Free-Energy Perturbation, Thermodynamic Integration, Potential of Mean Force (+working examples on chemical reactivity)

# Lubomír Rulíšek, Martin Srnec

Institute of Organic Chemistry and Biochemistry AS CR

J. Heyrovský Institute of Physical Chemistry AS CR, Prague, Czech Republic



Computer Modeling of Chemical Reactions and Enzyme Catalysis

# Outline

# **Working Examples on Chemical Reactivity**

- Computational Investigations of Asymmetric Organocatalysis
- Divergent Pathways and Competitive Mechanisms of Metathesis Reactions between 3-Arylprop-2-ynyl esters and Aldehydes

# **Simulations of Thermodynamic Properties**

- Free-Energy Perturbation
- Thermodynamic Integration
- Potential of Mean Force



# *En Route* to Quantitative Accuracy (~2 kcal.mol<sup>-1</sup>) in "Computational Catalysis"

Challenges in Computational Homogeneous Catalysis

Accuracy of TS barriers (electronic structure)

**Solvation Effects** 

**Conformational Complexity** 

**Nuclear Quantum Effects** 





## Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes



- chiral phosphoramides (Denmark, 1994)
- > axially chiral biquinoline N,N'-dioxide (Nakajima)
- bipyridine N,N'-dioxides and N,N'N''-trioxides (Hayashi, Kotora, Kwong, ...)
- > pyridine-derived N-monooxides (Kočovský, Malkov)
- "non-pyridine-type" N-monooxide derived from proline (Hoveyda)
- > N-oxides derived from tetrahydroisoquinolines (Govender)
- sulfoxides, sulfonamides, phosphine oxides (BINAPO), dinitrones,...

### **Computational ingredients:**

Conformational Complexity, Dispersion/Solvation Effects, Entropic Effects



Scheme 2. Mechanistic Dichotomy in the Coupling of Allyltrichlorosilane with Benzaldehyde Catalyzed By (S)-1b<sup>20</sup>



Ducháčková, L; Kadlčíková, A.; Kotora, M.; Roithová, J.: Oxygen Superbases as Polar Binding Pockets in Nonpolar Solvents. *J. Am. Chem. Soc.* **2010**, *132*, 12660.

Kadlčíková, A.; Valterová, I.; Ducháčková, L; Roithová, J.; Kotora, M.: Lewis Base Catalyzed Enantioselective Allylation of alpha, beta-Unsaturated Aldehydes. *Chem. Eur. J.* **2010**, *16*, 9442.

Hrdina, R.; Opekar, F.; Roithová, J.; Kotora, M.: Chem. Commun. 2009, 2314.

### Dissociative (Cationic)/Associative (Mechanism) Solvent-Dependent Enantionselectivity

| Entry                        | Solvent <sup>a</sup>            | Composition                   | Conductivity/mV        |  |  |
|------------------------------|---------------------------------|-------------------------------|------------------------|--|--|
| 1                            | MeCN                            | 1                             | 1560                   |  |  |
| 2                            | MeCN                            | AllylSiCl <sub>3</sub>        | 1510                   |  |  |
| 3                            | MeCN                            | $1 + \text{AllylSiCl}_3$      | 1780                   |  |  |
| 4                            | $MeCN^b$                        | AllylSiCl <sub>3</sub>        | 1560                   |  |  |
| 5                            | $MeCN^b$                        | $1 + \text{AllylSiCl}_3$      | 2100                   |  |  |
| 6                            | CH <sub>2</sub> Cl <sub>2</sub> | AllylSiCl <sub>3</sub>        | 188                    |  |  |
| 7                            | $CH_{2}Cl_{2}$                  | $1 + \text{AllylSiCl}_3$      | 458                    |  |  |
| 8                            | PhCl                            | AllylSiCl <sub>3</sub>        | 55                     |  |  |
| 9                            | PhCl                            | $1 + \text{AllvlSiCl}_3$      | 57                     |  |  |
| 10                           | EtOAc                           | AllvlSiCl <sub>3</sub>        | 62                     |  |  |
| 11                           | EtOAc                           | $1 + \text{AllylSiCl}_3$      | 63                     |  |  |
| <sup><i>a</i></sup> 0.0112 1 | $mmol ml^{-1} unles$            | ss otherwise noted. $^{b}$ 0. | .0224 mmol $ml^{-1}$ . |  |  |

