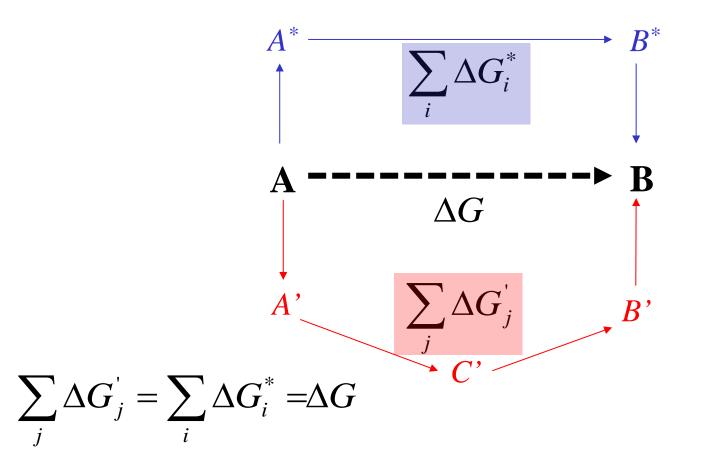
Thermodynamic Cycles for Computation of a Free–Energy Change in Condensed Phase

Computational Electrochemistry, pK_a's

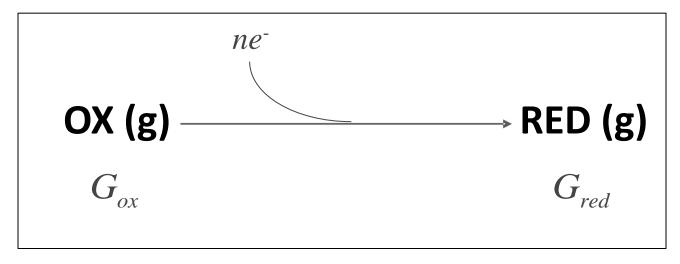
- lecture 10 -

→ No dependence of (ΔG , ΔH , ΔS ...) on a pathway... ...since G, H, S are **state** functions



Case problem: Reduction potential

Half reaction



 $E^{\circ}[V] = G_{ox}[eV] - G_{red}[eV] - nE^{\circ}_{abs}(\text{reference})[V]$

Absolute potential of a (reference) standard hydrogen electrode

Given as the sum of three terms:

$$G_{solv}(H^{+}) + IP_{H^{*} \to H^{+}} - \frac{1}{2}G_{2H^{*} \to H_{2}} = E_{abs}^{\circ}(SHE)$$

\$\approx -11.6 eV \$\approx 13.6 eV \$\approx 2.3 eV \$=> \$4.3 V\$

Thermodynamic cycle for the absolute potential of the SHE:

$$E^{\circ}[V] = G_{ox}[eV] - G_{red}[eV] - nE^{\circ}_{abs} \text{ (reference)}[V]$$

How to evaluate G?

From lecture 5: Ideal gas-phase, harmonic-oscillator, rigid-rotor approximation + protocol based on implicit-solvent model:

$$G(T) = E_{el} + \left[E_{ZPVE} + RT - RT \ln Q(T)\right] + \frac{G_{solv}(T)}{G_{solv}(T)}$$

- 👷 the electronic energy
- * the thermal enthalpic and entropic contributions to the energy of solute
- the free energy of solvation --- e.g. through an implicit solvation model such as COSMO-RS (COSMO)

Calculation of reduction potentials using a thermodynamic cycle

$$G_{\text{OX,g}} = E_{el}^{\text{OX}} + \left[E_{ZPVE}^{\text{OX}} + RT - RT \ln Q_{|\text{OX}|}\right] \qquad G_{\text{RED,g}} = E_{el}^{\text{RED}} + \left[E_{ZPVE}^{\text{RED}} + RT - RT \ln Q_{|\text{RED}|}\right]$$

$$OX (g) \longrightarrow RED (g)$$

$$G_{\text{GS}-phase optimization & Frequency. calc.} \Rightarrow \text{lower } QM \text{ level}$$

$$Single point calculation \Rightarrow higher QM \text{ level}$$

$$G_{\text{solv}} \qquad G_{\text{solv}} \qquad G_{\text{solv}} \qquad G_{\text{solv}} \qquad G_{\text{solv}}$$

$$OX (l) \xrightarrow{E^{\circ}} \text{RED (l)}$$

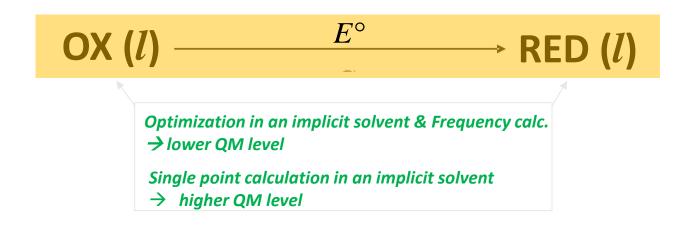
$$OX (l) \xrightarrow{E^{\circ}} \text{RED (l)}$$

$$OX (l) \xrightarrow{E^{\circ}} \text{RED (l)}$$

$$P \text{ lower } QM \text{ level}$$

$$P \text{ lower } QM \text{ lower}$$

$$P \text{ lower } QM$$



$$E^{\circ} = \Delta E_{el,solv}^{\text{OX-RED}} + \left[\Delta E_{ZPVE}^{\text{OX-RED}} - RT \ln \frac{Q_{\text{OX}}}{Q_{\text{RED}}} \right] - nE^{\circ}(SHE)$$

