-
ries of T]/Vp = T, the second hierarchy is consistent, as well.

Now, we want to prove the lemma. If m = 1, pick A, = (0 = 0);
then it is easy to verify that this sentence satisfies the conditions of the
lemma. The reason is that T, proves the consistency of 7;, and hence
Ty41 F —=Pr,(0 # 0). Moreover, if all theories are consistent, then —A; is not
provable in T,.

Now assume that m > 1 and use the hierarchy 7' from the assumption of
the lemma, and also use the aforementioned construction to construct the
hierarchy 7", for p = 2m. We want to define the sentences A; based on this

31



new hierarchy. Define

N
BT = \/ (COHS(TZIkm—QT) A _'CODS(Tékm—QT—l—l))
k=1

for 1 < r < m —1. Now, define A, = B; and A, = /\:;11 -B; A B, for
2<r<m-—1and A4,, = /\Z’:l1 —B;. We claim that these A,’s have the
property in the lemma. First of all, because of the form of A;’s, it is obvious
that any two different A; and A; are contradictory and also \/|-; A,. In fact,
these claims are first order tautologies and hence they are provable in 3.
Now, we want to show that

TQI(n—i—l)m + _'PrTQ'nm(_'AT)

For now, assume r # 1, m. Let us argue in I3;. If = A, is provable in T
then by definition \/;:11 B;V—B, is provable in Ty, .. Now, from By, t < r—1,
we could conclude

V (Cons(Tp20)) V \/ (~Cons(Tpa11))

I J

where [ = {k | 2km —2t+1 > 2nm+1} and J = {k | 2km — 2t +1 < 2nm}.
First of all, we know that T3, proves Cons(T3,,, o) if & € J. The reason
is that if £ € J, then 2km — 2t + 1 < 2nm and since the consistency of
any theory is provable in the higher theory in 7" hierarchy, we can prove
the consistency of T3, o, in T5,,,. Therefore, we can conclude that the
following is provable in T5,,..

\/ (Cons(Tyy,,0))-

1

On the other hand, we know that if £ € I, then £ > n+1 because 2km — 2t +
1 > 2nm+1 is impossible when k& < n. Therefore, 2km —2t > 2(n+1)m—2t.
Moreover, 2(n+1)m—2t > 2(n+1)m—2(r—1) since t < r—1, and since the
hierarchy is increasing, Cons(1y,,_s,) implies Cons(T5,,, 1, 5(-_1))- Hence,

By implies Cons(Ty,, ;1) _o(—1y)- Furthermore, from

N
_|B7’ = /\ (Cons(Tékm—Qr) - Cons(Tékm—Zr’—l—l))

we conclude
Cons(Té(n—i—l)m—%“) — COHS(TZI(n+1)m—2r+1)‘
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Therefore, we have
Ty (COHS(TQI(n+1)m—2r) — Cons(T; 2(n+1)m— or41)) V ConS<T2/(n+1)m—2(r—1))'
Hence

2nm + COHS( 2(n+1)m— 2'r) - COI]S( 2(n+1)ym— 2T+1) v COHS( 2(n+1)ym—2(r— 1))

But we have 2(n + 1)m — 2r + 1 < 2(n + 1)m — 2(r — 1); therefore

Tym | Cons(Ty 2(nt1)m—2(r— 1)) — COHS(T/(n+1)m 2r41)-

And hence

2nm + COHS( 2(n+1)m— 27‘) = COHS( 2(n+1)m— QT‘H)

Since r < m, we have 2(n + 1)m — 2r + 1 > 2nm, therefore we have

!
2(n+1)m—2r+1 - Cons(T; 2(n+1)m— 2r1)-

Note that all the parts of this argument is formalizable in I3;. Now, for the
first time we want to use 717, to reach the contradiction. Since 1 < r,

2(n+1)m
then 2(n+1)m —2r +1 < 2(n+1)m, hence the consistency of Ty, 1y, 5,41
is provable in T} 2t 1)m’ Therefore, since we are arguing in T2(n +1ymy We have

the consistency of T On the other hand, we showed

(n+1)m—2r+1"
rT2’<n+1>m72T+1 (CODS<T 2(n+1)m— 2r+1))

By the formalized version of the second incompleteness theorem in I3, we
know that if a theory proves its own consistency it is inconsistent; hence
Tzl(n Hym—2r11 is inconsistent. A contradiction. Therefore, T} could
show that —A, is not provable in T3,

2(n+1)m

Note that the proof uses the form of —A, which has some positive B;’s
and one negative B,.. But Now if we are in the cases r = 1 or r = m, then
—A, has just positive B;’s or just negative B;’s. In these cases it is enough
to use the part of the proof which investigates the corresponding B;’s. Again
argue in 3. For the case, r =1, it T3 proves = Ay, then T3, proves —B;.
Therefore,

Ty Cons(Ty,,_5) — Cons(Tyy, 1))

||>2

Hence
Ty (CODS(TQI(n+1)m—2) — Cons(7, 2(n+1)m— 1)-
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Since m > 1, we have 2(n 4+ 1)m — 1 > 2nm and hence

2/(n+1)m71 = (COHS<T2/(n+1)m72) - CODS<T2/(n+1)m71))

and then since 2(n + 1)m — 1 > 2(n + 1)m — 2, we have

2/(n+1)m—1 - COHS(Té(n—Q—l)m—l)‘

Now argue in TZI(nJrl)m‘ We have the consistency of T2/(n+1)m71' On the other
hand, Té(n +1)ym—1 Proves its own consistency, hence by the formalized second
incompleteness theorem, it should be inconsistent. A Contradiction. There-
fore, Ty, 1), Proves that —A; is not provable in Ty,,,.

For the proof of the case r = m, use the idea of I and J for positive
By’s. It is enough to use I and J, to show that if = A,, is provable in 77, .
then Cons(Tz’(nH)m_Q(m_l)) will be provable in TQ/(n—l-l)m—Z(m—l)' After that,
reaching a contradiction is the same as for the other cases.

Now, since T3, = T,,, we have a proof for the part (ii7). For (iv), if the
hierarchy 7T is consistent, then the hierarchy 7" is also consistent and hence
if = A, is provable in 73, = then we have

T2/(n+1)m727“+1 = COHS<T2/(n+1)m72r+1)

for cases 1 < r < m, and

T2/(n+1)m71 = COHS<T2/(7L+1)m71)

for r =1, and

2/(n+1)m—2(m—1) - COHS(TQI(n—i—l)m—Q(m—l))

for r = m. consider that the arguments for these statements are formalizable
in I3} and hence they are true. For 1 < r < m, by the second incompleteness
theorem, TQ’(n Fme2r+1 should be inconsistent. A contradiction. Therefore,
T3, can not prove = A, and hence T,, ¥ —A,. The cases r = 1, m are similar.
For the second part of (iv), note that we know A,, = A", =B,. Now, we

r=1
want to show that all B,’s are false. We have

N

B, = \/ (Cons(T3p—o,) A =Cons(Top,_o,11))
k=1

and since the whole 7" hierarchy is consistent, all statements (Cons(73y,,, o, )/
—Cons(1%;,,_9r41)) are false and hence B, is false. Then —B, is true and
hence A,, is true. O
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Lemma 5.4. Let (K, R) be a finite reflexive transitive tree with clusters and
let k be one of the nodes in the root cluster. Moreover, let (N,{T,}_,) be a
reflexive provability model. Then there exists a set of arithmetical sentences

{S:}iex such that

(i) If i # j, Ty = S; — =5,

(i) Toir F Si = Pra(Ver S5)-
(¢i3) If (4,5) € R then T,,41 F S; = —Pr,(=5;).
() NE S

Proof. Like Solovay’s proof of the completeness of GL, define a recursive
function h : N — K such that

h(0) = k and h(z + 1) = {j if (z’,j).e R and Prfy(z,~S5;)
h(x) otherwise

where S; = Py N A; Aj = j and Py = 3yVae > y h(x) € I1(j) in which
I(j) means the cluster of j. Moreover, A;’s are the sentences constructed in
lemma 5.3 for m = Card(I(j)) and the hierarchy {T,, + P;;} . In addi-
tion, we choose A; as the sentence A,, from lemma 5.3. By these sentences,
we mean the sentences from the proof of lemma 5.3, and not what the lemma
claims. The reason is that we have to be sure that these sentences are de-
finable from the code of the function A which has not been defined yet. The
reason is the following:

The function A should be defined based on the classical circular argument
based on the fixed point lemma in I3;. The important part is that the A;’s
constructed in lemma 5.3 are arithmetical formulas based on the code of Pp(;,
which makes the whole circular argument possible. It is provable in I3, that
h is a function. (Note that we put j = j in the definition of S; to make sure
that there is at most one j such that = would be a proof for =.5; and it makes
h a function.) It is also provable that h eventually stops in some cluster and
since h is a function, this cluster is unique. The existence of such cluster is an
obvious application of the fact that A is an increasing function and the tree
is finite. Note that all of these facts are provable in I%;. Now, to prove (i),
consider two cases. If i and j belong to different clusters, then Py and Pj; )
are contradictory based on what we claimed about the uniqueness of the limit
cluster. This contradiction is also provable in I3; and hence in T;. Now if ¢
and j belong to the same cluster, then by lemma 5.3, we know that A; and
A;j are contradictory, provable in /¥, and hence we reach a contradiction
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for S; AS; in Tp. For (i), we argue in T,,41. If we have S;, then we have Py
and there exists x such that h(x) € I(i). Since this formula is ¥y, by ¥;-
completeness we have Pr,(h(x) € I(i)). Moreover, h is provably increasing
in 1Y and hence in T, and also provably in IY; we know that h eventu-
ally stops in some cluster, i.e. Pr,(\/; P;). But we have Pr,(h(z) € I(i)).
Therefore, the limit should be above i which means Pr,,(V; jicg Pr(j))- On
the other hand, by lemma 5.3 we know that ¥, - \/,.; A;, and we can con-
clude that Pr.(V, ;cr Pr) A A;), hence \; ;g S

For (iii), we will argue in 7,41 and the proof is by contradiction. If
we have S; and Pr,(=S;) for some j which (i,j) € R, then there are two
possibilities. First, when the clusters of ¢ and j are different. We have
S; = Priy A A;, hence we have Pr;) which means that there is some number
z, such that for all y > z, h(y) € I(i). Moreover, we know that Pr,(—5;)
and since T,, C Ty, we have Pry(—S;). Therefore, there exists some z such
that Prfy(z, —S;). It is easy to see that we can pick z > z. Hence, we can
conclude that h(x + 1) € I(i). Now, since (i,7) € R, j is above all nodes in
I(i) and Prfy(z,S;), hence h(x + 1) = j. But h(z + 1) should belong to
I(i) and j ¢ I(i); a contradiction. Therefore, =Pr,(—S5;).