### **Table 1**Conductivity measurements

Hrdina, R.; Opekar, F.; Roithová, J.; Kotora, M.: Chem. Commun. 2009, 2314.



## (Possibly) New Mechanism (Polar-pocket or "Enzymatic-like")



Ducháčková, L; Kadlčíková, A.; Kotora, M. ; Roithová, J.: Oxygen Superbases as Polar Binding Pockets in Nonpolar Solvents. *J. Am. Chem. Soc.* **2010**, *132*, 12660.



## Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes

Scheme 1. Allylation of aldehydes 1 with allyl and crotyl trichlorosilanes 2-4.<sup>a</sup>







#### Table: The Allylation of Aldehydes 1a-k with Allyltrichlorosilane 5a Catalyzed by Lewis Bases

| Entry | Aldehyde   | Ar                                  | Catalyst             | Solvent           | Temp          | Time | Yield            | ee                  |
|-------|------------|-------------------------------------|----------------------|-------------------|---------------|------|------------------|---------------------|
|       |            |                                     | (mol%)               |                   | $(^{\circ}C)$ | (h)  | (%) <sup>b</sup> | $(\%)^{c,d}$        |
| 1     | <b>1</b> a | Ph                                  | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | ?95              | 96 ( <i>S</i> )     |
| 2     | <b>1b</b>  | $4-CF_3-C_6H_4$                     | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | 86               | 93 ( <i>S</i> )     |
| 3     | <b>1</b> c | 4-MeO-C <sub>6</sub> H <sub>4</sub> | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | ?95              | 96 ( <i>S</i> )     |
| 4     | 1d         | $3-MeO-C_6H_4$                      | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | 87               | 95 (S)              |
| 5     | <b>1e</b>  | 2-MeO-C <sub>6</sub> H <sub>4</sub> | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | ?95              | 89 ( <i>S</i> )     |
| 6     | <b>1f</b>  | $4-Cl-C_6H_4$                       | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | 80               | 94 ( <i>S</i> )     |
| 7     | 1g         | $3-Cl-C_6H_4$                       | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | 81               | 97 ( <i>S</i> )     |
| 8     | 1h         | $2-Cl-C_6H_4$                       | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | 75               | 92 (S)              |
| 9     | <b>1i</b>  | $3,5-Me_2-C_6H_4$                   | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | 0                | _                   |
| 10    | 1j         | $2,6-Me_2-C_6H_4$                   | (+) <b>-9</b> (5)    | MeCN              | -40           | 18   | 0                | _                   |
| 11    | <b>1</b> a | Ph                                  | (–)- <b>15e</b> (10) | CHCl <sub>3</sub> | -40           | 18   | 60               | 90 (S)              |
| 12    | <b>1b</b>  | $4-CF_3-C_6H_4$                     | (–)- <b>15e</b> (10) | CHCl <sub>3</sub> | -40           | 18   | 34               | 85 (S)              |
| 13    | <b>1</b> c | $4-MeO-C_6H_4$                      | (–)- <b>15e</b> (10) | CHCl <sub>3</sub> | -40           | 18   | 25               | 91 ( <i>S</i> )     |
| 14    | <b>1e</b>  | 2-MeO-C <sub>6</sub> H <sub>4</sub> | (–)- <b>15e</b> (10) | CHCl <sub>3</sub> | -40           | 18   | 53               | 75 (S)              |
| 15    | <b>1f</b>  | $4-Cl-C_6H_4$                       | (–)- <b>15e</b> (10) | CHCl <sub>3</sub> | -40           | 18   | 63               | 88 (S)              |
