

V. A. Fok

J. Čížek

B. Roos

C. C. J. Roothaan

W. Heitler

Key Concepts, Methods and Machinery

W. Kohn

J. C. Slater

W. Heisenberg

M. Born

E. Schrödinger

Six postulates in QM

I. On quantum mechanical state

The state of the system is described by the *wavefunction* $\Psi = \Psi(r,t)$, which depends on the coordinates of particle r at time t. Wavefunction are in general complex functions of real variables, thus $\Psi^*(r,t)$ denotes the complex conjugate of Ψ

$$P(r,t) = \Psi^*(r,t) \Psi(x,t) dV = |\Psi(r,t)|^2 dV$$
 (probabilistic interpretation)

II. On operator representation of mechanical quantities

The mechanical quantities that describe the particle (energy, momentum, angular momentum etc.) are represented by linear operators acting on a *wavefunction*

The total energy operator, Hamiltonian: $\hat{H} = \hat{T} + \hat{V}$

The operator of the potential energy

The operator of the kinetic energy

Dirac notation:

$$\psi^{*}\hat{A}\phi d\tau \equiv \langle \psi \mid \hat{A} \mid \phi \rangle$$

$$\int \psi^* \phi d\tau \equiv \langle \psi \mid \phi \rangle$$

Matrix element of the operator \hat{A}

Scalar product of two wavefunctions

III. On time evolution of the state

The time evolution of the wave function is given by the equation:

$$\hat{H}\Psi(r,t) = i\hbar \frac{\partial \Psi(r,t)}{\partial t}$$

Six postulates in QM

IV. On interpretation of experimental measurements – not discussed here

Quantum mechanics in Chemistry

- Let the molecular system under study contain atomic nuclei (*q*_{nuclei}), electrons
 (*q*_{electrons}) and possibly external fields.
- The key equation in quantum mechanics is the *nonrelativistic* Schrödinger equation:

$$\hat{H}(\mathbf{q},t)\Psi(\mathbf{q},t) = i\hbar \frac{\partial \Psi(\mathbf{q},t)}{\partial t}$$

• The vector **q** collects the spatial and spin coordinates of all particles (nuclei and electrons) in the molecular system.

* Postulate III.

The electronic Schrödinger equation

$$\hat{H}(\mathbf{q},t)\Psi(\mathbf{q},t) = i\hbar \frac{\partial \Psi(\mathbf{q},t)}{\partial t}$$

Let the Hamiltonian be time-independent

$$\Psi(\mathbf{q},t) = \Psi(\mathbf{q}) \exp\left(\frac{E_{\text{tot}}}{i\hbar}t\right); \qquad \hat{H}(\mathbf{q})\Psi(\mathbf{q}) = E_{\text{tot}}\Psi(\mathbf{q})$$
Born-Oppenheimer approximation
$$\int Schrödinger equation for stationary states$$

$$\Psi(\mathbf{q}) \approx \Psi(\mathbf{q}_{\text{nuclei}})\Psi(\mathbf{q}_{\text{electrons}})$$

The electronic Schrödinger equation

The Hamiltonian (spin-dependent terms not considered)

Thus, the numerical solution of the electronic Schrödinger equation

$$\hat{H}_{electrons}\Psi(\mathbf{q}_{electrons}) = E\Psi(\mathbf{q}_{electrons})$$

through a favorite electronic-structure (quantum-chemical, QC) method.

QC methods are also devised to optimize to the spatial configuration of nuclei to minimize E - geometry optimization.

$$\begin{split} \widehat{H}_{electrons}\Psi(\mathbf{q}_{electrons}) &= E\Psi(\mathbf{q}_{electrons}) \\ \downarrow \\ \hline \underbrace{\left\langle \Psi \mid \widehat{H}_{electrons} \mid \Psi \right\rangle}_{\left\langle \Psi \mid \Psi \right\rangle} &= E \\ \hline if \left\langle \Psi \mid \Psi \right\rangle = 1 \\ \hline \sum_{i} \left\langle \Psi \mid \widehat{h}_{one-electron,i} \mid \Psi \right\rangle + \sum_{i < j} \left\langle \Psi \mid \widehat{h}_{two-electron,ij} \mid \Psi \right\rangle = E \end{split}$$

The Many Electron Wavefunction

A form for the **electronic wavefunction** that satisfies the permutational antisymmetry (postulate VI) is the **Slater determinant (SD) or a linear combination of SDs.**

Symmetry and spin-adapted SD or linear combination of SDs = configuration state function (CSF)

$$\hat{S}^{2}\Psi_{CSF} = S(S+1)\hbar\Psi_{CSF}$$

$$\hat{S}_{z}\Psi_{CSF} = M_{s}\hbar\Psi_{CSF}$$

$$\hat{H}_{electrons}\Psi_{CSF} = E\Psi_{CSF}$$

Molecular orbitals, as a building elements in SD or CSF, are constructed from atomic orbitals:

