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II. 

Six postulates in QM 
I.  

( ) ( ) ( ) dVtrdVtxtrtrP 2* |,|,,),( Ψ=ΨΨ= (probabilistic interpretation) 

III.  

The mechanical quantities that describe the particle (energy, momentum, angular momentum etc.) 
 are represented by linear operators acting on a wavefunction   

On quantum mechanical state  

On time evolution of the state  

The operator of the potential energy 

VTH ˆˆˆ +=

The time evolution of the wave function  
is given by the equation:   

The state of the system is described by the wavefunction                    , which depends on the coordinates 
of particle r at time t. Wavefunction are in general complex functions of real variables, thus               denotes 
the complex conjugate of  

( )tr,Ψ=Ψ
( )tr,*Ψ

( ) ( )
t

tritrH
∂

Ψ∂
=Ψ

,,ˆ 

The total energy operator, Hamiltonian: 

On operator representation of mechanical quantities  

 Dirac notation: 

∫ ≡ φψτφψ |* d

Scalar product of two wavefunctions 

∫ ≡ φψτφψ |ˆ|ˆ* AdA

Matrix element of the operator  Â

Ψ

2 

The operator of the kinetic energy 



Six postulates in QM 

IV.  

V.  

VI.  

On interpretation of experimental measurements – not discussed here  

Spin angular momentum (in non-relativistic formulation of QM)  

On the permutational symmetry 

αα 22 )1(ˆ += ssS

where the spin magnetic quantum number ms = -s, -s+1,…,s  

Pauli exclusion principle 

Probability density of finding two identical fermions  
in the same position and with the same spin coordinate equals to zero 

Fermi correlation  
(Fermi hole) 

( ) ( )NijNji ,....,,....,,...,2,1,....,,....,,...,2,1 Ψ−=Ψ -fermions (electrons, …) – non-integer spin 

( ) ( )NijNji ,....,,....,,...,2,1,....,,....,,...,2,1 Ψ=Ψ -bosons - integer spin 

αα sz mS =ˆ

ββ sz mS =ˆ

2/1≡α

2/1−≡β

; 
; 
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• Let the molecular system under study contain atomic nuclei (qnuclei), electrons 
(qelectrons) and possibly external fields. 

 
• The key equation in quantum mechanics is the nonrelativistic Schrödinger 

equation: 

 
 
 
 

• The vector q collects the spatial and spin coordinates of all particles (nuclei 
and electrons) in the molecular system.  

 

( ) ( ) ( )
t

tittH
∂

Ψ∂
=Ψ

,,,ˆ qqq 

Quantum mechanics in Chemistry  

* 

* Postulate III.  
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( ) ( ) ( ) ( ) ( )qqqqq Ψ=Ψ





Ψ=Ψ tot

tot ˆ       ; exp, EHt
i

Et


Let the Hamiltonian be time-independent  

( ) ( ) ( )
t

tittH
∂

Ψ∂=Ψ ,,,ˆ qqq 

Born-Oppenheimer approximation 

( ) ( ) ( )electronsnuclei qqq ΨΨ≈Ψ

The electronic Schrödinger equation 

Schrödinger equation for stationary 
states 
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( ) ( ) ( )electronsnuclei qqq ΨΨ≈Ψ

( )

( ) ( ) ( )

( ) ( )












Ψ=Ψ

Ψ=Ψ+

+=

electronselectronselectrons

nucleitotnucleinuclei

electronsnuclei

ˆ

ˆ      

ˆˆˆ

qq

qq

q

EH

EET

HTH

electronic Schrödinger equation 

The electronic Schrödinger equation 

Nuclear-motion Schrödinger 
equation 

The concept of potential energy hypersurfaces (of dimension 3N-6):  
the energy of a molecule as a function of its geometry 
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The Hamiltonian (spin-dependent terms not considered) 

∑∑∑∑∑∑
<<

++−∆−∆−=
lk kl

lk

ji iji k ik

k

i
i

ei
k

k r
ZZe

r
e

r
Ze

mm
H

22222

22
ˆ 

electronsĤ

nucleiT̂

k,l – nuclei 
i,j – electrons 

( ) ( )electronselectronselectrons EH qq Ψ=Ψˆ

 Thus, the numerical solution of the electronic Schrödinger equation 

through a favorite electronic-structure (quantum-chemical, QC) method. 

electronsT̂ neV −
ˆ

eeV −
ˆ

nnV −
ˆ

QC methods are also devised to optimize to the spatial configuration of nuclei to minimize E  
- geometry optimization. 