= "the standard approach"

It was demonstrated for amino acids where the solution-phase geometries differ appreciably from the gas phase that carrying out high-level single-point calculations directly in the continuum model on the solution phase species gives rise to pKa's and reduction potentials that are in better agreement with experiment... PCCP – 2015, 17, 2859-2868

Experimental and calculated reduction potentials of ferrocenes derivatives with respect to the Ag/AgCl 1M LiCl electrode
DFT(PBE/def2-TZVP) +
COSMO-RS (acetonitrile):
E^o range: 0.458 – 1.190 V
MAD (exp/calc): 0.03 V

max. dev (exp/calc): 0.1 V

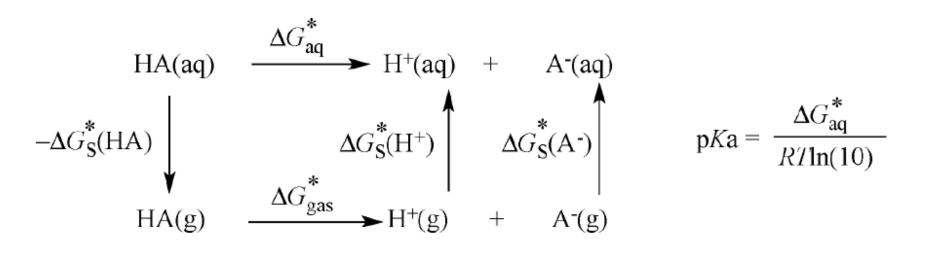
V

 E_{abs} (SHE) = 4.291 V

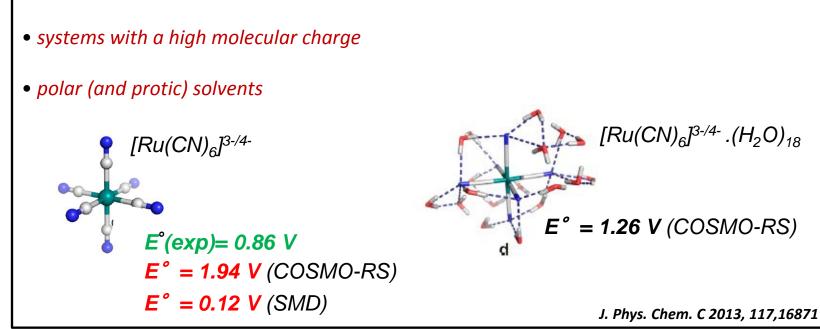
Quantitative predictivity

Entry	Compound	E^{0}_{exp} [V]	$E^{0}_{\text{ calc }}[V]$	$IE [eV]^{[a]}$	$\Delta (E_{\rm ZPVE} - RT \ln Q)^{[b]}$	$\Delta\Delta G_{ m solv}^{[c]}$
					[eV]	[eV]
1	2i (CH ₂ Ph)	0.463	-	-	-	-
2	2b (COPh)	0.693	0.712	6.69	-0.028	-1.454
3	2a (CO ₂ <i>i</i> Pr)	0.704	0.702	6.80	-0.025	-1.576
4	2c (PPh ₂)	0.560	0.502	6.26	-0.003	-1.259
5	2k (POPh ₂)	0.713	0.700	6.57	-0.049	-1.318
6	2d (PO ₃ Et ₂)	0.695	0.708	6.65	-0.004	-1.436
7	2e (SPh)	0.610	0.567	6.40	0.003	-1.340
8	2l (SOPh)	0.783	0.735	6.75	-0.016	-1.495
9	2m (SO ₂ Ph)	0.847	0.823	6.84	-0.008	-1.507
10	2f (Cl)	0.624	0.633	6.82	-0.008	-1.679
11	2g (Br)	0.630	0.668	6.83	-0.001	-1.657
12	2h (I)	0.635	0.640	6.77	-0.003	-1.626
13	3i (CH ₂ Ph) ₂	0.458	0.501	6.38	0.012	-1.387
14	3b (COPh) ₂	0.917	0.952	6.77	-0.038	-1.274
15	3a (CO ₂ <i>i</i> Pr) ₂	0.914	0.933	6.88	-0.024	-1.399
16	3c (PPh ₂) ₂	0.653	0.554	6.07	0.016	-1.036
17	3k (POPh ₂) ₂	0.946	1.000	6.50	0.001	-1.001
18	3d $(PO_3Et_2)_2$	0.903	0.917	6.53	-0.017	-1.095
19	3e (SPh) ₂	0.681	0.671	6.28	0.050	-1.157
20	31 (SOPh) ₂	0.983	0.994	6.79	-0.005	-1.290
21	3m (SO ₂ Ph) ₂	1.190	1.165	6.94	-0.007	-1.266
22	3f (Cl) ₂	0.771	0.765	6.92	0.003	-1.661
23	3g (Br) ₂	0.797	0.828	6.93	0.016	-1.620
24	3h (I) ₂	0.741	0.768	6.85	-0.009	-1.574

Thermodynamic cycle for calculating pK_a

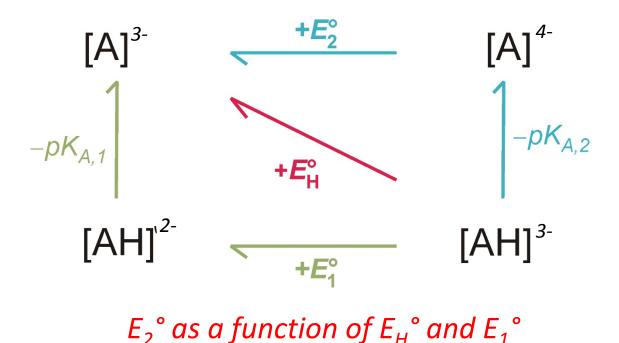


Solvation at the COSMO-RS level or PMF...



