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On the Motion of a Body with a Cavity Filled

with Compressible Fluid

G. P. Galdi V. Mácha Š. Nečasová

Abstract

We study the motion of the system, S, constituted by a rigid body, B, containing in its interior
a viscous compressible fluid, and moving in absence of external forces. Our main objective is to char-
acterize the long time behavior of the coupled system body-fluid. Under suitable assumptions on the
“mass distribution” of S, and for sufficiently “small” Mach number and initial data, we show that every
corresponding motion (in a suitable regularity class) must tend to a steady state where the fluid is at
rest with respect to B. Moreover, S, as a whole, performs a uniform rotation around an axis parallel to
the (constant) angular momentum of S, and passing through its center of mass.

1. Introduction

The study of the motion of a rigid body with an interior cavity entirely filled with a liquid has a
long-lasting history, tracing back to the pioneering contributions of Stokes [40], Zhukovsky [42], Poincaré
[35], and, later, Sobolev [39].

The principal and interesting characteristic arising in the dynamics of these coupled systems is that
the presence of the liquid can substantially change the motion of the body and may often produce a
significant stabilizing effect at “sufficiently large” times.

It was only in the late fifties, however, that this research area has become the object of a coherent
and methodical investigation –mostly by Russian mathematicians– probably also due to the central role
that it plays in rocket and space engineering, among the many other areas of concrete applications. The
list of main contributors is too long to be included here, and we refer the interested reader to the classical
monographs [32], [23], [2], the latest book [3] and the vast bibliography therein cited.

It must be emphasized that all the above contributions are rarely of rigorous nature since they almost
constantly rely on simplified equations –some times, even ordinary differential equations– and/or special
shapes of the body and cavity.

A few years ago, a rigorous and systematic mathematical analysis has eventually begun, under the as-
sumption that the liquid filling the cavity is incompressible and governed by the Navier-Stokes equations
[38,4,13,14,16,15,18,17,31].1 Besides the basic study of well-posedness of the relevant initial-boundary

1 See also [11,24,25] for stability issues in the case of an inviscid liquid.
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value problem, all these works mainly focus on the fundamental question of the “ultimate dynamics” of
the coupled system, and the characterization of terminal states.

In particular, in [4] and [13] the authors address the case where the system moves freely in absence
of external forces and prove, among other things, that terminal states must be uniform rotations where
the system, as a whole rigid body, spins with constant angular velocity around one of the central axes
of inertia. This result –that is quite at odds with the classical one in absence of liquid– holds in a very
large class of motions (weak solutions) and whatever the shape of the body, of the cavity and the value
of the physical parameters of the system, thus giving a rigorous proof of a famous conjecture formulated
by N.Y. Zhoukovski in 1885 [42].

The main purpose of this paper is to investigate whether and to what extent the above significant
property continues to be valid if the fluid filling the cavity is assumed to be compressible (and isothermal).

It must be remarked that, with the current knowledge of compressible Navier-Stokes fluids and unlike
[4,13], it does not appear feasible to perform this type of analysis in the general class of weak solutions,
whose initial data are only requested to have finite total energy. In fact, we leave this aspect of the
problem as an outstanding open question. The reason for such a difficulty is easily seen. By its own
nature, the problem calls for a detailed investigation of the Ω-limit set associated to the generic weak
solution. As recognized in [4,13], one of the crucial points is to show that this set meets the basic
property of invariance. The latter, however, requires that weak solutions become as smooth for large
times as to ensure continuous dependence upon the data. In [4,13] this is shown to be the case thanks
to the “smoothing property” possessed by weak solutions to the incompressible Navier-Stokes equations
as times approaches infinity. In the analogous compressible problem, existence of a global weak solution
for arbitrary initial data possessing only finite energy can be shown by a suitable modification of the
arguments given in [26] and [7] (see also [8], [34]). However, with the current understanding of the theory
of weak solutions, it is not possible to show, even with very regular initial data, that such a solution
becomes smooth for sufficiently large times. In this regards, we recall that the propagation of singularities
in weak solutions for a barotropic fluid was studied in [21] in both two- and three-dimensional settings.
There it is proved that, if the initial density is nonnegative and essentially bounded, initial energy is
small, and initial velocities are in certain fractional Sobolev spaces, then discontinuities in the density
may persist for all times; see [20] for the one-dimensional case.

In view of all the above, we carry out our analysis within the class of “strong” solutions. The model we
adopt is that of a barotropic gas where pressure and density are related by the formula p = a ργ , γ > 1,
a = const. > 0. Since we are interested in global existence, we shall need a restriction on the magnitude
of the initial data in appropriate spaces; see Theorem 2. This allows us to show the existence of an
Ω-limit set possessing the desired properties of compactness, connectedness and invariance; see Lemma
7. As a consequence of the invariance, we then prove that this set is contained in the class of all possible
steady-states solutions. As shown in Proposition 1, each of these states is characterized by the fluid being
at rest relative to the body, and density distribution, ρs, and constant angular velocity, ωs, satisfying
a coupled and highly nonlinear system of equations; see (3.14). These equations translate the physical
requirement that, since the fluid is at rest, the gradient of pressure must balance the centrifugal force
imparted by the rotation which, in turn, occurs around an axis that depends on the density distribution
itself. In fact, for a given admissible density distribution ρs of the fluid, let G = G(ρs) be the center of
mass of the coupled system body-fluid, S = S(ρs), and let I = I(ρs) be the inertia tensor of S relative to
G (central inertia tensor). Then, the generic steady-state solution describes a motion where the coupled
system S uniformly rotates, as a whole rigid body and with angular velocity ωs = ωs(ρs), around an
axis parallel to one of the eigenvectors of I and passing through G.

The final and critical property that remains to be investigated is under which conditions the Ω-limit
set corresponding to a given solution reduces to a singleton. As is well known, this property is by no
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means guaranteed, even for the “classical”2 initial-boundary value problem for a barotropic fluid subject
to a given potential-like force [1,10,9,5]. As a matter of fact, in our case the situation appears to be
more complicated. In fact, as mentioned in the previous paragraph, in any possible terminal state the
gradient of pressure has to balance the potential-like centrifugal force where the angular velocity is itself
an unknown function of the density. The problem of uniqueness is addressed in Section 6 by means of
the implicit function theorem, and the relevant findings are collected in Theorems 3 and 4. The results
depend on the magnitude of the total angular momentum,M0, of the coupled system S. Since the motion
occurs in absence of external forces, this quantity is preserved at all times; see (6.5). If M0 = 0 (a rather
non-generic situation) then the Ω-limit set reduces to the single state where S is at rest and the density
of the gas is a constant (compatible with conservation of mass). If M0 6= 0, the situation appears to be
much more complicated. Nevertheless, we are able to give an answer under suitable assumption on the
“mass distribution” of the coupled system, and by requiring the material constant a to be “sufficiently
large” (“small” Mach number). More precisely, let ρ̄ ≡ mF/V, with mF mass of the gas and V volume of
the cavity. Then, I(ρ̄) is the central inertia tensor of the system body-fluid when the fluid has a constant
density ρ̄. Notice that I(ρ̄) is completely characterized by known physical parameters. Then, if all three
eigenvalues of I(ρ̄) are distinct, and a > a0 for a sufficiently large a0 > 0, the Ω-limit corresponding
to any strong solution reduces to a single point or, equivalently, the generic strong solution to the
initial-boundary value problem tends to a uniquely determined steady-state.

The paper is organized as follows. In Section 2 we formulate the problem in both inertial and body-
fixed frames and provide some preliminary considerations of general nature. The steady-state problem
is addressed in Section 3. In particular, it is shown that, in the very general class of weak solutions, the
only steady-states are those where the fluid is at rest relative to the body. Sections 4 and 5 are devoted
to the existence of strong solutions. We follow the approach developed by Matsumura and Nishida ([29],
[30]) and A. Valli [41]. The proof of the existence of local-in-time strong solutions is performed, basically,
along the same lines introduced in [29,41], with only a few differences in details . Thus, in Section 4 we
focus only on these differences. However, the situation with global-in-time solutions is rather dissimilar
from that addressed in the cited work, due to the presence of non-homogeneous boundary conditions. In
[41], where homogeneous Dirichlet boundary conditions are adopted, the author shows that in absence
of external forces, as time t→ ∞ the velocity of the fluid tends to zero and density tends to a constant
function. This cannot be true in our case, in general, since the magnitude of total angular momentum
of the coupled system body-fluid must be conserved (see (3)). Consequently, the velocity of the whole
system cannot be zero in the limit t → ∞ and also, contrary to the incompressible case, we cannot expect
a constant density as a stationary solution. In Section 5 we provide a proof of existence of global-in-time
smooth solution whose velocity does not necessarily tend to zero.

The concluding section contains the main contribution of our paper, devoted to long-time-behavior
of strong solutions. We provide a number of properties of Ω-limit set, and show, in particular, that it
must be a subset of the class of steady-state solutions. Finally, as discussed earlier on in this section, we
provide sufficient conditions ensuring that this set consists of one point only; see Theorems 3 and 4.

2. Formulation of the Problem and Governing Equations

Let B be a rigid body with an interior cavity, C, entirely filled with a viscous, compressible fluid, F ,
and let S indicate the coupled system body-fluid (i.e. S := B ∪ F). We are interested in the case where
S moves in absence of external forces (inertial motions). This implies, in particular, that its center of
mass, G, performs a uniform, rectilinear motion with respect to an inertial frame I. Denoting by F the

2 Namely, the body is kept at rest at all times, and the fluid moves in a bounded domain.
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frame with the origin at G and axes constantly parallel to those of I, we have that F is inertial as well
and that G is at rest in F. The governing equations of S with respect to F then take the following form

∂t(rw) + div(rw ⊗w) − divT (w, p(r)) = 0

∂tr + div(rw) = 0

}

(y, t) ∈ ∪t>0 C(t) × {t} ,

w = $(t) × (y − yC) + η(t) , (y, t) ∈ ∪t>0 ∂C(t) × {t} ,
d
dt

(JC ·$) = −
∫

∂C(t)
(y − yC) × T (w, p(r)) ·N

mB η(t) = −
∫

C(t)
rw






t ∈ (0,∞) ,

(2.1)

where r, p and w are fluid density, pressure and velocity fields, $ is the angular velocity of B, and η
the velocity of its center of mass C. Moreover, yC denotes the vector position of C, while mB, JC are
mass and inertia tensor with respect to C of B, respectively, and N unit outer normal on ∂C. Also,

T (w, p) = S(∇w) − 1p (2.2)

(1=unit tensor) is the Cauchy stress tensor with S defined by

S(∇w) = µD(w) + (λ− 2
3
µ)1 divw, , D(w) := ∇w + (∇w)> , µ > 0 , λ ≥ 0 . (2.3)

As for the dependence of p on r, we shall consider the isentropic case

p(r) = a rγ , (2.4)

where γ (specified later) and a are positive material constants.
Equations (2.1)1,2,3 represent conservations of linear momentum and mass forF , along with adherence

of the fluid at the boundary of C, whereas (2.1)4 is the balance of angular momentum of B. Finally, (2.1)5
translates the fact that the center of mass G of S is at rest in F.