Coulombic potential 

∑∑
<

−− +=
ji

electrontwo
i

electrononeelectrons hhH ˆˆˆ

Due to this term  
– analytical solution  
of SE is unkonwn 

7 



( ) ( )electronselectronselectrons EH qq Ψ=Ψˆ

E
Helectrons =

ΨΨ

ΨΨ

|
|ˆ|

Ehh
ji

ijelectrontwo
i

ielectronone =ΨΨ+ΨΨ ∑∑
<

−− |ˆ||ˆ| ,,

1| =ΨΨif
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The Many Electron Wavefunction 

)2()2(
)1()1(

2
1

)2()2()2()2(
)1()1()1()1(

2
1

21

21

21

213

χχ
χχ

αψαψ
αψαψ

==ΨSD

A form for the electronic wavefunction that satisfies the permutational antisymmetry 
(postulate VI) is the Slater determinant (SD) or a linear combination of SDs. 

SD for two-electron system  
spinorbital 

spatial component  
of one-electron wave function 
(molecular orbital, MO) 

spin component of  
one-electron wave function 

)()()(

)2()2()2(
)1()1()1(

!
1

21

21

21

NNN
N

N

N

N

SD

χχχ

χχχ
χχχ









=Ψ

SD for N-electron system  

Symmetry and spin-adapted SD or linear combination of SDs  = configuration state function (CSF) 

CSFCSF SSS Ψ+=Ψ )1(ˆ 2

& CSFCSFelectrons EH Ψ=Ψˆ
CSFsCSFz MS Ψ=Ψ ˆ
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Molecular orbitals, as a building elements in SD or CSF, are constructed from atomic orbitals: 

 (Linear combination of atomic orbitals, LCAO) 

Hydrogen-like (one-electron) AOs are always of the form: 

( ) ( )ϑθϑθϕ ,)(,, lmYrRr = where R(r) is the radial component that decays exponentially  

with increasing distance from the nucleus e-ζr  

Basis set 

∑ =
=

N

j aaii c
1

ϕψ



The Many Electron Wavefunction 

Since it is impossible to obtain analytic solutions in systems with two or more electrons, 
the exponential behavior of the AOs – Slater-type orbitals (STOs) – were hence the first 
to be used. They are characterized by an exponential factor in the radial part. 

( ) ( )ϑθϑθϕ α ,)(,, lm
rYerPr −=

( ) ( )ϑθϑθϕ α ,)(,,
2

lm
r YerPr −=

STO 

(Gauss-type orbital GTO) 
Drawback: difficulties associate with evaluating 
integrals that appear in the solution of electronic SE. 

Drawback: qualitatively incorrect behavior at the 
nucleus and in the asymptotic limit 

Correction 

Linear combination  
of several GTOs 

contracted basis function primitive 

∑=
a

GTO
aap

CGTO
p b ϕϕ

Segmented contraction scheme: each GTO contributes to exactly one CGTO  

General contraction scheme: each GTO can contribute to more than one CGTO  

nmlr zyxNezyxnml
2

),,;,,,( ααϕ −=
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double-, triple-, quadruple 
n-tuple zeta basis sets 

Effective core potential: 

     Minimal basis set -  
(one STO or GTO or CGTO  
for one core / valence AO) 

Infinite basis set  
(ideal but not realistic) 
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N electrons in ∞ MO – it requires ∞ AOs orbitals - 

polarization functions (P): 
e.g., for H atom add p functions 
        for Fe atom add f functions  

 
diffuse functions (D) 
(with small α in exp(-αr2) – 
allowing to describe electron 
density at larger distances from 
nucleus. 
– suitable for anions, soft, large  
molecules, Rydberg states.. 