Employing a thermodynamic cycle in a different way...

Bím, D.; Rulíšek, L.; Srnec, M.: Accurate Prediction of One-Electron Reduction Potentials in Aqueous Solution by Variable-Temperature H-Atom Addition/Abstraction Methodology. *J. Phys. Chem. Lett.* **2016**, *7*, 7-13. Variable Temperature H-atom Addition/Abstraction Approach ("VT-HAA") : Idea

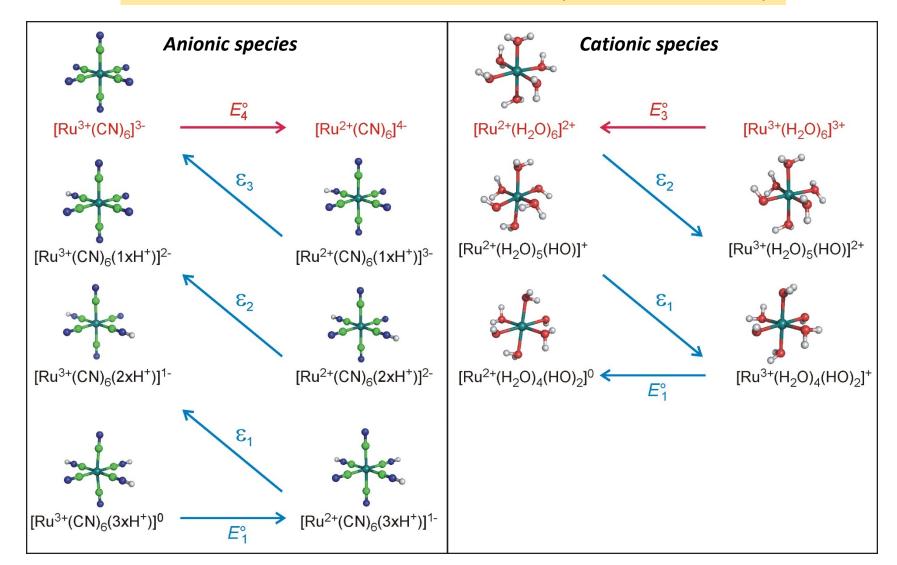


Two assumptions

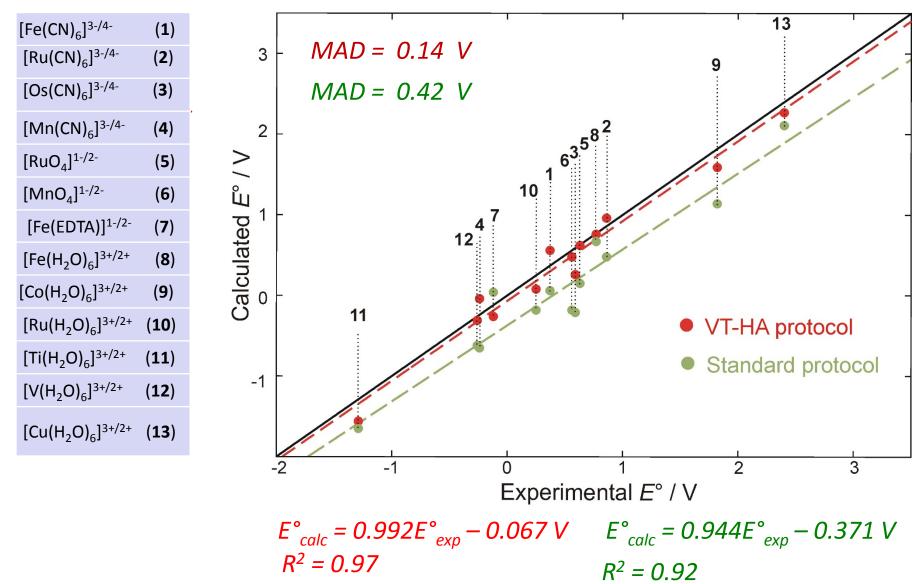
- Within the implicit solvation model, solvation (electrostatic) interactions of a **less** charged species are described more accurately than those of a **more** charged cognate
- Equivalently charged molecular cognates have comparable solvation (electrostatic) energies, implying small errors in prediction of their solvation energy difference.

Extension to multiple thermodynamic cycles $[Ru(CN)_6]^{4-/3-}$ & $[Ru(H_2O)_6]^{2+/3+}$

$$E_{n+1}^{\circ} = 2\sum_{i=1}^{n} (-1)^{n-i} \varepsilon_i + (-1)^n E_1^{\circ} - 31.6 \times \delta \begin{cases} \delta = 0 & \text{if } n \text{ is even} \\ \delta = 1 & \text{if } n \text{ is odd} \end{cases}$$