| 16    | 1g         | $3-Cl-C_6H_4$                       | (–)- <b>15e</b> (10) | CHCl <sub>3</sub> | -40           | 18   | 54               | 89 (S)              |
| 17    | 1h         | $2-Cl-C_6H_4$                       | (–)- <b>15e</b> (10) | CHCl <sub>3</sub> | -40           | 18   | 75               | 86 ( <i>S</i> )     |
| 18    | <b>1i</b>  | $3,5-Me_2-C_6H_4$                   | (–)- <b>15e</b> (10) | MeCN              | -20           | 18   | 0                | ?                   |
| 19    | <b>1</b> a | Ph                                  | (+)- <b>16</b> (5)   | MeCN              | -20           | 18   | 87               | 72 $(S)^{e}$        |
| 20    | <b>1</b> k | $4-F-C_6H_4$                        | (+)- <b>16</b> (5)   | MeCN              | -20           | 18   | 58               | $70(S)^{e}$         |
| 21    | <b>1</b> c | $4-MeO-C_6H_4$                      | (+)- <b>16</b> (5)   | MeCN              | -20           | 18   | 72               | $70(S)^{e}$         |
| 22    | <b>1i</b>  | $3,5-Me_2-C_6H_4$                   | (+)- <b>16</b> (5)   | MeCN              | -20           | 18   | 73               | 62 $(S)^{e}$        |
| 23    | <b>1</b> a | Ph                                  | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | -40           | 2    | 68               | 87 $(R)^{f}$        |
| 24    | <b>1b</b>  | $4-CF_3-C_6H_4$                     | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | -40           | 2    | 85               | 96 (R) <sup>f</sup> |
| 25    | <b>1</b> c | $4-MeO-C_6H_4$                      | (–)- <b>10</b> (5)   | $CH_2Cl_2$        | -40           | 18   | 70               | $16 (S)^{f,g}$      |
| 26    | <b>1e</b>  | $4-MeO-C_6H_4$                      | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | -20           | 18   | 75               | 72 (R)              |
| 27    | <b>1e</b>  | $4-MeO-C_6H_4$                      | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | 0             | 18   | 82               | 45 (R)              |
| 26    | 1d         | $3-MeO-C_6H_4$                      | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | -40           | 12   | 73               | $80 (R)^{f}$        |
| 27    | <b>1e</b>  | 2-MeO-C <sub>6</sub> H <sub>4</sub> | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | -40           | 12   | 40               | 37 $(R)^{f}$        |
| 28    | <b>1i</b>  | $3,5-Me_2-C_6H_4$                   | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | -40           | 16   | 68               | 81 $(R)^{h}$        |
| 29    | 1j         | $2,6-Me_2-C_6H_4$                   | (+)- <b>10</b> (5)   | $CH_2Cl_2$        | -40           | 18   | 0                | _                   |



## "Non-catalysed" reaction



 $\Delta E^{\ddagger} = 15.3 \text{ kcal.mol}^{-1} \dots \text{CCSD}(\text{T})/\text{aug-cc-pVDZ}$  $\Delta E^{\ddagger} = 15.6 \text{ kcal.mol}^{-1} \dots \text{RI-DFT}(\text{PBE})+\text{D}/\text{TZVPP}$ 





## **Pyridine-N-oxide: associative mechanism**





# Second-sphere mechanism (ruled out)









*Figure 4.* The equilibrium geometries of the most stable reactant complexes (RC), transition states (TS), and product complexes (PC) along the reaction coordinate for the associative pathway of allylation of benzaldehyde (1a) catalyzed by (R)-(+)-QUINOX (9). The calculated values for  $\Delta G$  were obtained at the RI-PBE(+D)/TZVP//RI-PBE(+D)/6-31G(d) level; all distances are in Å.



