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Abstract

We propose a new finite volume scheme for the Euler system of gas dynamics motivated
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1 Introduction

In 2005, H. Brenner [4] proposed a new approach to dynamics of viscous and heat conducting fluids
based on two velocity fields distinguishing the bulk mass transport from the purely microscopic
motion. Brenner’s approach has been subjected to thorough criticism by Ottmger et al. [21], where
its incompatibility with certain physical principles is shown. Nevertheless, some computational
simulations have been performed by Greenschields and Reese [18], Bardow and Ottinger [2], Guo
and Xu [20] showing suitability of the model in specific situations. More recently, Guermond
and Popov [19] rediscovered the model pointing out its striking similarity with certain numerical
methods based on the finite volume approximation of the inviscid fluids. In particular, unlike the
conventional and well accepted Navier—Stokes—Fourier system, Brenner’s model reflects the basic
properties of the complete Euler system in the asymptotic limit of vanishing transport coefficients.
Inspired by these observations, we propose a new finite volume scheme for the complete Euler
system based on Brenner’s ideas. In particular, the new scheme enjoys the following properties:

e Positivity of the discrete density and temperature
The approximate density and temperature remain strictly positive on any finite time interval.

e Entropy stability
The discrete entropy inequality in the sense of Tadmor is satisfied, see [25, 24].

e Minimum entropy principle
The entropy attains its minimum at the initial time, cf. [26, 19].

e Weak BV estimates
We control suitable weak BV norms of the discrete density, temperature and velocity.

In comparison with the conventional convergence results based on unrealistic hypothesis on uniform
boundedness of all physical quantities our scheme produces convergent solutions as long as the gas
remains in its non—degenerate regime, cf. Section 6.

1.1 Complete Euler system

The complete Euler system describes the time evolution of the standard physical fields: the mass
density o = o(t,x), the macroscopic velocity u = u(t,x), and the (absolute) temperature ¢ =
V(t, x) of a perfect compressible fluid,

o + div,(pu) = 0,
Oi(ou) + divy(ou ® u) + V,p = 0,

1 1
O (5Q111|2 + Qe) + div, Kiglu\z + pe +p) u} = 0.



For the sake of simplicity, we consider the standard polytropic EOS with the Boyle-Marriot pres-
sure law,

= —1 :’19 :1)’19’ v — .
p=(y—1oe=0d, e=c0, c —

Accordingly, the physical entropy reads

s(o,7) = log (ﬁ;)

0i(0s) + div,(psu) > 0.

with the associated entropy inequality,

Note that the same inequality is automatically satisfied by any “renormalized” mathematical en-

tropy s,
X )
%

where Y is a non—decreasing concave function.
Numerical schemes are based on the conservative variables: the density p, the momentum
m = pu, and the total energy

1
E = Solul® + ge.

Accordingly, the Euler system takes the form

0o + div,m = 0, (1.1)
gm + div, (ﬂ;m) L V.p =0, (1.2)
O,F + div, [(E + p)%] =0, (1.3)
where | )
p:(V—l)(E—§|n;‘ )

In the conservative framework, positivity of the density as well as of the pressure becomes an issue,
in which the associated entropy balance

0y(0sy) + div, (s,m) >0

plays a crucial role.



1.2 Brenner’s model

Brenner’s approach to modelling real viscous and heat conducting fluids postulates two velocities
u and v interrelated through
v=u— KV,log(p).

For the Newtonian viscous stress
2
S(Veu) =m (qu +Viu - gdivxu]l) + nodiv,ul

and the Fourier heat flux

q=-—kV,0
the Brenner model reads
0o + div,(ov) = 0, (1.4)
O(ou) + div,(ou ® v) + V,p = div,S(V, u),
1 1
O, (§g|u|2 + ge) + div,, [(§g|u|2 + oe —|—p) V} + div,q = div, (S(V,u) - u), (1.6)
see Brenner [3, 4, 5]. Moreover, if K is related to the heat conductivity coefficient x through
K
K=—
ocy’

then the associated entropy balance takes the form

0i(0sy) + div,(0s,v) — div, (ivxsx>
c

Y (1.7)
X/ S K K
= é )S(qu) $ Vo + kX' ()| Ve log(9)* + X' (5) [V log(0)|* = X"(5) —[ Vas|”,
see Guermond and Popov [19] and [7, Section 4.1].
As observed by Guermond and Popov [19], for the ansatz
S(Veu) = hAoV,u + h*V,u, & = c,oK = c,ho), X >0,
the system (1.4-1.6) rewrites in the conservative variables as
0o + div,(ou) = hdiv,(AV,0), (1.8)
Om +div,(m ® u) + V,p = hdiv, (A\V,m) + h*A,u, (1.9)
O E + div,(Eu + pu) = hdiv,(AV,E) + h%div,(V,u - u). (1.10)

This form, without the h“~dependent terms, is strongly reminiscent of some numerical schemes for
the complete (inviscid) Euler system based on the finite volume method like the Lax—Friedrichs
scheme.



1.3 Finite volume scheme

Motivated by Guermond and Popov [19] we propose a finite volume scheme for the complete Euler
system based on (1.8-1.10). Although written exclusively in the conservative variables, the scheme
relies on convective terms expressed in terms of the velocity u rather than the momentum m. This
allows to minimize the effect of the viscous perturbations - a potential source of deviation from
the target Euler system for inviscid flows. Indeed the scheme preserves all the basic properties of
the continuous system, in particular, it is entropy stable. Moreover, the positivity of the density
and pressure as well as the minimum entropy principle hold.

We then examine the properties of the associated semi-discrete dynamical system. We show
that it generates in the asymptotic limit a dissipative measure-valued (DMYV) solution of the com-
plete Euler system introduced in [6, 7], see also [14] for the convergence of the Lax—Friedrichs
method. Moreover, employing the (DMV)-strong uniqueness principle, we will obtain strong
(pointwise) convergence to the unique classical solution as long as the latter exists. In contrast
with the standard entropy stable finite volume methods, where convergence analysis is based on
rather unrealistic a priori hypotheses of uniform boundedness of numerical solutions, cf. Fjord-
holm, Mishra, Képpeli, Tadmor [15, 16, 17, 24|, the convergence for the present scheme is almost
unconditional, requiring only a technical hypothesis of boundedness of the numerical temperature
and the absence of vacuum.

The paper is organized as follows. Section 2 contains necessary preliminaries including the
geometric properties of the mesh and the basic notation used in finite volume methods. Then we
introduce the numerical method and the associated semi—discrete dynamical system. In Section 3,
we show that the scheme is entropy stable. In Section 4, we study stability of the semi-discrete
scheme deriving all necessary a priori bounds. Consistency of the scheme, based on a careful
analysis of the error terms, is discussed in Section 5. Finally, we perform the limit of vanishing
numerical step in Section 6.

