
B. Roos

V. A. Fok

W. Heitler

W. Pauli

Key Concepts, Methods and Machinery

- lecture 2 -
M. S. Plesset
J. A. Pople

W. Kohn

and many other heroes...

Six postulates in QM

I. On quantum mechanical state

The state of the system is described by the wavefunction $\Psi=\Psi(r, t)$, which depends on the coordinates of particle r at time t. Wavefunction are in general complex functions of real variables, thus $\Psi^{*}(r, t)$ denotes the complex conjugate of Ψ

$$
P(r, t)=\Psi^{*}(r, t) \Psi(x, t) d V=|\Psi(r, t)|^{2} d V \quad \text { (probabilistic interpretation) }
$$

II. On operator representation of mechanical quantities

The mechanical quantities that describe the particle (energy, momentum, angular momentum etc.) are represented by linear operators acting on a wavefunction

The operator of the potential energy
The total energy operator, Hamiltonian:

The operator of the kinetic energy

Dirac notation:
$\int \psi^{*} \hat{A} \phi d \tau \equiv \psi|\hat{A}| \phi$

$$
\int \psi^{*} \phi d \tau \equiv \psi \mid \phi
$$

Matrix element of the operator \hat{A}
Scalar product of two wavefunctions

III. On time evolution of the state

The time evolution of the wave function is given by the equation:

$$
\hat{H} \Psi(r, t)=i \hbar \frac{\partial \Psi(r, t)}{\partial t}
$$

Six postulates in QM

IV. On interpretation of experimental measurements - not discussed here
V. Spin angular momentum (in non-relativistic formulation of QM)

$$
\begin{aligned}
& \hat{S}^{2}\left|\alpha=s(s+1) \hbar^{2}\right| \alpha \\
& \hat{S}_{z}|\alpha\rangle=m_{s} \hbar|\alpha\rangle ; \mid \alpha \equiv \equiv 1 / 2 \\
& \hat{S}_{z}|\beta\rangle=m_{s} \hbar|\beta\rangle ; \mid \beta \equiv \equiv-1 / 2
\end{aligned}
$$

where the spin magnetic quantum number $m_{s}=-s,-s+1, \ldots, s$

$|\uparrow\rangle=\left|+\frac{1}{2}\right\rangle$
$|\nu\rangle=\left|-\frac{1}{2}\right|$

VI. On the permutational symmetry

$$
\begin{aligned}
& \Psi(1,2, \ldots, i, \ldots ., j, \ldots ., N)=-\Psi(1,2, \ldots, j, \ldots ., i, \ldots ., N) \text {-fermions (electrons, ...) - non-integer spin } \\
& \Psi(1,2, \ldots, i, \ldots ., j, \ldots ., N)=\Psi(1,2, \ldots, j, \ldots ., i, \ldots ., N) \text {-bosons-integer spin }
\end{aligned}
$$

Fermi correlation
(Fermi hole)
Pauli exclusion principle

Quantum mechanics in Chemistry

- Let the molecular system under study contain atomic nuclei ($\boldsymbol{q}_{\text {nuclei }}$), electrons ($\boldsymbol{q}_{\text {electrons }}$) and possibly external fields.
- The key equation in quantum mechanics is the nonrelativistic Schrödinger equation:

$$
\hat{H}(\mathbf{q}, t) \Psi(\mathbf{q}, t)=i \hbar \frac{\partial \Psi(\mathbf{q}, t)}{\partial t}
$$

- The vector \mathbf{q} collects the spatial and spin coordinates of all particles (nuclei and electrons) in the molecular system.
* Postulate III.