As customary in this type of problems [12,22,33,27,28], it is convenient to rewrite the system (2.1) in
a frame, R, attached to B, so that the domain occupied by the fluid becomes time-independent. To this
end, let Q = Q(t), t ≥ 0, be the family of proper orthogonal transformations defined by the equations

d
dtQ(t) = S($) ·Q(t) , Q(0) = 1 ,

where

S(a) :=






0 −a3 a2

a3 0 −a1

−a2 a1 0




 . (2.5)

By choosing C as the origin of R we perform the following change of coordinates

x = Q> · (y − yC)

and define accordingly the transformed quantities

ρ(t, x) = r(t,Q> · x+ yC) , u(t, x) = Q> ·w(t,Q> · x+ yC)

ω(t) = Q> ·$(t) , ξ(t) = Q> · η(t) , IC = Q · JC(t) ·Q> , n = Q> ·N (t) .
(2.6)
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As a result, one shows that (2.1) becomes [12,22]

∂t(ρu) + div(ρv ⊗ u) + ρω × u+ ∇p(ρ) = divS(∇u)

∂tρ+ div(ρv) = 0

}

in C × (0,∞) ,

u = ω(t) × x+ ξ(t) , on ∂C × (0,∞) ,

IC · d
dtω + ω × (IC ·ω) = −

∫

∂C
x× T (u, p(ρ)) · n
mB ξ(t) = −

∫

C
ρu

}

t ∈ (0,∞) ,

(2.7)

where
v := u −ω × x− ξ , (2.8)

stands for the relative velocity field of the fluid with respect to the body. In this regard, we point out
the obvious identity

S(∇u) = S(∇v) ,
which will be often used throughout this paper without explicit mention.

For future reference, we also observe that, integrating both sides of (2.7)1 over C –also by parts where
needed– and taking into account (2.2) and the fact that v|∂C = 0, we easily get

d

dt

∫

C

ρu + ω ×
∫

C

ρu =

∫

∂C

T (u, p(ρ)) · n .

The latter, in combination with (2.7)5 then furnishes

mB
dξ

dt
+mBω × ξ = −

∫

∂C

T (u, p(ρ)) · n . (2.9)

Proceeding as in [4, Appendix], one can further prove that (2.7) can be put in the following equivalent
form that will turn out to be useful for our purposes

∂t(ρu) + div(ρv ⊗ u) + ρω × u+ ∇p(ρ) = divS(∇u)

∂tρ+ div(ρv) = 0

}

in C × (0,∞) ,

u = ω(t) × x+ ξ(t) , on ∂C × (0,∞) ,

d
dtM + ω ×M = 0, M := IC · ω +

∫

C
ρx× u

mB ξ(t) = −
∫

C
ρu

}

t ∈ (0,∞) .

(2.10)

Notice that (2.10)4 states conservation of the angular momentum of the coupled system S with respect
to center of mass of B. Finally, we endow equations (2.7) (or, equivalently, (2.10)) with the following
initial conditions

ρ(0) = ρ0, ρ(0)u(0) = q. (2.11)

Notice also that from (2.7)2 and (2.11) we formally deduce the following global form of conservation
of mass ∫

C

ρ(x, t) dx =

∫

C

ρ0(x) dx = mF , t ≥ 0 , (2.12)

where mF is the total mass of the fluid.
The problem we shall address in the following sections regards the asymptotic behavior in time

of solutions (ρ,u,ω, ξ) to (2.7) in a suitable function class, C (say). More precisely, we shall show
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that, provided the size of the initial data is suitably restricted and under certain assumptions on the
distribution of masses, any such solution in C will converge to a steady-state where the fluid is at relative
rest (v ≡ 0) and S performs a uniform rotation as a single rigid body.

We end this section by recalling some basic notation we will use throughout. As customary, Lp

(resp. W k,p) denote the classical Lebesgue (resp. Sobolev) space, with corresponding norm ‖ · ‖p (resp.
‖ · ‖k,p). Norms in Bochner space Lp([0, T ], Lq) (resp. Lp([0, T ],W k,q)) are denoted by ‖ · ‖Lp(Lq) (resp.
‖ · ‖Lp(Wk,q)). Supporting sets in all the above spaces will be usually omitted. We also need the following
class of functions defined on the whole of S and that reduce to “rigid motions” on B:

W k,p
R (S) = {ϕ : S 7→ R

3,ϕ ∈W k,p(S),ϕ|B = `× x+ k for some `,k ∈ R
3} .

We set Lp
R(S) := W 0,p

R (S). If ϕ ∈ W k,p
R (S) we shall typically write `ϕ and kϕ to emphasize that the

characteristic vectors ` and k are associated to ϕ. For future reference, we observe that, due to the
properties of the tensor field S defined in (2.3), for any ψ,ϕ ∈W 1,2

R (S) we have

S(∇ψ) : ∇ϕ = S(∇ψ) : ∇(ϕ− `ϕ × x),

and also
S(∇ϕ) : ∇ϕ = S(∇ϕ − `ϕ × x)) : ∇(ϕ− `ϕ × x).

We finally remark that, in what follows, the cavity C is assumed to be a bounded domain of R3

possessing (at least) Lipschitz regularity.

3. Steady-State Solutions

Objective of this section is to derive certain basic properties of steady-state solutions to (2.10).
Sufficient conditions for their existence will be postponed till the last section.

We begin to observe that from (2.10) we have that steady-state solutions must satisfy the following
set of equations

div(ρv ⊗ u) + ρω × u+ ∇p(ρ) = divS(∇u)

div ρv = 0

}

on C

u = ω × x+ ξ on ∂C
mBξ = −

∫

C
ρu

ω ×M = 0 , M := IC · ω +
∫

C ρx× u.

(3.1)

If we formally dot-multiply (3.1)1 by ϕ ∈ C∞
0 (C) and integrate by parts over C, we get

∫

C

[
− (ρv ⊗ u) : ∇ϕ+ ρω × u · ϕ+ p(ρ) divϕ

]
= −

∫

C

S(∇u) : ∇ϕ , all ϕ ∈ C∞
0 (C) . (3.2)

Likewise, from (3.1)2 we show
∫

C

ρv · ∇ψ = 0 , all ψ ∈ C∞
0 (C) . (3.3)

Moreover, if
b ∈ C1(R+), b(0) = 0, b′(r) ≥ Cb, (3.4)

with Cb a constant that may depend on b, again from (3.1)2 we deduce the “renormalized” continuity
equation

div(b(ρ)v) +
(
ρ b′(ρ) − b(ρ)

)
divv = 0 in C , all b ∈ C1(R+) . (3.5)
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We then say that the quadruple (ρ,u,ω, ξ) is a renormalized weak solution to (3.1) if, for some γ > 1,

(i) (ρ,u) ∈ Lγ(C) ×W 1,γ∗

R (S), ω = ωu, ξ = ξu,3 (ii) (ρ,u,ω, ξ) satisfies (3.1)4,5, (3.2), (3.3), and, in
addition, (3.5) in the sense of distributions in the whole of R3, with ρ and v prolonged by 0 outside C
with b satisfying (3.4) and the following assumptions

|b′(t)| ≤ ct−λ0, t ∈ (0, 1], λ0 < 1,
|b′(t)| ≤ ctλ1, t ≥ 1, c > 0,−1 < λ1 <∞.

(3.6)

The next lemma shows that weak solutions may occur only if the fluid is at rest relative to B, namely,
the coupled system S moves, as a whole, by rigid motion.

Lemma 1 Let (ρ,u,ω, ξ) be a renormalized weak solution to ( 3.1). Then v ≡ 0.

Proof. Clearly, v ∈W 1,γ∗

0 (C). Since C∞
0 (C) is dense in W 1,γ∗

0 (C) we can replace v for ϕ in (3.2) to get

∫

C

[
− (ρv ⊗ u) : ∇v + ρω × u · v + p(ρ) divv

]
= −

∫

C

S(∇u) : ∇v . (3.7)

We now observe that

∫

C

div(ρv ⊗ u) · v =

∫

C

div(ρv ⊗ u)u −
∫

C

div(ρv ⊗ u)(ω × x+ ξ)

= −1

2

∫

C

ρv∇|u|2 −
∫

C

ρω × uv = −
∫

C

ρω × uv . (3.8)

Furthermore, choosing b(ρ) = ρ
∫ ρ

1
p(s)
s2 ds we infer

ρ b′(ρ) − b(ρ) = p(ρ) ,

so that from (the distributional form of) (3.5) we show

∫

C

p(ρ) div v = −
∫

C

div
(
b(ρ)v

)
= 0 . (3.9)

Collecting (3.2)–(3.9) we thus obtain
∫

C
S(∇v) : ∇v = 0, which together with Korn’s inequality yields

the desired claim.
�

Setting

Ī = Ī(ρ) :=

∫

C

ρ[1 |x|2 − x⊗ x] ,

from the previous lemma and (3.1) we easily show that any weak solution to (3.1) must be then of the
form (ρs, v ≡ 0,ωs, ξs), with ρs, ωs, and ξs satisfying the following system of equations:

ρs[ωs × (ωs × xs + ξs)] = −∇p(ρs)

ξs = − 1

mS

∫

C
ρs ωs × x

ω ×
[
(IC + ĨC) ·ω +

∫

C
ρs x× ξs

]
= 0 ,

(3.10)

3 Here γ∗ = 3γ

3+γ
for γ > 6, γ∗ = 9γ

5γ−3
for 3

2
< γ ≤ 6, γ∗ = 3+ for γ = 3

2
, and γ∗ = γ

γ−1
for γ < 3

2
.
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where mS is the mass of S and ĨC := Ī(ρs) is (for ρs > 0) the inertia tensor with respect to C of the
fluid in the steady-state configuration.

We notice that, if ρs(x) > 0 in C, then by a simple boot-strap argument from (3.10)1 it follows that,
in fact, ρs ∈ C∞(C).

Set

g = g(ρ) :=

∫

C

ρx , (3.11)

and define

Ig :=
1

mS

(
1|g|2 − g ⊗ g

)
.

We have the following.

Lemma 2 For any (sufficiently smooth) ρ = ρ(x) > 0, the tensor

I = I(ρ) := IC + Ī − Ig . (3.12)

is symmetric and positive definite. Moreover, denoting by G = G(ρ) the center of mass of S, I(ρ)
coincides with the inertia tensor of S with respect to G.

Proof. The symmetry property is obvious. Moreover, by using Lagrange vectorial identity, for any
a ∈ R3 we have

mS a · Ig · a = |a|2|g|2 − (a · g)2 = (a × g)2 =
( ∫

C
ρa × x

)2

≤
∫

C ρ ·
∫

C ρ(a × x)2 = mFa · Ī(ρ) · a ,
where mF :=

∫

C
ρ is the mass of the fluid. Therefore,

a · I · a ≥ a · IC · a +
(
1 − mF

mS

)
a · Ī · a ,

which proves the desired property since mS > mF . We next observe that, denoting by xG the vector
position of G in the frame R, B the volume occupied by the body, and ρB its density, we have

xG =
1

mS

(∫

B

ρB x+

∫

C

ρx

)

=
1

mS
g ,

since
∫

B
ρB x = 0. The claimed property then follows from classical Steiner’s theorem on the variation

of the inertia tensor with the pole, e.g., [37, Section 3.5].
�

Collecting all the above results we can now give the following characterization of the class of weak
solutions to (3.1).