2 Numerical scheme

We introduce the basic notation, function spaces, and, finally, the numerical scheme.

2.1 Preliminaries

We suppose the physical space to be a polyhedral domain €2, ¢ RN, N = 1, 2, 3, that is decomposed
into compact elements

The elements K are sharing either a common face, edge, or vortex. The mesh 7}, satisfies the
standard regularity assumptions, cf. [9, 10]. The set of all faces is denoted by X, while ¥;,; = ¥\,
stands for the set of all interior faces. Each face is associated with a normal vector n. In what



follows, we shall suppose
|K|n = hY, |o|y_1 ~ WV for any K € Ty, 0 € X

The symbol @), denotes the set of functions constant on each element K. For a piecewise (elemen-
twise) continuous function v we define

v (z) = 61_i>r(§1+v(x—|—5n), v (x) = 51i>rgl+v(x —on), v(z) = 5 , [[v] = v (z) — v™(2)

whenever x € o € ¥;,;. We recall the product rule
[[wo]] = @[[v]] + [[u]]v.

For ® € L'(,) we define the projection

1
L] = 3 1Km/K¢>dx € Qul(Sn).

KeTy

If ® € C'(Q)) we have

(] | < el

o Hh[<I>]‘ S h||®||en for any z € 0 € . (2.1)

Here and hereafter the symbol A X B means A < ¢B for a generic positive constant ¢ independent
of h. If ® € C*(Qy,) and T}, consists of uniform rectangular/cubic elements, then we moreover have

1
o] Jo

Indeed, any C? function can be approximated by the piecewise linear Rannacher-Turek elements
23] (an analogue of the Crouzeix-Raviart elements on rectangles) with the error of O(h?). Thus,
it is enough to show (2.2) for the non—conforming piecewise linear Rannacher-Turek elements.
Taking into account their continuity in the center of cell interfaces and the definition of projection
I1,,, we only need to show

o — Hh[é]‘ dSh < B2 ®lce for any o € Sins. (2.2)

‘@(SU) _ @) RS | <y

2

where S, denotes the center of gravity of o, Sk and S the centers of gravity of two neighbouring
elements K and L sharing the common face . The latter follows directly from the Taylor expansion.
We further recall the negative LP—estimates [9]

_ Nl_
Iellirany = BV foll o, for any 1< p< oo, with 2L ") Nifp—oo (23)

p



and the trace inequality
_1
0] e o) NN ||| e iy for any 1 < p < oo, (2.4)

for any v € Q,(2;). Moreover, we have a discrete version of the Sobolev embedding theorem, see
Chainais—Hillairet, Droniou [8, Lemma 6.1],

1/2
v 2
lollzsian < ol + ( 3 /@dsh> for amy v € On(), N =1.2.3.  (2.5)

h
o€ int e

Given a velocity u € Qp,(Q,; RY) and r € Qu(Q4), we define on each face o € %;,; an upwind
of r by u as

1 .
Uplr,u] =74 -n— §|ﬁ -n|[[r]] = r[a- n]+ + rout[ﬁ ‘n]”. (2.6)
Finally, we set
rm ifua-n>0 rout ifu-n >0
Tup — 7 7,,dovvn — , (27)
ot ifu-n <0, r® ifu-n <0,
and
[r]] = 7 — 19" = —[[r]] sgn(u - n). (2.8)

2.2 Approximation scheme

In order to properly define the numerical scheme, the boundary conditions must be specified. Here,
we adopt the no—flux boundary condition:

u, -n =0, forany o€ dQy,

and gy, py, are extrapolated, i.e. dg,/0n = 0 = Jp,/On, n is an outer normal to 0€),. We consider
the numerical flux function in the form

Fy(rn,up) = Uplra, up] — pa[ra]], (2.9)

where j;, > 0 and Up|ry, uy] is given by (2.6). The quantities o, € Qn(), my, € Qn(U; BRY),
and Ej, € Qr(£2,) at the time level ¢ are given by the following system of equations:

¢ Continuity equation

Diop® dx— > [ Fu(on, wy)[[@]]dS), = 0 for any @ € Q (), (2.10)
Qh OEXint g
where
my,
u, = —
Ohn



¢ Momentum equation

Dany, - @ dr— S [ Fu(my,w) - [@]ds, — 3 /p_hn-[[q)]]dSh

n 0E€Yint o o€ int i

(2.11)
=—h*"" N [ [[w]] - [®]]dS), for all @ € Qu(€, RY),
TEXint g
where 1 oy
my,
=(y=1)(Ey—= .
== (5, - 50
e Energy equation
DEy® dz— /Fh(Eh,uh)[[cb]]dSh
Qn TEY int g
=X [mlow) s Y [ plw) s, 2.12)

TEXint 0€Xint g

— et Y / ([us]] - WH[[®])dSy for all ® € Qu(2).

0E€EXint e

Note that our upwinding Up[ry, us], rn = on, my, By, is based only on the sign of the normal
component of velocity, instead of the sign of the eigenvalues as in the standard flux—vector splitting
schemes. In addition, numerical diffusion term —py[[ry]] is added to the numerical flux function.
The parameter p; > 0 is typically of the following form

Hhn = hM(h7ﬁ7 W}Z? E_h)a

where M is a continuous function. Unlike the convective terms, the pressure terms are appropri-
ately averaged, cf. (2.11), (2.12). We should note that the terms on the right-hand side of (2.11),
(2.12) can be interpreted as the interior penalty terms for the velocity u, that are typically used
in the discontinuous Galerkin approach.

In the purely discrete version of (2.10-2.12), the operator D; stands for

Th(t> — T’h<t — At)
At ’

Dyry, =

where At > 0 is the time step. In the semi—discrete setting considered in this paper, the functions
[on, mp,, Ep) are continuous functions of the time ¢ € [0,7], and D; is interpreted as the standard

differential operator,
d

D, = —.
P



Remark 2.1. By virtue of the product rule, the integral

et S (e, =T 3 [ l)ie)ds,

0EXint g o€ int g

may be replaced by a more convenient expression

= / ] - [Pw]Jds, — het Y / ([ ]2BdS,.