# Table: The calculated thermochemical data for METHOX as a catalyst. All values are in kcal.mol<sup>-1</sup>.

![](_page_13_Figure_1.jpeg)

| mechanism    | config. | reactant complex | transition state | product complex |
|--------------|---------|------------------|------------------|-----------------|
| associative  | R<br>S  | $24.4_{-a}$      | 29.3<br>28.7     | -2.0<br>-4.8    |
| dissociative | R<br>S  | 25.0<br>17.8     | 25.6<br>23.3     | -2.0<br>-4.8    |

ee (calc) = 88%

ee (exp) = 96%

![](_page_13_Picture_6.jpeg)

## **METHOX Catalyst**

![](_page_14_Figure_1.jpeg)

Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, L.; Langer, V.; Rulíšek, L.; Kočovský, P.: *Chem. Eur. J.* **2013**, *19*, 9167-9185.

![](_page_14_Picture_4.jpeg)

# **Origin of the stereoselectivity**

**Table:** The decomposition of the free energy barriers into the contributions originating in zero-point energy corrections, entropy, solvation energies, and dispersion energies. All values are in kcal.mol<sup>-1</sup>.

| Catalyst          | config | $\Delta E_{ m gp}{}^a$ | $\Delta G_{ m solv}^{\ \ b}$ | $\Delta(-T\Delta S)_{\rm gp}^{\ \ c}$ | $\Delta E_{\rm disp}^{d}$                |
|-------------------|--------|------------------------|------------------------------|---------------------------------------|------------------------------------------|
| QUINOX            | R      | 0.0                    | 0.0                          | 0.0                                   | $\begin{array}{c} 0.0\\ 1.1 \end{array}$ |
| (associative TS)  | S      | -0.3                   | 0.7                          | 0.5                                   |                                          |
| METHOX            | R      | 0.0                    | 0.0                          | 0.0                                   | 0.0                                      |
| (dissociative TS) | S      | -3.2                   | -0.4                         | -0.6                                  | 1.9                                      |

<sup>*a*</sup>  $\Delta E_{gp}$  is the difference in the *in vacuo* energies between R, S isomers <sup>*b*</sup>  $\Delta G_{solv}$  is the difference in solvation free energies between R, S isomers <sup>*c*</sup>  $\Delta (-T\Delta S)_{gp}$  is the difference in the *in vacuo* entropic terms between R, S isomers <sup>*d*</sup>  $\Delta E_{disp}$  is the difference in the dispersion energy stabilizations between R, S isomers

![](_page_15_Picture_5.jpeg)

# Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine *N*-Oxides

**Scheme 5.** Mechanism of catalysls by chiral pyridine-*N*-oxides

![](_page_16_Figure_2.jpeg)

Malkov, A. V.; Ramírez-López, P.; Biedermannová, L.; Rulíšek, L.; Dufková, L.; Kotora, M.; Zhu, F.; Kočovský, P.: *J. Am. Chem. Soc.* **2008**, *130*, 5341. Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, L.; Langer, V.; Rulíšek, L.; Kočovský, P.: *Chem. Eur. J.* **2013**, *19*, 9167.

![](_page_16_Picture_5.jpeg)

# **Summary and Outlook**

**Conformational complexity** (competing reaction pathways) **Entropic** effects (ideal gas + PCM solvation = ??, *Cl<sup>-</sup> translational entropy*) **Solvation Effects** (non-innocent solvents, ionic systems, COSMO-RS) **Accuracy of TS** barriers (2 kcal.mol<sup>-1</sup> is optimistic error bar in mediumsized, well-defined models, while it can easily overcome 5 kcal.mol<sup>-1</sup> in more complex systems)

...tunneling, "non-TST" systems,...

### **En Route from Quantitative Insight to Simpler Concepts?**

Qualitative Concepts (60's – 80's)

Towards Accurate Numbers (90's -2012)

Quantitative Concepts (and Guidance for Experiments??)