The electronic Schrödinger equation

$$
\hat{H}(\mathbf{q}, t) \Psi(\mathbf{q}, t)=i \hbar \frac{\partial \Psi(\mathbf{q}, t)}{\partial t}
$$

Let the Hamiltonian be time-independent

$$
\Psi(\mathbf{q}, t)=\Psi(\mathbf{q}) \exp \left(\frac{E_{\text {tot }}}{i \hbar} t\right) ; \quad \hat{H}(\mathbf{q}) \Psi(\mathbf{q})=E_{\mathrm{tot}} \Psi(\mathbf{q})
$$

Born-Oppenheimer approximation
Schrödinger equation for stationary states

$$
\Psi(\mathbf{q}) \approx \Psi\left(\mathbf{q}_{\text {nuclei }}\right) \Psi\left(\mathbf{q}_{\text {electrons }}\right)
$$

The electronic Schrödinger equation

The Hamiltonian (spin-dependent terms not considered)

Thus, the numerical solution of the electronic Schrödinger equation

$$
\hat{H}_{\text {electrons }} \Psi\left(\mathbf{q}_{\text {electrons }}\right)=E \Psi\left(\mathbf{q}_{\text {electrons }}\right)
$$

through a favorite electronic-structure (quantum-chemical, QC) method.
QC methods are also devised to optimize to the spatial configuration of nuclei to minimize E

$\hat{H}_{\text {electrons }} \Psi\left(\mathbf{q}_{\text {electrons }}\right)=E \Psi\left(\mathbf{q}_{\text {electrons }}\right)$

$$
\left.\left.\sum_{i} \Psi\left|\hat{h}_{\text {one-electron, } i}\right| \Psi\right\rangle+\sum_{i<j} \Psi\left|\hat{h}_{\text {two-electron, }, j}\right| \Psi\right\rangle=E
$$

The Many Electron Wavefunction

A form for the electronic wavefunction that satisfies the permutational antisymmetry (postulate VI) is the Slater determinant (SD) or a linear combination of SDs.

SD for two-electron system
${ }^{3} \Psi_{S D}=\frac{1}{\sqrt{2}}\left|\begin{array}{cc}\psi_{1}(1) \alpha(1) & \psi_{2}(1) \alpha(1) \\ \psi_{1}(2) \alpha(2) & \psi_{2}(2) \alpha(2)\end{array}\right|=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}\chi_{1}(1) & \chi_{2}(1) \\ \chi_{1}(2) & \chi_{2}(2)\end{array}\right|$

SD for \boldsymbol{N}-electron system

$$
\Psi_{S D}=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\chi_{1}(1) & \chi_{2}(1) & \cdots & \chi_{N}(1) \\
\chi_{1}(2) & \chi_{2}(2) & \cdots & \chi_{N}(2) \\
\vdots & \vdots & \ddots & \vdots \\
\chi_{1}(N) & \chi_{2}(N) & \cdots & \chi_{N}(N)
\end{array}\right|
$$

Symmetry and spin-adapted SD or linear combination of SDs = configuration state function (CSF)

$$
\begin{aligned}
& \hat{S}^{2} \Psi_{C S F}=S(S+1) \hbar \Psi_{C S F} \\
& \hat{S}_{z} \Psi_{C S F}=M_{s} \hbar \Psi_{C S F} \quad \& \quad \hat{H}_{\text {electrons }} \Psi_{C S F}=E \Psi_{C S F}
\end{aligned}
$$

Molecular orbitals, as a building elements in SD or CSF, are constructed from atomic orbitals:

Basis set

Hydrogen-like (one-electron) AOs are always of the form:
$\varphi(r, \theta, \vartheta)=R(r) Y_{l m}(\theta, \vartheta)$ where $R(r)$ is the radial component that decays exponentially with increasing distance from the nucleus $\boldsymbol{e}^{-\zeta r}$

The Many Electron Wavefunction

Since it is impossible to obtain analytic solutions in systems with two or more electrons, the exponential behavior of the AOs - Slater-type orbitals (STOs) - were hence the first to be used. They are characterized by an exponential factor in the radial part.

$$
\begin{aligned}
\varphi(r, \theta, \vartheta)= & P(r) e^{-\alpha r} Y_{l m}(\theta, \vartheta) \\
& \text { STO }
\end{aligned}
$$

Drawback: difficulties associate with evaluating integrals that appear in the solution of electronic SE.

$$
\begin{gathered}
\varphi(r, \theta, \vartheta)=P(r) e^{-\alpha r^{2}} Y_{l m}(\theta, \vartheta) \\
\text { or } \\
\varphi(\alpha, l, m, n ; x, y, z)=N e^{-\alpha r^{2}} x^{l} y^{m} z^{n}
\end{gathered}
$$

(Gauss-type orbital GTO)
Drawback: qualitatively incorrect behavior at the nucleus and in the asymptotic limit

Correction

$$
\begin{aligned}
& \text { Linear combination } \\
& \text { of several GTOs } \\
& \varphi_{p}^{C G T O}=\sum_{a} b_{a p} \varphi_{a}^{G T O} \\
& \text { function }
\end{aligned}
$$

Segmented contraction scheme: each GTO contributes to exactly one CGTO General contraction scheme: each GTO can contribute to more than one CGTO

Balanced basis set - "More art than science"

double-, triple-, quadruple n-tuple zeta basis sets DZ, TZ, QZ ...