Now assume that the cluster of ¢ and j is I. Then the statement S; —
Pr, (—95;) is equivalent to

P[ /\Az — Prn(PI — _|Aj).

Since {T,,}_, is a reflexive hierarchy, the hierarchy {T,, + Pr}._, is also
reflexive. Moreover, A;’s are constructed for this hierarchy, hence by lemma
5.3, we know that

Tn+1 + P] + ﬂPrTnerI(—'Aj)

which proves what we wanted.

For (iv), since h eventually stops in some cluster, there is a cluster I,
such that N F P;. If I # I(k), since h(0) = k, there should be some first
element like z, such that h(x) € I. Assume h(x) = i. Since z # 0, and
h(x) # h(x — 1), we have Prfy(z — 1,-5;) and hence, Pry(P; — —A4;). By
lemma 5.3, the theory Ty + P should be inconsistent, and therefore we have
T F = P;. On the other hand, the theory T}y is sound, hence N F —P; which
contradicts to our assumption. Hence, I = I(k) and therefore, N F Py). On
the other hand, Ty + Py is consistent because it is sound, and consequently
by lemma 5.3, A; which was chosen to be the A, from the lemma, is true;
hence S, = Pry A\ Ay is true. O
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The following lemma, uses the previous lemma to transfer the truth from
a Kripke model to a reflexive provability model.

Lemma 5.5. Assume the conditions of lemma 5.4 and let {S;}icx be defined
as in that lemma. Define o as the arithmetical substitution which sends the
atom p to \/i,:p Si. Now, for anyi € K, any modal formula A and any witness
w for A with elements less than N, we have:

Tmax(w)—l—l - Sz — Ag(w) ’LfZ FA
Tmaa:(w)-i—l - Sz — _|Ao'<w) ZfZ A

Proof. We prove the lemma by induction on A. If A is an atom and i F A,
then by the definition we have Ty F S; — A?. If ¢ ¥ A then all j’s in
A% =\, 5; are different from i, and by (i) in lemma 5.4, we conclude
Ty F S; — =A%, The proof for the boolean cases is easy. For the modal case,
if « E OB, then for all j which (i, 7) € R, we have j F B. Since w is a witness
for OB, it is equal to (n,u) where n is greater than all the numbers in w.
Therefore by IH, Tee(u)+1 - S — B7(u) for all j above i. Hence,

Tmax(u)+1 - \/ Sj — BU(U).

(i,3)ER
Since n > max(u) + 1, we have

.k \/ S — B°(u).

(i,4)ER

Then
IS FPro( \/ S;— B7(u)),
(i,7)ER

and consequently,

IS FPro( \/ S)) = Pra(B°(u)).

(i,J)ER
By (ii) in lemma 5.4, we have
Tn+1 H S@ — Prn(BU(u)),

and n = max(w). Thus, the proof for this case is finished.
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Now if i # (B, then there exists 7 which (,j) € R and j ¥ B. Again we
have w = (n,u), such that n is greater than all the numbers in u. Now by
IH, Thazw)+1 = S; = —B7(u). Since n > max(u) + 1,

T, F S; — ~B(u)

and

IO PI’n(BG(U) — _‘Sj)

and then
I ﬁPrn(ﬁSj) — =Pr,(B(u))

and by (4i7) in lemma 5.4, we have
Tn+1 H Sl — ﬁPrn(BU(U))

and again since n = max(w), the proof is complete. ]
Now, we state and prove the completeness theorem.

Theorem 5.6. (Completeness) Let (N,{T,}>°,) be a reflexive provability
model. If (N,{T,,}>>,) F A, then S4 + A. Therefore, if Ref F A, we have
S4+ A.

Proof. Since (N,{T,}°,) F A, there are extensions By, ..., By of A and
witnesses wy, ..., w, such that for all arithmetical substitutions like o, we
have N F \/f:0 B? (w;). Define C' = \/f:0 B; and w = (w;)¥_,. Therefore, we
know that w is a witness for C' in (N, {7,,}2° ). Now, we claim that S4 - C.
Pick N greater than all the numbers in w. If S4 ¥ C then there exists a
finite reflexive transitive tree with clusters like (K, R, V'), such that in one of
the nodes in the root cluster (say k), C' is false. Then by lemmas 5.4 and 5.5,
we can construct an arithmetical substitution, such that 5,041 = Sk —
—C(w). Since the model is a reflexive provability model, all T},,’s are sound
and hence N F S, — =C?(w). But by lemma 5.4 we know that N F Sy, thus
N E =C?(w), which contradicts with the assumption N E C7?(w). Therefore,
S4 - C. And finally, since in the presence of the axiom K, all the extensions
of a formula are equivalent to the formula itself, we have S4 - A.

For the second part of the theorem, it is easy to verify that that if Ref F A,
then at least for one of the provability models like (N,{7},}°,) we have
(N,{T.}>2,) E A. And then the claim follows from the first part. O

With the same techniques as above, we can strengthen the completeness
theorem to the uniform and strong uniform completeness theorems. But first,
we need a uniform version of lemma 5.3.

38



Definition 5.7. A hierarchy {7,,}°°, of theories is called uniform if there
exists a ¥y formula Prf(x,y, z) such that for any n, m and A, Prf(n,m,[A])
iff m is a code of a proof for A in T,,. The hierarchy is called uniformly
increasing if it is a uniform hierarchy and also we have 13, C Tj provably in
Iy and I3, F VaVz(Jy Prf(z,y,2) — Jw Prf(z + 1,w, 2)) and finally it is
called uniformly reflexive hierarchy if it is a uniformly increasing hierarchy
such that for any formula A, I%; - Va3y Pri(x+ 1, y, Jw Prf(z, w, A) — A).

Lemma 5.8. Let {T,,}°°, be a uniformly reflexive hierarchy of theories.
Then, there is an arithmetical sentence A(x,y) such that:

(1) IX) FVe,z <y (x#z2ANA(z,y) NA(z,y) —1)
(it) For allm, IXy = \/I", A(i,m)
(1ii) For any n, and any i < m, T,y1 F —Pry (2A(i,m))
)

() If we also assume that all theories in the hierarchy are consistent, then
for any n, and any i < m, NE —=Prp (-A(i,m)) and NE A(m,m).

Proof. The proof is basically the same as the proof of lemma 5.3. The only
difference is that, here we have to define everything uniformly. First of all we
need to define the hierarchy 7”. Since T is a uniformly reflexive hierarchy, it
is easy to prove that the hierarchy 7" is a uniform hierarchy. Note that the
definition of this new hierarchy is also uniform in p, i.e. there exists a proof
predicate Prf(z,y, z,t) which means that y is a proof for z in 7). when we
choose t as our p. Now define, B(x,y) as the following:

B(x,y) =3z > 1 (Cons(Ty

ZnyQx) A _'COHS (TZIzy72x+1 )) )

and
Alxz,y) =V1<z<z—1-B(z2,y) A B(z,y).

Note that A(z,y) and B(z,y) are the uniform versions of A, and B, in
which x stands for the index r and y for the number m. Now the proof of
the properties we claimed is exactly same as the proof of lemma 5.3. The
reason is that all properties are based on the standard numbers n, ¢ and m.
The only exception is (i), which is easily proved from the definition. O]

Theorem 5.9. (Uniform Completeness) Let {T,}>2, be a uniform reflexive
hierarchy of sound theories. Then there exists an arithmetical substitution x,
such that for any modal formula A, if there exists a witness w such that for

al MEU, Tn, (M, {T,};2) F A*(w) then S4 + A.
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Proof. First, note that according to the filteration method (see [4]), there
exists a primitive recursive algorithm which reads A as an input and con-
structs a counter model (finite transitive reflexive tree with clusters) for A if
S4 ¥ A, and outputs zero, otherwise. Call this primitive recursive function,
f. Therefore, if we use A, to emphasize that the code for A is a, we have
fla) = (W,, R4, Vo, w,) in which w, is a node in the root cluster such that
wy ¥ A,. The reason why such an f exists is that the size of a counter model
is elementary bounded by the size of the code of the formula. (See [4].) Now
assume that the function (-,-) is some canonical pairing function which is
primitive recursive. Define g(a) as the following primitive recursive function:
Compute f(a), change the name of all nodes like w in W, to (w, a) and code
the whole model again.