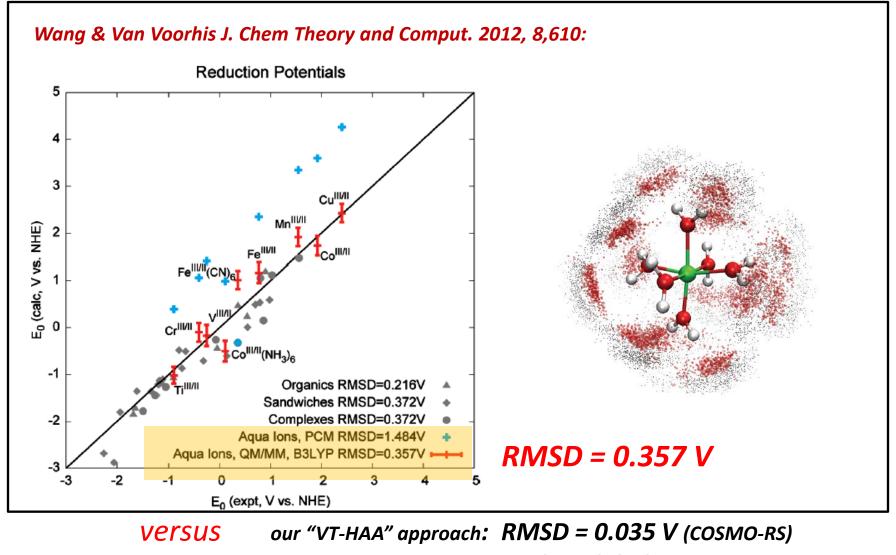


Experiment vs. "VT-HAA" vs. "Standard approach"



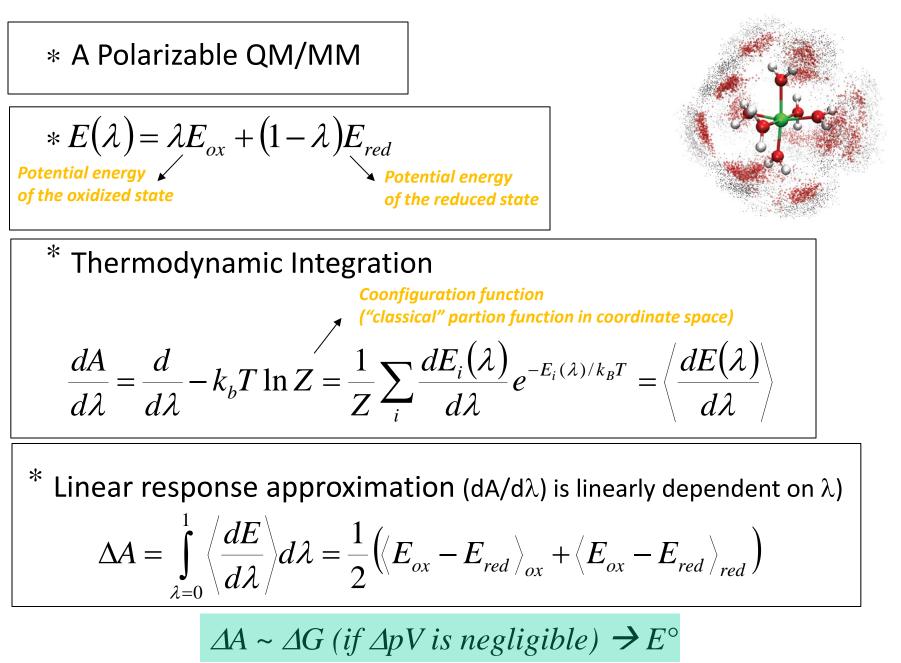
For COSMO-RS solvation model

Comparison with more advanced QM/MM MD Thermodynamic Integration



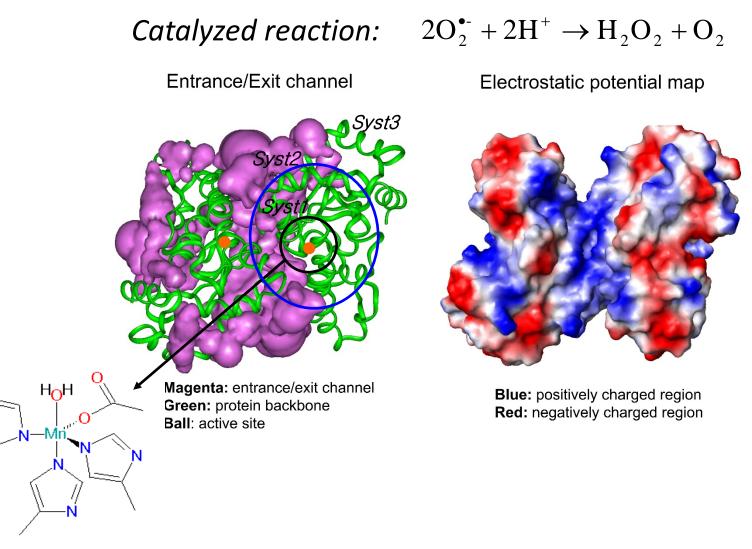
RMSD = 0.270 V (cosmo)

QM/MM MD Thermodynamic Integration



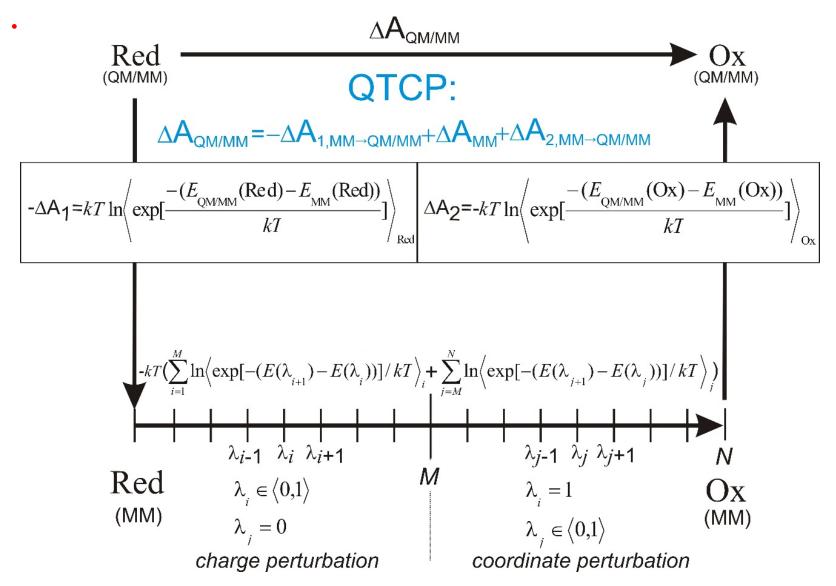
More elaborated thermodynamic cycles..