More STO/GTO/CGTO
functions
describing one AO

Minimal basis set (one STO or GTO or CGTO for one core / valence AO)

Not very flexible

Different types of STO/GTO/CGTO
functions, e.g.,
polarization functions (P):
e.g., for H atom add p functions
\quad for Fe atom add ffunctions
diffuse functions (D)
(with small α in exp(-ar²) -
allowing to describe electron
density at larger distances from
nucleus.
- suitable for anions, soft, large
molecules, Rydberg states..

Infinite basis set - N electrons in ∞ MO - it requires ∞ AOs orbitals (ideal but not realistic)

Effective core potential: if the core electrons (MOs, AOs) are replaced with an approximate pseudopotential

General strategies for solving the electronic SE

Optimize Ψ and obtain E through a variation
$\varepsilon\left[\Psi_{\text {guess }}\right]=\frac{\left.\Psi_{\text {guess }}\left|\hat{H}_{\text {elecrons }}\right| \Psi_{\text {guess }}\right\rangle}{\left\langle\Psi_{\text {guuess }} \mid \Psi_{\text {guess }}\right\rangle} \geq E\left[\Psi_{\text {opt }}\right]=\frac{\left.\Psi_{\text {opt }}\left|\hat{H}_{\text {elecrrons }}\right| \Psi_{\text {opt }}\right\rangle}{\Psi_{\text {opt }}\left|\Psi_{\text {opt }}\right\rangle}$
$\varepsilon\left[\Psi\left(c_{0}, c_{1}, \ldots, c_{P}\right)\right] \quad \frac{\partial \varepsilon\left(c_{0}, c_{1}, \ldots, c_{P}\right)}{\partial c_{i}}=0$

\vec{C}

Optimize Ψ and obtain E through a perturbation

$$
\begin{array}{r}
\hat{H}(\lambda)=\hat{H}^{(0)}+\lambda \hat{V} \text { Let } \lambda \text { be a perturbational parameter } \\
0 \leq \lambda \leq 1
\end{array}
$$

We seek the solution in the form:

$$
\begin{aligned}
& \Psi(\lambda)=\Psi^{(0)}+\lambda \Psi^{(1)}+\lambda^{2} \Psi^{(2)}+\ldots \\
& E(\lambda)=E^{(0)}+\lambda E^{(1)}+\lambda^{2} E^{(2)}+\ldots
\end{aligned}
$$

Then, solving $\hat{H}(\lambda) \Psi(\lambda)=E(\lambda) \Psi(\lambda)$

Family of standard Wave-Function Theories (WFT) - General overview Welcome to the ZOO

Semi-empirical methods (MNDO, AM1, PM3, etc.)

Ab initio methods Hartree-Fock (HF-SCF)	
Multiconfigurational HF (MCSCF, CASSCF)	
perturbational hierarchy (CASPT2, CASPT3) perturbational hierarchy (MP2, MP3, MP4, ...) excitation hierarchy (MR-CISD, MR-CCSD) Energy (usually $<1 \%$ of the total energy)	excitation hierarchy (CIS, CISD, CISDT, ...) (CCS, CCSD, CCSDT, ...)

Full Cl

Hartree-Fock (HF-SCF) method - the Gate to the realm of WFT

Equation from page 8:

$$
\left.E[\Psi]=\sum_{i} \Psi\left|\hat{h}_{\text {one-electron }, i}\right| \Psi\right\rangle+\sum_{i<j} \Psi\left|\hat{h}_{\text {two-electron }, i j}\right| \Psi
$$

Matrix element of the Fock matrix in the basis of AOs - explicit form (for the restricted Hartree-Fock method)

Hartree-Fock (HF-SCF) method - Computational Remarks

- Computational bottleneck
- the evaluation of two-electron (four-center) integrals

$$
\varphi_{p} \varphi_{r}\left|\hat{V}_{e-e}\right| \varphi_{q} \varphi_{s}
$$

- Approximations of such integrals through

Cholesky decomposition (CD) or Resolution of Identity (RI-JK).