Hydrogen-like (one-electron) AOs are always of the form:

 $\varphi(r, \theta, \theta) = R(r)Y_{lm}(\theta, \theta)$ where R(r) is the radial component that decays exponentially with increasing distance from the nucleus $e^{-\zeta r}$

The Many Electron Wavefunction

Since it is impossible to obtain analytic solutions in systems with two or more electrons, the exponential behavior of the AOs – **Slater-type orbitals (STOs)** – were hence the first to be used. They are characterized by an exponential factor in the radial part.

$$\varphi(r,\theta,\vartheta) = P(r) \frac{e^{-\alpha r}}{e^{-\alpha r}} Y_{lm}(\theta,\vartheta)$$
STO

Drawback: difficulties associate with evaluating integrals that appear in the solution of electronic SE.

$$\varphi(r,\theta,\vartheta) = P(r)e^{-\alpha r^2}Y_{lm}(\theta,\vartheta)$$

$$Or$$

$$\varphi(\alpha,l,m,n;x,y,z) = Ne^{-\alpha r^2}x^ly^mz^n$$

(Gauss-type orbital GTO)

Drawback: qualitatively incorrect behavior at the nucleus and in the asymptotic limit

Correction

Linear combination of several GTOs $\varphi_p^{CGTO} = \sum_a b_{ap} \varphi_a^{GTO}$

contracted basis function

primitive

Segmented contraction scheme: each GTO contributes to exactly one CGTO

General contraction scheme: each GTO can contribute to more than one CGTO

Balanced basis set - "More art than science"

Minimal basis set -(one STO or GTO or CGTO for one core / valence AO)

double-, triple-, quadruple n-tuple zeta basis sets

DZ, TZ, QZ ...

More STO/GTO/CGTO functions describing one AO

DZ	
DZP	
ΤZ	
TZP	
TZPD	
QZVPD	

> Not very flexible

Different types of STO/GTO/CGTO functions, e.g.,

polarization functions (P): *e.g., for H atom add p functions for Fe atom add f functions*

diffuse functions (D)

(with small α in $exp(-\alpha r^2)$ – allowing to describe electron density at larger distances from nucleus.

suitable for anions, soft, large molecules, Rydberg states..

Infinite basis set – N electrons in ∞ MO – it requires ∞ AOs orbitals (ideal but not realistic)

Effective core potential:if the core electrons (MOs, AOs) are replaced with an
approximate pseudopotential

General strategies for solving the electronic SE

Family of standard Wave-Function Theories (WFT) – General overview Welcome to the ZOO

Hartree–Fock (HF-SCF) method – the Gate to the realm of WFT

Hartree–Fock (HF-SCF) method – Computational Remarks

- Computational bottleneck – the evaluation of two-electron (four-center) integrals $\langle \varphi_p \varphi_r | \hat{V}_{e-e} | \varphi_q \varphi_s \rangle$
- Approximations of such integrals through Cholesky decomposition (CD) or Resolution of Identity (RI-JK).
 - Restricted (closed-shell / open-shell HF) unrestricted HF – spin-symmetry broken

Hartree–Fock (HF-SCF) method – Physical Remarks

- Each electron experiences the Coulombic repulsion of other electrons through their averaged field (a mean field) (the lack of dynamical correlation – see later)
- Exchange interaction among electrons with the same spin projection (Fermi correlation) – through the antisymmetric nature of the Slater determinant.
- One Slater determinant (SD) = one "electronic configuration" ("exact" wave function better expressed as a linear combination of many configurations - SDs).
- Only the ground-state wavefunction and its energy is solved by HF SCF. (HF not for excited states and their energies)

Exact non-realistic solution with Full Configuration Interaction (FCI) in the infinite basis set

$$\hat{H}_{electrons} \Psi_{FCI} = E_{exact} \Psi_{FCI} \qquad \Psi_{FCI} = \sum_{k} C_{k} \Phi_{SD,k}$$
Correlation energy: $E_{corr} = E_{exact} - E_{HF}$

$$\left\langle \Psi_{FCI} \mid \hat{H}_{electrons} \mid \Psi_{FCI} \right\rangle = E_{exact} \quad \text{(if } \left\langle \Psi_{FCI} \mid \Psi_{FCI} \right\rangle = 1\text{)}$$

$$\left\langle \sum_{k} C_{k} \Phi_{k} \mid \hat{H}_{electrons} \mid \sum_{l} C_{l} \Phi_{l} \right\rangle = E_{exact}$$

Slater-Condon rules → many integrals = 0

also Brillouin theorem:

$$\left\langle \Phi_{\mathrm{HF-SCF}} \mid \hat{\mathbf{H}}_{\mathrm{electrons}} \mid \Phi_{i}^{a} \right\rangle = 0$$

Slater

Exact non-realistic solution with Full Configuration Interaction (FCI) in the infinite basis set

Static versus dynamical correlation?

dynamical

• Short range effects that arises as

 $r_{12} \rightarrow 0$

Dynamical correlation is related to the Coulomb hole.

