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Driven Navier-Stokes/Euler system

Field equations
do + divk(ou)dt =0
d(ou)+div,(eueu)dt+V,p(o)dt = div,S(V.u)dt+ oG(x, o, u)d W |

2
S(Vyu) = <qu + Viu-— 3divxuﬂ> + Adiv,ul

Stochastic forcing

0G(x, 0,u)dW =" 0G(x, 0, u)dBx
k=1

Iconic examples

Gk = fi(x), Gk = udk(x) — "stochastic damping”




Initial and boundary conditions

(Random) initial data
2(0,-) = o, (0u)(0,-) = (ou)o

Spatial domain

u - njgg = 0 impermeability

u X nlpg = 0 no-slip

[S - n] X n|lsgg = 0 complete slip




Weak (PDE) formulation

Field equations
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= ¢(x) — a smooth test function

Stochastic integral (Itd’s formulation)
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Admissibility

Energy inequality
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Strong vs. martingale solutions

Strong solutions

m the functions g, u are differentiable a.s., the equations are
satisfied in the classical sense

m the probability space uniquely determined

Martingale solutions

m solutions defined on a different, typically, the standard
probability space

m the white noise as well as the initial data coincide with the
originals in law




Existence theory

Local existence of strong solutions [Kim [2011]], [Breit, EF,
Hofmanova [2017]]

If the initial data are smooth, then the problem admits local-in-time
smooth solutions. Solutions exist up to a (maximal) positive
stopping time. The life-span is a random variable.

Global existence for the Navier—Stokes system [Breit,
Hofmanova [2015]

The Navier-Stokes system admits global-in—time martingale
solutions for

N
p(o) = o7, v> 5




Relative energy inequalit

Relative energy

¢ (o.u[r0) = [ [Gohu-UP+ Plo) -

Relative energy inequality

—/Tﬁthf(g,u r,u) dt
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Test functions
dr = Ddr dt + Dir dW, dU = DZU dt + DU dW
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Remainder
Remainder term
R (g7u r,U) :/ Q(Dth +u- VXU)(U —u) dx
Q
+/ ((r— 0)P"(r)DZr + YV, P'(r)(rU — ou)) dx
Q
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Weak—strong uniqueness

Weak—strong uniqueness [Breit, EF, Hofmanova [2016]]

Pathwise uniqueness.

A weak and strong solutions defined on the same probability space
and emanating from the same initial data coincide as long as the
latter exists

Uniqueness in law.

If a weak and strong solution are defined on a different probability
space, then their laws are the same provided the laws of the initial
data are the same




Stationary solutions to the Navier—Stokes system

Basic hypotheses
|
|Gk| + ‘VGk‘ X o, ZO&% < o0
k>0

N
po) = o", v > 5

m complete slip/no slip boundary conditions

Stationary solutions [Breit, EF, Hofmanova, Maslowski] [2017]

For a given (deterministic) mass

M:/gw>o
Q

the Navier—Stokes system admits a stationary martingale solution.




Weak (PDE) solutions to the Euler system

Infinitely many weak (PDE) solutions, Breit, EF, Hofmanova
[2017]

Let T > 0 and the initial data

00 € C3(Q), 00 >0, up € C3(Q)

be given.
There exists a sequence of strictly positive stopping times

™ >0, T — 00

a.s. such that the initial-value problem for the

’ compressible Euler system‘ possesses infinitely many solutions
defined in (0, T A 7p). Solutions are adapted to the filtration
associated to the Wiener process W'.