0ESine ¥ 9 0ESint V9

Remark 2.2. We point out that

> /p_h[[(I)uh]]-ndSh— > /ph_é[[uh]]-ndSh# > /p_hu_h-n[[q)]]dsh (2.13)

0EXint 7 0EYint g 0ENint i

as one might expect. Indeed, the left—hand side of (2.13) equals to

> [mwenelds, -5 Y [l nleds, 2.1

TEYint g TEY int g

This paper is devoted to the semi-discrete version, where [y, my,, Ej,] are continuous functions
of time and the approximate scheme (2.10-2.12) may be interpreted as a finite system of ODEs.
It follows from the standard ODE theory that for a given initial state

01(0) = 0o € Qu(), 00 >0, m(0) = mgy € Qu(s RY), En(0) = Egp € Qn(Qn),
1 2
EO,h — _M > O7
2 oon

the semi—discrete system (2.10-2.12) admits a unique solution [gp,, my,, F}] defined on a maximal
time interval [0, Tax ), Where

1 |my(t)P?
2 Qh<t>
In particular, the absolute temperature ¥, can be defined,

pu(t) _y—1 ( 1 Imh(t)\2>
Ip(t) = = Ept) — =——————|.
) on(t)  onl(t) W) =3 on(t)

As we show in Section 4, the system (2.10-2.12) admits sufficiently strong a priori bounds that
will guarantee (1) Tiax = 00, (ii) validity of (2.15) for any ¢ > 0.

on(t) >0, pp(t) = (y—1) (Eh(t) ) > 0 for all ¢t € [0, Tinax)- (2.15)

3 Entropy balance

We derive a discrete analogue of the entropy balance (1.7) associated to the semi-discrete system
(2.10-2.12).

10



3.1 Renormalization

The process of renormalization requires multiplying the discrete equations by nonlinear functions
of the unknowns.

3.1.1 Continuity equation

Multiplying the continuity equation (1.8) by '(0) we deduce its renormalized form

ab(0) + diva(b(o)w) + ((0)o — b(o) ) divyu = hdiv,(AV.b(0)) — \'(0) V.ol

Its discrete analogue (2.10) gives rise to

[ e as- 3 / Uplblen). i[9S, + 3 / - [[(ben) — (or)en)]] s,

TEXint 0EYint

== % [ mlle] Beo)ds, ~ Y / @ (([bon)]] ~ ¥(oie™) o] ) [ - mlds;,

Uez»m,t g (oS Eznt

(3.1)

—_~—

for any ® € Qu(Qn), see [12, Section 4.1]. Here 74" and [[r;]] are given by (2.7) and (2.8),
respectively.
3.1.2 Transport equation
Under the assumption that g satisfies (1.8), we consider a field b satisfying
0:(ob) 4+ div,(gbu) = F.

Multiplying the equation by x/(b) we obtain

Oh(ex(b)) + diva(ex(b)u) = Fx'(b) + diva(huVe0) (x(b) — bX' (b)) -
The discrete version for g, satisfying (2.10) reads:

| Slebee dr— 35 [ sl wlix tn)allas,

TESine V9
d
= [ Sonne e ¥ | Urlonxtv) wileas,

(3.2)
£ 3 [ mllea) (0cttn) = X)) B,
3 [ (G - o ) o wlas,

see [12, Lemma A.1, Section A.2].

11



3.2 Discrete entropy balance equation

We derive a discrete analogue of the entropy balance equation following step by step its derivation
in the continuous setting.

3.2.1 Discrete kinetic energy equation

The discrete kinetic energy equation is obtained by taking the scalar product of (1.9) with uy, or,
at the discrete level, by taking ® = u,® in (2.11):

% o my -uh(I> dr — Z /Fh(mh,uh) : [[uhd)]]dSh— Z /p_hn [[uhCI)]]dSh

TEY int 0€EXint

— et Y / Tus]] - [[us®]]dS).

chEim o

Next, we use relation (3.2) for b, = uy,, x(Jus|) = $|up|? to compute

G e de = 37 [ Uplm - fwe)as,

(24 z:int g

d
dt Jg, o
_i 1 |u’2@d$—Z/U 1 |, wp | [@]]dS
=3 Q2Qh h ], p2Qh h|”; Up h
L 2 1 down up|—— 2
-3 [t [[ymrafasi ) 3 [ o uipras,

Consequently, summing up the previous two observations we may infer that

G [ gohnbe ar— 35 [ Up | o] (9705,
P> / (ol [ asi + 3 / pin- [ #asi ~ 3 [l s,
+ % [l 3o as -3 3 oot ras,
7 (3.3)

Equation (3.3) is nothing other than the discrete kinetic energy balance associated to the approx-
imate system (2.10-2.12).

12



3.2.2 Discrete internal energy equation

The next step is subtracting (3.3) from the total energy balance (2.12):

% \ onep® dr — Z /J(Up[gheh,uh]—uh[[Eh]DH@]]dSh

Uezint

= —ha_l Z /[[uh]] : [[Cbuh]]dSh—i—ho‘_l Z /[[uh]]QadSh

Jezint i Uezint g

ey / [[ug]] - [ @l]dSy, — > / pn®n - [[us)ldSy + Y / pin (]| [ 21]d S

o€ int g o€ int g o€ int e

S / wnllon] H%|uh]2<IJHdSh+% 3 / &9 9, iy - [y |25,

0EYint 0E€Yint

or, reordered,

% \ onen® dr — Z /<Up[@heh,uh]—uh[[gh@h]])[[@“dgh

Uezint i

—pet Y /[[uh]]2§d5h—l—% 3 /q)doanhupm_h'n|[[uh”2d5h_ ) /ph_@[[“h”'ndsh

0EXint 7 0EXint 7

o5 [mlamlmaios, - X [ [[Suee]|os

0EYint g o€ int

- % [ |[our] | reas,

erim

g
0E€Xint

Finally, using the product rule, we obtain

[lonun]][[un®]] — %[[Qh]] ([[un[*@]] - %[[@hIUhIQH[[@H
= onl[un]] - [[ua]]® + 2 W - [[un]][[@]]
1

on[un]] - [[un]]® + 2n T, - [[us]][[@]] +

S

([un]] - [[0n]]® + 2r W, - [[ua]][[@]] -

13



Consequently, we record the internal energy balance in the form

4 Qhehq) dz — Z/ Uplonen, up] — Mh[[@h%]])[[‘bﬂdsh

dt
Uezznt

—n Y [lwERas 5 30 [ 0wl Pas,

0EYint i €Y int g
+ Z /Mh@h 2®@dS), — Z /]%_q)[[uhﬂ'ndsh-
TEYint 0EXint g

3.2.3 Discrete entropy balance

(3.4)

At this stage, we are ready to derive the discrete entropy balance together with its renormalization.