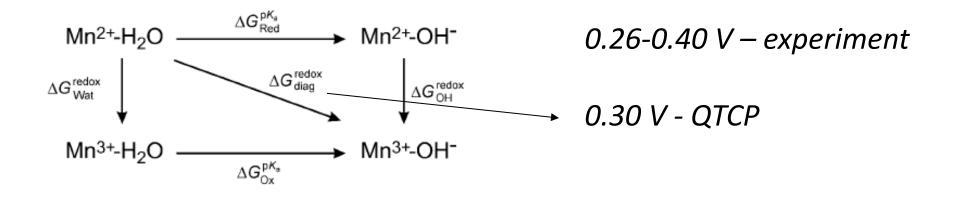
Reduction potential of an enzymatic complex: Manganese superoxide dismutase



QM/MM thermodynamic cycle perturbation - **QTCP**

ΔA of a reduction process:





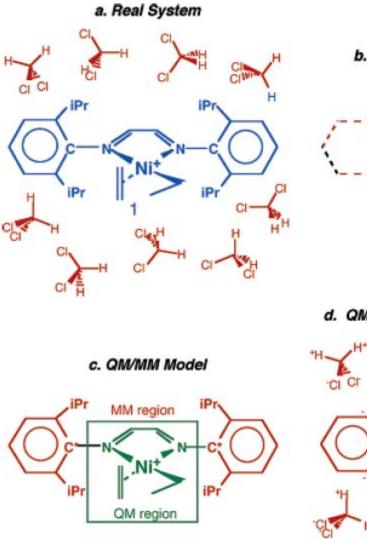
In the case of metalloproteins, the explicit protein environment may have a significant effect on the calculated reduction potentials, as it was demonstrated on the examples of plastocyanin and rusticyanin. Despite the high similarities between the copper-containing active sites of both proteins, their reduction potentials differ by more than 300 mV. This phenomenon was found to arise from the long-range electrostatic interactions of the active sites with amino-acid residues, the resulting shift in plastocyanin and rusticyanin being –166 mV and +170 mV.

QM/MM- FEP ; QTCP... - suitable techniques to study reduction potentials and pK_a in enzymes.

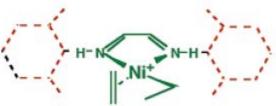
Modelling Chemical Reactions in Solution: Theory and Applications

- lecture 11 -

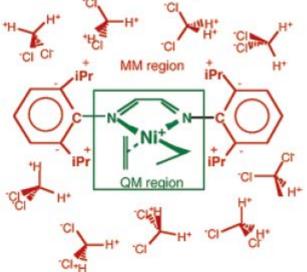
Various types of models used for modelling chemical reactions in solutions



b. Most Pure QM Calculations & QM model system



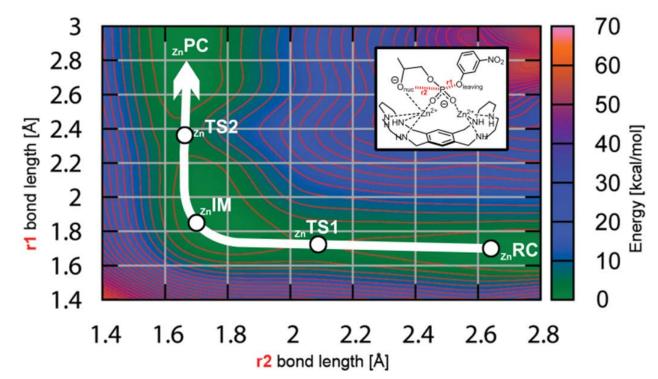
d. QM/MM model with explicit solvent



Key concept of a reaction coordinate and search for TS's

A reaction coordinate is a function of the configurational degrees of freedom of the system that should be capable of characterizing the progress of a transition through the dynamical bottleneck region.

Reaction coordinate can be as **simple** as:



• One or two (intuitive) geometric parameter:

Sometimes other than geometric parameters are more suitable as descriptors of a reaction coordinate: bond order, spin-density etc..