Proposition 1 Let (ρs,us,ωs, ξs) be a weak solution to ( 3.1) with ρs > 0. Then

us = ωs × x+ ξs , x ∈ S , (3.13)

while ρs, ωs and ξs satisfy the following equations

ργ−1
s (x) = γ−1

2aγ

(
|ωs × x|2 − 2(ωs × ξs) · x

)
+ c , x ∈ C , some c ∈ R,

ωs × (I(ρs) · ωs) = 0 ,

mSξs = −ωs × g(ρs) .

(3.14)
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On the Motion of a Body with a Cavity Filled with Compressible Fluid 9

Proof. The property in (3.13) follows from Lemma 1. Moreover (3.14)3 is a consequence of (3.10)2 and
the definition (3.11). In addition, from (3.10)1 we at once deduce that

ρs∇
(

1

2
|ωs × x|2 − (ωs × ξs) · x

)

= ∇p(ρs) in C.

which furnishes (3.14)1. Finally, using (3.14)3 we get
∫

Ce

ρsx× ξs =
1

mS
g × (g ×ωs) =

1

mS

[
(ωs · g)g −ωs |g|2

]
= −Ig(ρs) ·ωs ,

which, in conjunction with (3.10)3, produces (3.14)2. This concludes the proof.
�

Remark 1 As mentioned at the beginning of this section, the existence of solutions to ( 3.14) (or, equiv-
alently, weak solutions to ( 3.1)) will be addressed in the last section. More specifically, we shall show
that the Ω−limit set associated to (strong) solutions to ( 2.10) is not empty and that its generic element
is a steady-state solution; see Remark 3.

4. Local existence of strong solutions

Our next objective is to show that (2.10)–(2.11) is solvable in a class of “strong” solutions, at least
in some open interval of time. To this end, we begin to put (2.10) in a suitable weak form where the
involved field variables are defined on the whole system S. Let

ρ =
1

|C|

∫

C

ρ0 , σ := ρ− ρ , (4.1)

and consider the following set of equations

∂tσ + v · ∇σ + σ divv + ρ divv = 0 in C × (0,∞),
∫

C

σ(x, t) dx = 0 in (0,∞)

∫

S

ρ∂tu · ϕ+

∫

S

ρv · ∇u · ϕ+

∫

S

ρωu × u ·ϕ −
∫

S

p(ρ) divϕ+

∫

S

S(∇u) : ∇ϕ = 0,

for all ϕ ∈W 1,2
R (S),

mBξu = −
∫

C

ρu , t ∈ (0,∞) .

(4.2)

It is easy to see that every sufficiently smooth solution to (4.2) is, in fact, a solution to (2.7), which,
as shown earlier on, is equivalent to (2.10). Actually, choosing at first ϕ ∈ C∞

0 (C), integrating by parts
(4.2)2 as necessary and taking into account (4.2)1,3 we at once obtain that ρ,u solve (2.7)1,2,5. If we now
take ϕ = `×x and recall that S = B ∪C and that v ≡ 0 in C, by a straightforward calculation we show

∫

C

ρ
(
∂tu + v · ∇u+ ωu × u

)
·ϕ +

[ d

dt
(IC · ωu) +ωu × (IC · ωu)

]
· ` = 0 .

We next use (2.7)1,2 in the first integral to get
∫

Ce

divT (u, p) ·ϕ = −
[ d

dt
(IC ·ωu) + ωu × (IC · ωu)

]
· ` .
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10 G. P. Galdi V. Mácha Š. Nečasová

The latter, in turn, after integration by parts delivers

[ d

dt
(IC ·ωu) + ωu × (IC · ωu)

]
· ` = −` ·

∫

∂C

x× T (u, p) · n ,

which, by the arbitrariness of ` proves (2.7)4.

The major result in this section reads as follows.

Theorem 1 Let C be of class C3, u0 ∈W 1,2
R (S), u0|C ∈ W 2,2(C), ρ0|C ∈W 2,2(C), 0 < m ≤ ρ0 ≤M and

γ > 1. Then there exists T ∗ > 0, u ∈ C([0, T ∗],W 1,2
R (S)), u|C ∈ L2(0, T ∗,W 3,2) ∩ C([0, T ∗],W 2,2) with

∂tu ∈ L2(0, T ∗,W 1,2
R (S))∩C([0, T ∗], L2

R(S)) and ρ ∈ C([0, T ∗],W 2,2(C)) with ∂tρ ∈ C([0, T∗],W 1,2(C)),
ρ > 0 in C × [0, T ∗] such that (u, ρ) is a solution to ( 4.1), ( 4.2). Moreover, this solution is unique in its
own class.

The proof of this theorem will be achieved by the method employed in [41]. The main ingredients
are the Schauder fix point argument combined with regularity results for the continuity equation and
a suitable elliptic problem. We split the proof into three steps, each one described in the next three
subsections.

4.1. Continuity equation

Consider the problem

∂tσ + ṽ · ∇σ + σ div ṽ + ρ div ṽ = 0 in C × (0, T )

σ(0) = σ0,
(4.3)

where ṽ and σ0 are given functions. The following result holds

Lemma 3 Let ∂Ω ∈ C1, ṽ ∈ L1(0, T ;W 3,2(C)), ṽ · n = 0 and σ0 ∈W 2,2(C) with
∫

C
σ0 = 0. Then there

exists a unique solution σ to ( 4.3) such that σ ∈ C([0, T ],W 2,2(C)),
∫

C
σ(t) = 0 for each t ∈ [0, T ] and

‖σ‖L∞(W2,2) ≤ c(‖σ0‖W2,2 + 1) exp(‖ṽ‖L1(W3,2)).

Moreover, if ṽ ∈ C([0, T ],W 2,2(C)), then ∂tσ ∈ C([0, T ],W 1,2(C)) and

‖∂tσ‖L∞(W1,2) ≤ c‖ṽ‖L∞(W2,2)(‖σ0‖W2,2 + 1) exp(‖ṽ‖L1(W3,2)).

Proof. See Lemma 2.3 in [41].
�

4.2. Balance of linear momentum

In this subsection we are concerned with the problem
∫

S

ρ̃ ∂tw · ϕ+

∫

S

S(∇w) : ∇ϕ = [F ,ϕ]

w(0) = w0

ξu = − 1

mS

∫

C

ρ̃w.

(4.4)

where ϕ ∈W 1,2
R (S), ϕ|B = ωϕ×x, ρ̃ and F ∈ (W 1,2

R (S))∗ are given and u = w+ξu = v+ωu×x+ξu
for some (unknown) ωu and ξu. Here [., .] denotes a duality pairing between W 1,2

R (S) and (W 1,2
R (S))∗
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On the Motion of a Body with a Cavity Filled with Compressible Fluid 11

Lemma 4 Let ∂C ∈ C2, ρ̃ ∈ L∞((S × (0, T )), 0 ≤ m
2 ≤ ρ̃ ≤ 2M a.e. in C × [0, T ], F ∈ L2(0, T, L2

R(S)),

and u0 ∈W 1,2
R (S). Then the following properties hold.

(i) There exists a unique solution u to ( 4.4) such that

u ∈ C(0, T,W 1,2
R (S)),u|C ∈ L2(0, T,W 2,2(C)), ∂tu ∈ L2(0, T, L2

R(S)).

(ii) Suppose, in addition, ∂C ∈ C3, 0 < m ≤ ρ̃(0, x) ≤ M a.e. in C, ∇ (ρ̃|C) ∈ L4(0, T, L6(C)), ∂tρ̃ ∈
L2(0, T, L3(C)), and that F , ∂tF satisfy the following further assumptions

[F ,ϕ] =

∫

S

F 1 ·ϕ +

∫

S

F 2 : ∇ϕ,

where F 1 ∈ L2(0, T,W 1,2
R (S)) ∩ L∞(0, T, L2) and F 2 ∈ L2(0, T,W 2,2(S)) ∩L∞(0, T,W 1,2(S)), and

[∂tF ,ϕ] =

∫

S

∂tF 3 · ϕ+

∫

S

∂tF 4 : ∇ϕ,

where ∂tF 3 ∈ L2(0, T, L
6

5

R(S)) and ∂tF 4 ∈ L2(0, T, L2
R(S)). Finally, assume u0 ∈ W 1,2

R (S) with
u0|C ∈W 2,2(C). Then

u|C ∈ L2(0, T,W 3,2(C)) ∩ C(0, T,W 2,2(C)), ∂tu ∈ L2(0, T,W 1,2
R (S)) ∩ L∞(0, T, L2

R(S))

and

‖u‖2
L∞(L2) + ‖v‖2

L∞(W2,2) + ‖u|C‖2
L2(W3,2) + ‖∂tu‖2

L∞(L2) + ‖∂tu‖2
L2(W1,2)

≤ c(‖F1‖2
L2(W1,2) + ‖F 1‖2

L∞(L2) + ‖F 2‖2
L∞(W1,2) + ‖F 2‖2

L2(W2,2))

+ c

(

‖∂tF 3‖2

L2(L
6

5 )
+ ‖∂tF 4‖L2(L2) + ‖u0‖2

W1,2 + ‖F (0)‖2
L2

)

· (1 + ‖∇ρ̃‖4
L4(L6) + ‖∂tρ‖2

L2(L3)) exp(c‖∂tρ̃‖2
L2(L3))

Proof. Property (i). We begin to derive some a priori estimates. We choose ϕ = ∂tw in (4.4), and after
some calculations we deduce

m

2

∫

S

|∂tw|2 + c∂t

∫

C

(
|D(v)|2 + | divv|2

)
≤ ‖F ‖2

2.

By integrating this identity over (0, t), we derive ∂tw ∈ L2(0, T, L2(S)), ∇v ∈ L∞(0, T, L2). Conse-
quently, we get ωu ∈ L∞(0, T ) ∩W 1,2(0, T ), ξu ∈ L∞(0, T ) and ∇u ∈ L∞(0, T, L2).
Also, from (4.4) we get

∫

S

S(∇v) : ∇ϕ =

∫

S

ρ̃(−∂tw) · ϕ+ [F ,ϕ]

for every ϕ ∈W 1,2
0 (C). Recalling that v|∂C = 0, thanks to classical regularity results for elliptic problems

we get for a.a. t
‖∇2v‖2 ≤ c (‖ρ̃ ∂tw‖2 + ‖F 1‖2 + ‖F 2‖W1,2) ,

and, consequently,

‖∇2v‖L2(L2) ≤ c
(
‖ρ̃∂tw‖L2(L2) + ‖F 1‖L2(L2) + ‖F 2‖L2(W1,2)

)
.