Now pick all g(a)’s and put all of them over one new reflexive root, k; and
for valuation, use the induced valuation of the model plus the fact that the
node k does not accept any atom. Then, use the technique of lemma 5.4 and
define the function h on the whole new model:

h(0) = k and h(z + 1) = {j if R(h(z),2) and Prfr(z,=5(2))

h(z) otherwise

Where firstly, T = |J,—,Tn. It is easy to check that since the hierarchy
is uniform, its union is also a recursively enumerable theory which has the
following property: 1% F Pr,(A) — Prp(A). Secondly, R(y, z) is a primitive
recursive relation (A; formula in /%;) which reads nodes y and z and if
y # k, it decides whether they belong to the same model g(pro(z)), and if
yes, whether (y, z) belongs to the relation of g(pro(2)), i.e. Rygry(z))- And
if y = k, then the relation R(y,z) decides whether z is in the g(pro(z)) or
not (where pro(z) is the index of the model which z belongs to). This R is
a formalization of the accessibility relation of the new model. Note that we
have to choose R in a way that the following holds:

(i) IS1F Va,y,z (R(z,y) A R(y, 2) = R(z, 2))
(i7) For any node i # k, I¥; - Va(R(i,x) — ng(pro(m(i,j) x =)

It is easy to find such an R. The idea is, first using g to define a primi-
tive recursive function H(z) which reads z and outputs the whole set above
z. Then define R(x,y) as the existence of a sequence w from x to y such
that for any r, w,;; belongs to H(w,). The proof for these two properties
are starightforward. (i) holds because of our transitive definition of R. (i7)
needs the claim that if w is a sequence from i to x, then x € H(z). Use
induction on the length of w to prove the claim.
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And finally, the formula
S(z) = JyVe > yh(x) € I(2) N A(z,Card(I(2))) Nz =z

where I(z) is a primitive recursive function, which reads z and computes
the whole cluster of z. Note that here we use a uniform version of S;’s, and
consequently we need the uniform version of A,’s. Now, for any ¢ # k, the
model above w; is a finite reflexive transitive tree with clusters, and hence
with the same arguments, we have the following:

(i) To - Va,y (v £y — (S() = S(y)).

(i) T - S(0) = Pra(Ver S()) for all i # k.
(iii) If (i,§) € R then T,y b S; — =Pr,,(~S;) for all i.
(iv) NE Sj.

Since the model above any node i # k is a finite model, the proof is the same
as the proof of lemma 5.4, with only some minor changes. Firstly, for (i), we
need the uniform version of the proof of lemma 5.4. It is implied by the facts
that h is a provably total function in I3, and also the part (i) in lemma 5.8.
Secondly, for (ii), we need to prove that if the function reaches i, then the
limit cluster exists and it is above the cluster I(7). It should be provable
in I3;. The idea is based on the fact that h is increasing and also the fact
that if h reaches i, we can find the elements above 7. These simple facts are
provable by two properties of R which are mentioned before.

Now define the arithmetical interpretation as follows: p* = 3z S(z) A
V(z,p) where V(z,p) is a primitive recursive predicate (i.e. a A; formula
in I¥) which reads z and p and if z # k decides whether p is true in the
node z in the model g(a), where a = pry(z) is the index of the model which z
belongs to. And if z = k, then rejects for all p. Since ¢ is primitive recursive,
this primitive recursive predicate exists. Note that V' is a formalization of
the valuation of the new model.

Now by a similar proof of lemma 5.5 we know that for all ¢ # k, we have

Tmam(w)—i—l F Sz — AU('IU) ifiEA
Tmaac(w)-‘,—l - Sz — _|Ao(w) ifiE A

Now if S4 ¥ A, then ¢ = w, ¥ A, where a is the code of A. We have

Tmax(w)+1 - SZ — _'A*(UJ)
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Hence for all n > maz(w) + 1,
T,k S — —A*(w).

Then by
Tn+1 + Sk — _|P1"n<_|Si),

we have

Thi1 b S — —Pr, (A" (w)).

Now since T),41 is sound, N F —=Pr,(A*(w)) which means T, ¥ A*(w), and
since n could be any big number, T' ¥ A*(w), therefore, there is a model of
T =, T, like M, such that M ¥ A*(w), which is a contradiction. Hence,
S4 + A. O

Now, we are able to prove the strong completeness theorem.

Theorem 5.10. (Uniform Strong Completeness) Let {T,,}5°, be a uniformly
reflexive hierarchy of sound theories. Then there exists an arithmetical sub-
stitution *, such that for any modal sequent I' = A, if there exist witnesses
w and v such that for all M =\, T,,, (M, {T,};>,) E I'*(u) = A*(v), then
S4+T = A. Moreover, If Ref ET' = A, then ' g4 A.

Proof. Use the arithmetical substitution from the uniform completeness.
Now, since

(M AT} Z0) F I (u) = A%(v)
for all M E U, T, then |J,, T, + I'*(u) = A*(v). Therefore, there is a finite

subset A C I' and a witness w, which is a subset of u, such that |, T,, +
A*(w) = A*(v). Thus, for all M &, T, we have

(M ATn}nZo) F A (u) = A% (v).

By uniform completeness, we have S4 - A = A and hence, S4 T = A.

The second part of the theorem, is obvious from the first part; because if
Ref ET = A, then the assumption of the first part is true for some sequence
of extensions like I' and By, Bs, ..., B,. Hence I g4 V:_, Bi. Now, since in
the presence of the axiom K, the extensions of a formula are equivalent to
the formula itself, we have I' kg4 A. O

6 The Logics GL and GLS

As Solovay showed in his pioneering work, [10], the logic GL is sound and
complete for the interpretation that interprets all boxes as provability predi-
cates in some appropriate theory. Moreover, he showed that if we change the
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definition slightly, we can also capture the logic GLS. We translate his results
into our framework and after defining constant and sound-constant provabil-
ity models, we will show the soundness and completeness of GL and GLS
for the classes of all constant provability models and all sound-constant prov-
ability models, respectively. In fact, the soundness-completeness theorems of
these logics are just a new representation of Solovay’s results. Consequently,
we can claim that our provability interpretation is actually a generalization
of Solovay’s provability interpretation.

Definition 6.1. A provability model, (M, {T,}2°,) is constant if for any n
and m, (M,{T,}>2,) thinks that T,, = T,,, i.e. M F Prr, (A) < Prp, (A4)
and M F Prq (Prr, (A) < Pry, (A)); and it is called a sound-constant model
when it is constant and for any n, M thinks that 7T, is sound, i.e. M F
Prp, (A) — A. The class of all constant provability models and the class
of all sound-constant provability models will be shown by Cst and sCst,
respectively.

Remark 6.2. In the previous definition we used a notion for the equality
of theories which seems ad-hoc and artificial. Here in this remark, we will
justify that definition. Intuitively, M thinks that two theories are equal,
when their provability-based properties are the same. In a more precise way,
we say that M thinks 7}, and T,, are equal, when for any modal sentence
o(p), any witness w and any arithmetical substitution o for all atoms ex-
cept p, M E ¢7(Prp,,(A))(w) < ¢7(Pr,(A))(w). Now, we will show that
this definition of equality is equivalent to the original one. First of all, if
we use ¢(p) = p, we will have M F Prr, (A) < Prr,(A). Moreover, if
we use ¢(p) = O(p + ¢q), w = (0) and o where ¢° = Pr,(A), we have
M E Prq, (Prr, (A) <> Prp, (A)). For the converse, we use induction on A to
show the following claim.

Claim. For any formula ¢(p), any witness w and any arithmetical sub-
stitution o for all atoms except p, M thinks that both of the following state-
ments are true: ¢?(Pr,,(A))(w) <> ¢7(Pr,(A))(w) and Ty F ¢7(Pr,,,(A))(w) <>
¢7 (Prn(A))(w).

The atomic case and the boolean case are obvious. For the modal case,
it is an easy consequence of the fact that Y;-completeness and some basic
facts about the provability predicate are true in M.

Now we are ready to prove the soundness-completeness result for GL.
First of all, a technical lemma.
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Lemma 6.3. Let (M,{T,}>2,) be a constant provability model. Then for
any modal formula A, any witness w and any arithmetical substitution o, if
0 assigns zero to all the bozes of A, then M thinks that both of the following
statements are true: A%(w) <> A?(0) and Ty = A% (w) <> A?(0).

Proof. Use induction on A. The case for the atoms and the boolean connec-
tives are easy. For the modal case, if A = OB, and w = (n,u), then by IH,
M thinks Ty = B?(u) <+ B°(0). Hence T,, F B?(u) <» B?(0) and by X;-
completeness, M E Pr,(B?(u) <+ B?(0)). Thus Pr,(B?(u)) <> Pr,(B°(0))
is true in M. Now, since Pr,(B?(0)) and Pry(B?(0)) are equivalent in M,
we have

M E Pr,(B°(u)) < Pro(B°(0)).

For the other part of the claim, for OB, we have M F Pr,(B%(u) <> B?(0)).
Therefore by ¥;-completeness, M thinks Ty F Pr,(B?(u) <» B?(0)). Hence
To F Pr,(B%(u)) ¢ Pr,(B?(0)) is true in M. But we know that M thinks
that

Ty b Pr,(B°(0)) ¢ Pro(B7(0)),

therefore, M thinks that

Ty - Pr,(B°(u)) ¢ Pro(B7(0)).

Theorem 6.4. (Soundness) If I Fgr, A, then Cst F ' = A.

Proof. By the previous lemma, it is enough to prove the following statement:
if I Fgr A, then for any arithmetical substitution o, M E I'’(0) = A“(0).
To simplify the proof, we use A% instead of A7(0). Now, to prove the state-
ment, we claim:

Claim. If GL F A, then for any arithmetical substitution o, I>; - A°.