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

### Divergent Pathways and Competitive Mechanisms of Metathesis Reactions between 3-Arylprop-2-ynyl esters and Aldehydes

Trujillo, C.; Sánchez-Sanz, G.; Karpavičienė, I.; Jahn, U.; Čikotienė, I.; Rulíšek, L.: Divergent Pathways and Competitive Mechanisms of Metathesis Reactions between 3-Arylprop-2-ynyl esters and Aldehydes: An Experimental and Theoretical Study. *Chem. Eur. J.* **2014**, *20*, 10360-10370.

The formation of carbon–carbon bonds is at the heart of synthetic organic chemistry

![](_page_18_Figure_3.jpeg)

![](_page_18_Picture_5.jpeg)

# **Experimental Data**

| Table 1. Reactions of selected 3-arylprop-2-ynyl esters (1) with <sup>18</sup> O-labeled aldehydes (2). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |            |         |                                                   |                      |                            |                               |                               |                             |          |   |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|---------|---------------------------------------------------|----------------------|----------------------------|-------------------------------|-------------------------------|-----------------------------|----------|---|
|                                                                                                         | $Ar \xrightarrow{18}{0} \xrightarrow{R^{1}}{2} \xrightarrow{BF_{3} \cdot Et_{2}O}{CH_{2}Cl_{2}} \xrightarrow{Ar} \xrightarrow{f^{1}}{f} \xrightarrow{G} \xrightarrow{f^{1}}{f} \xrightarrow{f} \xrightarrow{f^{1}}{f} \xrightarrow{f} \xrightarrow{f^{1}}{f} \xrightarrow{f} \xrightarrow{f^{1}}{f} \xrightarrow{f} \xrightarrow{f^{1}}{f} \xrightarrow{f^{1}}{f}$ |                                       |            |         |                                                   |                      |                            |                               |                               |                             |          |   |
| Entry                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alkyne<br>Ar                          | R          | 2       | Aldehyde<br>R <sup>1</sup>                        | Reaction time<br>[h] | Products                   | Isolated overall<br>yield [%] | <b>3</b><br>Labeled<br>ketone | Labeled<br>ester<br>carbony | <b>4</b> | 5 |
| 1                                                                                                       | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ph                                    | Me         | 2 a     | Me                                                | 24                   | 3 aa                       | 27                            | 1                             | 1.8                         | _        | _ |
| 2                                                                                                       | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ph                                    | Me         | 2 b     | $2-FC_6H_4$                                       | 24                   | 3ab, 4ab                   | 65                            | 0.5                           | 1.5                         | 1        | _ |
| 3                                                                                                       | 1 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ph                                    | Me         | 2 c     | 2,4-Cl <sub>2</sub> C <sub>6</sub> H <sub>4</sub> | 24                   | 3ac, 4ac                   | 71                            | _                             | 2                           | 1        | - |
| 4                                                                                                       | 1 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-MeOC <sub>6</sub> H <sub>4</sub>    | Me         | 2 d     | $4-NO_2C_6H_4$                                    | 5 min                | 3 bd, 5 bd                 | 89                            | -                             | 0.15                        | -        | 1 |
| 5                                                                                                       | 1 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-MeOC <sub>6</sub> H <sub>4</sub>    | Ph         | 2 d     | $4-NO_2C_6H_4$                                    | 5 min                | <b>5 cd</b> <sup>[a]</sup> | 78                            | -                             | -                           | -        | 1 |
| [a] Hydr                                                                                                | olyzed 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>.1 cd</b> with the <sup>18</sup> C | D-label in | the hyd | lroxy group was                                   | also isolated in 12% | yield.                     |                               |                               |                             |          |   |

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_20_Figure_0.jpeg)

**Scheme:** Two plausible mechanistic pathways. Path 1 (red arrows): Classical alkyne–carbonyl metathesis route, followed by 1,3 carboxylate migration (as proposed originally). Path 2 (blue arrows): A novel nucleophilic addition/rearrangement cascade reaction.  $LA=BF_3 \cdot Et_2O$ . Depicted structures represent either energy minima or transition states.