- Restricted (closed-shell / open-shell HF) unrestricted HF - spin-symmetry broken

$$
\begin{aligned}
& \left\{\mathbf{F}^{\alpha}-\varepsilon_{i}^{\alpha} \mathbf{S}^{\alpha}\right) \mathbf{c}_{i}^{\alpha}=0 \\
& \left\{\mathbf{F}^{\beta}-\varepsilon_{i}^{\beta} \mathbf{S}^{\beta}\right\} \mathbf{c}_{i}^{\beta}=0 \\
& \mathbf{F}^{\beta}\left(\mathbf{c}^{\beta}, \mathbf{c}^{\alpha}\right) ; \mathbf{F}^{\beta}\left(\mathbf{c}^{\beta}, \mathbf{c}^{\alpha}\right)
\end{aligned}
$$

Hartree-Fock (HF-SCF) method - Physical Remarks

- Each electron experiences the Coulombic repulsion of other electrons through their averaged field (a mean field) (the lack of dynamical correlation - see later)
- Exchange interaction among electrons with the same spin projection (Fermi correlation) - through the antisymmetric nature of the Slater determinant.
- One Slater determinant (SD) = one "electronic configuration" ("exact" wave function better expressed as a linear combination of many configurations - SDs).
- Only the ground-state wavefunction and its energy is solved by HF SCF.
(HF not for excited states and their energies)

Exact non-realistic solution with

Full Configuration Interaction (FCI) in the infinite basis set

MOs

$$
\hat{H}_{\text {elecrrons }} \Psi_{F C I}=E_{\text {exact }} \Psi_{F C I} \quad \Psi_{F C I}=\sum_{k} C_{k} \Phi_{S D, k}
$$

$$
\text { Correlation energy: } \mathrm{E}_{\text {corr }}=\mathrm{E}_{\text {exact }}-\mathrm{E}_{\mathrm{HF}}
$$

$$
\begin{gathered}
\left.\left.\Psi_{F C I}\left|\hat{H}_{\text {elecrrons }}\right| \Psi_{F C I}\right)=E_{\text {exact }} \quad\left(\text { if }\left|\Psi_{F C I}\right| \Psi_{F C I}\right)=1\right) \\
\sum_{k} C_{k} \Phi_{k}\left|\hat{H}_{\text {elecrons }}\right| \sum_{l} C_{l} \Phi_{l}=E_{\text {exact }}
\end{gathered}
$$

Slater-Condon rules \rightarrow many integrals $=0$ also Brillouin theorem:

$$
\left.\Phi_{\text {HF-SCF }}\left|\hat{H}_{\text {electrons }}\right| \Phi_{i}^{a}\right\rangle=0
$$

Exact non-realistic solution with

Full Configuration Interaction (FCI) in the infinite basis set

Static versus dynamical correlation?

dynamical

- Short range effects that arises as

$$
r_{12} \rightarrow 0
$$

Dynamical correlation is related to the Coulomb hole.

Static ("non-dynamical")

from configurational near-degeneracies or from deficiencies in Hartree-Fock orbitals

Φ_{1}

$$
\Psi=C_{1} \Phi_{1}+C_{2} \Phi_{2}
$$

e.g., with

$$
\begin{aligned}
& C_{1}=0.7 \\
& C_{2}=0.3
\end{aligned}
$$

Single-reference post-HF approaches (a portion of dynamical correlation included)
excitation hierarchy (CIS, CISD, CISDT, ...) (CCS, CCSD, CCSDT, ...)