Static ("non-dynamical")

from configurational near-degeneracies or from deficiencies in Hartree-Fock orbitals

Single-reference post-HF approaches (a portion of dynamical correlation included)

Formal scaling behavior of some single-reference QC methods

Scaling behavior	Method(s)
$\frac{N^4}{N^5}$	HF
N^5	MP2
N^{6}	MP3, CISD, MP4SDQ, CCSD, QCISD
N^7	MP4, CCSD(T), QCISD(T)
N^8	MP5, CISDT, CCSDT
N^9	MP6
N^{10}	MP7, CISDTQ, CCSDTQ

N – the number of basis functions

Multiconfigurational HF – MCSCF (CASSCF / RASSCF) (a portion of static correlation included)

Modern approaches allowing to extent the active spaces

- Density-matrix renormalization group technology

larger active spaces within **DMRG-CASSCF** (e.g., 30-in-30)

Note on the selection of an active space

"Sometimes trivial, sometimes more difficult, sometimes impossible"

B. Roos

Selection cannot be automatized and depends on the particular system /problem

Chemical insight is important ingredient In choosing a proper active space Multi-reference wavefunction approaches (a portion of static and dynamic correlation included)

CASPT2 – PT2 on top of CASSCF

→ Popular for spectroscopy

RASPT2 – PT2 on top of RASSCF

DMRG-CASPT2 – PT2 on top of DMRG-CASSCF → Emerging method for "complex electronic structure" chemical transformations

MRCI(SD) – CISD on top of CASSCF

MRCC(SD) - CCSD on top of CASSCF

Higly accurate but computationally extremely demanding → Very small molecules

Density Functional Theory - DFT

The realm of DFT methods built on two fundamental theorems:

1st Hohenberg-Kohn theorem:

shows that electron density of an arbitrary molecular system (in an electronically nondegenerate ground state) in the absence of external electromagnetic fields determines unambiguously static external potential $\sum_{nuclei} |\mathbf{r}_n| = \mathbf{p}_n|^{-1}$

$$v_{ext}(r) = \sum_{k=1}^{nuclei} Z_k \left| r - R_k \right|^{-1}$$

2nd Hohenberg-Kohn theorem:

proves that the correct ground state electron density minimizes the energy $E[\rho]$

The total energy is represented as a functional of density:

$$E[\rho] = V_{ne}[\rho] + T[\rho] + V_{ee}[\rho] = \int \rho(r) v_{ext}(r) dr + T[\rho] + V_{ee}[\rho]$$

nucleus-electron
attraction energy of (interacting) electrons electrons interaction energy

Kohn-Sham Density Functional Theory (KS-DFT)

$$E[\rho] = \int \rho(r)v(r)dr + T[\rho] + V_{ee}[\rho]$$
Coulomb electron-electron interaction
$$E[\rho] = \int \rho(r)v_{ext}(r)dr + T_{s}[\rho] + J[\rho] + (T[\rho] - T_{s}[\rho]) + (V_{ee}[\rho] - J[\rho])$$
Kinetic energy of non-interacting electrons
$$\frac{1}{2}\int \frac{\rho(r')\rho(r)}{|r-r|}dr'dr$$

$$E[\rho] = \int \rho(r)v_{ext}(r)dr + T_{s}[\rho] + J[\rho] + E_{xc}[\rho]$$
Exchange-Correlation (XC) Energy

Working Kohn-Sham Equation

The idea of considering the determinantal WF of **N** non-interacting electrons in **N** orbitals, the $T_s[\rho]$ is exactly given as:

Most common of exchange-correlation potentials

- Local density approximation most popular way to do electronic structure calculations in solid state physics
- Generalized gradient approximation (GGA) xc potentials are functionals of electron density and its first spatial derivatives ("gradientcorrected LDA" functionals)
 PBE, BP86...
- Meta-GGA approximation extension of GGA. xc potentials are functionals of electron density, its first and second spatial derivatives and kinetic energy density
 TPSS....
- Hybrid exchange functionals a portion of exact exchange from HF theory is incorporated into xc potentials. Usually, GGA hybrid and GGA approach are combined.
 TPSSH, B3LYP, PBE0....
- Hybrid exchange and hybrid correlation (double-hybrid) functionals essentially extension of hybrid-GGA, which uses MP2 correction to replace part of the semi-local GGA correlation. B2PLYP...