With the above estimates in hand, the proof of existence of unique solution to (4.4) is quite standard.
In fact, for ρ̃ constant it can be achieved by means of the classical Galerkin approximation (see e.g. [6,
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12 G. P. Galdi V. Mácha Š. Nečasová

Chapter 7]). In the general case of ρ̃ not constant, we may employ exactly the same approach as in [41,
Lemma 2.1]. Note, that due to the assumed compatibility condition, the problem is not over-determined.
Thus the proof of Property (i) can be considered complete.

Propery (ii). We choose in (4.4) ϕ = −∂t∂tw, and integrate over (0, t). In what follows we use the
notation W := ∂tw and V := ∂tv. After some straightforward calculations we get

1

2

∫

S

ρ̃|W |2(t) +

∫ t

0

∫

S

S(∇W ) : ∇W =

1

2

∫

S

ρ|W |2(0) +

∫ t

0

∫

S

∂tF 3 ·W +

∫ t

0

∫

S

∂tF 4 : ∇W +
1

2

∫ t

0

∫

S

∂tρ̃|W |2 (4.5)

Since all norms in finite-dimensional space are equivalent, we have

‖ d
dtωu × x‖2

8

3

∼ | d
dtωu|2 ∼

∫

B

ρ̃| d
dtωu × x|2 ≤ c

∫

S

ρ̃|W |2. (4.6)

Consequently,

∫ t

0

∫

S

|∂tρ̃||W |2 ≤ c

(∫ t

0

∫

S

|∂tρ̃||V |2 +

∫ t

0

∫

|∂tρ̃|| d
dtωu × x|2

)

≤ c

(∫ t

0

‖∂tρ̃‖3‖v‖2‖v‖6 +

∫ t

0

‖∂tρ̃‖3‖∂tωu × x‖2
8

3

)

≤ c

(∫ t

0

‖∂tρ̃‖3‖V ‖2‖∇V ‖2 + c| d
dt
ωu|2

∫ t

0

‖∂tρ̃‖3

)

≤ c(ε)

∫ t

0

‖∂tρ̃‖2
3‖V ‖2

2 + ε‖∇V ‖2
L2(L2) + c

∫ t

0

‖∂tρ̃‖3

∫

B

| d
dt
ωu × x|2ρ̃

≤ c(ε)

∫ t

0

(
‖∂tρ̃‖2

3 + ‖∂tρ̃‖3

)
∫

S

ρ̃|W |2 + ε‖∇V ‖2
L2(L2), (4.7)

By a similar argument

∫ t

0

∫

S

∂tF 3 ·W ≤
∫ t

0

‖∂tF 3‖ 6

5

‖V ‖6 + c

∫ t

0

| d
dtωu |‖∂tF 3‖ 6

5

≤ c

∫ t

0

‖∂tF 3‖2
6

5

+ ε‖∇V ‖2
2 +

∫ t

0

∫

S

ρ̃|W |2 (4.8)

and ∫ t

0

∫

S

∂tF 4 : ∇W ≤ c(ε)

∫ t

0

∫

S

|∂tF 4|2 + ε

∫ t

0

∫

S

|∇V |2 + c

∫ t

0

∫

S

ρ̃|W |2. (4.9)

From Korn’s inequality we also get
∫ t

0

∫

S

S(∇W ) : ∇W ≥ c

∫ t

0

∫

S

|∇V |2.

Thus, from (4.5), (4.7), (4.8) and (4.9) we deduce

1

2

∫

S

ρ̃|W |2(t) + c

∫ t

0

∫

S

|∇V |2

≤ 1

2

∫

S

ρ̃|W |2(0) +

∫ T

0

‖∂tF 3‖2
6

5

+

∫ T

0

‖∂tF 4‖2
2 + c(1 + ‖∂tρ̃‖2

L2(L3))

∫ t

0

∫

S

ρ̃|W |2 (4.10)
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On the Motion of a Body with a Cavity Filled with Compressible Fluid 13

From (4.4) we deduce

∫

S

ρ̃|W |2(0) = −
∫

S

S(∇u(0))∇ : W (0) +

∫

S

F (0)W (0) =

∫

S

ρ̃W (0)

(

divS(∇u(0))
1

ρ̃
+ F (0)

1

ρ̃

)

=

∫

S

divS(∇u(0))

(

divS(∇u(0))
1

ρ̃
+ F (0)

1

ρ̃

)

+

∫

S

F (0)

(

divS(∇u(0))
1

ρ̃
+ F (0)

1

ρ̃

)

≤ c
(
‖∇2w(0)‖2

2 + ‖F (0)‖2
2

)
.

By the Gronwall inequality we get

‖W‖2
L∞(L2) ≤ c

(

‖∂tF 3‖2

L2(L
6

5 )
+ ‖∂tF 4‖2

L2(L2) + ‖F (0)‖2
L2 + ‖w0‖2

W2,2

)

· exp(c(1 + ‖∂tρ̃‖2
L2(L3)))

and (4.10) also yields

‖V ‖2
L2(W1,2) ≤ c

(

‖∂tF 3‖2
L2(L2) + ‖∂tF 4‖2

L2(L2) + ‖F (0)‖2
L2 + ‖w0‖2

W2,2

)

·
(

1 + ‖∂tρ̃‖2
L2(L3)

)

exp(c(1 + ‖∂tρ̃‖2
L2(L3))).

In order to prove the remaining estimates, we again use classical regularity results for elliptic problems.
Precisely, choosing ϕ ∈W 1,2

0 (C) in (4.4) we get for a.a. t

∫

C

S(∇v) : ∇ϕ = [F ,ϕ]−
∫

C

ρ̃W · ϕ.

which furnishes

‖∇2v‖2
L∞(L2) ≤ c

(

‖F 1‖2
L∞(L2) + ‖F 2‖2

L∞(W1,2) + ‖ρ̃W ‖2
L∞(L2)

)

and

‖∇3v‖2
L2(L2) ≤ c

(

‖F 1‖2
L2(W1,2) + ‖F 2‖2

L2(W2,2) + ‖ρ̃W ‖2
L2(W1,2)

)

.

Furthermore,

‖∇ρ̃W ‖2
2 =

∫

S

|∇ρ̃|2|W |2 ≤
(∫

S

|∇ρ̃|6
) 1

3

‖W ‖2‖W ‖6

≤ ‖∇ρ̃‖2
6

(
‖W‖2‖∇V ‖2 + ‖W ‖2‖ d

dt
ωu × x‖6

)

≤ ‖∇ρ̃‖4
6‖W ‖2

2 + ‖∇V ‖2
2 + ‖∇ρ̃‖2

6‖W ‖2
2

which, in turn, combined with (4.4)3 imply the last desired estimate.

�
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14 G. P. Galdi V. Mácha Š. Nečasová

4.3. Proof of Theorem 1

For T > 0 we define a set

LT = {(ũ, σ̃), ũ ∈ C([0, T ],W 1,2
R (S))

ṽ ∈ C([0, T ],W 2,2(C)) ∩ L2(0, T,W 3,2(C))

∂tũ ∈ L∞(0, T, L2
R(S)) ∩L2(0, T,W 1,2

R (S))

σ̃ ∈ L∞(0, T,W 2,2(C)), ∂tσ̃ ∈ L∞(0, T,W 1,2(C))

‖ũ‖2
L∞(W1,2) + ‖ṽ‖2

L∞(W2,2) + ‖ṽ‖2
L2(W3,2) + ‖∂tũ‖2

L∞(L2) + ‖∂tũ‖2
L2(W1,2) ≤ B1

‖σ̃‖2
L∞(W2,2) + ‖∂tσ̃‖2

L∞(W1,2) ≤ B2

ũ(0) = u0, ρ̃(0) = ρ0 − ρ, 0 <
m

2
≤ σ̃(t, x) + ρ ≤ 2M},

where B1 and B2 are sufficiently large constants which will be chosen later.
We consider a mapping Φ defined on LT in the following way:

Φ(ũ, σ̃) 7→ (u, σ),

where (u, σ) is a solution to (4.4), (4.3) with

[F ,ϕ] =

∫

S

[
(ρ̃ ṽ · ∇ũ+ ρ̃ωũ × ũ) · ϕ+ p(ρ̃) divϕ

]
, ρ̃ = σ̃ + ρ σ0 = ρ0 − ρ .

We also use the notation

[F ,ϕ] =

∫

S

(ρ̃(ṽ · ∇)ũ+ ρ̃ωũ × ũ)
︸ ︷︷ ︸

=F 1

·ϕ+

∫

S

p(ρ̃)
︸︷︷︸

=F 2

divϕ.

and, by integration by parts,

[∂tF ,ϕ] =

∫

S

(∂t(ρ̃ωũ × ũ) + ∂t(ρ̃ṽ)∇u− div(ρ̃ṽ) ∂tũ)
︸ ︷︷ ︸

=∂tF 3

ϕ+

∫

S

(∂tp(ρ̃)1+ρ̃ṽ ⊗ ∂tũ)
︸ ︷︷ ︸

=∂tF 4

: ∇ϕ.

One may easily derive that

‖F 1‖2
L2(W1,2) ≤ Tc(B1, B2) , ‖F 2‖2

L2(W2,2) ≤ Tc(B1, B2)

‖∂tF 3‖2

L2(L
6

5 )
≤ Tc(B1, B2) , ‖∂tF 4‖2

L2(L2) ≤ Tc(B1 , B2)

‖∇ρ̃‖4
L4(L6) + ‖∂tρ̃‖2

L2(L3) ≤ Tc(B1, B2)

Further, since for every sufficiently smooth f : (0, T ) 7→ R+, it holds ‖f‖∞ ≤ |f(0)| + T
1

2 ‖f‖2, we get

‖F 1‖2
L∞(L2) ≤ Tc(B1, B2) + ‖F 1(0)‖2

L2

‖F 2‖2
L∞(W1,2) ≤ Tc(B1, B2) + ‖F 2(0)‖2

W1,2 ,

while from Lemma 3 and Lemma 4 we infer

‖u‖2
L∞(W1,2) + ‖v‖2

L∞(W2,2) + ‖v‖2
L2(W3,2) + ‖∂tu‖2

L∞(L2) ≤ Tc(B1, B2) + c
(
‖F 1(0)‖2

L2 + ‖F 1(0)‖2
W1,2

)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



On the Motion of a Body with a Cavity Filled with Compressible Fluid 15

and

‖σ‖L∞(W2,2) + ‖∂tσ‖L∞(W1,2) ≤ (1 + cB1)(1 + ‖σ0‖W2,2)eT
1

2 B1 .

We now choose B1 sufficiently large, and B2 such that

B2 > (1 + cB1)(1 + ‖σ0‖W2,2).

Furthermore,

‖σ − σ0‖L∞(W1,2) ≤ T‖∂tσ‖L∞(W1,2) ≤ Tc(B1)

and so, using well known interpolation results, we deduce

‖σ − σ0‖L∞((0,T )×C) ≤ c‖σ − σ0‖
1

3

L∞(W1,2)‖σ − σ0‖
2

3

L∞(W2,2) ≤ c(B)T
1

3 (1 + ‖σ0‖2)
2

3 .