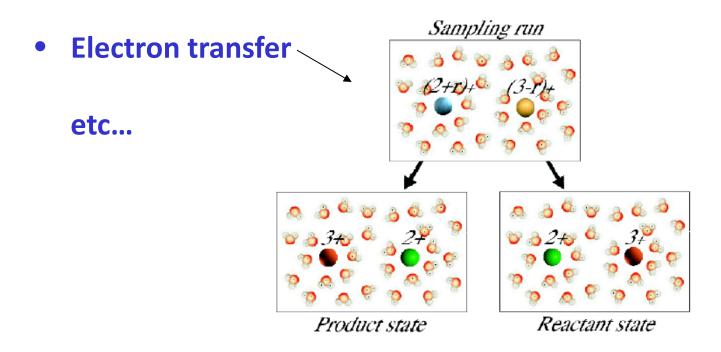
Reaction coordinate can be as difficult as:

• Collective (non-intuitive) reaction coordinate

e.g.:

• Peptide/Protein folding

- generic reaction coordinate unknown



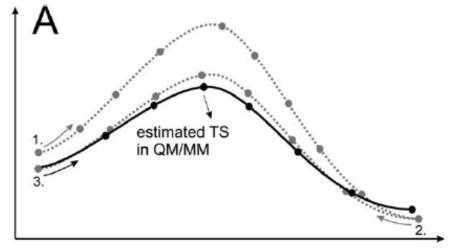
How to trap (meaning find and optimize) a "static" transition state using an easily definable reaction coordinate:

- 1) Define chemically reasonable reaction coordinate (bond formation / breaking)
- 2) Perform a potential-energy surface (PES) scan along the defined reaction coordinate starting from a reactant (1D or 2D scans => maximum in 1D or saddle point in 2D → a good guess for a "real" TS
- 3) **Do a TS optimization** (structure stable in 3N-7 dimension) starting from the guess obtained by a PES scan.
- 4) Frequency calculation (to confirm that TS is stable in the 3N-7 space and to calculate RT-RTInQ[≠] contributions to Gibbs free energy of TS. [see lecture 10] (the unstable mode is reaction coordinate at TS)
- 5) Perform intrinsic reaction coordinate (IRC) analysis to show that the TS is directly connected to the reactant state (backward step) & and allows to reach the product state (forward step).

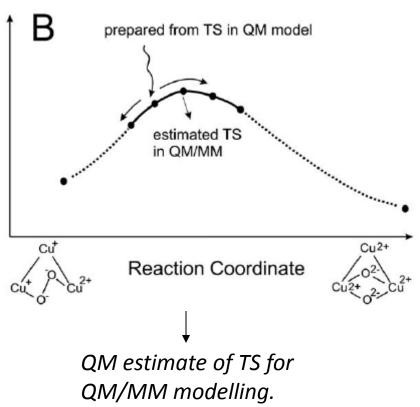
Alternative strategies in searching relevant TS's (next lecture)

A remark on "static" QM/MM modelling of chemical reactions

If the **analytic second derivatives of E_{QM/MM}** with respect to coordinates are **not implemented (available)** then the PES 1D (or 2D) scans along a reaction coordinate is the method of choice for "locating" relevant TS's.



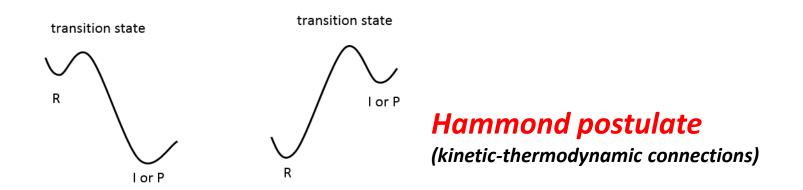
"Back-and-Forth" strategy (scaning from R to P and back and forth). Slow convergence of the scan to the "stable" PES profile due to slow convergence to a "stable" configuration in the MM space.



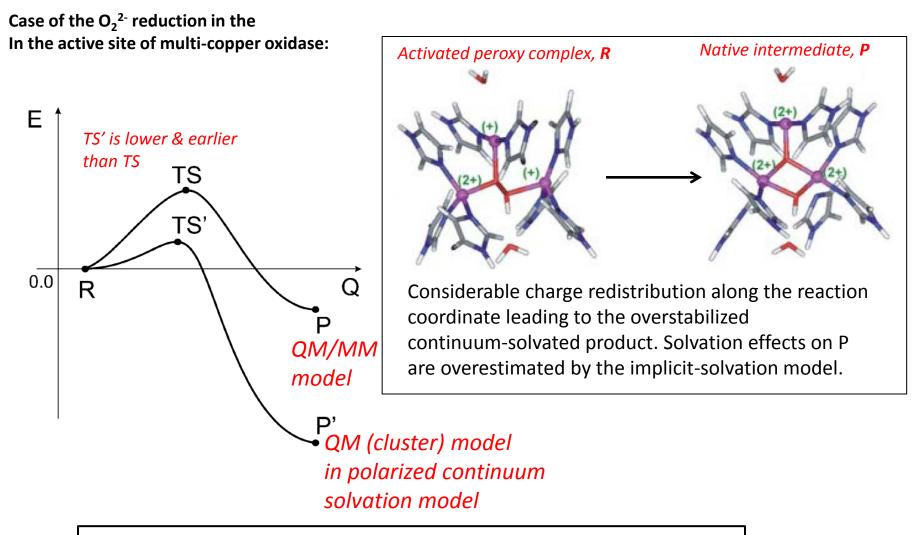
Transition State, its characterization in terms of its position along a reaction coordinate

From the geometric/electronic structure point of view the transition state can be characterized as:

- Reactant-like TS (called "early" TS)
- *Product-like TS* (called "late" TS)
- ⇒ This resemblance/position with R or P is also reflected by the relative free energy of TS with respect to the reactant /product state



Practical consequences of the Hammond postulate related to the inappropriate description of solvation effects



The overstabilization of the product state may lead to an artificial lowering of the activation barrier

Catalyzed reactions – prominent reactions in chemistry

What is a discriminating factor in a search of the most efficient catalyst?