We prove the claim by induction on the length of the proof. The case for
the axioms is easy; the main point is Lob’s axiom which is derived by Lob’s
theorem formalized in I3;. For the case of the rules, the case for the modus
ponens rule is easy; for the neccesitation rule, by IH we have I3, - A, then
since 1¥; C Ty we have Ty = A% and hence by Y;-completeness, we have
I¥; F Pro(A%) which completes the proof.

Now for the soundness theorem, if I' Fgr, A then there exists a finite
subset of I like A such that GL - A A — A. Then by the claim, we have
I+ A% — A?. Thus for any model M, M ET? = A°. ]
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For the completeness of GL we have:

Theorem 6.5. (Uniform Strong Completeness) Let 1%, C T be a r.e. -
sound theory and {T,}:°, be a hierarchy of theories such that for any n,
T, =T, then there is an arithmetical substitution x such that for any modal
sequent I' = A, if for all M F T, we have (M, {T,,}°,) E T = A, then
I' gL A. And especially, if Cst ET' = A then I' gL A.

Proof. Pick % as the uniform arithmetical substitution in Solovay’s com-
pleteness theorem for 7" (see [2]). Now pick M E T, arbitrarily. We have
(M, {T,}>2,) F T = A, hence there are a sequence of extensions like I' and
extensions like {A;}7_, of A and witnesses like u and w; such that

M ET*(u) = \T/A;*(wl)

=0

Since all the theories are equal, we can easily verify that for any formula B
and any witness v, B*(v) is equivalent to B*, where B* means a combination
of substituting all the atoms by * and interpreting any box as the provability
predicate for T'. Then we have

MET = \/4;.
i=0
Moreover, it is easy to prove that if B is an extension of C, then B* is
equivalent to C* in IY; and hence M E I'* = A*. Since M is arbitrary, we
have T + I'* = A*, therefore, there is a finite subsequence of T" like A such
that T'+ A* = A*. Then by Solovay’s uniform completeness theorem, we
have A bFqgr, A, thus I' Fgr. A. For the second part of the theorem, it is
easy to show that if Cst E ' = A, then the assumption of the first part for
T = IY is true, and hence I' Fgy, A. O

For the case of GLS we have:
Theorem 6.6. (Soundness) If I' Fgrs A, then sCst E ' = A.

Proof. If T Fgrs A, then there are formulas By, Bs, ..., By such that I' Fgr,
/\le(DBi — B;) — A. By the proof of the soundness of GL, we know
that for any constant provability model and any arithmetical substitution o,
M E T7 + N (Pro(BY) — BY) = A”. Since M E Pry(C) — C for any
C, we have M F ' = A°. Now, use lemma 6.3 to change the index of the
theories to an appropriate increasing sequence. O

Moreover, we have the completeness theorem.
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Theorem 6.7. (Completeness) Let 1%, C T be a sound r.e. theory and
{T,.}52, be a hierarchy of theories such that for anyn, T,, = T. If (N, {T,,}>°,) E
A, then GLS F A; and especially, if sCst E A, then GLS F A.

Proof. By the assumption, we have (N,{7,}>°,) F A. Hence, there are
extensions like { A;}7_, of A and witnesses like w; such that for all arithmetical
substitutions like o, N F \/;_, A7 (w;). Since all the theories are equivalent, it
is easy to show that for any formula B and any witness v, B?(v) is equivalent
to B?, where B? means a combination of substituting any atom by ¢ and
interpreting any box as the provability predicate for 7. Therefore, N F
Vi_o A7. Moreover, it is easy to prove that if B is an extension of C, then
B? is equivalent to C? in I3, hence N F A?. Now since o is arbitrary, based
on Solovay’s second completeness theorem, GLS + A.

For the second part of the theorem, it is easy to verify that if sCst F A then
the assumption of the first part for 7" = I3 is true and hence GLS - A. [

7 The Extensions of KD45

Intuitively, the logic S5 does not admit any provability interpretation. The
informal reason is as follows: The axiom 5 : =[JA — [O-[A simply states
that if A is not provable in a theory T, then this fact will be provable in
Tn+17 i.e.

T,.¥ A= T, F—Pr,(A).

Moreover, the axiom T asserts that all theories are sound, hence
T.¥As T,y —-Pr,(A).

Now, we can use the last equivalence and the fact that the theory 7). is
recursively enumerable to find a decision procedure for the provability in the
theory 1Y, C T,,, which is impossible.

The above argument is based on the axiom 5 and the fact that all theories are
sound. But it is possible to weaken the soundness part to some kind of con-
sistency assumption which generalizes the above argument to all extensions
of the logic KD45.

Theorem 7.1. There is no provability model (M,{T,,}5° ) such that
(M, {T,}32) F KD45.

Hence, there are no provability models for any extension of the logic KD45.
Specially, S5 does not have any provability interpretation.
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Proof. The proof we present here is more complex than the natural proof of
this theorem, because we use weaker assumptions than what is available in
KD45. The reason of our interest in this more complex proof is that we will
use the same proof for the case of the classical propositional logic, and in
that case we just have access to these weaker assumptions.

We prove the claim by contradiction. Suppose that there is a provability
model (M, {T,,}52,) such that (M,{T,}>2,) F KD45. First, we show that
the following three statements are true in M, then we will use these state-
ments to reach the contradiction.

(1) For any n, M thinks that T}, 1 ¥ Pr,(L). (Weak version of the consis-
tency assumption.)

(i7) For any n, there exist N > n and s < N such that M thinks that
Tn F Prypi(Prn(L)) — Prg(L). (Weak version of the provability of
the consistency assumption.)

(7ii) There are m, n and k such that M thinks that for any arithmetical
statement ¢,

=Pr,(¢) = Pry41(Pri(¢) — Pr,,(L1)).
(Weak version of the axiom 5).

To prove (i), for any number n, define (T as follows: [I°T = T and
O T = OO0"T. Now, consider the formula =O0O(L AO"T), which is a
theorem of KD45. Therefore, we have extensions of this formula, of the
form =0\, O V42 (L ABiji) for 0 <4 < r, where By is an extension of
O"T. Moreover, there are witnesses w; = (n;, (mi;, (uijk)ziio);izo) for any of
these extensions such that for any arithmetical substitution o, we have

ME\/-O \/ O(\/ (L AByi))” (wy).
i=0 j=0 k=0

Since the number of the boxes in [1"T is n, and witnesses for these boxes
should be increasing, we have m;; > n and hence n; > n + 1. Now, define
M = min;;(m;;) and N = min;(n;). Since Bjj, is an extension of the the-
orem [T, we can easily show that Bjj,(u;;) is provable in 3. Hence,
it is easy to see that M F —Pry(Pry(L)) and N > M > n. Therefore, if
M E Pr,1(Pr,(L)), and since N > M > n, we have Pry(Pry (L)), which
is a contradiction.
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For (ii), apply the same method to the formula OO0 L AO"T) —
1) which is again a theorem of KD45. Then there are extensions of the
form O ;1”: OV D\/l Bijw) — OL1) where B;j is an extension of

O 1L AO"T and there are witnesses w; = (n;, (mij, (rij, (Umkl)z”g)i”w Sij)j=0)
such that

Dij zgk

MIZ\T/(D\/ \/D\/Bz]kl — 0OL))7 (w;).

Once more, with the same reason as in the case (z), n < 75, < m;; < n;. Now
define N = maz;(n;), r = mingji(rijr), m = min;;(m;;) and s = maz,(s;).
Hence N > m,r,s and m > r > n. Since the theories in the hierarchy
{T,}>, is provably increasing, it is easy to prove

M E Pry(Pr,,(Pr,.(L)) — Prg(L)).
Because m > r > n, we have
M E Pry(Pr,q(Prp(L)) — Prg(L)).

Since n is arbitrary, we have proved that for any n, there exists N > n,
s < N such that

M E Pry(Pr, 1 (Pr,(L)) = Pry(L)),

and this is what we wanted.

For (iii) we know that -Op — O(Op — OL) is provable in KD45 and
consequently it is true in the model. Therefore, there are some extensions
of the formula like =Op — OV (Op — 0OL), and some witnesses like
(14, mi, (Kij, lij)jo) for them, such that for any arithmetical substitution o,

M E \/(_||:|p —d \/(Dp — DJ_))J(TLi, myg, (kij; l”)j;o)
i=0 j=0

Now, define n = max;(n;), k = min;;(k;;), m = max;(k;) and | = maz;;(l;;).
It is easy to show that

M E =Pr,(p7) — Prp,,(Pre(p?) — Pri(L)).

It is easily verified that we can increase m and [; therefore, w.l.o.g. we can
assume that m = [ 4 1. Now send p to ¢ to prove the claim, and this com-
pletes the proof of the statement (i77).
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For the proof of theorem 7.1, we want to use these three statements to
reach a contradiction. First of all, to simplify the proof, use the following
notation. For any a and b, define the theory T}, = T}, + Cons(7,). Thus, by
Pry,(A), we mean Pry, . Now, (#ii) would be equivalent to

M E =Pr,(p7) — Pr,,, (=Pri(p?)).
Put ¢ = Pr,,,(L); therefore,
M & =Pr,(Pr,,, (L)) = Pr,,, (=Pry(Pryy,, (L))).
On other hand by the formalized >;-completeness, we have
I¥ F —=Pry(Pry,, (L)) = —Pr,, (1),

hence,
T, F =Pri(Pr,,, (L)) = =Prp, (L).

Moreover, by >;-completeness, we have
I%, F Pry, (=Prg(Pry, (L)) = —=Pr,, (L1)).
Therefore,
I%, F Pry, (=Pri(Pr,,, (L)) = Prpy, (=Pry,, (L1)).
And since M F I, we have
M & =Pr,(Pr,,, (L)) = Pr,, (=P, (1)).