Consequently, there exists T small enough such that

m

2
≤ σ + ρ ≤ 2M a.e. in C × [0, T ].

As a consequence, we may find some T ∗ > 0 such that

Φ(LT∗) ⊂ LT∗ .

We next define the space X := C([0, T ∗],W 1,2
R (S))×C([0, T ∗],W 1,2(C)). It clearly follows that LT∗ ⊂ X

is closed and, from Arzèla-Ascoli theorem, also compactly embedded. Let us show that the function Φ
is continuous on LT∗ . Indeed, suppose {(ũn, ρ̃n)}∞n=1 ⊂ LT∗ is such that (ũn, σ̃n) → (ũ, σ̃) in X. We
subtract the equations for (un, σn) and (u, σ), multiply them by (un − u, σn − σ) and, by the Gronwall
lemma, we get (un, σn) → (u, σ) in C([0, T ], L2(S)). Furthermore, using Gagliardo-Nirenberg inequality
(see i.e. [36, Theorem 1.24]) we get

‖∇(un − u)‖2 ≤ ‖un − u‖
5

6

W
2, 30

23

‖un − u‖
1

6

2 .

Since un and u are from LT∗ we get the uniform boundedness of ‖un − u‖
5

6

W2, 30

23

. The same argument

applies to the quantity σn − σ, which then allows us to deduce (un, σn) → (u, σ) in X. As a result, all
assumptions of Schauder theorem are fulfilled and we may thus conclude with the existence of a fix point
for the map Φ, namely, a solution to (4.2). As for the uniqueness of such a solution, its proof does not
differ from the one presented in [41, Section 3] and therefore will be omitted. Theorem 1 is completely
proved.

5. Global existence of strong solutions for small data

Objective of this section is to show that the local in time solutions constructed in Theorem 1 can be
extended to all times, provided the magnitude of the initial data is restricted in an appropriate sense.
Before stating the main result, we introduce some further notation. Specifically, we denote by [ · ]k the
sum of L2-norms involving only interior (in C) and tangential derivatives (at ∂C) of order k, and by
]| · |[k, [| · |]k suitable norms equivalent to the norm ‖ · ‖k,2. Furthermore, we set

ψ(t) :=]|v(t)|[21+]|σ(t)|[22+[v(t)]22 +

∫

S

ρ(t)|∂tu(t)|2 +

∫

S

ρ(t)|u(t)|2 +
p′(ρ̄)

ρ
‖∂tσ(t)‖2

2 , (5.1)
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16 G. P. Galdi V. Mácha Š. Nečasová

where, we recall, σ is defined in (4.1). We also put

E(t) :=

∫

S

ρ |u(t)|2 +
2a

γ − 1

∫

C

ργ(t) ,

representing (twice) the total energy of the coupled system.

The following theorem holds.

Theorem 2 Let C be of class C4, u0 ∈ W 1,2
R (S), u0|C ∈ W 2,2(C), ρ0 ∈ W 2,2(C) ∩ Lγ(C), γ > 1. Then,

there exists κ0 > 0 such that if ψ(0) + E(0) ≤ κ0, there are uniquely determined

u ∈ C(R+,W 1,2
R (S)), with v ∈ C(R+,W 2,2(C)) ∩ L2

loc(R
+,W 3,2(C))

and
ρ ∈ C(R+,W 2,2(C))

solving ( 2.10), ( 2.11). Moreover,

∂tu ∈ C(R+, L2
R(S)) ∩ L2

loc(R
+,W 1,2

R (S)) and ∂tρ ∈ C(R+,W 1,2(C)).

Remark 2 It is worth emphasizing that the “smallness” condition required on the quantity ψ(0) + E(0)
can be reformulated by imposing a restriction only on the size of the initial data u0 and ρ0 in the norms
of the function classes to which they belong. This statement is obvious for all terms appearing in the
definition of ψ and E, with the exception of those involving the time derivative of u and σ. However, it is
readily seen that the solution (u, ρ) of Theorem 2 possesses as much regularity as to ensure the validity
of ( 2.10)1,3,4 (for a.a. x ∈ C) and that of the derivative of ( 2.10)5 up to time t = 0. Then, by employing
standard Sobolev embedding theorems one can show the desired property.

The proof of Theorem 2 relies upon a number of global (in time) estimates that will be proved in the
next sections.

5.1. Estimates of time derivatives

We shall consider the following system
∫

S

ρ ∂tu · ϕ+

∫

C

S(∇u) : ∇ϕ−
∫

C

p1ρdivϕ = [h,ϕ] , for all ϕ ∈W 1,2
R (S)

∂tσ + v∇σ + ρ divv = f0,

(5.2)

where p1 = γ p(ρ)
ρ

(= p′(ρ)),

f0 = −σ divv, (5.3)

and

[h, ϕ] =

∫

S

h1 · ϕ+

∫

C

h2 ·ϕ,

with

h1 = −ρωu × u,
h2 = −ρv · ∇u+ (p′(ρ) − p′(ρ))∇σ (5.4)

Furthermore, we assume that
ρ

4
≤ σ(t, x) + ρ

︸ ︷︷ ︸

= ρ

≤ 3ρ (5.5)
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On the Motion of a Body with a Cavity Filled with Compressible Fluid 17

Since divϕ = div(ϕ− ωϕ × x− ξϕ) and ϕ −ωϕ × x− ξϕ ∈W 1,2
0 (C), we have

∫

C

p1ρdivϕ =

∫

C

p1σ divϕ.

We choose ϕ = u in (5.2)1, multiply (5.2)2 by p1σ
ρ

and add the resulting equations side by side. In view

of (5.5), we get

1

2

d

dt

∫

S

ρ|u|2 +
p1

ρ

d

dt
‖σ‖2

2 + c‖∇v‖2
2 ≤

ε(‖v‖2
3,2 + ‖σ‖2

2 + ‖u‖2
2) + c(ε)(‖h1‖2

2 + ‖h2‖2
2 + ‖σ‖4

2 + ‖f0‖2
2 + ‖v‖2

2,2‖u‖2
2), (5.6)

where we used
∫

C

divv|σ|2 ≤ c‖ divv‖∞‖σ‖2
2 ≤ c‖v‖3,2‖σ‖2

2 ≤ ε‖v‖2
3,2 + c(ε)‖σ‖4

2

and
∣
∣
∣
∣

1

2

∫

C

∂tρ|u|2
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

C

ρv · ∇u ·u
∣
∣
∣
∣
≤

∫

C

ρ|v||∇v||u| + c

∫

C

ρ|v|(|ωu| + |ξu |)|u| ≤

c (‖v‖∞‖∇v‖2‖u‖2 + ‖v‖∞(‖ωu‖2 + ‖ξu‖2)‖u‖2) ≤ c(ε)‖v‖2
2,2‖u‖2

2 + ε(‖u‖2
2 + ‖∇v‖2

2).

Further, we differentiate (5.2) with respect to t, (dot-)multiply the first equation by ϕ = ∂tu and the
second equation by p1

ρ ∂tσ. We get the following two equations

1

2

∫

S

ρ∂t|∂tu|2 +

∫

C

S(∇∂tv) : ∇∂tv −
∫

C

p1∂tρdiv ∂tv +

∫

C

∂tσ|∂tu|2 = [∂th, ∂tu]

1

2

p1

ρ

∫

C

∂t|∂tσ|2 +
p1

ρ

(∫

C

∂tσ ∂tv · ∇σ +

∫

C

∂tσ v · ∇∂tσ

)

+

∫

C

p1∂tσ div ∂tv =

∫

C

∂tf0
p1

ρ
∂tσ.

(5.7)

Recalling that ∂tσ = −div(ρv), we have

∣
∣
∣
∣

∫

C

∂tσ|∂tu|2
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

C

div(ρv)|∂tu|2
∣
∣
∣
∣
= 2

∣
∣
∣
∣

∫

C

ρv · ∇∂tu · ∂tu

∣
∣
∣
∣

≤ c

∫

C

|v||∇∂tu||∂tu| ≤ c‖v‖∞‖∇∂tu‖2‖∂tu‖2 ≤ c‖v‖2
2,2‖∂tu‖2

2 + ε‖∇∂tu‖2
2,

and
‖∇∂tu‖2

2 = ‖∇∂tv + ∇(∂tω × x)‖2
2 ≤ c

(
‖∇∂tv‖2

2 + |∂tω|22
)
≤ c

(
‖∇∂tv‖2

2 + ‖∂tu‖2
2

)
.

Consequently, ∣
∣
∣
∣

∫

C

∂tσ|∂tu|2
∣
∣
∣
∣
≤ c(ε)‖v‖2

2,2‖∂tu‖2
2 + ε(‖∇∂tv‖2

2 + ‖∂tu‖2
2).

We add together both relations in (5.7) and use the same procedure as in [41, proof of Lemma 4.2] to
get

1

2
∂t

∫

S

ρ∂t|u|2 + ∂t
p1

ρ
‖∂tσ‖2

2 + c‖∇∂tv‖2
2 ≤

c(ε)
(

‖∂th1‖2
2 + ‖∂th2‖2

W−1,2

R
(S) + ‖∂tf0‖2

2 + ‖σ‖4
2 + ‖∂tσ‖4

2 + ‖v‖2
2,2‖∂tu‖2

2

)

+ ε
(
‖∂tu‖2

2 + ‖∂tσ‖2
2 + ‖v‖2

3,2

)
. (5.8)
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18 G. P. Galdi V. Mácha Š. Nečasová

It remains to derive estimates for ‖∂tu‖2
2. To this end, we take ϕ = ∂tu in (5.2)1. We find

∫

S

ρ|∂tu|2 +

∫

C

S(∇v) : ∇∂tv −
∫

C

p1σ div ∂tv =

∫

C

h1 · ∂tu +

∫

C

h2 · ∂tu

which yields

c‖∂tu‖2
2 ≤ c‖∇v‖2‖∇∂tv‖2 + c‖σ‖2‖∂t∇v‖2 + (‖h1‖2 + ‖h2‖2)‖∂tu‖2.

The latter in conjunction with (5.5), (5.6) and (5.8) furnishes

‖∂tu‖2
2 ≤ c

(

‖h1‖2
2 + ‖h2‖2

2 + ‖σ‖4
2 + ‖f0‖2

2 + ‖∂th1‖2
2 + ‖∂th2‖2

W−1,2

R
(S)

+ ‖∂tf0‖2
2 + ‖∂tσ‖4

2

+‖v‖2
2,2‖∂tu‖2

2 + ‖v‖2
2,2‖u‖2

2

)
+ ε(‖v‖2

3,2 + ‖σ‖2
2 + ‖u‖2

2 + ‖∂tσ‖2
2). (5.9)

5.2. Further estimates of v

In this subsection we concern the following system (system for v divided by ρ)

∂tv +
1

ρ
divS(∇v) + σ∇p2 = f

v|∂C = 0

v(0) = v0

complemented with
∂tσ + v · ∇σ + ρdivv = f0,

where p2 = p′(ρ)
ρ , f0 is defined in (5.3), and

f =
σ

ρρ
divS(∇v) +

(
p′(ρ)

ρ
− p′(ρ)

ρ

)

∇σ + ∂t(ωu × x) + ωu × u + v · ∇u.