Balanced basis set - “More art than science” 

DZ 
DZP 
TZ 
TZP 
TZPD 
QZVPD 

} Not very flexible 

More STO/GTO/CGTO  
functions  
describing one AO 

Different types of STO/GTO/CGTO 
functions, e.g., 

if the core electrons (MOs, AOs) are replaced with an 
approximate pseudopotential  

DZ, TZ, QZ … 



General strategies for solving the electronic SE 

Optimize Ψ and obtain E through a 
variation   

( )guesselectronsqΨ Ψ=Ψ EHelectrons
ˆ ( )optimizedelectronsqΨ

[ ]optimizedE Ψ

[ ] [ ]
optopt

optelectronsopt
opt

guessguess

guesselectronsguess
guess

H
E

H
ΨΨ

ΨΨ
=Ψ≥

ΨΨ

ΨΨ
=Ψ

|
|ˆ|

|
|ˆ|

ε

c 

ε(c) 

[ ]),...,,( 10 PcccΨε 0),..,,( 10 =
∂

∂

i

P

c
cccε

Optimize Ψ and obtain E through a 
perturbation   

( ) ( ) ( ) ( )λλλλ Ψ=Ψ EĤ

Let λ be a perturbational parameter 

( ) ...)2(2)1()0( +Ψ+Ψ+Ψ=Ψ λλλ

( ) ...)2(2)1()0( +++= EEEE λλλ

( ) VHH ˆˆˆ )0( λλ +=
0 ≤ λ ≤ 1 

We seek the solution in the form: 

Then, solving 
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Semi-empirical methods 
(MNDO, AM1, PM3, etc.) 

Full CI 

excitation hierarchy 
(CIS, CISD, CISDT, …) 

(CCS, CCSD, CCSDT, ...) 

perturbational hierarchy 
(MP2, MP3, MP4, …) 

excitation hierarchy 
(MR-CISD, MR-CCSD) 

 perturbational hierarchy 
(CASPT2, CASPT3) 

Multiconfigurational HF 
(MCSCF, CASSCF) 

Hartree–Fock 
(HF-SCF) 

Family of standard Wave-Function Theories (WFT) – General overview 

Two contributions to correlation energy : static and dynamic correlation  

Correlation  
Energy 

 
(usually <1% 

of the total energy) Co
m

pu
ta

tio
na

l C
os

t Ab initio methods  
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Welcome to the ZOO 



Hartree–Fock (HF-SCF) method – the Gate to the realm of WFT  

∑∑
<

−− ΨΨ+ΨΨ=Ψ
ji

ijelectrontwo
i

ielectronone hhE |ˆ||ˆ|][ ,,

−Ψif 1 Slater determinant 

{ }∑∑ −−− −+=
ji

ijelectrontwojijielectrontwoji
i

ielectrononei hhhE
,

|ˆ||ˆ|
2
1|ˆ| χχχχχχχχχχ

MOs  LCAO 

two-electron Coulomb integrals 

∑ −=
i

ii KJ ψψ |ˆˆ|
2
1

{ } 0)( =− ii cScF ε

KJhF electronone
ˆˆˆˆ −+= −

Fock operator = Fockian 
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Equation from page 8:  

Fock matrix 
in the basis of AOs AO-overlap matrix 

Vector of LCAO coefficients 
for j—th MO Working 

Roothaan 
equation: 

one-electron integrals 

orbital energy of j-th MO 

     In fact, F depends on c: 
 see next page 

 thus, equations has to be solved   
 iteratively -> self-consistent field 

(and E minimized trough variational approach) 

{ } 0)( =′−′ ii c1cF ε

two-electron exchange integrals 

iiiF χεχ =ˆijji δχχ =|Condition: 

spinorbitals 

Fock equation 
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∑∑ 



 −+−= −−−

sr
qseerpsqeerprs

nuclei

k
qknepqelppq VVPVTF

,
, |ˆ|

2
1|ˆ||ˆ||ˆ| ϕϕϕϕϕϕϕϕϕϕϕϕ

Matrix element of the Fock matrix in the basis of AOs – explicit form (for the restricted Hartree-Fock method)  

density matrix =  ∑
occupied

i
siricc2

AOs 
This is what is optimized 
 iteratively to get E minimized 

Compute and store all overlap, 
one-electron and two electron 
integrals 

Guess initial density matrix P(0) 

Construct and solve Roothaan 
equation 

Construct P from occupied MOs 

Is new P(n) similar to P(n-1) ? 
no 

Replace P(n-1) with Pn 

yes HF  
converged 

Program flow:  

Choose a molecular geometry 

Choose a basis set 

( )pqpq

AO

pq
qpHF FhPE += ∑2

1

pqh

for restricted Hartree-Fock method 
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• Computational bottleneck   
    – the evaluation of two-electron (four-center) integrals   

• Approximations of such integrals through  
     Cholesky decomposition (CD) or Resolution of Identity (RI-JK). 