Dividing equation (3.4) on 9y, we get

of oo (£) e 2 fommonsa 2]

OEYint
down
=h Y / ) (m)dS”— 2 / (5) el nlfwPas,
TEYin TEYin
+ Z /Mh@h uy]] ( )dSh_ Z / w,]] - ng,®dSy, — ¢, Z /Mh [onU4]]
ermt O'GE nt aeEmt

Next, by virtue of formula (3.2),

of o (&) e T o [[2]

UGEmt

[ outogtv)e ar— 3 [ Uploutos (o), wi(#]45,

dt
o 3 [ ulle) 100(,) = 1) @l
v 3 e (106000 - s ) - i

14
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Consequently,

% onlog (V)0 dr - Z / Uplon 1og (95, ws] [ B]]dSh

_ pot Z / ] (19—>d8h+% 3 /(%)downgzpm—h.n|[[uh]]2d5h

Uezint g

Ezin o
)
e Z / nllondn] [Eﬂdsh o ¥ / llen] [[(og(6s) — 1) BJdS,
OEYint g
—— ;
o 3 [oera (el - e [whn) - njds,.
TEY int g
Finally, we consider b(p) = glog(p) in the renormalized equation (3.1):

% thog(gh)@ der — Z /Up onlog(on), up][[®]]dS

=— Z /Mh on)][[V' (0r) @])dSK — Z /q’d Wn b/(ngwn)M) 4y, - n|dSy

o€

— Z / uy)] ngh(I)dSh

TEYin

(3.6)

vy
Subtracting (3.6) from (3.5) and introducing the entropy s; = log (—h) we obtain
On

%/Q onsn® dz — ) /Up OnSh, Up[[@]]dS)

S

P> / R ECEEDS /( ) o371 -l [ a5,

0EYin

+ ) /,,thh w]] <19h)d5h+ > /fI)dW ( )Iuh n|dSy

0EYn 0EYin

— ¢ Z/@dwghu ([
o 3 e |

19d —_— ) |llh n|dSh (37)

1;2Hd5h o / pnlonl] [[(log(9s) — 1) @[)dS,

h

15



s / unllonll [V (1) @]}dS,, where b(o) = plog(o).

Uezint i

This is the physical entropy balance associated to (2.10-2.12). At this stage, it is not obvious how
to handle the last three integrals in (3.7), however, this will be fixed in the following section.

3.2.4 Entropy renormalization

Consider x - a non—decreasing, concave, twice continuously differentiable function on R that is
bounded from above. Applying formula (3.2) in (3.7) we get

G, entee dr = 3 [ Upla (s, wile)as,

Uezznt o

i 2 [ (s ] 2 ] (40" s
+ ZE: / u;gh [[us]] sth

+ Z / (' (s)@) ™™ ([l = ¥ (0™ [[on]]) [ - nas

e Z [ ooy g (100200 = s (041 -l

- Z / @ g ([l = X' (55 [sall) [ - nldS,

e, 2 [ty |[ <522 | asi -, > / pullen]) [(0s(9h) — 1) X' (s)2]JdS),
+U§tm/;uhn@hn ¥ (o)X (51)@])dS) UE

- > /Mh[[gh]] [[(x(sn) = X'(sn)sn) @]|dSh, where b(0) = olog(o).

Next, we compute

.S / nllontn] H Lo Hdsh—cv > [ mllen) [Gog(@) ~ 1) X (sn)l)as,

0EXint 0EXint

s / V(00X (sn)BldSh — 3 / unllonl] T0c(sn) — ¥/ (s1)sn) @) Sy

0EYint 0EYint o
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-0 2 / lloonl | [S522 ] as, - e, 3 / pnllon] [Hom(60) () 210,

TEXin
+ ) /uh on]] [llog(on)x' (sn)@TJdSH — Y /uh onl] — X'(sn)sn) Pl]dSy
TEYin TEYin
(v +1 Z /Mh onl] [[X'(sn)@]]dSy

oEYin

- ¥ /Mh o104 th X (sn Hdgh_ > /uh ol [ (xtsn) = eo + DX (51) @] | s,
= —¢y Z /Mh [pn]] th (51) H dsy— > /Mh on)] Sh)—(CU-Fl)X'(Sh))‘I’H dsSh,

TEYin

¥ / nll®V (onx(si)] llenllds, — 3 / nl[®(onx(51))] [[pal}dSh.

0EXn 0EYin

Thus we infer with the general entropy inequality

% QhX(Sh)q) df‘"g% /Up onX (1), up[[®]]dSh
> / ( ) Z /( ) 0" [ - n[[uy]*dSy

TEXin

sp,)®
+ Z /Mh@h uy,]| (ﬁ—h))dsh
TEYin h

—_—

+ > / (' (s) @)™ ([[b(en)]] = ¥ (eh)Tonl]) [ - mldS)

“eo [ OVl i (1008 - G 0] ) - miass

-3 / w7 ([~ Y (5[] 197 - nlas),
- Z /“h [V ,(onx(su)] [[on]]dSh — Z /uh (D%, (onx(su)]] [[pa]]dSh, b(e) = elog(o).

(3.8)
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Note that the last two integrals in (3.8) can be rewritten using the product rule as

- Y [l (Ve + Tilanalo)) as.
= 3 [ w0l llo] + [Folewx(n))] [)dsi

The first sum in (3.9) together with the upwind term in (3.8),
> /C,(Up[@hm%uhwh (ValonxCsallonl] + VolonxCallpall) ) [@4Sh,  (3.10)

Uezint

represent the numerical entropy flux. The rest in (3.8) and (3.9) gives the numerical entropy
production, cf. [14, 17, 16]. Recall that the total entropy

(0.p) = —ox(s(e,p)) = —ox (10g (19:)) = Tox (ﬁk’g (%))

is a convex function of the variables ¢ and p. In particular, =V, ,(ox(s(on,pr))) is monotone, and
therefore the term in the second line of (3.9) is non-—negative. It is worthwhile to mention that the
discrete entropy inequality (3.8) is a discrete version of (1.7) with x = ¢,hoX, A = $[u - n| + iy,

4 Stability

Having established all necessary ingredients, we are ready to discuss the available a priori bounds
for solutions of the semi-discrete scheme (2.10-2.12).

4.1 Mass and energy conservation

Taking ® = 1 in the equation of continuity (2.10) yields the total mass conservation

/ on(t,:) doz = / 0op dz =My >0, t>0. (4.1)
Q Q

A similar argument applied to the total energy balance yields

/ Eh(t, ) dr = / E()’h dr = Ey > 0, t>0. (42)
Qp Qp
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4.2 Minimum entropy principle

An important source of a priori bounds is the minimum entropy principle that can be derived from
the entropy balance with the choice

=1, x(s) =|s—so|”, —00 < sp < mins,(0).
As
o+ olog(p) is convex, ¥+ log(d) concave, s — x(s) concave, and (o, p) — ox(s(o,p)) concave,

all integrals on the right—hand side of (3.8) are non—negative, and we may infer that
/ on(t)|sn(t) — so|” dx >0 for any ¢ > 0.
Qp

Consequently, we have obtained the minimum entropy principle

sp(t) > so for all t > 0. (4.3)