Based on Godel’s second incompleteness theorem formalized in I3, we can
conclude
I¥) F =Pry, (L) = —Pry, (=Pr,,, (L)).

However, by (i), we have
M E =Pr;1(Pry(1)),
hence M E —Pr,,,(L). Now, since M F I¥;,
M E =Prp, (—Pr,,, (1)).

Therefore,
M E Pr,(Pr,,, (1)),

and thus by definition of 7, we have
M E Pr,(Pr,,(Pr;(L1))).

Now by (#i), there is some N > [ such that M F Pry(Pr;;(Pr; (L)) — Prg(L
)). W.Lo.g. pick this N > n. Since N > n, M E Pry(Pr,,(Pr;(L1))), and
therefore, M F Pry(Pry(L)). Because N > s, we have M F Pry(Pry_1(L1)),
which contradicts with (i), and the proof follows. O
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8 A Remark on the Logic of Proofs

As we mentioned in the introduction, and as far as we know, the only suc-
cessful attempt to find a natural provability interpretation for S4 and hence,
a formalization for the BHK interpretation is done by Artemov [1] and is
called the logic of proofs. In this section, we will look into this approach and
investigate some of its advantages and disadvantages.

The main idea of the logic of proofs, LP, is using explicit proofs to
avoid the non-standard proofs and hence to eliminate the incompleteness
phenomenon. Now, let us give a more detailed account of this result. The
language of LP is two sorted; one sort is for the explicit proofs and the other
for the propositions. The first sort consists of proof terms constructed by the
proof variables, proof constants and the proof connectives +, - and !, while
the second sort contains terms constructed by the propositional variables,
propositional connectives and the predicate ¢ : A in which ¢ is a proof term
and A is a proposition. Now, let us explain the intuitive meaning of these
operations:

First of all we have to emphasize that in this interpretation, despite the
usual case in mathematics, proofs can be multi-conclusion. To find a natu-
ral candidate for these multi-conclusion proofs, it is enough to consider any
usual proof as a proof for all intermediate statements it uses to prove the
conclusion. For instance, the usual proof Ay, A, ..., A, of A, will be inter-
preted as a proof for all A;’s.

1. The operation “!”. If t is a proof for A, then !t is a proof for the fact that
“t is a proof for A”. Therefore, the operator ! is the proof checker and could
be interpreted as a self-awareness operator.

2. The operation “-”. If t is a proof for A — B, and s is a proof for A, then
t - s is a proof for B. Intuitively, - means the application of Modus Ponens
on the proofs.

3. The operation “+”. t + s means the union of the proofs ¢ and s. Recall
that our proofs are multi-conclusion and ¢+ s can be served as a proof for all
conclusions of ¢ and s. Therefore if ¢ is a proof for A and s is a proof for B,
then t + s is a proof for both A and B. To gain a better understanding, if we
use the canonical way of changing usual proofs to multi-conclusion proofs,
i.e. reading a usual proof as a proof for all intermediate statements in the
proof, then t + s just means putting ¢ and s together. This is exactly what
the symbol + suggests.

4. The predicate “:”. The intuitive meaning of ¢ : A is that ¢ is a proof for A.
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The formal system LP is a theory in this language to capture the in-
tended meaning of the symbols defined above. The axioms are the following:

1. A finite complete set of axioms for the classical propositional logic for
the language of LP,

A — A,

A—>B—(s:A—>t-s:B),

At A,

A= s+t A,

A= s+t A

AR
» S+ o+ o+

The rules are the modus ponens and the neccesitation rule. The latter
means that for any axiom A, we have - ¢4 : A, where c, is an appropriate
constant exclusively used for A.

Now, the natural interpretation for LP would be based on the usual
proofs in Peano arithmetic. To formalize this idea, first of all we need a proof
predicate: A proof predicate is a provably A; formula (in PA) Prf(z,y) with
some natural basic properties (which we skip here. See [1]), and the following
fundamental property:

PA+F A < JzPrf(x, [A]).

Now, we want to interpret the language of LP with this natural provabil-
ity interpretation. Define an arithmetical interpretation * as the following:
Firstly, it interprets -, |, + and constants as the recursive functions on proofs
in PA in the intended way. For instance, the function for - i.e., -*, will be
the recursive function which reads the codes of the proofs for A and A — B
and replies the code of a proof for B. Why can we define such recursive
functions? To show the fact that these functions exist, we need a proof; but
here we just want to explain the main idea instead of a formal proof. For this
reason, let us limit ourselves to the canonical proof predicate of PA. In this
case, it can be easily shown that we can define these functions in a recursive
way. For instance, if z and y are proofs for A — B and A respectively, for
*(z,y) it is enough to put y after x and add the formula B at the end. This
is obviously a proof for B and this process is clearly a recursive function.
Moreover, note that for any cy4, % is one of the proofs for the axiom A*. The
existence of such a ¢% also needs a proof, which we skip here. (See [1].)

Up to this point, we have interpreted all the proof connectives as recur-
sive functions. Now, use these interpretations to interpret all proof terms ¢.
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Note that for interpreting proof variables we use arbitrary natural numbers
as the code of proofs. Now, extend the interpretation * to formulas. The idea
is just interpreting all atoms as arithmetical sentences, reading ¢ : A as the
proof predicate Prf(¢*,[A*]) and commute * with all boolean connectives.
For instance, the interpretation of !z : p — p would be Prf(*(n), [¢]) — ¢
where the interpretations of x and p are n and ¢, respectively.

These arithmetical interpretations are the natural and the concrete inter-
pretations of the proofs, and in [1] Artemov proved that LP is sound and
complete with respect to the class of these arithmetical interpretations.

Theorem 8.1. LP + A iff A* is true for all arithmetical interpretations *.

So far, we have found a natural proof interpretation for the system LP.
Now, finding a natural interpretation for S4 into LP would be the next step.
Subsequently, we can use the composition of these interpretations to find a
proof interpretation for S4 and hence for IPC. We do not go into detail
about the interpretation of the modal language into the system LP, but the
basic idea is the following: Interpret any box as the existence of a proof; thus,
any modal sentence will be equivalent to a first order formula in the language
of LP. Therefore, we have quantifiers everywhere and specially in the scope
of the predicate “”. We know that there is no way to exchange the quan-
tifiers with the proof predicate (which is the reason why the incompleteness
phenomenon and non-standard proofs appear), but since we require all the
codes of the proofs to be standard numbers, we extract all the quantifiers and
convert the translated formula into the prenex form. Now, use the Skolem-
ization technique to witness the existential quantifiers by the universal ones.
These witnesses are called realizations. (This is where we essentially need
“4+7. It is important to note that by using Skolemization, we usually find
a finite set of different witnesses and then we can roughly use + to merge
these finite witnesses into one.) Note that this is not how Artemov argues in
[1]; however, we explained the realizations in the way that we think is more
accessible and to show that why it is natural to have such a concept in the
heart of the interpretation of the modal sentences. Now, let us illuminate
the above interpretation by an example.

Example 8.2. Consider the modal formula —Clp — C=Cp. First, we have
to interpret all of the boxes as the existence of the proofs. Hence, we have

—Jdz:p— Jy: (=32 p).
Then, by extracting the quantifiers, we have

Ve—x :p— JyVz y: -z p,
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which is equivalent to
JydaVz(—z:p—y:—-z:p)).
And finally by witnessing y and x by some terms t(z) and s(z), we have
—s(z) i p—t(z) -z p.

Now, this new formula is a realization for the modal formula —Clp — C—Cp.
Note that this realization is just one possible realization of the formula and
if we change the witnessing terms t(z) and s(z), we can find different real-
izations for the same formula.

After introducing the realizations, Artemov proved the following:

Theorem 8.3. ([1]) S4 + A iff there exists some realization r such that
LPF A"

In sum, we can say that Artemov used two ingredients to find a prov-
ability interpretation for S4. The first one is the interpretation of modal
sentences via realizations into the system LP. (Here the main idea is the
interpretation of the boxes as the existence of the standard proofs.) And the
second ingredient is the interpretation of the system LP via natural arith-
metical proof interpretations. Therefore, the main idea of what Artemov did,
is to use the system LP as a bridge to interpret S4 via arithmetical proof
interpretations.

Now, let us explain the advantages of this approach. First of all, it uses
the explicit proofs and by the method of using realizations, it makes sure that
everything is a standard proof in this context. Therefore, this approach actu-
ally kills the effect of Godel’s incompleteness theorems and makes the proof
interpretation more intuitive. Note that naturally, we do not count infinite
non-standard proofs as proofs. Moreover, regardless of the relation between
modal logics and explicit proofs, the system LP has its own applications. In
fact, since it is a formal system for explicit proofs, it can be used as a theory
to investigate the concept of proof and its natural calculus. Consequently,
these formal systems are appropriate to investigate the formal verification in
computer science or the behavior of justifications in formal epistemology .

However, this utopia of explicit proofs comes at a price. The price is a
combination of two unintended properties: The first one is related to the
fundamental change in the interpretation of the concept of provability and
the second one is about the role of LP as an unbiased bridge. The problem is
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that the bridge is not neutral and somehow reflects its own behavior, which
is not what we wanted.