• Restricted (closed-shell / open-shell HF)  
                                     unrestricted HF – spin-symmetry broken 

{ } 0=− αααα ε ii cSF

{ } 0=− ββββ ε ii cSF

sqeerp V ϕϕϕϕ |ˆ| −

( ) ( )αββαββ ccFccF ,;, RHFRHF SSS Ψ+=Ψ )1(2  UHFUHF SSS Ψ+≠Ψ )1(2 

“Spin contamination” 

Hartree–Fock (HF-SCF) method – Computational Remarks  



• Exchange interaction among electrons with the same  
    spin projection (Fermi correlation) – through the antisymmetric 
    nature of the Slater determinant. 

• One Slater determinant (SD) = one “electronic configuration” 
     (“exact” wave function better expressed as  
       a linear combination of many configurations - SDs).  

18 

• Each electron experiences the Coulombic repulsion  
    of other electrons through their averaged field (a mean field) 
      (the lack of dynamical correlation – see later) 

Hartree–Fock (HF-SCF) method – Physical Remarks  

• Only the ground-state wavefunction and its energy is solved  
      by HF SCF.  
      (HF not for excited states and their energies) 
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kSD
k

kFCI C ,Φ=Ψ ∑

ψi 

ψi+1 

ψi+2 

ψi+3 

ψi+4 Correlation energy: Ecorr = Eexact - EHF 

FCIexactFCIelectrons EH Ψ=Ψˆ

exactFCIelectronsFCI EH =ΨΨ |ˆ| (if  1| =ΨΨ FCIFCI )  

exact
l

llelectrons
k

kk ECHC =ΦΦ ∑∑ |ˆ|

Slater-Condon rules  many integrals = 0 

 Slater 
determinant 

MOs 
also Brillouin theorem: 

0|Ĥ| electronsSCFHF =ΦΦ −
a
i

ψ∞ 

ψ1 

Exact non-realistic solution with 
 Full Configuration Interaction (FCI) in the infinite basis set 
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1   2   3   …                        







n
N2

n/2 
 
 
 
 
 
 
 
∞ 

number of determinants 

Exact solution of electronic 
Schrödinger equation  

Exact non-realistic solution with 
 Full Configuration Interaction (FCI) in the infinite basis set 

 

Number of SD’s: 
(For 2n electrons in 2n orbitals) 

2n 
2 
4 
6 
8 
10 
12 
14 
16 
18 
 

 
4 
36 
400 
4.900 
63.504 
853.776 
11.778.896 
165.636.896 
2.363.904.260 
 



Static versus dynamical correlation? 

 r12  0 
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dynamical 
Static (“non-dynamical”) •   Short range effects that arises as  

•    from configurational near-degeneracies 
        or from deficiencies in Hartree-Fock orbitals  

1Φ 2Φ

2211 Φ+Φ=Ψ CC

7.01 =C
3.02 =C

e.g., with 

He…He  

Interaction energy 

 Basis set: 4s3p2d 
Widmark ANO 

∆E / µEh Hartree
-Fock Dynamical 

correlation 

rHe-He /Å 

CCSD 

Dynamical correlation is 
related to the Coulomb hole.  



Single-reference post-HF approaches  
(a portion of dynamical correlation included) 
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Full CI 

Hartree–Fock 
(HF-SCF) 

excitation hierarchy 
(CIS, CISD, CISDT, …) 

(CCS, CCSD, CCSDT, ...) 

perturbational 
hierarchy 

(MP2, MP3, MP4, …) 

Coupled-cluster methods (CC) 

CCSD(T) – popular and often used as a golden standard method 
for single-reference systems (T) – triple excitations added as a perturbation 

Q
C 

al
so

 d
ev

ise
d 

fo
r e

xc
ite

d 
st

at
es

  
an

d 
th

ei
r e

ne
rg

ie
s  

Møller-Plesset perturbation theory of n-th order (MPn) 

...0 +Φ+Φ+Φ=Ψ ∑∑∑∑
< <

occ

ji

virt

ba

ab
ij

ab
ij

occ

i

virt

a

a
i

a
iHF ccc

Truncated CI methods 

CIS CISD 

( ) ( ) ( ) ( )λλλλ Ψ=Ψ EĤ

MP2: 