![](_page_20_Picture_3.jpeg)

| Table 2. Reactions of selected 3-arylprop-2-ynyl esters 1 and aldehydes 2 with BF <sub>3</sub> ·OEt <sub>2</sub> in CH <sub>2</sub> Cl <sub>2</sub> . |        |                     |                       |               |                                  |                                               |                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|-----------------------|---------------|----------------------------------|-----------------------------------------------|-------------------|--|--|--|
| Entry                                                                                                                                                 | Alkyne | Aldehyde            | Additive              | <i>T</i> [°C] | Reaction time [h] <sup>[a]</sup> | Product ratio                                 | Overall yield [%] |  |  |  |
| 1                                                                                                                                                     | 1a     | 2 a                 | _                     | 20            | 24                               | <b>3</b> aa/ <b>4</b> aa/ <b>5</b> aa = 1:0:0 | 26 <sup>[b]</sup> |  |  |  |
| 2                                                                                                                                                     | 1a     | 2 a                 | TMSOTf <sup>[c]</sup> | -10           | 0.5                              | <b>3 aa/4 aa/5 aa</b> = 1:0:0.3               | 16 <sup>[b]</sup> |  |  |  |
| 3                                                                                                                                                     | 1a     | 2 b                 | -                     | 20            | 24                               | 3 ab/4 ab/5 ab = 2:1:0                        | 77                |  |  |  |
| 4                                                                                                                                                     | 1a     | 2 b                 | TMSOTf <sup>[c]</sup> | -10           | 0.5                              | 3 ab/4 ab/5 ab = 5.3:1.1:1                    | 69                |  |  |  |
| 5                                                                                                                                                     | 1a     | 2 c                 | -                     | 20            | 24                               | 3 ac/4 ac/5 ac = 2:1:0                        | 69                |  |  |  |
| 6                                                                                                                                                     | 1a     | 2 c                 | TMSOTf <sup>[c]</sup> | -10           | 0.5                              | <b>3 ac/4 ac/5 ac</b> = 1:0:1.5               | 55                |  |  |  |
| 7                                                                                                                                                     | 1 b    | 2 d                 | -                     | 20            | 5 min                            | $3 bd/4 bd/5 bd = 0.15:0:1^{[d]}$             | 82                |  |  |  |
| 8                                                                                                                                                     | 1 b    | 2 d                 | -                     | 10            | 25 min                           | 3 bd/4 bd/5 bd = 1:0:1                        | 51                |  |  |  |
| 9                                                                                                                                                     | 1 b    | <sup>18</sup> O-2 d | -                     | 20            | 24                               | 3 bd/4 bd/5 bd = 1.3:1:0                      | 64                |  |  |  |

[a] Isolation of products was performed after full conversion of the starting alkyne **1**. [b] The low overall yields can be explained by possible self-condensation side reaction of the aliphatic aldehyde under the reaction conditions. [c] To solve the problem of slow reactivity of the starting materials at lower temperatures we used the synergistic couple of  $BF_3 \cdot Et_2O$  and TMSOTF. [d] Compounds **3 bd** and **5 bd** were isolated as a mixture due to their similiar  $R_f$  values. The product ratio was determined from the <sup>1</sup>H NMR spectrum.

# **Computations:** Benchmarking Against CCSD(T) => ωB97XD functional + COSMO-RS

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_0.jpeg)

**Figure:** The equilibrium geometries of two key transition states that divert the reaction to path 1 or 2.

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Figure_0.jpeg)

**Figure.** Gibbs energy levels for paths 1 (black) and 2 (red) calculated at the DFT(wB97XD)/6-311 G(2d,p)//RI-PBED3/def2-SVP level of theory and COSMO-RS solvation method for the reaction between **1a** and **2a**.