Let us explain the first property by a simple example: Consider the modal
sentence [J-[lp. The intended meaning of this sentence is the existence of
a proof that shows p is not provable. In other words, it states that there
exists a proof which shows that for any possible proof for p, like x, = is
not a proof for p. Now, let us use the logic of proofs’ interpretation of the
sentence. Since the occurrences of the inner and the outer box are negative
and positive respectively, the meaning of the sentence is the existence of a
term ¢(z) such that ¢(x) : =z : p. Forgetting the condition that the term ¢(z)
should be a term in the language, it means that for all =, there exists a proof
y = t(z) which proves —z : p. In other words, it says that for any possible
proof for p like x, there exists a proof which shows that x is not a proof for p.
It is easy to check that while the first interpretation is an 3V statement, the
second one is a V3 statement, and it is obviously weaker than the first one.
In fact, when we claim that we have a proof for unprovability of p, we mean
a fixed uniform proof of the fact and we do not mean a machine (term) to
transform a possible proof of x to a proof y that shows x is not a proof for p.
What we showed above is just the difference for one statement. Nevertheless,
the argument actually works for different kinds of sentences. The reason is
simple: Logic of proofs needs to kill the presence of non-standard numbers.
For this matter, it pushes out all the quantifiers. (It also changes the order
of quantifiers to find a functional interpretation of proofs.) Since quantifiers
do not commute with proof predicates, the sentence before pushing out the
quantifiers is different from the sentence after that. The first sentence is
the intended interpretation of provability and the latter is what the logic of
proofs interprets as the meaning of provability. While this new interpretation
is interesting and useful, it is not the intended interpretation of the informal
provability and hence not the interpretation of S4.

In the following, we accept the functional interpretation of provability
as what the logic of proofs proposed and we want to investigate the role
of terms which we ignored in the previous argument. Now let us explain
the second property by a thought experiment: Think about the situation
that you have another connective in the language of LP, like “?” with the
following intuitive meaning: If ¢ is not a proof for A, then 7t is a proof of the
proposition that “t is not a proof for A”. Add the axiom

—t:A—=7t:t: A
to the system LP and call it JS5. Now, let us think about the natural arith-
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metical interpretation of this connective and this new system. Since we used
explicit standard proofs, we know that there exists a recursive function which
reads t and if it is not a proof for A, finds a proof of this fact. The reason is
as follows: We know that Prf(x,y) is provably Ay, hence if —Prf(¢,[A]), we
have

PA I —Prf(¢, [A]).

Therefore, by the definition of a proof predicate we have
FxPrf(z, [-Prf(t, [A])]).

Now, use an unbounded search to find this x. Since it exists, our program
halts and finds it. Accordingly, we know that such a function exists. Now
interpret 7 as this recursive function. Thus, based on this new natural arith-
metical interpretation, we can interpret the new axiom —t : A —7t: =t : A.
Hence, we have a natural arithmetical interpretation for the system JS5.
On the other hand, one of the instances of the new axiom, i.e. -z : A —
7z : -z : A where z is a proof variable, is the realization of the modal axiom
5: -0A — O-0A in this new language. (Simply, put ¢(z) =7z and s(z) = 2
in the example 8.2.) The above discussion means that we can find a very
natural provability interpretation of the axiom 5. Recall that this axiom is
not provable in S4 and it seems contradictory with Artemov’s completeness
result. However, there is no contradiction. The reason is that “?” is not in
the original language of LP, and hence you can not use it as a witness in the
realization.

This observation shows that the arithmetical interpretation actually inter-
prets the axiom 5, but the lack of the appropriate symbol in LP interferes
with this fact. Therefore, the system LP does not reflect the whole power of
the explicit proofs; it just chooses the appropriate part to witness all the the-
orems of S4 and nothing more than that. In other words, the formalization
of the provability interpretation via the explicit proofs is very sensitive to the
language you use. If you change the language, then with the same arithmeti-
cal interpretation, you will capture different modal logics. Therefore, we can
conclude that the soundness-completeness result for S4 with respect to this
kind of arithmetical interpretations is a soundness-completeness result for the
language you use and not the natural arithmetical interpretation you choose.
Now, a natural question would be the following: If we eliminate this lan-
guage barrier and make the relation between modal logics and arithmetical
interpretations as “direct” as possible, then which modal logic corresponds
to the whole power of the arithmetical interpretations of the proofs? By
the direct connection, we roughly mean the following: For any modal sen-
tence A, write it in the prenex form in a way that we defined before, and
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then, instead of witnessing the existential quantifiers by some terms in some
language, witness them by some natural recursive functions on the proofs in
Peano arithmetic. Now define the logic E as the logic of all statements which
are valid for these kind of arithmetical interpretations. Clearly, the question
mentioned above is informal, but it is easy to verify that the answer is not
S4. The reason is that we can find an appropriate way to interpret 5 as we
have shown above. It is appropriate because there is no a priori reason to
accept the recursive function ! and reject 7. The first one finds a proof for
Prf(m,n) if Prf(m,n) is true and the second finds a proof for =Prf(m,n) if
Prf(m,n) is false. Both of them are recursive and hence accessible for us as
human beings. Note that Prf is a provably recursive predicate and finding a
proof for Prf(m,n) or its negation are similar as the computational task. (In
the modal setting, the axioms 4 and 5 are intuitively different because we
read A as dxPrf(x, A) which makes the sentences ¥; and now the formula
and its negation are different.)

In fact, we have a realization theorem which extends the connection be-
tween S4 and LP to S5 and JS5, respectively. In a more precise way, if
S5 I A, then there is a realization r such that JS5F A" (see [5]), and since
we can interpret JS5 in arithmetic, we are able to claim that the intended
modal logic E is at least S5. Therefore, this kind of approach based on the
explicit proofs can not be considered as a formalization of the provability
interpretation of S4 and hence it can not be a formalization of the BHK
interpretation of the intuitionistic logic. In fact, in the case of the proposi-
tional logics, this interpretation can capture the whole classical propositional
logic (since the classical propositional logic is a propositional counterpart of
the system S5 via Godel’s translation). And obviously, this is not what we
intended to have from a formalization of the BHK interpretation.

In sum, the explicit proofs approach first kills all the quantifiers and
puts some explicit witnesses for them. Therefore, it inevitably eliminates the
computability based difference between provability and unprovability (3; vs
I1;) and maps both predicates to the boolean combinations of the explicit
proof predicate, Prf which belongs to the class A;. As a consequence, the
axioms 4 and 5 become similar and hence arithmetical interpretations can
interpret S5 in a very natural way. Finally, to avoid this fact, the logic of
proofs uses the language of LP to regain the difference between 4 and 5 by
choosing what we need for S4 and ignore the other natural functions which in
this case is the function 7. Therefore, our argument shows that the approach
of explicit proofs does not distinguish 4 from 5 in a natural and essential way.

56



Now, let us compare what we do in this paper with the approach of the
explicit proofs. First of all, we use the canonical meaning of provability in-
stead of the logic of proofs’ functional interpretation. Moreover, we do not
use any language as a bridge. Therefore, our soundness-completeness results
represent the provability behavior of our arithmetical interpretations in a
direct way. Secondly, to capture different modal logics, we impose different
natural conditions on our provability models, specially on the hierarchy of
the theories. Therefore, we can claim that our approach can characterize
different modal logics based on their different provability natures. Thirdly,
our interpretation is based on the implicit proofs approach and hence it is
a natural generalization of Solovay’s work on GL. But since the Lob axiom
is based on the incompleteness phenomenon, the explicit approach does not
capture it and thus does not accept Solovay’s provability interpretation as
a special case. Hence, the explicit approach can not serve as the general
framework for provability interpretations.

9 BHK Interpretations

Briefly, what we are going to do in this section, is to introduce a formal-
ization for the BHK interpretation. Indeed, we will generalize this goal to
make a framework to formalize different kinds of provability interpretations
which includes the BHK interpretation as a special case. Note that the usual
BHK interpretation is not the unique provability interpretation of the propo-
sitional language; in fact, there are many of them. Some of them, can be
characterized as the variants of the original BHK interpretation, and some
can’t. The reason is that those provability interpretations do not satisfy the
intended philosophical conditions which we want them to have, but they are
still provability interpretations and they need an exact formalization if we
want to use them. Let us illuminate the idea with two examples. The first
one is a controversial variant of the BHK interpretation; it is obtained from
the original BHK interpretation after relaxing the condition which says that
there does not exist a proof for L. This interpretation informally corresponds
to the minimal propositional logic, MPC. The second example of the prov-
ability interpretation is also obtained from the original BHK interpretation,
but now we read L as the inconsistency, instead of the provability of the
inconsistency. More precisely, and using the notation of Godel’s translation,
we have 19 = 1, where g stands for this new translation (which is different
from what we used in the introduction). This provability interpretation can
not be characterized as a variant of the BHK interpretation because of some
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philosophical reasons, which we do not get into here.

In this section, we try to justify the claim that our provability interpreta-
tion can prepare an appropriate framework to formalize these different prov-
ability interpretations of the propositional logics. To implement this idea,
we need two steps. First, we have to interpret all the connectives as what
the provability interpretation demands; this step is done by a translation
like the Godel’s translation. The second step is interpreting the provability
predicates (i.e. boxes in the modal translation) as the classical provability
of the classical theories. For that reason, we need a hierarchy of theories to
formalize the hierarchy of the intuitive provabilities in the definition of the
provability interpretation and also a model to evaluate the truth value of our
statements. This second step is done by the provability models.

What we discussed above is the general framework. Now, let us come
back to the specific case, which is the original BHK interpretation. Is there a
right formalization for this interpretation? As we will show later, for differ-
ent kinds of provability models, we have different BHK interpretations and
these interpretations could show inherently different provability behaviors.
Consequently, there are different formalizations for the BHK interpretation,
instead of just a canonical one. The reason is that the BHK interpretation
just interprets propositional connectives in a discourse of provability, but it
does not say anything about the internal structure of the concept of prov-
ability. For instance, it does not say anything related to the power of the
meta-theories compared to the lower theories. Now, since the BHK inter-
pretation is the intended semantics for the intuitionistic logic, we have to
accept that there could be different intuitionistic logics in terms of different
interpretations of the power of our model and our theories. All of them are
equally intuitionistic if we have just the BHK interpretation as the criterion.