4.3 Positivity of the pressure, existence of the temperature

The entropy as a function of ¢ and p reads

whence it follows immediately from (4.3) that

t
0 <exp{(y—1)so} < pz( ) for all ¢ > 0. (4.4)
o (?)
In particular, the pressure is positive as long as the density is positive, and we may set
Pu(t)
Ip(t) =
n(t) on)
Evoking the energy bound (4.2) we get
1 t))?
—/ Im ()] dz + cv/ on(t)Vn(t) do < Ey for all ¢t > 0. (4.5)
2 Qp Qh(t) Qp,
Thus going back to (4.4) we obtain
/ o) (t) dz < / pr(t) dz S Ey for all t > 0. (4.6)
Qp, Qp,

19



4.4 Positivity of the density

The crucial property for the approximate scheme to be valid is positivity of the density g, at least
at the discrete level, meaning for any A > 0. We will show that, for any 7" > 0, there exists
0= o(h,T) > 0, such that g,(t) > o > 0 for all ¢ € [0,T7]. To see this, we first evoke the kinetic
energy balance (3.3) with ® = 1. Seeing that

-y /uh my ]| [[us]]dS, + /,Uh on)] H%IUMQH ds, =— ) /#hﬁ[[uh}]QdSha

O'EE nt O'EZ aeEim g

we may integrate (3.3) in time and use the energy bound (4.5) to deduce

/ Z / uh 2dShdt+/ Z /,uhgh llh dShdt

0EYin TEYin
p
/ > /gh T, - 1| [[uy)]?dS), dt ~ <1+ > / /phn [y, dSh) dt.
0EXint o€ int

Finally, we again use (4.5) combined with the negative LP—estimates (2.3) and Holder’s inequality

to conclude
/ > / 112dS), dt ~ w(h), (4.7)

Uezznt

where w(h) denotes a generic function that may blow up in the asymptotic regime h — 0. In
particular, relation (4.7) implies

[ (s ) e < om, s

with another w(h) generally different from its counterpart in (4.7).
Next, we revisit the renormalized equation of continuity (3.1), again with ® = 1, obtaining

d
/ —b (o) dx + Z / ] b(on —b'(Qh)Qh>d5h<0

oezznt

for any convex b. Thus the specific choice b(0) = [0 — ¢|~ gives rise to the inequality

/ ’Qh—g‘ dSC+Q Z / Illgh <QdSh<0

Uezznt
In view of (4.8), we can find a positive constant ¢ = o(h,T’) > 0 small enough so that
lon(t) — 0|~ dz <0 forall te[0,T].
o} -

In other words
on(t) > o(h,T) >0 forall t e [0,T]. (4.9)
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Remark 4.1. Of course, the estimate (4.9) is not uniform, neither with respect to 7" nor for h — 0.
In particular, the asymptotic limit may experience vacuum zone where the density vanishes.

4.5 Existence of approximate solutions

Having established positivity of the density on any compact time interval, we have closed the a
priori bounds that guarantee global existence for the semi—discrete system at any level A > 0.

Theorem 4.2. Suppose that the initial data ooy, Moy, Eop satisfy

1 ]m07h|2

Oop = 0> 0, EO,h_§ > 0.

Qo,h

Then the semi-discrete approzimate system (2.10-2.12) admits a unique global-in-time solution
[on, my,, Ep) such that

1 [y, (6) 2

Qh(t) > O, Eh(t) — 5 Qh(t)

>0 forany t>0.

Moreover, the renormalized entropy balance (3.8) holds.

4.6 Entropy estimates

We close this section by showing the uniform bounds provided by the dissipation mechanism hidden
in the entropy production rate. We start by observing that

/ thh(t) dz fi 1+/ Eh(t) dx S 1+ E(). (410)
Qp Qp

Indeed, in view of the minimum entropy principle established in (4.4), it is enough to observe that

97r
o log ( h ) S 14 op0, provided 0 < gp ~ vy
on
Seeing that gy log(gy) is controlled by (4.6) we restrict ourselves to g, log(¥;"). Here,

onlog(95") = 0py ~ Ey if 0, > 1,

while
|on log(95°)] < 9| log(95°)| & 1 for ), < 1.

Thus we have shown (4.10).
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In accordance with (4.10), we can take ® = 1, x.(s) = min{s, %} in the renormalized entropy
balance (3.8). Letting € — 0 we obtain the uniform estimate:

/ Z/“h (ﬁh>d5hdt+ / Z /( )downgzplu_h-n|[[uh]]2dshdt

/ Z /uhgh uy]] <19h>dshdt+/ Ug/ 1 —v( down)HQhH) 5 - n|dS) dt

- 2 / d"“(log 0l = s 1] ) - mlats

/ Z /“h elensn)l] [len]]dSh df = / > /#h p(onsn)]] [[palldSy dt = (14 Ep),
N (4.11)

where b(p) = plog(p). As for the last two integrals in (4.11), we can check by direct manipulation
that

/ Z /Mh olonsn)]] [[on dShdt—/ Z /uh J(onsn)]] [[pal]dSs dt

€S it / UEE: /uth [[In]] H H dShgdejit/ UEE: /“h onl] [[log(on))]dSh dt
/ Z /g”h( log(95)]] + Un Hﬁ_hH) [[0x]]dS), dt.

UGE nt

Next, we show that

~lonl (Toso) + 75 | 5] |) = =31 e 11000 || 5] (412)

154 77

As both expression in the above inequality are invariant with respect to the change “in” and “out”
and, in addition, the right—-hand side is invariant with respect to the same operation in g, and 9,
separately, it is enough to show (4.12) assuming " > ¢%"*. In other words,

—llonl] = | {len]l | = 0.

Consequently, the proof of (4.12) reduces to the inequality

g+ || ]| < 3 | ]]
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Denoting Z = we have to show

1911‘17
1 1) _1 1
log(Z)— = (2 - = Z ~1

or

which is obvious as log is a concave function. In view of (4.12), relation (4.11) yields

- > i) (s [ > [ )down@‘éplu—h-nmuhn?dshdt

/ Py / ol ( )dshdH / P> / | =¥ len])) 57 - nldS,
/02/ <log (Un) ]]—@[@ﬂ) W - n|dSy di
/ Z/ pn min{ o, 3" H[[¢ HH ]]dShdt+/ Z /Mh on]] [llog(on)]]dS dt
caem =
(4.13)

5 Consistency

We show consistency of the scheme (2.10-2.12), meaning the approximate solutions satisfy the
weak formulation of the problem modulo approximation errors vanishing in the asymptotic limit
h — 0.

5.1 Numerical flux

Firstly, we handle the numerical fluxes in (2.10), (2.11) and the numerical entropy flux (3.10)
consisting of the upwind and p,—dependent terms.

5.1.1 Upwinds

The upwind terms in the continuity equation (2.10), momentum equation (2.11), and the renor-
malized entropy balance (3.8) read

/Qh (m Upon = %\u_h ‘ HH[Q]]) (@] dz,
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/Qh (m (@, - n) = §|u—h : nmmhn) (@] da,

and /Q (QhX(Sh)u_h-n — %’u_h-n‘“QhX(Shﬂ]) [[@]] dz, respectively.