k-Representation *experimentalist* 3/0 $k_1 = \frac{k_0 T_1}{b} e^{\frac{T_0 - T_1}{B}}$ $k_2 = \frac{k_{aT}}{h} e^{RT}$ E-Representation

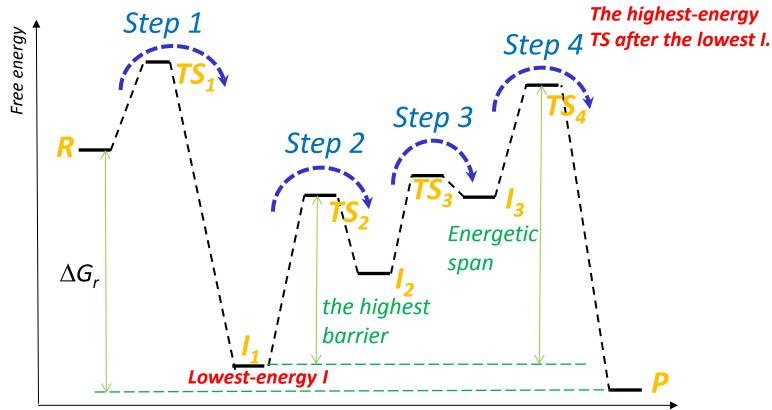
Henry Eyring as a translator between k- and Erepresentation of a reaction

World of an

Kozuch et al Acc. Chem. Res. 2011

World of a theoretician

How to calculate the efficiency of the catalytic cycle (= its frequency turnover - TOF) from the theoretically obtained energy profile:



Reaction Coordinate

Which step is the rate-determining step?:

Step 1 with the highest TS?

Step 2 with the highest barrier?

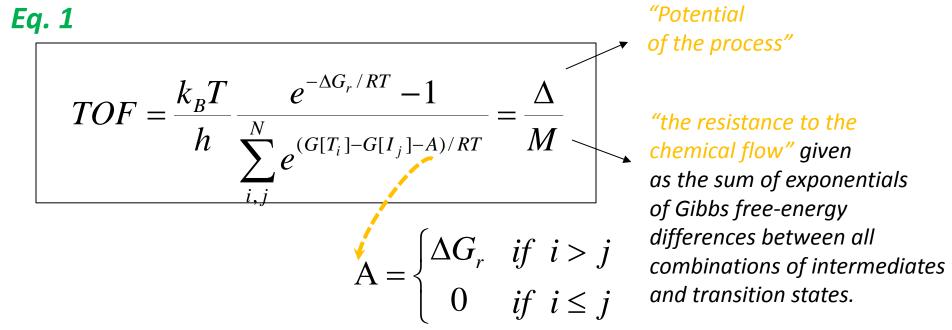
Step 4 with the highest TS that is after the lowest *I* along a reaction coordinate?

TOF - turnover frequency of the cycle is given as the number of cycles (N) per catalyst concentration (C) per time (time)

$$TOF = \frac{N}{Ct}$$

[reaction is first-order in catalyst and in a steady state]

Energetic Span Approximation for a catalytic cycle – based on Eyring's TST



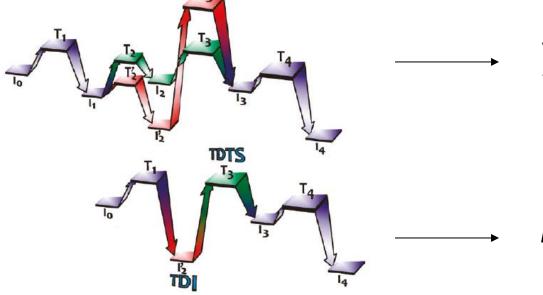
Kozuch et al Acc. Chem. Res. 2011

Eq. 1 can be simplified if the denominator *M* is dominated by a single term of the summation:

$$TOF = \frac{k_B T}{h} e^{-\delta G/RT} \int_{G[highest TS] - G[lowest I]} \text{ if highest TS after lowest I} \\ G[highest TS] - G[lowest I] + \Delta G_r \text{ if highest TS before lowest I}$$

3 assumptions considered in the Energetic Span Approximation:

- Transition state theory is valid
- Steady state regime is applicable
- Intermediates undergo fast relaxation



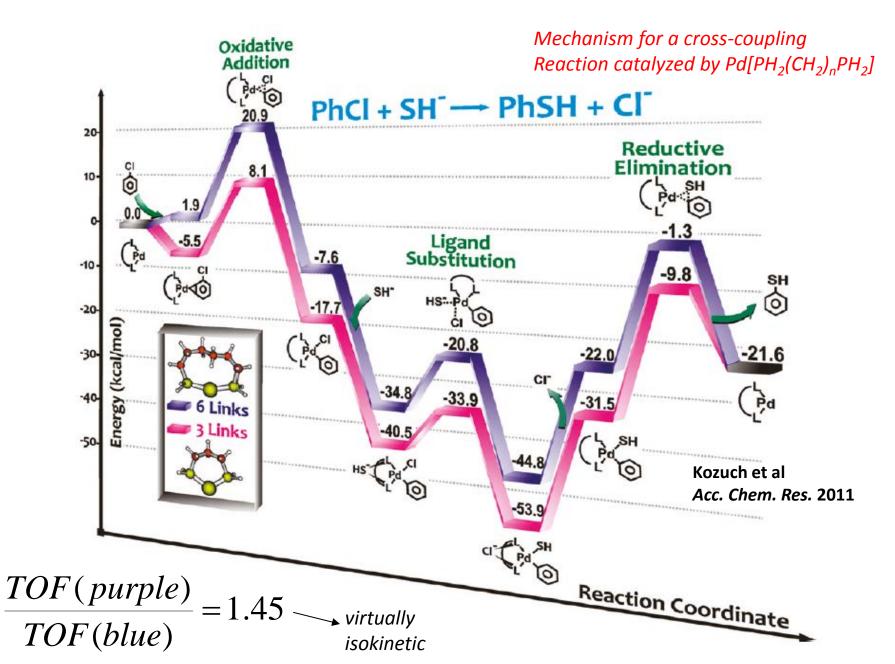
Two possible mechanisms with "red one" unlikely

but

Kinetic TOF is a combination of both

There are no rate-determining steps but there are rate-determining states!