Arguing exactly as in [41, Section 4] we get the following estimates

2µ

ρ

d

dt
‖D(v)‖2

2 +
λ− 2

3µ

ρ

d

dt
‖ divv‖2

2 + c‖v‖2
2,2 ≤ c

(
‖σ‖2

1,2 + ‖f‖2
2

)

d

dt
‖∇σ‖2

1,2 ≤ c(ε)
(
‖ divv‖2

2,2 + ‖σ‖2
2,2 + ‖σ‖4

2,2

)
+ ε‖v‖2

3,2

‖∂tσ‖2
1,2 ≤ c

(
‖v‖2

2,2 + ‖f0‖2
1,2 + ‖v‖2

2,2‖σ‖2
2,2

)

‖σ‖2
1,2 + ‖v‖2

2,2 ≤ c
(
‖ divv‖2

1,2 + ‖∂tv‖2
2 + ‖f‖2

2

)

‖σ‖2
2,2 + ‖v‖2

3,2 ≤ c
(
‖ divv‖2

2,2 + ‖∇∂tv‖2
2 + ‖f‖2

1,2

)
,

(5.10)

d

dt
[v]21 + ∂t|[σ]|21 + ‖ divv‖2

1,2

≤ c(δ)
(
‖v‖2

1,2 + ‖∂tv‖2
2 + ‖f0‖2

2 + ‖f0‖2
1,2 + ‖σ‖4

1,2

)
+ δ‖σ‖2

1,2 + δ‖v‖2
3,2, (5.11)

and

d

dt
[v]22 +

d

dt
|[σ]|22 + ‖ divv‖2

2,2 ≤

c(ε)
(
‖v‖2

2,2 + ‖∂tv‖2
1,2 + ‖σ‖2

1,2 + ‖f‖2
1,2 + ‖f0‖2

2,2 + ‖σ‖4
2,2

)
+ ε

(
‖σ‖2

2,2 + ‖v‖2
3,2

)
(5.12)

where |[ · ]|k is a norm equivalent to the W k,2(C)-norm.
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5.3. Estimates of ψ

We recall that the function ψ is defined in (5.1). From (5.6), (5.8), (5.9) and (5.10) we deduce

2µ
ρ

d
dt
‖D(v)‖2

2 +
λ−2

3
µ

ρ
∂t‖ divv‖2

2 + ∂t‖∇σ‖2
1,2 + 1

2
d
dt

∫

B
ρ|∂tu|2 + p1

ρ
d
dt
‖∂tσ‖2

2 + d
dt

∫

B
ρ|u|2+

+‖v‖2
3,2 + ‖σ‖2

2,2 + ‖∂tv‖2
1,2 + ‖∂tu‖2

2 + ‖∂tσ‖2
1,2

≤ c(ε)
(

‖σ‖2
2,2 + ‖f‖2

1,2 + ‖ divv‖2
2,2 + ‖σ‖4

2,2 + ‖∂th1‖2
2 + ‖∂th2‖2

W−1,2

R
(S)

+ ‖∂tf0‖2
2

+‖∂tσ‖4
2 + ‖v‖2

2,2‖∂tu‖2
2 + ‖v‖2

2,2 + ‖f0‖2
1,2 + ‖v‖2

2,2‖σ‖2
2,2 + ‖v‖2

3,2‖u‖2
2 + ‖h1‖2

2 + ‖h2‖2
2

)

+ε(‖σ‖2
2 + ‖v‖2

3,2 + ‖∂tu‖2
2 + ‖∂tσ‖2

2 + ‖u‖2
2).

(5.13)

We add to both sides of this inequality terms d
dt [v]

2
2,

d
dt |[σ]|22, d

dt [v]
2
1 and d

dt |[σ]|21 multiplied by proper
constants in order to use (5.11) and (5.12). Thus, (5.13) yields

d

dt
ψ(t) + ‖v‖2

3,2 + ‖σ‖2
2,2 + ‖∂tv‖2

1,2 + ‖∂tu‖2
2 + ‖∂tσ‖2

1,2

≤ c(ε)
(

‖f‖2
1,2 + ‖σ‖4

2,2 + ‖∂th1‖2
2 + ‖∂th2‖2

W−1,2

R
(S)

+ ‖∂tf0‖2
2 + ‖∂tu‖2

2

+‖∂tσ‖4
2 + ‖v‖2

2,2‖∂tu‖2
2 + ‖f0‖2

2,2 + ‖v‖2
2,2‖σ‖2

2,2 + ‖v‖2
3,2‖u‖2

2 + ‖h1‖2
2 + ‖h2‖2

2

)

+ ε(‖v‖2
3,2 + ‖∂tu‖2

2 + ‖∂tσ‖2
2 + ‖u‖2

2 + ‖σ‖2
2,2) . (5.14)

Furthermore, taking also into account (5.4), we show

‖f0‖2
2,2 ≤c‖σ‖2

2,2‖v‖2
3,2

‖∂tf0‖2
2 ≤c

(
‖∂tσ‖2

2‖v‖2
3,2 + ‖σ‖2

2,2‖∂tv‖2
1,2

)

‖f‖2
1,2 ≤c

(
‖σ‖2

2,2‖v‖2
3,2 + ‖σ‖4

2,2 + ‖u‖4
2 + ‖u‖2

2‖v‖2
3,2 + ‖v‖2

3,2‖v‖2
1,2 + ‖∂tu‖2

2

)

‖h1‖2
2 ≤c‖u‖4

2

‖∂th1‖2
2 ≤c

(
‖u‖2

2‖∂tu‖2
2 + ‖∂tσ‖2

2‖u‖2
2‖v‖2

3,2

)

‖h2‖2
2 ≤c

(
‖v‖2

3,2‖v‖2
1,2 + ‖v‖2

3,2‖u‖2
2 + ‖σ‖4

2,2

)
.

(5.15)

Observing that, by Sobolev inequality, ‖ · ‖W−1,2

R
(S) ≤ c‖ · ‖ 6

5

≤ c‖ · ‖2, we obtain

‖∂th2‖2
W−1,2

R
(S)

≤ c
(
‖∂tv‖2

2‖v‖2
3,2 + ‖∂tv‖2

2‖u‖2
2 + ‖∂tσ‖2

2‖v‖2
1,2‖v‖2

3,2 + ‖σ‖2
2,2‖∂tσ‖2

1,2

+‖∂tσ‖2
2‖u‖2

2‖v‖2
3,2

)
. (5.16)

Combining (5.9), (5.15)3 and (5.16) we derive

‖f‖2
1,2 ≤ c

(
‖σ‖2

2,2‖v‖2
3,2 + ‖σ‖4

2,2 + ‖u‖4
2 + ‖u‖2

2‖v‖2
3,2 + ‖v‖2

3,2‖v‖2
1,2 + ‖u‖2

2‖∂tu‖2
2

+ ‖v‖2
3,2‖∂tσ‖2

2 + ‖σ‖2
2,2‖∂tv‖2

1,2 + ‖σ‖2
2,2‖∂tσ‖2

1,2

+‖∂tσ‖2
2‖v‖2

1,2‖v‖2
3,2 + ‖∂tσ‖2

2‖v‖2
3,2‖u‖2

2 + ‖∂tσ‖4
2 + ‖∂tu‖2

2‖v‖2
3,2

)

+ ε(‖v‖2
3,2 + ‖σ‖2

2 + ‖u‖2
2 + ‖∂tσ‖2

2), (5.17)
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where we used the inequality (see (4.6))

‖∂tv‖2
2 ≤ c

(

‖∂tu‖2
2 + | d

dt
ωu|2

)

≤ c‖∂tu‖2
2.

From (5.9), (5.14), (5.15), (5.16) and (5.17), after absorbing some terms to left hand side –by taking ε
sufficiently small– and adding |ωu|2 + |ξu|2 to both sides, we deduce

d

dt
ψ + ‖v‖2

3,2 + ‖σ‖2
2,2 + ‖∂tv‖2

1,2 + ‖∂tu‖2
2 + ‖∂tσ‖2

1,2 + |ωu |2 + |ξu |2

≤c‖v‖2
3,2

(
‖∂tu‖2

2 + ‖σ‖2
2,2 + ‖∂tσ‖2

2 + ‖v‖2
1,2 + ‖u‖2

2 + ‖∂tσ‖2
2‖u‖2

2 + ‖∂tσ‖2
2‖v‖2

1,2

)

+c‖σ‖2
2,2‖σ‖2

2,2 + c‖∂tv‖2
1,2‖σ‖2

2,2 + c‖∂tσ‖2
1,2

(
‖∂tσ‖2

2 + ‖σ‖2
2,2

)
+ c‖∂tu‖2

2‖u‖2
2+

+c‖u‖4
2 + |ωu |2 + |ξu |2.

(5.18)

Since ‖u‖2 ≤ c(‖v‖3,2 + |ωu | + |ξu |), from (5.18) we infer that there exist constants c1 ≥ 1 and c2 > 0
such that

dψ

dt
≤ −(‖v‖2

3,2 + ‖σ‖2
2,2 + ‖∂tv‖2

1,2 + ‖∂tσ‖2
1,2 + ‖∂tu‖2

2 + |ωu|2)(1− c1(ψ+ψ2))+ |ωu |2 + |ξu|2 (5.19)

and

‖v‖2
3,2 + ‖σ‖2

2,2 + ‖∂tv‖2
1,2 + ‖∂tσ‖2

1,2 + ‖u‖2
2 + ‖∂tu‖2

2 + |ωu|2 + |ξu |2 ≥ c2ψ. (5.20)

We next observe that, due to Sobolev’s embedding theorem, if ψ(t) ≤ c3 it follows that

ρ

2
≤ σ(t, x) + ρ ≤ 3

2
ρ. (5.21)

We then can show that there exists a constant c such that

‖u(t)‖2
2 + ‖v(t)‖2

2,2 + ‖σ(t)‖2
2,2 ≤ c(ψ(t) + ψ5(t)). (5.22)

Indeed, directly from (5.1) we have

‖u(t)‖2
2 + ‖σ(t)‖2

2,2 ≤ cψ(t).

Moreover, from (5.2)1 and regularity results for elliptic equation we have

‖v‖2
2,2 ≤ ‖ρ∂tu‖2

2 + ‖∇p(ρ)‖2
2 + ‖ρ(v∇)u‖2

2 + ‖ωu × u‖2
2.

Also,

‖ωu × u‖2
2 ≤ c|ω|2‖u‖2

2 ≤ c‖u‖4
2 ≤ cψ2 ≤ c(1 + ψ3)

and, due to Sobolev embedding theorem and Gagliardo-Nirenberg interpolation theorem,

‖v · ∇v‖2
2 ≤ ‖v‖2

∞‖v‖2
1,2 ≤ ‖v‖2

1,4‖v‖2
1,2 ≤ c‖v‖

5

2

2,2‖v‖
1

2

6 ‖v‖2
1,2 ≤ c‖v‖

3

2

2,2‖v‖
3

2

1,2

≤ ε‖v‖2
2,2 + c(ε)‖v‖6

1,2 ≤ ε‖v‖2
2,2 + c(ε)ψ5 .