For ® € C1(Q,) we get

/ onbpuy, - Vo @ dz = Z / onbpuy - V, @ dz = Z / onbruy, - n® dS),
Qp

KeT,, KeT,,
= Z/ onbpuy, - (‘D 11,,[@] d5h+ Z/ onbruy, - I, [] dS),
KeT;, /OK KeT,
= — Z / thhuh (I) Hh[ ]) dSh— Z / thhuh] Ith[ ]dSh
0ESin €Y int
= — Z / thhuh (I) Hh[ ]) dSh+ Z /thhuh [[Hh[ ]]]dSh
€Y int o€Xint
Z /thh wy, - n[[I,[®]]|dS)
TEYint
+ > / onbruy, — onby ;) - ([ [@)]dS, — > /[[thhuh]] <<I> 1T, [® ]> dSp,
TESint 0ESint © 7
= > /Up onba] [ []dSk + Z /|uh n|[[onbu]][[ TI[®] ]]dS),
TEYint Uezlnt
+ Z/ 0nbry, — onbn, y) - n[[TL[@]]]dS, — Y / onbruy]] q> 11, [® ]> dSh.
S 0E€Xin

Seeing that .
w —u v = [u]] [[]

we have to control the following error terms:

/|11h n|[[oxbs]][[ 1I[®] |]dSh,
0EXint
E, = Z / [onbrug]] ‘I) I, [® ]) dSy,
0EXint
By= Y / (onba] [[wi]] - [ TI[®] J}dS),
TEYin

where by, is either 1 or x(sp) or uh, j=1..., N. In view of (2.1) and the identity

[[onbrus]] - 1 = [[0nbn]] W, - 0 + 0pbp[[un]] - 1,
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it is enough to show that

Elh—h Z /|uh Il| | [thh“ |dSh—>O,

0EXint

Eyn=h Y /lghbh| | [[un]] - [dS), — 0, (5.1)
UGth

Ean=1 Y [ 1llestall | lfws] -nldsy -0
TEY int g

as h — 0 for any fixed ® € C'(€,). Moreover, by virtue of the minimum entropy principle (4.4),
the entropy sj, is bounded below uniformly for h — 0. As the cut—off function y is supposed to be
bounded from above, we may assume

Ix(sn)| ~ 1 for h — 0.
The following analysis leans heavily on the bound
/ > / w,])2dS, dt < ptoe (5.2)
oezznt

that follows directly from the entropy estimates (4.13) provided

0 < 9, ~ 1 uniformly for h — 0. (5.3)

Accordingly, we suppose that the approximate solutions satisfy (5.3). Then, as v > 1, the entropy
minimum principle (4.4) yields a similar bound on the density,

0 < on ~ 1 uniformly for h — 0. (5.4)

With (5.3), (5.4) at hand, the convergence of the errors Esj, Esj for b, = 1 and b, = x(sn)
reduces to showing

hZ/ ] |dS, — 0.

0€EYint

To see this, we use Holder’s inequality,

hoy / | [[ug]] |dS, < A (JEZE: / uy) dSh) <U§ / 1dSh>

Uezznt

1/2
wﬁ(z / Huhn?dsh> SRR B ~ 1,

g
Uezint
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where the last inequality follows from the hypothesis (5.2).

In order to control the integral in £ ;, we need bounds on the velocity u,. They can be deduced

from the total energy balance (4.5) if we make another extra hypothesis, namely
0 < ¢ < gp, uniformly for all & — 0.

In view of (4.4) this implies a similar lower bound on the approximate temperature,
0 < ¥ <99, uniformly for all h — 0.

Under these circumstances, we easily deduce from (4.5), (4.13) the following bounds:

<
sup |[un(t)]z2,) ~ 1,
te[0,7)

/0 > [ [ n|[[u]?dS, dt ~ 1,

Uezint g

/0 > [ [ nl[[en]?dS, dt < 1,

UEEint g

/0 > fw-nl(walPasy e < 1.

Uezint g

In particular, we obtain the estimates

hal/OT >

/[[uh]]2d5h dt ,f, 1,

TEYint g
T T
/ 2 /Ah[[ehﬂgdsh dt ~ 1, / Yo Ml0alPdSn dt S 1, A & [ - m] +
0 TEXint g 0 0€EXint 7

which are slightly better than the standard weak BV estimates, cf. [14, 16, 17].
Now, the error term £, for b, either equal to 1 or x(sp) can be handled as

P> [l el (s, S0 Y [ fwenl | e |+ (9] a5,

0€Sin ¥ 7 ver Jo
1/2 s
Sh ( Z /|u_h|d5h> ( Z / T, - n ([[Qh]]2 + [[ﬁh”2) dSh)
o€t V9 eSO

< V|,

1/2 < <
L/l(ﬂh)F”% ~ \/EF,%, HFf%HLQ(O,T) ~ 1.
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Thus it remains to estimate E j,, Eap, Esy, for by, = uiL For Fs ), we get

/2 1/2
h Z /’Qhuh| | [[us - |d5h’\“h< Z / uy 2d3h> (Z /|ﬁh|2d5h>

TEXint o€ int
S,

S hiER

where we have used the trace inequality, (5.2) and (5.7). As for Es), it rewrites as

lonuf]] | [[[un]] -m|dS, <R / w,)]’dS, +h > /\uhy | [[wa]] |dS,

ny [
0EXint o€ int

0ESint ¥ 9
Swerpen Y [ | ) 14k 15 1

Uezint g
while the last integral can be handled exactly as in (5.12). Finally, we are left with E} , specifically,

_EHUhHLQ(Qh) < '™ QFhv ||F£||L2(0,T)

h > [1wenl | o) |ds,

TEYint g
ShS [l [l ol [dSh+h Y / T - nl] ([ual] [dSs,
0EXint i 0EYint g
i ) . Next, by Holder’s inequality, the

where the last integral can be estimated exactly as in (5.12)

trace inequality, (5.9), we get

/2 1/2
53 / - [ | (lon] |dsh~h(z / b dsh> (Z / |u—h-nmghn2dsh)

TEYint 0EXint
< 3/2
S VhlwllYag,, Fry I1E 20 ~ 1.

Now, in view of the interpolation inequality
1/2

lunllzsc@n) = lhall 2, 10l 5, -

combined with (5.7), we obtain
hy 5 n] [@] | [len] [dSh = Vhl[un| o, Fi-
Uezint

Finally, we apply the discrete Sobolev embedding (2.5) and (5.2) to conclude
3/4

1/2
h> éh%FlﬁFfi)?

pSS [l |l s, < VAR 1+ ( > [

Uezint i
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with
<
1F | zsrsory ~ 1.

Thus the error in the upwind terms satisfies (5.1) as soon as

0< <4
a —
37

and the extra hypotheses (5.3), (5.5) hold.