![](_page_23_Picture_3.jpeg)

![](_page_24_Figure_0.jpeg)

**Figure.** Gibbs energy levels for paths 1 (black) and 2 (red) calculated at the DFT(wB97XD)/6-311 G(2d,p)//RI-PBED3/def2-SVP level of theory and COSMO-RS solvation method for the reaction between **1a** and **2b**.

![](_page_24_Picture_3.jpeg)

![](_page_25_Figure_0.jpeg)

**Figure.** Gibbs energy levels for paths 1 (black) and 2 (red) calculated at the DFT(wB97XD)/6-311 G(2d,p)//RI-PBED3/def2-SVP level of theory and COSMO-RS solvation method for the reaction between **1b** and **2d**.

![](_page_25_Picture_3.jpeg)

# **Explicit Models for Condensed Phases**

**Partition function** 

$$Q = \int \int e^{-E(\mathbf{q},\mathbf{p})/k_{\mathrm{B}}T} d\mathbf{q} d\mathbf{p}$$

**Statistical Thermodynamics (Lecture 5)** 

$$U = k_{\rm B}T^2 \left(\frac{\partial \ln Q}{\partial T}\right)_V \qquad A = -k_{\rm B}T \ln Q$$
  

$$P = k_{\rm B}T \left(\frac{\partial \ln Q}{\partial V}\right)_T \qquad S = k_{\rm B}T \left(\frac{\partial \ln Q}{\partial T}\right)_V + k_{\rm B} \ln Q$$
  

$$H = U + PV \qquad G = H - TS$$

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

### We may rewrite U as

$$U = \frac{\iint E(\mathbf{q}, \mathbf{p}) e^{-E(\mathbf{q}, \mathbf{p})/k_{\mathrm{B}}T} d\mathbf{q} d\mathbf{p}}{\iint e^{-E(\mathbf{q}, \mathbf{p})/k_{\mathrm{B}}T} d\mathbf{q} d\mathbf{p}}$$
$$= \iint E(\mathbf{q}, \mathbf{p}) P(\mathbf{q}, \mathbf{p}) d\mathbf{q} d\mathbf{p}$$

### **Carrying Monte Carlo or MD**

$$\langle U \rangle_{\rm B} - \langle U \rangle_{\rm A} = \frac{1}{M_{\rm B}} \sum_{i}^{M_{\rm B}} E_{i} - \frac{1}{M_{\rm A}} \sum_{i}^{M_{\rm A}} E_{i}$$
$$= \langle E \rangle_{\rm B} - \langle E \rangle_{\rm A}$$

![](_page_27_Picture_4.jpeg)

![](_page_27_Picture_5.jpeg)

### Analogously, for A

$$A = k_{\rm B}T \ln \frac{1}{Q}$$
  
=  $k_{\rm B}T \ln \left[ \frac{\int \int e^{E(\mathbf{q},\mathbf{p})/k_{\rm B}T} e^{-E(\mathbf{q},\mathbf{p})/k_{\rm B}T} d\mathbf{q} d\mathbf{p}}{\int \int e^{-E(\mathbf{q},\mathbf{p})/k_{\rm B}T} d\mathbf{q} d\mathbf{p}} \right]$   
=  $k_{\rm B}T \ln \left[ \int \int e^{E(\mathbf{q},\mathbf{p})/k_{\rm B}T} P(\mathbf{q},\mathbf{p}) d\mathbf{q} d\mathbf{p} \right]$ 