Therefore, after a suitable choice of ε, (5.22) follows immediately.
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5.4. Proof of Theorem 2

We premise the following result.

Lemma 5 Let ψ = ψ(t) satisfy ( 5.19), ( 5.20) for all t ∈ [0, T ). Then, there is κ > 0 such that if

ψ(0) + supt∈[0,T ]

(
|ωu(t)| + |ξu(t)|

)
≤ κ , (5.23)

necessarily
supt∈[0,T ] ψ(t) ≤ κ .

Proof. The proof is obtained by a slight modification of that given in [41, Lemma 4.10] and will be,
therefore, omitted.

�

In order to satisfy the hypothesis of this lemma, we only need to show an appropriate uniform bound
on |ωu(t)| + |ξu(t)|. This will be obtained via the equation of energy balance for strong solutions that
we may derive from (2.7). In fact, if we dot-multiply both sides of (2.7)1 by u, integrate by parts over
C × (0, t), and take into account (2.7)2,3 and (2.4) (with r ≡ ρ), we deduce

1

2

∫

C

[
ρ(t)|u(t)|2 +

2p(ρ(t))

γ − 1

]
+

∫ t

0

∫

C

S(∇v(s)) : ∇v(s) =
1

2

∫

C

[
ρ0|u0|2 +

2p(ρ0)

γ − 1

]

+

∫ t

0

[

ω ·
∫

∂C

x× T (u(s), p(ρ(s)) · n+ ξ ·
∫

∂C

T (u(s), p(ρ(s)) · n
]

.

If we now employ (2.7)4 and (2.9) in the last two integrals of these equality, we conclude, for all t ≥ 0,

E(t) + 2

∫ t

0

∫

C

S(∇v(s)) : ∇v(s) = E(0) ,

E := ‖√ρu‖2
2 +

2

γ − 1
‖
√

p(ρ)‖2
2 +ωu · IC ·ωu +mB|ξu|2 ≡

∫

S

ρ |u|2 +
2a

γ − 1

∫

C

ργ .

(5.24)

This equation furnishes, in particular, the following uniform bound

supt≥0

(
|ωu(t)| + |ξu(t)|

)
≤ c4 E(0) , (5.25)

from which the validity of the hypothesis of the lemma follows by taking E(0) less than a suitable
constant.

We are now in a position to prove Theorem 2. According to Theorem 1 there exist a time T ∗ and
functions u, ρ solving (4.2) in (0, T ∗) in the function class there specified. We assume that ψ(0) + E(0)
is sufficiently small, so that, by (5.25), condition (5.23) is satisfied. As a consequence, we may take T ∗

depending only on the physical parameters and on κ (see [41, Section 4] for details). Then, by Lemma
5 and (5.24), we get

ψ(t) +
(
|ωu(t)| + |ξu(t)|

)
≤ κ , (5.26)

for all t ∈ [0, T ∗). Furthermore, by (5.21) and (5.22) we have

‖u(T ∗)‖2
2 + ‖v(T ∗)‖2

2,2 + ‖σ(t)‖2
2,2 ≤ c0

for some constant c0 > 0, and thus we may again use Theorem 1 to establish existence of a (unique)
solution on a time interval (0, 2T ∗). We repeat this argument on each interval (0, nT ∗), n ∈ N in order
to get the existence of solution on the whole positive real line. Theorem 1, (5.1) and (5.22) yield that ρ
and u belong to the desired spaces.
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6. Long time behavior of strong solutions

Throughout this section, we shall work with strong solutions constructed by Theorem 2. We would
like to point out that while, in general, weak solutions may admit multiple zero-velocity-limit solutions
[10], the same issue does not happen in our case since the density of strong solutions is always bounded
away from zero.

We begin with the following simple observation that we state in the form of a lemma.

Lemma 6 Let f ∈ C(R+), f ≥ 0 be such that

∫ ∞

0

f(t)dt = c <∞, |f ′(t)| ≤ d <∞ for all t ∈ R
+.

Then limt→∞ f(t) = 0.

Proof. The claim follows at once from the following identity

|f2(t) − f2(s)| = 2

∣
∣
∣
∣

∫ t

s

f(τ ) f ′(τ )

∣
∣
∣
∣
, all t, s > 0 ,

and the assumptions.
�

We next give a definition of Ω-limit set, appropriate to our problem.

Definition 1 Let (v,ωu, ξu, ρ) be a solution constructed in Theorem 2. The corresponding Ω-limit set,

Ω(v,ωu , ξu , ρ) ⊂ L2(C)×R3×R3×L2(C) is the set of all (v̂, ω̂, ξ̂, ρ̂), for which there exists an increasing,
unbounded sequence {tn} ⊂ (0,∞) such that

lim
n→∞

(‖v(tn) − v̂‖2 + |ωu(tn) − ω̂|+ |ξu(tn) − ξ̂| + ‖ρ(tn) − ρ̂‖2) = 0.

Lemma 7 The above defined Ω−limit set possesses the following properties:

(i) It is not empty, compact and connected.

(ii) Every element of the set is of the form (0, ω̂, ξ̂, ρ̂) with ρ̂ ∈ (ρ/2, 3/2ρ).
(iii) It is invariant under solutions constructed in Theorem 2.

Proof. The first property follows from the uniform estimates proved in Theorem 2 and basic properties
of Ω−limit sets (see e.g. [19, Lemma 3]) The second one is a consequence of Lemma 6. Indeed, from
the energy equality (5.24) along with the Poincaré inequality we infer

∫ ∞

0
‖v‖2

2 ≤ c <∞. Furthermore,
(2.7)1 together with regularity of the constructed solution yields |∂t‖v(t)‖2

2| ≤ c, uniformly in t ≥ 0, so
that assumptions of Lemma 6 are verified and we conclude with the desired property. We point out that
the smoothness of strong solution together with the convergence of v also yield

‖v(t)‖1,2 → 0 as t→ ∞. (6.1)

The property ρ/2 < ρ̂ < 3/2ρ is true due to (5.21) and (5.26), the latter valid for all t ≥ 0. In
order to show the last property (iii), let s(t) := (v∞,ω∞, ξ∞, ρ∞) denote the solution constructed in

Theorem 2 emanating from (0, ω̂, ξ̂, ρ̂) ∈ Ω(v,ωu, ξu, ρ).
4 We have to prove that, for every t > 0, s(t) ∈

4 It’s worth pointing out that, by definition of Ω and Theorem 2, every point in Ω(v,ωu, ξu, ρ) satisfies the
assumptions on the data of that theorem, and thus can be used as initial condition.
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Ω(v,ωu , ξu , ρ). Denote by tn the sequence satisfying (ρ(tn),ωu(tn), ξu(tn)) → (ρ̂, ω̂, ξ̂) in L2×R3×R3.
Since the strong solution is unique, it is enough to show that

vn(t) → v∞(t) in L2, ρn(t) → ρ∞(t) in L2, ωn(t) → ω∞(t) and ξn(t) → ξ∞(t) in R
3

where (vn(t), ρn(t),ωn(t), ξn(t)) is a solution with initial conditions (v(tn), ρ(tn),ω(tn), ξ(tn)).Clearly,
both (u∞, ρ∞) and (un, ρn) satisfy (2.7). If we now subtract, side by side, We subtract (2.7)1 written for
(u∞, ρ∞) from the one for (un, ρn). We next multiply the resulting equation by un−u∞. Furthermore,
we perform the same procedure for (2.7)2 and multiply the resulting equation by ρn − ρ∞. After a
cumbersome but straightforward calculation that employs also the bounds proved in Theorem 2 we get
for each t > 0

1

2

∫ t

0

∂s

(∫

S

ρn|un − u∞|2
)

+
1

2

∫ t

0

∂s‖ρn − ρ∞‖2
2 +

∫ t

0

‖∇(vn − v∞)‖2
2 ≤

c

∫ t

0

‖ρn − ρ∞‖2
2 + c

∫ t

0

‖un − u∞‖2
2 + εt

0

∫ t

0

‖∇(vn − v∞)‖2
2

+ c

∫ t

0

‖∇vn‖2
∞‖ρn − ρ∞‖2

2 + c

∫ t

0

‖∂su∞‖2
6‖ρn − ρ∞‖2

2 + c

∫ t

0

‖∇vn‖2
2 + c

∫ t

0

‖∇vn‖2.

By Gronwall inequality

‖(un − u∞)(t)‖2
2 + ‖(ρn − ρ∞)(t)‖2

2 ≤

c
[
‖(un − û)(0)‖2

2 + ‖(ρn − ρ̂)(0)‖2
2 +

∫ t

0

‖∇vn‖2
2 +

∫ t

0

‖∇vn‖2

]
e

R

t

0
(1+‖∇vn‖2

∞
+‖∂su∞‖2

6).

The desired property follows by letting n→ ∞ in this inequality and using (6.1), estimates of Theorem
2 and the fact that (un(0), ρn(0)) → (û, ρ̂) strongly in L2.

�

The next result shows that Ω(v,ωu, ξu, ρ) is a subset of the set of steady-state solutions.

Lemma 8 For any solution of Theorem 2, the generic element of the corresponding set Ω(v,ωu , ξu, ρ)
is of the type (v ≡ 0, ρs,ωs, ξs) with (ρs,ωs, ξs) satisfying ( 3.14). Moreover,

|I(ρs) ·ωs| = M0 ,

∫

C

ρs = mF , (6.2)

where I(ρs) is defined in ( 3.12), M0 is the magnitude of the initial angular momentum M defined in
( 2.10)4, and, we recall, mF is the mass of the fluid.

Proof. Due to the invariance of the Ω-limit set, we derive from (2.7) that every solution (0,ω, ξ, ρ)
emanating from a point in Ω satisfies ( ˙≡ d

dt
)

∂t ρ = 0,

ρ(ω̇ × x+ ξ̇) + ρω × (ω × x+ ξ) + ∇p(ρ) = 0.

mB ξ = −ω ×
∫

C

ρx ,

(6.3)

and, moreover, ρ ≥ ν > 0. The first of the above equations gives that ρ is at most a function of x. We
next apply the operator ∇× on both sides of (6.3)2 and obtain

−2ρ ω̇ + ∇ρ× (ω̇ × x+ ξ̇ +ω × (ω × x+ ξ)) = 0 in C.
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24 G. P. Galdi V. Mácha Š. Nečasová

Employing (6.3)2 in the latter and recalling (2.4) (with r ≡ ρ), we deduce

2ω̇ = −1

ρ
∇ρ× (

1

ρ
∇p(ρ)) = −a γ

ρ
∇ρ×

(
ργ−2∇ρ

)
= 0. (6.4)

Thus (6.4) yields ω̇ = 0, which, once combined with (6.3)3 furnishes also ξ̇ = 0. We thus get that ρ,
ω and ξ must satisfy (3.10) and, therefore, (3.14). It remains to show (6.2). Condition (6.2)2 follows by
letting t → ∞ (along a sequence) in (2.12). As for the first condition, we observe that, from (2.10)4 we
get

|IC · ω(t) +

∫

C

ρ(t)x×
(
v(t) + ω(t) × x+ ξ(t)

)
| = M0 , for all t ≥ 0. (6.5)

The claimed property is then shown by letting t → ∞ (along a sequence) in this relation, and employing
(6.1) and definition (3.12).