( ) VHH ˆˆˆ )0( λλ +=

( ) ...)2(2)1()0( +Ψ+Ψ+Ψ=Ψ λλλ

( ) ...)2(2)1()0( +++= EEEE λλλ

Truncation of perturbation 
 to second-order 

spinorbitals  
from HF-SCF 

from HF-SCF 

HF
T

CC e Φ=Ψ ˆ

Cluster operator 

...ˆˆˆˆ
321 +++= TTTT

[ ] HFHF
T TTTTe Φ+++++++=Φ ..]..)ˆˆ(

2
1..)ˆˆ(1 2

2121
ˆ

2̂
ˆ TT =

HFHF
T TTe Φ+++=Φ ..)ˆ

2
1ˆ1( 2

22
2̂

CCD: 

∑ −
+=

k
k

HFk
HFMP EE

V
EE )(

0
)0(

0

2)0(

2

|ˆ| χχ
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Formal scaling behavior of some single-reference QC methods 

N – the number of basis functions  



Multiconfigurational HF – MCSCF (CASSCF / RASSCF) 
(a portion of static correlation included) 









++

+








−

+
+
+

=
12/

1
2/

1
1
12

SN
n

SN
n

n
SNCSF  

10-in-8:    420 
10-in-10:  12375 
10-in-11:  45375 
10-in-13:  390390 
10-in-14:  975975 
10-in-15:  2927925 
 

NCSF 

Example for S=2 

Φk is a CSF arising from selected excitations within the active space 

k
k

kMCSCF C Φ=Ψ ∑

n= number of e- in the active space 

N = number of orbitals in the active space 
S = molecular spin state 

Weyl’s formula 
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• if all possible excitations are allowed within the active space 
        -> FCI on a limited set of orbitals  CASSCF  

 

Current computational limit for CASSCF active space  
~ 18-in-18 

 larger active spaces within DMRG-CASSCF (e.g., 30-in-30) 

Modern approaches allowing to extent the active spaces 
 – Density-matrix renormalization group technology 

• more general approach –RASSCF (active space divided into subspaces – 
RAS1, RAS2, RAS3 – within RAS1&3 – selected excitations, within RAS2 - FCI  

( )cCMCSCF ,Ψ
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Note on the selection of an active space 

“Sometimes trivial, sometimes more difficult, 
 sometimes impossible” 

B. Roos 

Selection cannot be automatized  
and depends on the particular system /problem 

Chemical insight is important ingredient 
In choosing a proper active space 
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 Multi-reference wavefunction approaches 

CASPT2 – PT2 on top of CASSCF   

DMRG-CASPT2 – PT2 on top of DMRG-CASSCF 

MRCI(SD) – CISD on top of CASSCF 

MRCC(SD) – CCSD on top of CASSCF 

RASPT2 – PT2 on top of RASSCF 

} Higly accurate but computationally 
extremely demanding 
  Very small molecules 

 Popular for spectroscopy 

 Emerging method for 
     “complex electronic      
structure” chemical  
transformations 

(a portion of static and dynamic correlation included) 



Density Functional Theory - DFT 

[ ] [ ] [ ] [ ] [ ] [ ]∫ ++=++= ρρρρρρρ eeexteene VTdrrvrVTVE )()(

The total energy is represented as a functional of  density: 

1st Hohenberg-Kohn theorem: 

2nd Hohenberg-Kohn theorem: 
 proves that the correct ground state electron density minimizes the energy E[ρ] 

shows that electron density of an arbitrary molecular system (in an electronically non- 
degenerate ground state) in the absence of external electromagnetic fields determines 
unambiguously static external potential 
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nucleus-electron  
attraction energy 

kinetic energy 
 of (interacting) electrons 

electron-electron 
interaction energy 

The realm of DFT methods built on two fundamental theorems: 

∑ =

−−=
nuclei

k kkext RrZrv
1

1)(



28 

[ ] [ ] [ ]∫ ++= ρρρρ eeVTdrrvrE )()(

[ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )∫ −+−+++= ρρρρρρρρ JVTTJTdrrvrE eessext )()(

[ ] [ ] [ ] [ ]ρρρρρ ∫ +++= xcsext EJTdrrvrE )()(

Kinetic energy of  
non-interacting electrons 

Kohn-Sham Density Functional Theory  (KS-DFT) 

Coulomb electron-electron interaction 

Exchange-Correlation (XC) Energy  

( ) ( ) drdr
rr

rr '
'