Which of these two catalysts is more efficient?

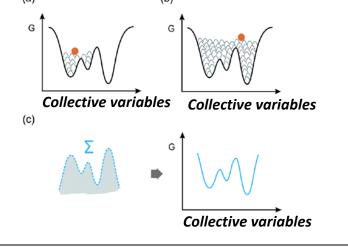


Modelling chemical reactions in solutions considering all-atom solvent environment

MD- MC-based techniques suitable for the study of "rare transitions" such as a chemical reaction in a complex system with a huge number of degrees of freedom

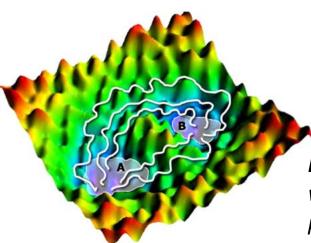
PMF; QM/MM-FEP; QM/MM-TI

QM/MM Metadynamics



Collective variables (CVs) include for example bond lengths, dihedral angles, coordination numbers, etc.

QM/MM Transition Path Sampling

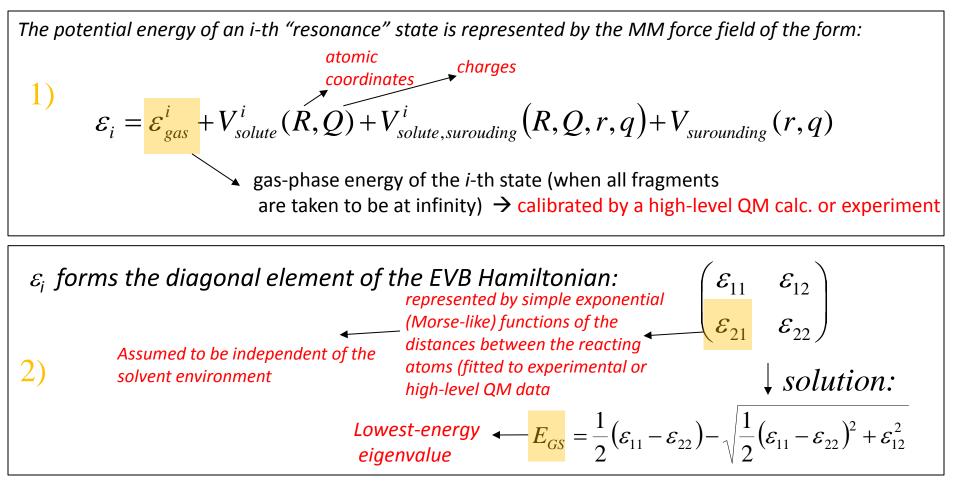


TPSs do not require **prior knowledge of a reaction coordinate** and do not rely on the indetification of particular features of the potential energy surface

Idea: to generate reactive trajectories with a frequency proportional to their probability in the transition path ensemble

Semiempirical EVB (=QM/MM) MD Approach (pioneered by A. Warshel)

EVB — empirical valence bond – is a QM/MM method. It mixes resonance (=diabatic) states (valence bond structures), which describes reactant, intermediate and product states.



Semiempirical EVB (=QM/MM) MD Approach (pioneered by A. Warshel)

EVB evaluates the relevant activation energies (ΔG^{\neq}) by changing one diabatic state (=reactant) into another one (=product) through:

$$\varepsilon_m = (1 - \lambda_m)\varepsilon_1 + \lambda_m\varepsilon_2$$

The free energy, ΔG_m , associated with changing λ is evaluated by **FEP-umbrella** sampling.

...and free energy profile of diabatic state 1 is given by:

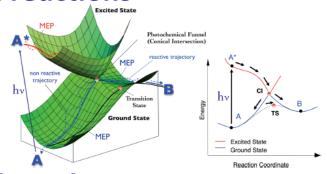
$$\Delta G_1(x') = \Delta G_m - k_B T \ln \left\langle \delta(x - x') \exp \left[\frac{\varepsilon_m(x) - \varepsilon_1(x)}{k_B T} \right] \right\rangle_{\varepsilon_m}$$

with x – reaction coordinate (ε_1 - ε_2)

3)

Modelling "photochemical" chemical reactions

Reactions involving conical intersections (crossing seam between two states is of 3N-8 dimension if these states have the same spin)



Modelling "spin-forbidden" chemical reactions

Reaction barrier can be given by a crossover of two spin states:

these states are diabatic (=non-interacting) from the non-relativistic quantum-chemical perspective

(MECP)

There is no a "classical" TS with one unstable mode along a reaction coordinate but rather the <u>"minimum" on the crossing seam</u> is searched.

Seach algorithms (e.g., Harvey's approach) or constrained PES scans

> Then, **k** (rate constant) can calculated within the nonadiabatic TS theory. More in lecture 13

(CASSCF, CASPT2 *methods suitable*)