5.1.2 pp—dependent terms

The numerical fluxes of the continuity and momentum equations (2.10), (2.11), and the numerical
entropy flux (3.10) contain p,—dependent terms, namely

> [ mlle) 1] Jasi,

> [ mllowl]- [ ] as,
> /uh (V@(QhX(Sh)) [lon]] + V,(onx(sn)) [[ph]])[[ I1[®] ]]dS;.

In what follows we show they vanish in the limit A — 0. In view of our hypotheses (5.3), (5.5), the
product rule yields

[[pn]] & [lon]] + [[O]]; (5.13)
and the estimates (5.11b) imply

/ > / [2dS, ~ 1, (5.14)

UGEmt

/ > /uh ([9R])2dS, ~ 1. (5.15)

Uezznt

Assuming the parameter p;, is bounded, Hélder’s inequality with (2.1) and (5.14) directly yield

> / pun[[on]] ]dS, ~ ( > / 1on[on] 2d5h> ( > /0- uhh2dSh> ’

UGZ nt g UGZ nt Uezznt

SVRES, | F| o ~ 1.
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Analogously, using the product rule, the trace inequality, and bounds (5.2), (5.4), (5.14), we get

> [ mllowl [T s,

TEYint g

1/2
5h<2 / uh[[@h112dsh> (
~ V|,

Finally, (5.13), (5.14) and (5.15) imply

1/2 1/2
Z /uh|u_h|2d5h> -+ \/E( Z [[uh]]2d5h>

TESint 0ESint ¥ 9

|2 FE + W2 EY S VRES W TEEL || F oy 1FS 20 ~ 1.

> /uh <VQ(QhX(3h)>HQh”+VP<QhX(5h))[[th) [ TI[®] T]dSn

0ETSint V9

1/2 1/2
S ﬂ( > uhngh1]2dsh) + ﬂ( > uh[whmdsh)

0ESint ¥ 7 0ESint ¥ 7

S VRE + F), 1F o), 15720 ~ 1.

5.2 The artificial viscosity and the pressure terms
There are two remaining terms to be handled in the momentum equation, namely,
et S [l [ 1] s,
TEYint g
and
> [ pe (1) Jdsi.
OEYint g

First, in accordance with (2.1),

=5 / ([w]] - [[ T[] JJdS,

0EYint g

1/2
w—é(Z / uuh]Pdsh) SPEL o 1.

CEYint g

< pe! <U§ /U [[uh]]2d5h> " ( > / h2d5h> "

o€ int i
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Second,

/ ppdiv, ® dr =
Qp

ppdiv, ® dr = /pq)-ndS
> [ m > [ nons,

KeTy, KeoKy,
= 3 [1p (2 -T@) nisi+ 3 [ (pTTE] - nas,
- ¥ [ (® = TT8]) - nas, - )3 [ sl nas;.

Here, similarly to the preceding section, the error term can be estimated as

1/2 1/2
> [ lm)) (@ - TT]) - nds, é(z / [[ph]Pdsh) (Z / hzdsh>

o€t ¥ 9 0€Yint 0ESint 7
1/2
S ﬂ( > [[phmdsh) |
Uezint g

Recall that [[pn]] = [[on]] + [[U4]]; whence for the error to tend to zero it is enough to assume
pwn~h? >0 0<8<1.

In the case of uniform rectangular/cubic elements we allow i, = 0. Indeed, due to (2.2) and (2.4)
we have, for any ® € C?(Q,; RY),

> [l (@~ TT]) nasy| = 3 {1l | [ [T as,
X (1 es) #5nS [ miar

which tends to zero as p, € L>((0,T); L*(Q)).

5.3 Consistency formulation

Summing up the results of Subsections 5.1 and 5.2, we obtain a consistency formulation of the
approximation scheme (2.10-2.12).

Theorem 5.1. Let the initial data 0o, Moy, Eop satisfy the hypotheses of Theorem 4.2. Let
[on, my,, Ep] be the unique solutions of the approximate problem (2.10-2.12) on the time interval
[0, 7).
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Then

t=1 T T
{/ onp dx} = / / [0nOrp +my, - V| dadt —|—/ e1n(t, @) dt (5.16)
Qn t=0 0 J, 0

for any ¢ € C*([0,T] x Qp);

T
[ myp dx} / / |:mh Dyp + Th O Mh m; @ m Ve + phdivxg0:| dx dt + / eg,h(t, p)dt
978 Qp, 0

. (5.17)
for any ¢ € C*([0,T] x Qu; RY), ¢ -n|q, =0;

/ Eu(t) do = / Fon du: (5.18)
Qn Qn

t=1 T T
{/ onX(sn)p dxl > / / lonx (1) 0w + X (sn)myp, - Vo] dzdt + / esn(t,p)dt  (5.19)
Qp t= 0 JQ, 0
for any o € C*([0,T] x ), ¢ >0, and any X,
X : R — R a non—decreasing concave function, x(s) <X for all s € R.

If, in addition,

4
hﬁéuh§1,ogﬁ<1,0<a<§, (5.20)
and _
0 <o <on(t), Ip(t) <V for allt € [0,T] uniformly for h — 0, (5.21)
then

lejn( @) o) ~ Roll@ller for some § > 0.

In the case of uniform rectangular/cubic elements the result of Theorem 5.1 remains valid for
0 <~ 1, and @ € C'([0,T}; C*(Q; BY)), ¢ - mlg, = 0.

Remark 5.2. Omitting the 2*~'~dependent terms in (2.11-2.12) corresponds to the Lax—Friedrichs
scheme with the numerical fluxes

Taty -0 — Ag[[ra]] = 7 Wy -0 — A[[ra]] + < [[ra][[un]] - n

il
with \;, = = maX()\}f, AoUEY A = %|u_h -n| + ¢, where ¢;, = /70, stands for the speed of sound.
In the standard Lax—Friedrichs scheme the average 7,uy instead of 7, w, is used. Moreover, in
the energy equation ppuy is used instead of (2.14) for the pressure term in the energy flux, cf.
Remark 2.2. Nevertheless, the present proof under the hypotheses (5.20), (5.21) might be adapted
to the standard Lax—Friedrichs scheme.
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6 Convergence

In view of the uniform bounds (4.2), (4.5), and (4.6), the family {op, my, Ey}nso of approx-
imate solutions is uniformly bounded in L*(0,T; L'(€2,)). Moreover, {gp}n>0 is bounded in

L>(0,T5 L7(9y)) and {my, }5~0 is bounded in L>(0, T’ L%(Qh; RM)) uniformly for h — 0.