### **Carrying Monte Carlo or MD**

$$\langle A \rangle_{\rm B} - \langle A \rangle_{\rm A} = k_{\rm B} T \ln \left( \frac{1}{M_{\rm B}} \sum_{i}^{M_{\rm B}} e^{E_{i}/k_{\rm B}T} \right) - k_{\rm B} T \ln \left( \frac{1}{M_{\rm A}} \sum_{i}^{M_{\rm A}} e^{E_{i}/k_{\rm B}T} \right)$$

$$= k_{\rm B} T \ln \left\langle e^{E/k_{\rm B}T} \right\rangle_{\rm B} - k_{\rm B} T \ln \left\langle e^{E/k_{\rm B}T} \right\rangle_{\rm A}$$

$$= k_{\rm B} T \ln \left( \frac{\left\langle e^{E/k_{\rm B}T} \right\rangle_{\rm B}}{\left\langle e^{E/k_{\rm B}T} \right\rangle_{\rm A}} \right)$$

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

Free Energy Perturbation (Zwanzig, 1954)

$$\langle A \rangle_{\rm B} - \langle A \rangle_{\rm A} = k_{\rm B} T \ln \left\langle e^{(E_{\rm B} - E_{\rm A})/k_{\rm B} T} \right\rangle_{\rm A}$$

### **Example: HCN** $\rightarrow$ HNC reaction

![](_page_29_Figure_3.jpeg)

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

In practice, a simulation windows for each coupling parameter

$$E(\lambda) = \lambda E_{\rm B} + (1 - \lambda) E_{\rm A}$$
$$\langle A \rangle_{\rm B} - \langle A \rangle_{\rm A} = \sum_{\lambda=0}^{1} k_{\rm B} T \ln \left\langle e^{(E_{\lambda + d\lambda} - E_{\lambda})/k_{\rm B}T} \right\rangle_{\lambda}$$

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_31_Figure_0.jpeg)

**Figure 12.2** A typical FEP diagram showing the free-energy change in the forward (above) and reverse (below) directions for a  $\lambda$ -coupled mutation

![](_page_31_Picture_3.jpeg)

### **Slow Growth Method**

$$\begin{split} \langle A \rangle_{\rm B} - \langle A \rangle_{\rm A} &= \lim_{d\lambda \to 0} \sum_{\lambda=0}^{1} k_{\rm B} T \ln \left\langle 1 + \frac{(E_{\lambda+d\lambda} - E_{\lambda})}{k_{\rm B} T} \right\rangle_{\lambda} \\ \langle A \rangle_{\rm B} - \langle A \rangle_{\rm A} &= \lim_{d\lambda \to 0} \sum_{\lambda=0}^{1} k_{\rm B} T \left\langle \frac{(E_{\lambda+d\lambda} - E_{\lambda})}{k_{\rm B} T} \right\rangle_{\lambda} \\ &= \lim_{d\lambda \to 0} \sum_{\lambda=0}^{1} \langle (E_{\lambda+d\lambda} - E_{\lambda}) \rangle_{\lambda} \\ &= \lim_{d\lambda \to 0} \sum_{\lambda=0}^{1} (E_{\lambda+d\lambda} - E_{\lambda}) \end{split}$$

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_3.jpeg)

### **Thermodynamic Integration**

$$\begin{split} \langle A \rangle_{\rm B} - \langle A \rangle_{\rm A} &= \lim_{d\lambda \to 0} \sum_{\lambda=0}^{1} \left\langle (E_{\lambda+d\lambda} - E_{\lambda}) \right\rangle_{\lambda} \\ &= \lim_{\Delta\lambda \to 0} \sum_{\lambda=0}^{1} \left\langle \frac{(E_{\lambda+\Delta\lambda} - E_{\lambda})}{\Delta\lambda} \right\rangle_{\lambda} \Delta\lambda \\ &= \int_{0}^{1} \left\langle \frac{\partial E}{\partial\lambda} \right\rangle_{\lambda} d\lambda \\ &\approx \sum_{\lambda=0}^{1} \left\langle \frac{\partial E}{\partial\lambda} \right\rangle_{\lambda} \Delta\lambda \end{split}$$

### **Potential of Mean Force**

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)