Now, the natural question is that what these intuitionistic logics are if
we impose some natural conditions on the behavior of our model and our
theories.

In the following, we will show that for some natural classes of the provability
models like the class of all models or the class of all reflexive models, we can
characterize some propositional logics like BPC and IPC, respectively. For
instance, in the case of reflexive models, the result shows that if we use the
BHK interpretation with the philosophical commitment which states that all
of the theories, meta-theories, meta meta theories and so on are sound and
also, any meta-theory is powerful enough to prove the soundness of the lower
theories, then the logic of the formulas which are valid under this kind of
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BHK interpretation, is the usual propositional intuitionistic logic. But, if we
choose the minimal power, which does not assume any non-trivial condition
on the hierarchy of the meta-theories, then the logic will change to BPC.
However, what is important here is that all of these logics could be charac-
terized as intuitionistic logics. This fact can explain the reason behind the
disputes about finding the correct formalization of the intuitionistic logic.
For instance, in [9], Ruitenburg argues that the ¢ruly intuitionistic logic is
not IPC and he proposed BPC as the right one. Our approach here has a
plural nature, and it tries to explain why with the same informal semantics
(the BHK interpretation) there are different proposed logics.

And finally, we can discuss if there are any BHK interpretations for clas-
sical logic. The intuitive answer to this question is no. The reason is that
when we interpret the axiom of the excluded middle, we should have the fol-
lowing condition: p s provable or its unprovability is provable. This means
that the meta-theory should be powerful enough to prove the unprovability
of all unprovable formulas. As we saw in the case of the logic S5, it contra-
dicts with the natural condition that all the theories should be recursively
enumerable. Therefore, intuitively speaking, we have to say that classical
logic is beyond the scope of the BHK interpretation. In the following, we
will prove this fact, in a precise way.

Definition 9.1. A provability interpretation for the propositional language
is a translation from the propositional language to the language of modal
logics.

To illuminate the definition 9.1, let us introduce three provability inter-
pretations as examples.

Definition 9.2. The BHK interpretation b is the following translation:
(i) p* =0p and 1°=0 L

(i) (AN B)> = Ab A B?

(iii) (AV B)> = A°v B®

(iv) (A — B)® =0(A® — BY)

(v) (~A)" = O(A* - OUL)

Our translation is the same as the usual one, except for the case of 1,
which is translated to L in the usual translation. (The negation of a formula
Ais considered as A — 1 and it inherits this change in the translation from L.
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) The reason for slightly changing the definition of the translation is because
the usual translation can not capture the intended intuition of the BHK
interpretation. Actually, the intended intuitionistic meaning of L, like all the
other atomic formulas, is its provability. Therefore, the natural interpretation
of L is J 1. On the other hand, we know that the BHK interpretation
claims that there is not any proof of 1, which means =[] 1. Based on
these two observations, we can justify the usual translation of L as [0 L
A—L L, which is the same as 1. Nevertheless, we have to emphasize that
the condition of the unprovability of the inconsistency is not related to the
meaning of the connectives, and hence it should not interfere in the BHK
interpretation; it is actually a commitment we impose on the discourse of the
provability. In our terms, the unprovability of the inconsistency asserts that
the theories and meta-theories are consistent and it is obviously a property
of the provability model and not a property of the connectives which we
want to define. Hence, to formalize the original BHK interpretation, we need
two ingredients; one is the b translation which is the formalization of the
implicit BHK interpretation, and the second is the consistency condition on
the provability models. The following definition formally states the second
condition.

Definition 9.3. A provability model (M, {1}, }72,) is called a BHK model if
for any n, M & =Pr,1(Pr,(L)).

Remark 9.4. It seems that the natural consistency condition would be the
consistency of all the theories. Yet, it is not enough. For instance, it is
possible that all the theories in the hierarchy are consistent, but some meta-
theory thinks that the lower theory is inconsistent, which contradicts with
what an intuitionist assumes. For the intuitionist, the hierarchy of theories
are just different layers of the story of the mind, and obviously these stories
must be consistent in accordance with the BHK interpretation. However, this
condition should be mentioned in the story itself. One way is assuming that
any meta-theory actually proves the consistency of the lower theories. This
is a natural condition, but it imposes a strong commitment on our theories.
To keep the commitments as minimal as possible, we believe that the right
condition to impose on the theories is the weaker condition which states that
any meta-theory does not think that the lower theory is inconsistent. As we
will see, this weaker condition widens the horizon of the BHK interpretation
to capture the basic propositional logic on the one hand, and avoid artificial
and degenerate models in which we could capture classical logic, on the other.

Based on the aforementioned considerations, when we talk about the
formalization of the BHK interpretation, we always refer to the BHK models.
Now, let us formalize what we will call the weak BHK interpretation.
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Definition 9.5. Let ¢ be a new atom which does not belong to the propo-
sitional language. The weak BHK interpretation, w, is the following trans-
lation:

i) p¥ =0Op and 1*= g

ii) (AAB)Y = A® A BY

(

(

(iii) (AV B)¥ = A"V BY

() (A — B)* = 0O(A” — B¥)
(

v) (=A4)" = 0(A" — Og)

The translation is based on the idea that in this variant of the BHK inter-
pretation, we eliminate the consistency condition from the discourse of the
provability. As a result, with this interpretation the intuitionist can not dis-
tinguish the inconsistency statement from any other statements. Therefore,
in her viewpoint, L is just a new atomic sentence which could be provable.

And finally, we will define Godel’s translation as a technical tool and also
to show that there could be different provability models apart from the BHK
interpretations.

Definition 9.6. Godel’s provability interpretation, g, is the following trans-
lation:
i) p? =0p and L9=1

i) (AAB)? = A9 A BY

(

(

(1ii) (AV B)9 = A9V BY
(iv) (A — B)Y =0(A9 — BY)
(

v) (2A)7 = D(=A9)

Now, it is time to define the satisfaction of a propositional formula in a
provability model with respect to some provability interpretation .

Definition 9.7. Let i be a provability interpretation. Then, by an extension
of a propositional formula A, and a witness for A under the interpretation
i, we mean an extension and a witness for A*. And by (M, {T}>,,i) F A
we mean (M, {T}> ) E A’. Moreover, if C'is a class of provability models,
by (C,i) we mean {(M,{T}5°,1) | (M,{T}°,) € C} and by (C,i) F A we
mean C F A’
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The next step is establishing a soundness-completeness of the provability
interpretations which we defined. But first, we need a technical lemma.

As a folklore, translations b and g are used interchangeably, and there is
no problem while we use the modal logic KD4 and beyond. However, for
the case K4, they are not equivalent and in fact, the translation b establishes
a soundness-completeness property between K4 and BPC while the trans-
lation ¢ is not complete for the mentioned two logics. (The g translation
of the formula (T — 1) — p is provable in K4 while it is not provable in
BPC.) In the following lemma, we prove the completeness of g between K4
and BPC+ (T — L) = L and then we will use it to prove the completeness
of b between KD4 and BPC+ (T — 1) = L.

Lemma 9.8. IfI'Y b4 A%, then BPC+ (T — 1) = 1L T = A.

Proof. To prove the lemma, we need the following claim:

Claim. If GK4 - I'Y, P = AY, (), where P and () are multi-sets of atoms
and PNQ =0, then BPC+ (T —» 1)= 1L+T = \A.

To prove the claim, we use the cut-free sequent calculus for K4 and GK4,
and the proof will be based on induction on the length of the proof in GK4.
The case for the axioms and structural rules are easy. For the case of the
propositional rules, the possible last rules are the rules for conjunction and
disjunction. The reason is that all formulas are in the form of g-translated
formulas and atoms which are not in the form of implicational formulas.
Since g commutes with conjunction and disjunction, these steps are easy to
verify and we omit them here. For the case of the modal rule, assume that
the sequnet (1 = [JA is proved by 0P, ® = A. Then, since all of the
formulas in OJ® = [JA are boxed, every one of them should be non-atomic.
Therefore, all of them are g translated formulas, and hence they are boxed
atoms, or boxed implications. Consequently, there are two cases:

1. Ais an atom. Call it p. If there is a p in ®, we can prove the claim
by axiom. And if ® does not have p, we will read the proof backwards to
find somewhere to apply TH. First of all, since all formulas in ® are atomic
or implicational, we can represent ® by the following set: PU{AY — BY}!_,.
Our goal is to show that P,{AY — B/} ;= L in BPC+ (T — 1) = L.
Secondly, all implications should be introduced by left implication, or by
weakening. Therefore, if we continue reading the proof backwardly, it is im-
possible to have any modal rule before introducing all implications with those
two rules. Now, in each branch of the tree find the the first point after which
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all implications are introduced. Note that under these points the tree could
have the conjunctive rule, the disjunctive rule, axioms and structural rules,
but not the modal rule. It is easy to see that the formula in the mentioned
nodes are of the form of the claim. The reason again is that conjunction
and disjunction commute with the translation and moreover, the process can
not introduce any new atoms. Then, by IH we can show that the translated
parts in all of those nodes are provable in BPC + (T — 1) = L. Now,
since all conjunction and disjunction rules and also the structural rules and
axioms are valid in BPC + (T — 1) = L, we can reconstruct the proof in
BPC + (T — 1) = L. However, the only problem is the left implicational
rule which is not valid in BPC + (T — L) = L. But note that in this case
those rules just work with non-nested implications, and hence we can prove
P {A; —» B;}_, = T —L. Yet, we have the rule (T — 1) = L, therefore,
we have P,{A; — B;}I_, =1, which is what we wanted.

