Modelling Chemical Reactions in Solution: Theory and Applications

- lecture 11 -

Various types of models used for modelling chemical reactions in solutions

b. Most Pure QM Calculations & QM model system

d. QM/MM model with explicit solvent

Key concept of a reaction coordinate and search for TS's

A reaction coordinate is a function of the configurational degrees of freedom of the system that should be capable of characterizing the progress of a transition through the dynamical bottleneck region.

Reaction coordinate can be as **simple** as:

• One or two (intuitive) geometric parameter:

Sometimes other than geometric parameters are more suitable as descriptors of a reaction coordinate: bond order, spin-density etc..

Reaction coordinate can be as difficult as:

• Collective (non-intuitive) reaction coordinate

e.g.:

• Peptide/Protein folding

- generic reaction coordinate unknown

How to trap (meaning find and optimize) a "static" transition state using an easily definable reaction coordinate:

- 1) Define chemically reasonable reaction coordinate (bond formation / breaking)
- 2) Perform a potential-energy surface (PES) scan along the defined reaction coordinate starting from a reactant (1D or 2D scans => maximum in 1D or saddle point in 2D → a good guess for a "real" TS
- 3) **Do a TS optimization** (structure stable in 3N-7 dimension) starting from the guess obtained by a PES scan.
- 4) Frequency calculation (to confirm that TS is stable in the 3N-7 space and to calculate RT-RTInQ[≠] contributions to Gibbs free energy of TS. [see lecture 10] (the unstable mode is reaction coordinate at TS)
- 5) Perform intrinsic reaction coordinate (IRC) analysis to show that the TS is directly connected to the reactant state (backward step) & and allows to reach the product state (forward step).

Alternative strategies in searching relevant TS's (next lecture)

A remark on "static" QM/MM modelling of chemical reactions

If the **analytic second derivatives of E_{QM/MM}** with respect to coordinates are **not implemented (available)** then the PES 1D (or 2D) scans along a reaction coordinate is the method of choice for "locating" relevant TS's.

"Back-and-Forth" strategy (scaning from R to P and back and forth). Slow convergence of the scan to the "stable" PES profile due to slow convergence to a "stable" configuration in the MM space.

Transition State, its characterization in terms of its position along a reaction coordinate

From the geometric/electronic structure point of view the transition state can be characterized as:

- *Reactant-like TS* (called "early" TS)
- *Product-like TS* (called "late" TS)
- ⇒ This resemblance/position with R or P is also reflected by the relative free energy of TS with respect to the reactant /product state

Practical consequences of the Hammond postulate related to the inappropriate description of solvation effects

The overstabilization of the product state may lead to an artificial lowering of the activation barrier

Kinetic-thermodynamic connections

How the overstabilization of the product state may lead to an artificial lowering of the activation barrier.

Marcus theory (that was originally developed for electron-transfer reactions; more in lecture 13) provides the insight into kinetic-thermodynamic connections:

Reaction Coordinate

Simplification in MT: Parabolic behavior

Catalyzed reactions – prominent reactions in chemistry

What is a discriminating factor in a search of the most efficient catalyst?

k-Representation *experimentalist* 3/0 $k_1 = \frac{k_0 T_1}{b} e^{\frac{T_0 - T_1}{B}}$ $k_2 = \frac{k_{aT}}{h} e^{RT}$ E-Representation

Henry Eyring as a translator between k- and Erepresentation of a reaction

World of an

Kozuch et al Acc. Chem. Res. 2011

World of a theoretician

How to calculate the efficiency of the catalytic cycle (= its frequency turnover - TOF) from the theoretically obtained energy profile:

Reaction Coordinate

Which step is the rate-determining step?:

Step 1 with the highest TS?

Step 2 with the highest barrier?

Step 4 with the highest TS that is after the lowest *I* along a reaction coordinate?

TOF - turnover frequency of the cycle is given as the number of cycles (N) per catalyst concentration (C) per time (time)

$$TOF = \frac{N}{Ct}$$

[reaction is first-order in catalyst and in a steady state]

Energetic Span Approximation for a catalytic cycle – based on Eyring's TST

Kozuch et al Acc. Chem. Res. 2011

Eq. 1 can be simplified if the denominator *M* is dominated by a single term of the summation:

$$TOF = \frac{k_B T}{h} e^{-\delta G/RT} \int_{G[highest TS] - G[lowest I]} \text{ if highest TS after lowest I} \\ G[highest TS] - G[lowest I] + \Delta G_r \text{ if highest TS before lowest I}$$

3 assumptions considered in the Energetic Span Approximation:

- Transition state theory is valid
- Steady state regime is applicable
- Intermediates undergo fast relaxation

Two possible mechanisms with "red one" unlikely

but

Kinetic TOF is a combination of both

There are no rate-determining steps but there are rate-determining states!

Which of these two catalysts is more efficient?

Modelling chemical reactions in solutions considering all-atom solvent environment

MD- MC-based techniques suitable for the study of "rare transitions" such as a chemical reaction in a complex system with a huge number of degrees of freedom

PMF; QM/MM-FEP; QM/MM-TI

QM/MM Metadynamics

Collective variables (CVs) include for example bond lengths, dihedral angles, coordination numbers, etc.

QM/MM Transition Path Sampling

TPSs do not require **prior knowledge of a reaction coordinate** and do not rely on the indetification of particular features of the potential energy surface

Idea: to generate reactive trajectories with a frequency proportional to their probability in the transition path ensemble

Semiempirical EVB (=QM/MM) MD Approach (pioneered by A. Warshel)

EVB — empirical valence bond – is a QM/MM method. It mixes resonance (=diabatic) states (valence bond structures), which describes reactant, intermediate and product states.

Semiempirical EVB (=QM/MM) MD Approach (pioneered by A. Warshel)

EVB evaluates the relevant activation energies (ΔG^{\neq}) by changing one diabatic state (=reactant) into another one (=product) through:

$$\varepsilon_m = (1 - \lambda_m)\varepsilon_1 + \lambda_m\varepsilon_2$$

The free energy, ΔG_m , associated with changing λ is evaluated by **FEP-umbrella** sampling.

...and free energy profile of diabatic state 1 is given by:

$$\Delta G_1(x') = \Delta G_m - k_B T \ln \left\langle \delta(x - x') \exp \left[\frac{\varepsilon_m(x) - \varepsilon_1(x)}{k_B T} \right] \right\rangle_{\varepsilon_m}$$

with x – reaction coordinate (ε_1 - ε_2)

3)

Modelling "photochemical" chemical reactions

Reactions involving conical intersections (crossing seam between two states is of 3N-8 dimension if these states have the same spin)

Modelling "spin-forbidden" chemical reactions

Reaction barrier can be given by a crossover of two spin states:

these states are diabatic (=non-interacting) from the non-relativistic quantum-chemical perspective

(MECP)

There is no a "classical" TS with one unstable mode along a reaction coordinate but rather the <u>"minimum" on the crossing seam</u> is searched.

Seach algorithms (e.g., Harvey's approach) or constrained PES scans

> Then, **k** (rate constant) can calculated within the nonadiabatic TS theory. More in lecture 13

(CASSCF, CASPT2 *methods suitable*)

