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Abstract

In recent literature there appeared conflicting claims about whether the Ozsvath-Robinson-Rézga family
of type N electrovac spacetimes of the Kundt class with A is complete. We show that indeed it is.

1 Introduction

Kundt spacetimes are defined by the existence of a congruence of null geodesics with zero expansion, twist and
shear. In Kundt coordinates, the line-element takes the form [1] (cf. also the reviews [2,3])

ds* = 2P72d¢d¢ — 2du (dr + Wd(¢ + Wd( + Hdu), (1)

where the metric functions P and H are real, with P, = 0, and W is complex. The Kundt null direction
is along 9. Kundt spacetimes which satisfy Einstein’s equations with aligned pure radiation and which are
of Petrov type III and N were obtained already in [1] and consists of two invariant subclasses, i.e., pp-waves
and Kundt waves [2,3]. Adding a cosmological constant makes the field equations more complicated, but also
gives rise to a richer class of solutions. The first systematic study of Kundt Einstein spacetimes of type N
was performed in [4]. An invariant classification of all such solution was subsequently presented in [5] (also
allowing for an aligned null electromagnetic field), were it was additionally pointed out that for A < 0 there
exist some new solutions in addition to those of [4] (see also [3,6] for related comments). More recently, the
results of [5] have been generalized to the type III [7]. As a side result, Ref. [7] also claims to present a new
family of type N solutions, not identified in the previous literature, while the classification given in [5] was
previously considered to be complete. Given the importance of exact solutions describing gravitational waves
in the presence of a cosmological constant, we believe that this discrepancy should be clarified. This is of
interest not only in Einstein’s theory but in virtually any metric theory of gravity, since the solutions of [5] are
universal spacetimes [8]. It is the purpose of the present note to show that the type N solutions of [7] can in
fact be reduced to those of [5]. All Kundt spacetime of type N with a cosmological constant and an aligned
Maxwell field can thus be locally written in the form given in [5].
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2 Analysis of the type N solutions

The most general Kundt spacetime of Petrov I1I which solves Einstein’s equations with a cosmological constant
A and aligned pure radiation' can be written as (1) with [7]

W =206+, (2)
H = —r’ke®® —r [PX(¢ ctb ¢ + &) + 200 + )] + HY, (3)

P =1+ )¢, Q=a(1-X) + b+, ¢ =1In

P _ 1
- k = \a® + bb A=A 4
A b A=LA ()

where 1 = 9 (u, () and H° = H(u, ¢, ) are arbitrary functions of their arguments, while a and b are constants?
(with H? and a real, ¢ and b complex, a and b not both vanishing). Similarly as in [5], canonical forms of the
metric correspond to various specific choices of a and b, which depend on the (invariant) sign of & [7] (however,
this is not needed in the following discussion). For later computations, it is useful to observe that ke2? =
P2¢C¢E + A. Based on [9] and on the ®9» component given in [7], we further observe that the matter content of
these spacetimes can be interpreted as an aligned null electromagnetic field F' = du A [ fu,Q)d¢ + f(u,C )df]
provided HY satisfies

HY 4+ ¢ cHE + ¢ cH% + 2P (ke + A H°
+ o (PPg) o + dcoe (PP g) o+ 2(ke™ + 20t e = 2f . (5)
Setting f = 0 gives rise to vacuum solutions.
Requiring the Petrov type to be N (i.e., U5 = 0) gives [7]

C

C
PQ¢;  —b+2aA + bAC?

Ve = (6)

where ¢ is an arbitrary complex function of u. This also means that in (3) one has P2(¢,<‘¢,C+¢,<J{(‘) = e?(c+0).
We now want to show that these type N solutions can be transformed into those found in [5]. Since there is no
disagreement in the literature concerning the A = 0 case, in the rest of this section we will assume A # 0.

It is convenient to proceed by introducing the coordinates of [5], defined by

r=e 2%, (7)
such that
ds? = 2P~2d¢dC — 2e~20dy, [dv + €20 cdC + €% AT + 2 Hdul | (8)
with (4) and
e?’H = —kv® —v [e‘b(c +¢)+2A (¢ + 7,5)] +e22H°. 9)
Let us first discuss the case when a # 0 in (4). By defining
¢ = i) ;. (10)
where 6 is real, one obtains
ds? = 2P 2dzdz — 2¢*du [dv + Zdz + ZdZz + Sdu] (11)

'In an adapted Newman-Penrose null tetrad, this means ¥og = V1 = Uy =0 = $gp = Po1 = P2 = P11 = P1o.