2. The case for the implicational A is similar. O]
Theorem 9.9. (i) BPCF A iff K4 A°
(it) BPC+ (T — 1) = L+ A iff KD4 A

)

(ii) IPC - A iff S4 - AP
(iv) FPLF A iff GL - A
(v) MPC F A iff S4F Av

Proof. The proof of the soundness part is easy and routine. For the com-
pleteness part, the case (iv) is proved by Visser in [12]. The same proof
also works for (i). (éi7) is a well-known result. (See [11].) For (i), if
KD4 - A’ then since KD4 - A’ < A9 we have KD4 - A9. There-
fore, K4 - -0 L AO-0O 1 — AY9. Hence, K4 + O0-0 L— O(T —1) Vv A9
and then

Kak- ((T—- 1) =1L = (T —=1)VvAy.

Thus,
KaF (T —> 1) =1 = (T —>1)VvA)y.
By lemma 9.8,
BPC+(T—-1L)=1F(T—-1)—-1)=((T—1)VvA),
hence,

BPC+ (T - 1)= L+ A
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For the case (v), we know that MPC and S4 are sound and complete
with respect to the class of reflexive transitive and value persistent Kripke
models. However, in the case of MPC, the nodes can also satisfy L. Now,
soundness is again easy. For the completeness part, if we have a counter
MPC-Kripke model for A, we can construct a counter S4-model for A" in
the following way: Use the same Kripke model, with the same values, but
assume that ¢ is true in a node, if L is true in that node. Then, it is easy to
show that if the first model is a counter example for A, then the new one is a
counter example for A¥. This construction proves the completeness part. [J

Now, we can use the soundness and completeness of these translations to
transfer our results from the modal setting to the propositional one.

Definition 9.10. The class BHK is the class of all BHK models and the
class cBHK is the class of all BHK models which are constant.

Theorem 9.11. (i) BPCF A iff ( BHK,b) F A.
(i1) BPC+ (T = 1) - LF A iff (Cons,b) F A.

)

(iii) IPC + A iff (Ref,b) E A.

(iv) FPL+ A iff (¢cBHK,b) F A.
)

(v) Let (M, {T,}2,) be a provability model. Then (M,{T,}>,,b) F CPC
iff there exists n such that M E Pr,1(Pr,(L)). Therefore, there is not
any BHK interpretation for classical logic.

Proof. Based on theorem 9.9, the soundness parts are just easy consequences
of the soundness results for the corresponding modal logics. For the com-
pleteness part for (i), if (BHK, b) F A, then there are extensions for A" like
By’s and a witness for \/ B;, such that for all arithmetical substitutions like
o, and all BHK models (M,{T,}>,), we have M F (\/_, B;)’(w). Now,
let I' be a sequence of infinite copies of =[] 1 and w a witness, which
witnesses each of these formulas by (n + 1,n). We claim that for any prov-
ability model (M,{T,,}5°,) and any arithmetical substitution o, we have
M E T7(u) = (VigBi)?(w). If M E I'(u), then for any n, we have
M E =Pr,1(Pr,(L)). Hence, (M,{T,}>2,) is a BHK model and therefore,
M E (Vi_, Bi)’(w). Now, we know PrM E I' = A®; therefore, by strong
completeness for K4, we have I' Fgys A°. Thus, K4 - 00 L— A® and
then, K4 - ((T — 1)V A)’. By theorem 9.9, BPC + (T — 1)V A, and
therefore by some easy argument BPC - A.

The case (iv) also needs an argument exactly like for the case (7). Moreover,
since the consistent and reflexive models admit the consistency condition of

64



the BHK interpretation, the cases (i7) and (iii) are just a combination of
theorem 9.9 and the completeness results for the corresponding theories.

For (v) we need some justification. First of all we want to show that
if for any n, M F =Pr,1(Pr,(L1)), then (M, {T,}>2,) is not a model for
CPC. We prove this claim by contradiction. Assume that for any n, M F
=Pr,1(Pr,(L1)) and (M, {T,}5°,,b) F CPC. Now, we want to show that all
three statements of the proof of theorem 7.1 is also true in our case. Firstly,
() is true by assumption. Secondly, consider the formula 00" T which is a
translation of the propositional classical theorem T" with the definition T° =
T and T"™ =T — T". Therefore, the formula O(O0(0 L AO"T) — O1)
is the translation of the tautology ((T — (T — (LA T"))) — L). Thus,

(M, {T,}>>,) FO(@O0(O L AO"T) — O1).

Since we used this formula to show (i7), we can claim that we also have
(#7) here. Thirdly, we know that p V —p is a theorem of CPC. Hence,
(M, {T,,}>2,) F (pV —p)®, which means (M, {T,,}2,) F (OpVvO(Op — OL).
Therefore, (ii7) is also true in M. Thus, we have a contradiction and it proves
the claim.

For the converse, assume that there is some n such that M F Pr,, 1 (Pr,(1));
we will show that (M, {T,,}°,, w) E CPC. First of all, to simplify the proof,
define the complexity of any box as the maximum depth of the nested boxes
in front of that box. For instance, the complexity of the inner box in C(CpAq)
is zero, and the complexity of the outer box is one. Now define the canonical
witness starting from n, as follows: Witness any box by its complexity plus
n. It is easy to show that this witness is an ordered one, because the witness
for any outer box is bigger than the witness for the inner boxes. Define A?
as the formula resulted by substituting all the atoms by ¢ and witnessing all
the boxes by the canonical witness starting from n. Now, it is easy to verify
that for any propositional formula A — B, M F ((A — B)")?. To show this,
firstly, note that the following claim holds: For any propositional formula B,

IS, F Proy(L) — (BY).

The proof of the claim is based on induction on B and easily follows. Now,
assume that the complexity of the outmost box in O(AY — B") is k > n+1.
(Since witnesses begin with n and there is at least one box in A", k is at
least n + 1.) By X;-completeness we have

I3 = Pry(Pr, (L) — (BY)?),
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and hence,
I3 F Pry(Pr,(L)) — Prp((B*)7).

Then since M F I, then
M E Pry(Pr,(L)) — Prp((B*)%).

We know that M F Pr,1(Pr, (L)) and k > n + 1; hence M F Pry(Pr,(L1)).
Therefore,
M E Pri((B")7),

and thus,
M E Pry((A*)7 — (B"Y)7),

and the proof follows.

Now, it is easy to check that for any formula B, there exists another
formula C' such that C is in the CNF form, in which all the literals are
implicational formulas, positive atoms and 1 and classically equivalent to
B. Note that the process of constructing this C' just uses the classical rules
for conjunction and disjunction. Now, since w and the canonical witness
respect the conjunction and disjunction and the their basic rules, (B*)? and
(C™)7 are equivalent in M. Suppose that CPC F B; we want to show that
M & (B")?. It is enough to show that M F (C")?. Considering that all the
literals in C' are implicational formulas, positive atoms and L, the literals of
C? are translations of implications, boxed atoms or [ L. If M ¥ (C¥)°, there
must be some clause in which all the literals are false. Since the translations
of the implications are true in M, there has to be a clause in C' consisting
of atoms and L. Therefore, C' can not be a classical tautology and hence B
will not be, as well. But CPC F B; a contradiction. Thus, M E (B")“.

So far, we have shown that if CPC F B, then M F (B")?. Now, if we send
q in the definition of 1% = (g, to L, then we have M F (B®)°, which proves
the theorem. O]

There is another type of the BHK interpretation in which there is not
any kind of assumption on the non-existence of a proof of the contradiction.

Theorem 9.12. (i) MPCF A iff (Ref,w) F A.

(17) Let (M, {T,}2,) be a provability model. Then (M,{T,}:°,, w) E IPC
iff (M, {T,,}5%, w) E CPC iff there exists n such that M & Pr, 1 (Pr,(L1)).

Proof. For (i), use theorem 9.9 and the soundness-completeness results for
S4. For (i7), if there exists n such that M F Pr,, 1 (Pr, (L)), then by the proof
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of theorem 9.11 part (v), we know that (M,{T,}>,,w) E CPC. More-
over, if (M,{T,}°,,w) F CPC, then we can easily verify that we have
(M, {T,}°y, w) E IPC. Now, it remains to show that if (M,{T,}>°,, w) F
IPC, then there exists n such that M E Pr,, 1 (Pr,(L1)).

Assume that (M, {T,}:2,,w) FE IPC and for any n, M F —Pr,(Pr,(L1)).
We want to reach a contradiction. We know that IPC F1— p. Hence,
(M, {T.}20) E (L= p)v. Thus, (M,{T,}5>,) F O(0q — Op). Conse-
quently, there are extensions of the form, O(\/;_,(0g — Op)) for 0 <i <r
and witnesses w; = (n;, (M, kij);-,) such that for any arithmetical substi-
tution o,

Si

M E\/ O\ Qg — Op))” (wy).

i=0 =0

Now, define k = max;;(ki;), m = min;;(m;;) and n = max;(n;). It is easy to
see that
M E Pr,((Pr,,(¢°) — Pre(p?))).

And if we choose a substitution o such that ¢ = (0 = 0) and p” = (0 = 1),
then we have
M E Pr,((Pr,,(0 =0) — Prp(0 = 1)),

and hence M F Pr,(Pri(L)). Thus, for some number N > n,k, we have
M E Pryyq(Pry(L)) which is a contradiction. O
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