Møller-Plesset perturbation theory of n-th order (MPn)

$$
\begin{aligned}
& \hat{H}(\lambda) \Psi(\lambda)=E(\lambda) \Psi(\lambda) \quad \hat{H}(\lambda)=\hat{H}^{(0)}+\lambda \hat{V} \\
& \Psi(\lambda)=\Psi^{(0)}+\lambda \Psi^{(1)}+\lambda^{2} \Psi^{(2)}+\ldots \quad \text { from HF-SCF } \\
& E(\lambda)=E^{(0)}+\lambda E^{(1)}+\lambda^{2} E^{(2)}+\ldots
\end{aligned}
$$

spinorbitals
| Truncation of perturbation
to second-order
\rightarrow from HF-SCF
MP2: $\quad E_{M P 2}=E_{H F}+\sum_{k} \frac{\mid\left\langle\chi_{k}^{(0)}\right| \hat{V}\left|\chi_{H F}\right\rangle}{E_{0}^{(0)}-E_{0}^{(k)}}$

Truncated CI methods

$$
\begin{aligned}
& \text { Coupled-cluster methods (CC) } \Psi_{C C}=e^{\hat{T}} \Phi_{H F} \\
& \left.e^{T} \Phi_{H F}=\left[1+\left(\hat{T}_{1}+\hat{T}_{2}+. .\right)\right]+\frac{1}{2}\left(\hat{T}_{1}+\hat{T}_{2}+. .\right)^{2}+. .\right] \Phi_{H F} \quad \text { Cluster operator } \\
& \text { CCD: } \begin{array}{l}
\hat{T}=\hat{T}_{2} \\
e^{T_{2}} \Phi_{H F}=\left(1+\hat{T}_{2}+\frac{1}{2} \hat{T}_{2}^{2}+. .\right) \Phi_{H F}
\end{array} \quad \hat{T}=\hat{T}_{1}+\hat{T}_{2}+\hat{T}_{3}+\ldots
\end{aligned}
$$

CCSD(T) - popular and often used as a golden standard method
for single-reference systems (T) - triple excitations added as a perturbation

Formal scaling behavior of some single-reference QC methods

Scaling behavior	Method(s)
N^{4}	HF
N^{5}	MP2
N^{6}	MP3, CISD, MP4SDQ, CCSD, QCISD
N^{7}	MP4, CCSD(T), QCISD(T)
N^{8}	MP5, CISDT, CCSDT
N^{9}	MP6
N^{10}	MP7, CISDTQ, CCSDTQ

N - the number of basis functions

Multiconfigurational HF - MCSCF (CASSCF / RASSCF)
 (a portion of static correlation included)

Modern approaches allowing to extent the active spaces

- Density-matrix renormalization group technology
larger active spaces within DMRG-CASSCF (e.g., 30-in-30)
"Sometimes trivial, sometimes more difficult, sometimes impossible"

B. Roos

Selection cannot be automatized and depends on the particular system /problem

Chemical insight is important ingredient In choosing a proper active space

CASPT2 - PT2 on top of CASSCF
RASPT2 - PT2 on top of RASSCF

DMRG-CASPT2 - PT2 on top of DMRG-CASSCF \rightarrow Emerging method for "complex electronic structure" chemical transformations
MRCI(SD) - CISD on top of CASSCF
$\operatorname{MRCC}(S D)-C C S D$ on top of CASSCF $\xlongequal[\rightarrow \text { Very small molecules }]{ }$

Density Functional Theory - DFT

The realm of DFT methods built on two fundamental theorems:

$1^{\text {st }}$ Hohenberg-Kohn theorem:

shows that electron density of an arbitrary molecular system (in an electronically nondegenerate ground state) in the absence of external electromagnetic fields determines unambiguously static external potential

$$
V_{e x t}(r)=\sum_{k=1}^{n u c l e i} Z_{k}\left|r-R_{k}\right|^{-1}
$$

$2^{\text {nd }}$ Hohenberg-Kohn theorem:

proves that the correct ground state electron density minimizes the energy $E[\rho]$
The total energy is represented as a functional of density:

Kohn-Sham Density Functional Theory (KS-DFT)

$$
E[\rho]=\int \rho(r) v(r) d r+T[\rho]+V_{e e}[\rho]
$$

Coulomb electron-electron interaction

$$
\begin{aligned}
& E[\rho]=\int \rho(r) v_{e x t}(r) d r+T_{s}[\rho]+J[\rho]+\left(T[\rho]-T_{s}[\rho]\right)+\left(V_{e e}[\rho]-J[\rho]\right) \\
& \text { Kinetic energy of } \\
& \text { non-interacting electrons } \\
& \begin{array}{l}
\frac{1}{2} \int \frac{\rho\left(r^{\prime}\right) \rho(r)}{r-r^{\prime}} d r^{\prime} d r \\
+T_{s}[\rho]+J[\rho]+E_{x c}[\rho]
\end{array} \\
& E[\rho]=\int \rho(r) v_{e x t}(r) d r+T_{s}[\rho]+J[\rho]+E_{x c}[\rho] \\
& \text { Exchange-Correlation (XC) Energy }
\end{aligned}
$$

The idea of considering the determinantal WF
of \boldsymbol{N} non-interacting electrons in \boldsymbol{N} orbitals, the $T_{s}[\rho]$ is exactly given as:
$\left.T_{s}[\rho]=\sum_{i=1}^{N}\left\langle\chi_{i}\right|-\frac{\hbar^{2}}{2 m_{e}} \Delta_{i} \right\rvert\, \chi_{i}$
Kohn-Sham spinorbital
\& $\quad \begin{gathered}\text { fulfilling } \\ \text { condition: }\end{gathered} \rho=\sum_{i=1}^{N}\left\langle\chi_{i}\right| \chi_{i}$
Real electron density

Then, one-electron KS equation:

$$
\left(-\frac{\hbar^{2}}{2 m_{e}} \Delta_{i}+v_{e f f}(r)\right) \chi_{i}(r)=\varepsilon_{i} \chi_{i}(r) \quad \text { (Fock-like } \quad \text { equations) }
$$

LCAO ansatz
with:

$$
\begin{aligned}
v_{\text {eff }}= & v_{\text {ext }}(r)+\int \frac{\rho\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d r^{\prime}+v_{x c}(r) \\
& \text { Alpha-omega in KS-DFT- } \\
& \text { exact form unknown }
\end{aligned}
$$

Restricted / Unrestricted Kohn-Sham equations - as in HF

$$
\rho=\rho_{\alpha}+\rho_{\beta}
$$

Most common of exchange-correlation potentials

- Local density approximation - most popular way to do electronic structure calculations in solid state physics
- Generalized gradient approximation (GGA) - xc potentials are functionals of electron density and its first spatial derivatives ("gradientcorrected LDA" functionals)
PBE, BP86...
- Meta-GGA approximation - extension of GGA. xc potentials are functionals of electron density, its first and second spatial derivatives and kinetic energy density
TPSS....
- Hybrid exchange functionals - a portion of exact exchange from HF theory is incorporated into xc potentials. Usually, GGA hybrid and GGA approach are combined.

TPSSH, B3LYP, PBEO....

- Hybrid exchange and hybrid correlation (double-hybrid) functionals essentially extension of hybrid-GGA, which uses MP2 correction to replace part of the semi-local GGA correlation.

Limitations of standard KS DFT methods

- Lack of long-range correlation (dispersion) empirical corrections $\sim 1 / R^{6}$
$B 3 L Y P+D 3$
- Incorrect long-range exchange behavior
e.g. incorrect energies of charge-transfer excitations

CAM-B3LYP (exchange should decay asymptotically as $r_{12}{ }^{-1}$; B3LYP : $0.2 r_{12}{ }^{-1}$)

- Lack of static correlation energy

Generally lower sensitivity of DFT to multireference character is dependent on the amount of HF exchange included in the functional

- Self-interaction error

SIE interpreted as the interaction of an electron with itself.
While the diagonal exchange terms $\boldsymbol{K}_{\mathrm{ii}}$ cancel exactly self-interaction Coulomb terms $\boldsymbol{J}_{\mathrm{ii}}$ in HF, it is not valid for standard KS-DFT methods.

- Lack of systematic improvability!!!!!

For a given geometry - wavefunction optimization -> electronic energy E (single-point calculation)

On the other hand:
QC methods can be also used to optimize geometry - algorithms allowing to evaluate (first, second) derivatives of E with respect to the nuclear coordinates and to search crucial points on the potential energy surface
\rightarrow Minima \& first-order stationary points (transition states) (geometry optimization)

Thus now, in principle, you are able to read the following sentence:

GGA-type PBE functional in combination with RI-J approximation and the DZP basis set was used for the geometry optimization, while CASPT2(10-in-8) approach combined with a larger basis set (e.g. TZVP) was employed for the final single-point energies.