�

Remark 3 Since the Ω-limit set is not empty, by the previous lemma we deduce that the set of solutions
to ( 3.14) (or, equivalently, weak solutions to ( 3.1)) is not empty as well.

In view of the lemma just proved, the natural question is whether and when the generic solution of
Theorem 2 will tend to a uniquely determined steady-state, namely, the corresponding Ω-limit set
reduces to a singleton. It is easy to show that this indeed happens in the (trivial and non-generic) case
M0 = 0. In fact, we have the following result.

Theorem 3 Let M0 = 0 and let (u, ρ) be a generic solution constructed in Theorem 2. Then

Ω(v,ωu , ξu, ρ) = {0, 0, 0, mF/|C|} .
Proof. We observe that, in view of Lemma 2, from (6.2)1 it follows at once ωs = 0, which, once replaced
in (3.10), furnishes ξs = 0. Finally, from (3.14) and (6.2)2 we conclude ρs = const. = mF/|C|.

�

Remark 4 Theorem 3 is (for small initial data) the compressible counterpart of the same result shown
in [38] in the incompressible case.

If M0 6= 0, the situation appears to be more complicated, and we are able to give an answer only
under suitable assumption on the “mass distribution” of the coupled system, and requiring the material
constant a to be “sufficiently large”. More precisely, in the following Lemma 9 we show that if the tensor
I(ρ̄), with ρ̄ := mF/|C| and I(ρ) defined in (3.12), has distinct eigenvalues, then all possible solutions
to the system (3.13), (3.14), (6.2) must be isolated for a large enough. (Notice that, by Lemma 2, I(ρ̄)
possesses three positive eigenvalues, for any ρ̄ > 0.) As a consequence, since Ω is connected, it must
coincide with one of these solutions; see Theorem 4.

Lemma 9 Suppose the eigenvalues of I(ρ̄) are distinct. Then, there exists a0 > 0 such that if a > a0,
the Ω−limit set associated to a generic solution of Theorem 2 reduces to a singleton.

Proof. We recall that, by Lemma 8, the generic element of the Ω−limit set (ρs,ωs, ξs) satisfies the
following set of equations

ρs =

(
γ − 1

2aγ
(|ωs × x|2 − (ωs × ξs) · x) + cs

) 1

γ−1

=: f(ωs, ξs, cs),

ωs × (I(ρs) ·ωs) = 0,

|I(ρs) · ωs| = M0,

mSξs = g(ρs) ×ωs
∫

Ω

f(ωs, ξs, cs) = mF ,

(6.6)
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where, in view of Theorem 3, we may assume M0 6= 0. From the second equation above, we deduce
that ωs is an eigenvector of I(ρs) corresponding to some (positive) eigenvalue λs. We claim that if λs is
simple, then the solution (ρs,ωs, ξs) is isolated. To this end, we notice that (6.6) can be written in the
following form

(λs1− I(f)) · ωs = 0,

λ2
s|ωs|2 −M2

0 = 0,

mSξs − g(f) ×ωs = 0,
∫

C

f(ωs, ξs, cs) = mF ,

(6.7)

in the unknowns λs ∈ R+, ωs, ξs ∈ R3 and cs ∈ R+. Consider the function F : R8 7→ R8 defined as
follows

F (λ,ω, ξ, c) =

(

(λ1 − I) · ω, λ2|ω|2 −M2
0 , mSξ − g ×ω,

∫

C

f(ω, ξ, c) −mF

)

,

where both I and g are evaluated at f(ω, ξ, c) . Our claim will then become a consequence of the implicit
function theorem, provided we show that ∇F (λs,ωs, ξs, cs) is a regular matrix. Let

p(ω, ξ, c) :=
γ − 1

2aγ

(
|ω × x|2 − 2(ω × ξ) · x

)
+ c. (6.8)

From (5.21) it follows that there is C = C(ρ, γ) > 0 such that

C > p(ωs, ξs, cs) > C−1 . (6.9)

Next, by a straightforward calculation we show

∇F =







ω λ1− I 0 0
2λ|ω|2 2λ2ω 0 0

0 S(g) mS1 0

0 0 0 1
γ−1

∫

C
p

2−γ
γ−1







+N (ω, ξ, c)

where S is defined in (2.5) and

N(ω, ξ, c) =










0 − ∂I
∂ω ·ω −∂I

∂ξ
· ω 0

0 0 0 0

0 − ∂g
∂ω × ω −∂g

∂ξ
× ω 0

0
∫

C
∂f(ω,ξ,c)

∂ω

∫

C
∂f(ω,ξ,c)

∂ξ
0










.

Let us prove that there exists C0 depending at most on ξs, ωs, cs, C and γ such that

|N(ωs, ξs, cs)| ≤ a−1/(γ−1)C0. (6.10)

We show the validity of this bound only for one entry of N , as the proof for all other entries is exactly
the same (or simpler). So, for example, we have

∂I

∂ω
=
∂I

∂f
· ∂f
∂ω

= a−1/(γ−1) p
γ−2

γ−1 (ω, ξ, c)K(γ, C) · [(2(ω × x) · S(x) − 2S(ξ) · x)] ,

with K(γ, C) a tensor depending only on γ and C. Therefore, (6.10) follows, once we take into account
(6.9). We next prove that the matrix ∇F −N at the point (λs, ωs, ξs), denoted by Ms, is regular for
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all values of a > 0 and, moreover, also in the limit a → ∞. Indeed, the only term depending on a is the
entry involving p which is (of course) defined for all a > 0 and, in view of (6.6)1,4 and (6.8) tends to a
non-zero constant in the limit a → ∞. Thus, to show that Ms is non-singular it is sufficient to prove
that the reduced matrix

P :=

(
ωs λs1− I(ρs)

2λs|ωs|2 2λ2
sωs

)

spans (uniquely) the whole of R
4. But this is true since, denoting by λs, λ2, λ3 the eigenvalues of I(ρs)

and r1 = ωs, r2, r3 corresponding eigenvectors, we get

P ·
(

0
r2

)

= (λs − λ2)

(
r2

0

)

,

P ·
(

0
r3

)

= (λs − λ3)

(
r3

0

)

,

P ·
(

0
r1

)

=

(
0

2λ2
s|r1|2

)

,

P ·
(

1
0

)

=

(
r1

2λ2
s|r1|2

)

,

which proves the claim since λs 6= λ2, λ3. As a result, there exists ε1 > 0 such that if |N(ωs, ξs, cs)| < ε1,
the entire matrix ∇F is regular at (λs, ωs, ξs). However, from what we noticed regarding the dependence
of Ms on a and (6.10), this property can be achieved by taking a sufficiently large, say, a > a1. Now,
since the solutions to (6.7) are characterized by the eigenvalues of the tensor I(ρs), by what we have just
proved it follows that if the eigenvalues are all distinct and a is large enough, the system (6.6) admits
only three solution each of which may belong to the Ω−limit set. However, these solutions are isolated
and Ω is connected, and we conclude that Ω must coincide with one and only one solution. We shall next
prove that a sufficient condition for the three eigenvalues of I(ρs) to be simple (and, therefore distinct)
is that the three eigenvalues of I(ρ̄) be simple as well, provided a is sufficiently large. To show this, we
observe that, by elementary properties, it is enough to show that there is a sufficiently small ε2 such
that |I(ρ̄) − I(ρs)| < ε2. We now see that, by definition and (6.6)1, I(ρ̄) = I(ρs)|ωs=0,cs=(mF /|C|)γ−1 .
As a result, we have

|I(ρ̄) − I(ρs)| ≤
∣
∣
∣
∣

∫ 1

0

∂I

∂σ
(σωs, cs) dσ

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ cs

(mF/|C|)γ−1

∂I

∂c
(0, c)dc

∣
∣
∣
∣
∣
≡ I1 + I2

Arguing as in the proof of (6.10), we show

I1 ≤ c1 a
−1/(γ−1) . (6.11)

As far as I2, since ∂I
∂c (0, c) is bounded, we have

I2 ≤ c2
∣
∣cs − (mF/|C|)γ−1

∣
∣ .

Equations (6.6)1,5 in combination with the implicit function theorem yields a smooth cs = cs(η,ωs,xs, mF )
with η := a−1/(γ−1) and such that cs(0,ωs, ξs, mF) = (mF /|C|)γ−1. We thus conclude, for η small enough

∣
∣cs − (mF/|C|)γ−1

∣
∣ ≤ c3η

which concludes the proof of the lemma.
�
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Before stating our main result, we would like to make some comments about the physical meaning of
the tensor I(ρ̄). To this end, suppose we replace the compressible fluid, F , in the cavity with a fluid, F̄,
of constant density ρ̄ ≡ mF /|C|. Also, denote by Ḡ the center of mass of the coupled system S̄ := B∪F̄.
Then (Lemma 2) I(ρ̄) is the inertia tensor of S̄ with respect to Ḡ.

The findings of this section, which constitute the main achievement of this paper, are now collected
in the following.

Theorem 4 Let C be of class C4 and let (u, ρ) be a generic solution given in Theorem 2. Suppose that
the three eigenvalues of the tensor I(ρ̄) are all distinct. Then, there exists a0 > 0 such that if a > a0,
(ρ,u) tends, as t → ∞, in appropriate norms to a uniquely determined solution (ρs,ωs, ξs) to ( 6.6).
Therefore, the terminal motion of the coupled system S reduces to a uniform rotation around an axis
parallel to the (constant) angular momentum, M0, of S and passing through its center of mass G.

Proof. In view of what we have already proved, we should only comment about the statement regarding
the terminal motion. However, it is clear that, since in such a state v ≡ 0 and ω is time-independent, the
system S rotates as a unique rigid body with constant angular velocity. Moreover, the axis of rotation, a,
must be parallel to M 0 by the conservation of angular momentum. Finally, a passes through G, because
G is at rest in any possible motion of S and so, in particular, in the terminal one.
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10. Feireisl, E., Petzeltová, H.: On the zero-velocity-limit solutions to the Navier-Stokes equations of com-

pressible flow. Manuscripta Math. 97 (1998), no. 1, 109–116.
11. Friendlander, S., Lyashenko, A.: Nonlinear instability of a precessing body with a cavity filled by an ideal

fluid. SIAM J. Math. Analysis 29, 600–618, (1998)
12. Galdi, G.: On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,

Handbook of Mathematical Fluid Dynamics, Vol. 1, 653–791. Ed. by S. Friedlander, D. Serre, Elsevier 2002

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



28 G. P. Galdi V. Mácha Š. Nečasová
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