'
2
1
∫ −

ρρ
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Working Kohn-Sham Equation 

)()()(
2

2

rrrv
m iiieffi

e

χεχ =







+∆−



[ ] ∑
=

∆−=
N

i
ii

e
is m

T
1

2

|
2

| χχρ  ∑
=

=
N

i
ii

1
| χχρ      fulfilling 

     condition: 
& 

The idea of considering the determinantal WF 
of N non-interacting electrons in N orbitals, the Ts[ρ] is exactly given as: 

Kohn-Sham spinorbital   Real electron density 

Then, one-electron KS equation: 

with: ( ) )('
'

')( rvdr
rr

rrvv xcexteff +
−

+= ∫
ρ

(Fock-like  
equations) 

LCAO ansatz 

Roothaan-like equations 

Restricted / Unrestricted Kohn-Sham equations  - as in HF 

Alpha-omega in KS-DFT – 
 exact form unknown 

βα ρρρ +=
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Most common of exchange-correlation potentials 

• Local density approximation – most popular way  to do electronic 
structure calculations in solid state physics 

 
• Generalized gradient approximation (GGA) – xc potentials are 

functionals of electron density and its first spatial derivatives (“gradient-
corrected LDA” functionals) 

 
• Meta-GGA approximation – extension of GGA. xc potentials are 

functionals of electron density, its first and second spatial derivatives and 
kinetic energy density 

 

• Hybrid exchange functionals – a portion of exact exchange from HF 
theory is incorporated into xc potentials. Usually, GGA hybrid and GGA 
approach are combined. 
 

• Hybrid exchange and hybrid correlation (double-hybrid) functionals - 
      essentially extension of hybrid-GGA, which uses MP2 correction to 
      replace part of the semi-local GGA correlation. 

PBE, BP86… 

TPSS…. 

TPSSH, B3LYP, PBE0…. 

B2PLYP… 



Limitations of standard KS DFT methods 

• Lack of long-range correlation (dispersion) 
        empirical corrections ~1/R6  

 
• Incorrect long-range exchange behavior  
      e.g. incorrect energies of charge-transfer excitations  
      (exchange should decay asymptotically as r12

-1; B3LYP : 0.2r12
-1) 

 
• Lack of static correlation energy 
      Generally lower sensitivity of DFT to multireference character is dependent 
       on the amount of HF exchange included in the functional 
 
• Self-interaction error 

 
 
 
• Lack of systematic improvability!!!!! 

While the diagonal exchange terms Kii cancel exactly self-interaction Coulomb terms Jii 
in HF, it is not valid for standard KS-DFT methods.  

SIE interpreted as the interaction of an electron with itself. 
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B3LYP+D3 

CAM-B3LYP 
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Thus now, in principle, you are able to read the following sentence: 
GGA-type PBE functional in combination with RI-J approximation and the DZP 
basis set was used for the geometry optimization, while CASPT2(10-in-8) 
approach combined with a larger basis set (e.g. TZVP) was employed for the 
final single-point energies.  

Some final notes on solving SE through WFT and DFT methods 

For a given geometry – wavefunction optimization -> electronic energy E 
 (single-point calculation) 
 
On the other hand: 
QC methods can be also used to optimize geometry – algorithms allowing to 
evaluate (first, second) derivatives of E with respect to the nuclear coordinates 
and to search crucial points on the potential energy surface 
 Minima & first-order stationary points (transition states)  
(geometry optimization) 
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APPENDIX 
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Properties as derivatives of the energy - 
Bonus 

• Consider a molecule in an external electric field ε. 
 

 
 

 
– Dipole moment (µ) 

 
– Polarizability (α) 

 
– First hyperpolarizability (ß) 

( ) ( ) +++==
== 0

2

2
2

2
1

0

0
εε

εε
dε

Edε
dε
dEεEE

0
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βα

α

γβα

βα

α

εε

ε

εεε

εε

ε

dddx
Ed

ddx
Ed

dxdxdxdx
Ed

dxdxdx
Ed

dxdx
Ed

dx
dE

ddd
Ed

dd
Ed

d
dE

i

i

lkji

kji

ji

i

3

2

4

3

2

3

2

dipole moment; in a similar way also multipole moments,  
electric field gradients, etc. 
 