6.1 Young measure generated by the approximate solutions

In accordance with the fundamental theorem on Young measures, see Ball [1] or Pedregal [22], the
family { on, mp, Ep } 10, up to a suitable subsequence, generates a Young measure {V; 5 }(¢.2)c(0,1)x2, -
Recall that the Young measure is an object with the following properties:

e the mapping
Viw : (t,2) € (0,T) x Qy — P(F)

is weakly-(*) measurable, where P is the space of probability measures defined on the phase
space
fz{@m,E ‘ 0>0, meRY, EZO};

G(on, mp, E) — G(p, m, E) weakly-(*) in L>((0,T") x )
for any G € C.(F), and

G(o,m, E)(t,z) = / G(o,m, E)dV,, = (V;.;G(o,m, E)) for a.a. (t,z) € (0,T) x Q.
f

We shall use the following result proved in [11, Lemma 2.1].

Lemma 6.1. Let
|G(o,m, E)| < F(o,m, E) forall (o,m,FE) € F.
Then
Gle.m, B) = (Vi Gle.m, E))| < Flo,m, E) = (Vi Flo,m, E)) = g in M([0,7]) x ).

6.2 Kinetic energy concentration defect

Under the extra hypotheses (5.21), the support of the measure V;, is contained in the set

supp[Vi..| C {[Q,m,E] ‘ 0<p<p<p 0<¥<Y §5} for a.a. (t,z) € (0,T) X Q.
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In particular, all non-linearities appearing in the consistency formulation (5.16 — 5.19) are weakly
precompact in the Lebesgue space L'((0,T) x €,), with the only exception of the convective term

{mh ® my
Ohn

For the latter we can only assert that

} bounded in L*((0,T) x Q, RV*N).
h>0

My O My MO y-(%) in M([0, T] x Qs BYN),
0

Ohn
We denote

C, = m‘jm _ <Vm; &;m> € M([0,T] x Tp; RN*N)

the associated concentration defect measure. As

2
< ’Inh’
Y

On

’mh@mh < E,
Q _— )

h
we may use Lemma 6.1 to conclude that

/ / 1 d|Cy] ri/ Eydz —/ (V2 E) da for a.a. 7 € [0,T]. (6.1)
0 ﬁh Qp Qp

The quantity on the right—hand side of (6.1) is called energy dissipation defect and inequality (6.1)
plays a crucial role in the concept of dissipative measure—valued (DMV) solutions to the complete
Euler system introduced in [6].

6.3 Limit problem

We say that a family of probability measures {Vt,x}(t,x)e(O,T)th is a (DMV) solution to the complete
Euler system (1.1-1.3) if:

[ J
t=1 T
|:/ <Vt,a:; Q> 2 d:E:| = / / [<Vt,m; Q> atSD + <Vt,:c; m> : vl"zp] dZL‘ dt
Qp t=0 0 JQ

for any ¢ € C1([0,T] x Q4);

t=r1
{/ (Vigim) - dI}
Qp t=0

= / / |:<Vt,a:; m) - Oyp + <Vt,$; M> Voo + Vi p)y divep| dadt
o Ja, 0
+/ VIQO : dCd
0 JQ,
for any ¢ € Cl([()?T] X ﬁh) RN)7 » - n|Qh - 0,
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/ (Vrz: E) dxﬁ/ Ey dx
Qh Qh

for a.a. 7 € [0,77;

Vgh (Viws ox(s)) @ d:cI;Z/OT/m [(Vew; 0X(8)) O + (Vewi X(s)m) - Vo] da dt

for any ¢ € C1([0,T] x Q,), ¢ > 0, and any ¥,

X : R — R a non—decreasing concave function, x(s) <% for all s € R;

//1&Qm/ﬁwmi/a%ﬂ>m
0 Qn Qp Qn

Summing up the preceding discussion, we can state the following result.

for a.a. 7 € [0,77.

Theorem 6.2. Let the initial data 0o pn, mop, Eopn satisfy

1 2
Oon = 0>0, Fop— 3 mo.

> 0.
Q0,h

Let [on, mp,, Ey) be the solution of the scheme (2.10-2.12) such that

4
RS N1, 0< B <1, 0<a<sg,

and
0 <2< on(t), Ou(t) <90 for all t € [0,T] uniformly for h — 0.

Then the family of approximate solutions {op, my, Ey }pso generates a Young measure {Vt,x}(t,x)e(o,T)th
that is a (DMV) solution of the complete Euler system (1.1-1.3).

Finally, evoking the weak (DMV)-strong uniqueness result proved in [6, Theorem 3.3] we
conclude with the following corollary.

Corollary 6.3. In addition to the hypotheses of Theorem 6.2, suppose that the complete Fuler
system (1.1-1.3) admits a Lipschitz—continuous solution [0, m, E] defined on [0,T].
Then
on — 0, m, — m, E, — E (strongly) in L'((0,T) x ).
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Conclusion

In the present paper we have studied the convergence of a new finite volume method for multi—
dimensional Euler equations of gas dynamics. As the Euler system admits highly oscillatory
solutions, in particular they are ill-posed in the class of weak entropy solutions for L®°—initial
data [13], it is more natural to investigate the convergence in the class of dissipative measure—
valued (DMYV) solutions. The (DMV) solutions represent the most general class of solutions that
still satisfy the weak—strong uniqueness property. Thus, if the strong solution exists the (DMV)
solution coincides with the strong one on its lifespan, cf. [6].

Our study is inspired by the work of Guermond and Popov [19] who proposed a viscous reg-
ularization of the compressible Fuler equations satisfying the minimum entropy principle and
positivity preserving properties. They also showed the connection to the two—velocities Brenner’s
model [3, 4, 5], which is a base of our new finite volume method (2.10-2.12). The method is (i)
positivity preserving, i.e. discrete density, pressure and temperature are positive on any finite
time interval, (ii) entropy stable and (iii) satisfies the minimum entropy principle. Moreover, the
discrete entropy inequality allows us to control certain weak BV-norms, cf. (5.11). These results
together with a priori estimates (4.1-4.9) yield the consistency of the new finite volume method
under mild hypothesis. Indeed, instead of conventional convergence results based on rather unreal-
istic hypothesis on uniform boundedness of all physical quantities, we only require that the discrete
temperature is bounded and vacuum does not appear, cf. (5.21). In Theorem 6.1 we have shown
that the numerical solutions of the finite volume method (2.10-2.12) generate the (DMV) solution
of the Euler equations. Consequently, using the recent result on the (DMV)-strong uniqueness,
we have proven the convergence to the strong solution on its lifespan.

It seems that the hypothesis on g, can be relaxed, though removing the boundedness of 1,
remains open. This can be an interesting question for future study. Moreover, in order to preserve
the Galilean invariance of the Brenner model (1.8-1.10) it is possible to consider the symmetric
gradient in the h“—diffusion terms and the same convergence result can be shown. As far as we
know the present convergence result is the first result in the literature, where the convergence of a
finite volume method has been proven for multi-dimensional Euler equations assuming only that
the gas remains in its non—degenerate region.
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