2To be precise, in [7] it was shown that coordinates can be chosen such that the spin coefficient ¥ = P¢,¢ does not depend on
u. This allows for a factorized u-dependence of @, i.e., @ = Q1(u)Q2(¢, ), which however does not enter the metric and can thus
be dropped.
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c

7 =), +iQ %0z, L= 12

Ve 19 Vs PQas -
S = —kv?—w éﬂc+é)+2A@b+$ﬂ-+8¢{H0+imzwz—2&j)—f*2¥zz, (13)
P =1+ \zz, Q=a(1—X\22)+ be"z + be "z, (14)

¢ and k as in (4), and a dot denoting differentiation w.r.t. u. Since Z;—Z, = 2PQ~3(c—c+iaf), following [5]
we note that one can set

Z:—7,=0, (15)
by choosing 0(u) such that
i92—6;6 (a # 0). (16)
Then, by transforming
v="1"+x(u,z,2), (17)
thanks to (15) we can set simultaneously Z = 0 = Z, provided Y is a real solution of
X+ Z=0. (18)
We thus arrive at the line-element
ds? = 2P 2dzdz — 2e 2du [dv’ + S'du], (19)
with
S = —kv? — ' [e?(c+C) + 2)\( + ) + 2l<:x] - %ed’?-l(u, 2,%), (20)

where we have defined (recall that, at this stage, H%(u, z, Z) is an arbitrary function)
1 ) _ . _
§e¢H =2 |H + i0(z , — 29 5) — P_20222} —kx?—x [e¢(c +¢)+ 2\ + w)] + Xou (21)

and with (12)—(14), (16) and (18). Similarly as in [5], one can notice that S’ = (In|Q|).. and therefore, by
exploiting a freedom of redefining u +— U(u) (and, if necessary, v’ — —v'), without loosing generality one can
set in (19)

1
S = —kv? +0'(In|Q) . + §e¢H. (22)

The function @ is still of the form (14), but now a and b are generically functions of u (#(u) can therefore be
reabsorbed into b). Metric (19) with (22) is precisely of the form obtained in [5] (see eq. (4.36) therein).

In the case a = 0 (which requires b # 0 and thus k£ > 0), the coordinate transformation (10) cannot be used
to arrive at (15). Nevertheless, one can employ a transformation of the form (a special case of those discussed
in [5])

ei@(u)z _ %e—w(u)

%Aew(u)z + e—i0(u)’

(=

(23)

where the dimensionless real constant « is non-zero and such that bb + Ay? # 0. The condition (15) is now
satisfied provided

Y2\ + bb

4rybb

The rest of the argument is the same as in the case a # 0, which leads again to a metric of the form (19)
with (22), which is contained in the solutions of [5]. We have thus shown that the type N solutions of [7] are
contained in the family obtained in [5]. As a consequence [8], the latter contains all universal spacetime of type
N in four dimensions.

i = (c —¢) (a=0). (24)



3 Summary of the classification

To conclude, it may be useful to briefly summarize the results of [5]. The most general type N Kundt spacetime
satisfying Einstein’s equations in the presence of aligned pure radiation and an arbitrary cosmological constant
can be locally written as (dropping the primes in (19) and (22) and recalling ¢ = P2Q~2)

2 Q2 Q Q
2 2 ;U 2
ds® = —dzdz — 255 du {dv + (—kv + ) ) du} - pHdu’, (25)
P=1+4X2z  Q,=0, H,=0, (26)

where k = 0, defines the principal null direction of the Weyl tensor and the function H(u, z, z) is arbitrary.
Using a coordinate freedom (cf. [5,6] for details), @ and k can always be reduced to the following canonical
forms, in the invariantly defined cases k > 0, k < 0 and k = 0, respectively:

1. k=41, Q@ = z+ z, A can have any sign. Setting A = 0 gives rise to Kundt waves [1], while the \ # 0
solutions, first obtained in [4] (cf. also [6]), are often referred to as “generalized Kundt waves”.

2. k=X<0,Q =1-— Xzz. This branch was discovered in [5] (to be precise, it also exists for k = A\ > 0,
however this case can be omitted, since it can be transformed into case 1, cf. [6]).

3. k=0, 2<0, Q= (1+vV=Ae®™2)(1 4 /=Xe™®z). Also this branch was discovered in [5]. The
special subcase a, = 0 was first found in [10] using different coordinates (as discussed in [6,11]) and
admits k as a Killing vector field. For A = 0 one recovers pp-waves.

Some comments on the character of the singularities of these solutions can be found in [7].
In all cases, the aligned pure radiation can be interpreted as a null electromagnetic field F' = du A
[f(u, 2)dz + f(u, 2)dz] provided H satisfies [5]

H.: +2\P*H = 4PQ ' ff. (27)
Vacuum solutions are obtained by integrating (27) with f = 0, which gives [5]
H=h,+hs—2 P (zh+ zh), (28)

where h = h(u, 2).

For H = 0, metric (25) describes a space of constant curvature (more generally, this occurs for (28) with
h = ag(u) + a1(u)z + az(u)z?, with complex a;) [5, 6], which shows that all spacetimes (25) (independently of
the field equations) belong to the (A)dS-Kerr-Schild class.
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