APPENDIX

Properties as derivatives of the energy Bonus

- Consider a molecule in an external electric field ε.

$$
E(\varepsilon)=E(\varepsilon=0)+\left.\varepsilon \frac{d E}{d \varepsilon}\right|_{\varepsilon=0}+\left.\frac{1}{2} \varepsilon^{2} \frac{d^{2} E}{d \varepsilon^{2}}\right|_{\varepsilon=0}+\ldots
$$

- Dipole moment (μ)
- Polarizability (α)

$$
\begin{aligned}
& \mu=-\left.\frac{d E}{d \varepsilon}\right|_{\varepsilon=0} \\
& \alpha=-\left.\frac{d^{2} E}{d \varepsilon^{2}}\right|_{\varepsilon=0} \\
& \beta=-\left.\frac{d^{3} E}{d \varepsilon^{3}}\right|_{\varepsilon=0}
\end{aligned}
$$

$$
\begin{array}{cl}
\frac{d E}{d \varepsilon_{\alpha}} & \begin{array}{l}
\text { dipole moment; in a similar way also multipole moments, } \\
\text { electric field gradients, etc. } \\
\frac{d^{2} E}{d \varepsilon_{\alpha} d \varepsilon_{\beta}}
\end{array} \\
\frac{\text { polarizability }}{d d_{\alpha} d \varepsilon_{\beta} d \varepsilon_{\gamma}} & \text { (first) hyperpolarizability } \\
\frac{d E}{d x_{i}} & \text { forces on nuclei } \\
\frac{d^{2} E}{d x_{i} d x_{j}} & \text { harmonic force constants; harmonic vibrational frequencies } \\
\frac{d^{3} E}{d x_{i} d x_{j} d x_{k}} & \text { cubic force constants; anharmonic corrections to distances } \\
\frac{d^{4} E}{d x_{i} d x_{j} d x_{k} d x_{i}} & \text { quartic force constants; constants } \\
\frac{d^{2} E}{d x_{i} d_{\alpha}} & \text { vibrational frequencies } \\
\frac{d^{3} E}{d x_{i} d \varepsilon_{\alpha} d \varepsilon_{\beta}} & \text { polarmoniz derivativilitys, infrarrections to derivatives; Raman intensities }
\end{array}
$$

$\frac{d^{2} E}{d B_{\alpha} d B_{\beta}}$	magnetizability
$\frac{d^{2} E}{d I_{i_{\alpha}} d B_{\beta}}$	nuclear magnetic shielding tensor; relative NMR shifts
$\frac{d^{2} E}{d I_{i_{\alpha}} d I_{j_{\beta}}}$	indirect spin-spin coupling constants
$\frac{d^{2} E}{d B_{\alpha} d J_{\beta}}$	rotational g-tensor; rotational spectra in magnetic field
$\frac{d^{2} E}{d I_{i_{\alpha}} d J_{\beta}}$	nuclear spin-rotation tensor; fine structure in rotational $\frac{d E}{d S_{\alpha}}$
$\frac{d^{2} E}{d S_{\alpha} d S_{\beta}}$	spectra density; hyperfine interaction constants
\ldots	electronic g-tensor
	and many more ...

Restricted Hartree-Fock (RHF) results for LiF

Post-Hartree-Fock for qualitative or quantitative reasons

Near-degeneracy problems of perturbation theory

Multireference perturbation theory applied to LiF

Unrestricted UCCSD(T) coupled-cluster calculations of the LiF ground state

- The UCCSD(T) results compare favorably with the full Cl potential energy curve.
- The expectation value $<\mathrm{S}^{2}>$ is zero for the (unprojected) UHF wavefunction at distances < 3 Å, but $\left\langle S^{2}\right\rangle \approx 1.0$ at larger distances (> $3 \AA$).
- In this example, the spincontamination represents no real problem for the ground state energy.
- However, spin-contamination may make the UHF-based methods unsuitable for the study of a variety of molecular properties.