polarizability 
 
(first) hyperpolarizability 
 
forces on nuclei 
 
harmonic force constants; harmonic vibrational frequencies 
 
cubic force constants; anharmonic corrections to distances  
and rotational constants 
 
quartic force constants; anharmonic corrections to  
vibrational frequencies 
 

dipole derivatives; infrared intensities 
 
polarizability derivatives; Raman intensities 
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βα

α

β

βα

β

βα

α

βα

α

dSdS
Ed

dS
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dJdI
Ed

dJdB
Ed

dIdI
Ed

dBdI
Ed

dBdB
Ed

i

ji

i

2

2

2

2

2

2

magnetizability 
 
nuclear magnetic shielding tensor; relative NMR shifts 
 
 
indirect spin-spin coupling constants 
 
rotational g-tensor; rotational spectra in magnetic field 
 
 
nuclear spin-rotation tensor; fine structure in rotational 
spectra 
 
 

spin density; hyperfine interaction constants 
 
electronic g-tensor 
 
 
and many more ... 
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Restricted Hartree–Fock (RHF) results for LiF 

rLi-F /Å 

RHF(Li+ + F–) 

LiF ground state  

Comparison of restricted Hartree-Fock results 
with full CI 

Basis set: Ahlrichs pVDZ E/Eh 

ROHF(Li + F) 

FCI(Li + F) 

De 
For LiF, the Hartree- 
Fock method is quite  
useful for calculations  
around the equilibrium,  
although the binding energy  
is too low by 26%. 
 

But the RHF model dissociates 
incorrectly into Li+ and F−. 
 

Hartree−Fock Error

re / Å 1.57 −0.6 %
ωe / cm−1 991 +2.5 %

µe / D 6.49 +3.9 %
µ′e / DÅ−1 4.14 +4.6 %

De / kJ mol−1 352 −26 %
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rLi-F /Å 

Li + F 
Li+ + F– 

singlet ground state 
singlet excited state 

LiF molecule  

State-averaged-CASSCF+internally-
contracted-MRCI results  

Basis set: Ahlrichs pVDZ E/Eh 

Near-degeneracy effects 
 

Ground-state equilibrium 
properties 

Why do we want to go beyond 
the Hartree-Fock description? 
 

•  First, we may wish to improve 
    the accuracy of the computed 
    energy and other properties. 
 
•  Second, we are dealing with a 
    situation where the Hartree- 
    Fock model is a very poor  
    zeroth-order approximation  
    of the wavefunction. 
 
 

Post-Hartree-Fock for qualitative or quantitative reasons 
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Near-degeneracy problems of perturbation theory 

rLi-F /Å 

LiF ground state  

Closed-shell coupled-cluster RHF/CCSD(T) results 

Basis set: Ahlrichs pVDZ 

E/Eh 

CCSD(T) 

MP2 

MP4 

FCI 

B-CCD(T) 

The CCSD(T) triples correction 
becomes very negative for 

distances > 3 Å.  

The CCSD(T) method breaks down.  

The MP4(SDTQ) energy also shows 
this behavior, but only at a much 

longer distance (> 6 Å). 
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Multireference perturbation theory applied to LiF 

rLi-F /Å 

LiF ground state  

(2,2)CASPT2 results (MOLPRO, g=4) 

Basis set: Ahlrichs pVDZ 

E/Eh 

(2,2)CASSCF 

(2,2)CASPT2 

RHF 

FCI 

non-dynamical  
correlation 

dynamical  
correlation 
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Unrestricted UCCSD(T) coupled-cluster calculations                            
of the LiF ground state 

rLi-F /Å 

LiF ground state  

Unrestricted coupled-cluster UCCSD(T) results 

Basis set: Ahlrichs pVDZ E/Eh 

ROHF(Li + F) 
UHF 

RHF 

UCCSD(T) 
FCI 

•   The UCCSD(T) results 
      compare favorably with the  
      full CI potential energy curve.  

 
•   The expectation value <S2>  
      is zero for the (unprojected)  
      UHF wavefunction at  
      distances < 3 Å,  but  
      <S2> ≈ 1.0 at larger  
      distances  (> 3 Å). 

 
•    In this example, the spin- 
      contamination represents 
      no real problem for the  
      ground state energy. 

 
•    However, spin-contamination 
      may make the UHF-based   
      methods unsuitable for the  
      study of a variety of molecular  
      properties. 
        


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41