Limitations of standard KS DFT methods

- Lack of long-range correlation (dispersion)
 empirical corrections ~1/R⁶
 B3LYP+D3
- Incorrect long-range exchange behavior

e.g. incorrect energies of charge-transfer excitations (exchange should decay asymptotically as r_{12}^{-1} ; B3LYP : $0.2r_{12}^{-1}$)

Lack of static correlation energy

Generally lower sensitivity of DFT to multireference character is dependent on the amount of HF exchange included in the functional

• Self-interaction error

SIE interpreted as the interaction of an electron with itself. While the diagonal exchange terms K_{ii} cancel exactly self-interaction Coulomb terms J_{ii} in HF, it is not valid for standard KS-DFT methods.

Lack of systematic improvability!!!!!

For a given geometry – wavefunction optimization -> electronic energy *E* (single-point calculation)

On the other hand:

QC methods can be also used to optimize geometry – algorithms allowing to evaluate (first, second) derivatives of *E* with respect to the nuclear coordinates and to search crucial points on the potential energy surface

→ Minima & first-order stationary points (transition states)

(geometry optimization)

Thus now, in principle, you are able to read the following sentence:

GGA-type PBE functional in combination with RI-J approximation and the DZP basis set was used for the geometry optimization, while CASPT2(10-in-8) approach combined with a larger basis set (e.g. TZVP) was employed for the final single-point energies.

APPENDIX

Properties as derivatives of the energy -Bonus

• Consider a molecule in an external electric field ε .

$$E(\varepsilon) = E(\varepsilon = 0) + \varepsilon \left. \frac{dE}{d\varepsilon} \right|_{\varepsilon=0} + \frac{1}{2} \varepsilon^{-2} \left. \frac{d^2 E}{d\varepsilon^{-2}} \right|_{\varepsilon=0} + \dots$$

- Dipole moment (μ)
- Polarizability (α)
- First hyperpolarizability (β)

$$\mu = -\frac{dE}{d\varepsilon}\Big|_{\varepsilon=0}$$
$$\alpha = -\frac{d^2E}{d\varepsilon^2}\Big|_{\varepsilon=0}$$
$$\beta = -\frac{d^3E}{d\varepsilon^3}\Big|_{\varepsilon=0}$$

dE $d\varepsilon_{\alpha}$ $d^2 E$ $d\varepsilon_{\alpha}d\varepsilon_{\beta}$ $d^{3}E$ $d\varepsilon_{\alpha}d\varepsilon_{\beta}d\varepsilon_{\gamma}$ dE dx_i d^2E $dx_i dx_i$ $d^{3}E$ $dx_i dx_i dx_k$ d^4E $dx_i dx_i dx_k dx_l$ d^2E $dx_i d\varepsilon_{\alpha}$ $d^{3}E$ $dx_i d\varepsilon_{\alpha} d\varepsilon_{\beta}$

dipole moment; in a similar way also multipole moments, electric field gradients, etc.

polarizability

(first) hyperpolarizability

forces on nuclei

harmonic force constants; harmonic vibrational frequencies

cubic force constants; anharmonic corrections to distances and rotational constants

quartic force constants; anharmonic corrections to vibrational frequencies

dipole derivatives; infrared intensities

polarizability derivatives; Raman intensities

 $d^2 E$ $dB_{\alpha}dB_{\beta}$ $d^2 E$ $dI_{i_{\alpha}}dB_{\beta}$ d^2E $dI_{i_{\alpha}}dI_{j_{\beta}}$ $d^2 E$ $dB_{\alpha}dJ_{\beta}$ $d^2 E$ $dI_{i_{\alpha}}dJ_{\beta}$ dE dS_{α} $d^2 E$ $dS_{\alpha}dS_{\beta}$

magnetizability

nuclear magnetic shielding tensor; relative NMR shifts

indirect spin-spin coupling constants

rotational g-tensor; rotational spectra in magnetic field

nuclear spin-rotation tensor; fine structure in rotational spectra

spin density; hyperfine interaction constants

electronic g-tensor

and many more ...

Restricted Hartree–Fock (RHF) results for LiF

Post-Hartree-Fock for qualitative or quantitative reasons

Why do we want to go beyond the Hartree-Fock description?

- First, we may wish to improve the accuracy of the computed energy and other properties.
- Second, we are dealing with a situation where the Hartree-Fock model is a very poor zeroth-order approximation of the wavefunction.

Near-degeneracy effects Ground-state equilibrium

properties

38

Near-degeneracy problems of perturbation theory

Multireference perturbation theory applied to LiF

Unrestricted UCCSD(T) coupled-cluster calculations of the LiF ground state

