
A Polynomial Time Construction of a Hitting Set
for Read-Once Branching Programs of Width 3

Jǐŕı Š́ımaa,∗, Stanislav Žáka

aInstitute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 182 07 Prague 8, Czech Republic

Abstract

Recently, an interest in constructing pseudorandom or hitting set generators
for restricted branching programs has increased, which is motivated by the fun-
damental issue of derandomizing space-bounded computations. Such construc-
tions have been known only in the case of width 2 and in very restricted cases
of bounded width. In this paper, we characterize the hitting sets for read-once
branching programs of width 3 by a so-called richness condition. In particular,
we show that such sets hit the class of read-once conjunctions of DNF and CNF
(i.e. the weak richness). Moreover, we prove that any rich set extended with all
strings within Hamming distance of 3 is a hitting set for read-once branching
programs of width 3. Then, we show that any almost O(log n)-wise independent
set satisfies the richness condition. By using such a set due to Alon et al. (1992)
our result provides an explicit polynomial time construction of a hitting set for
read-once branching programs of width 3 with acceptance probability ε > 5/6.

Keywords: Derandomization, Hitting set, Read-once branching program,
Bounded width

1. Introduction

An ε-hitting set for a class of Boolean functions of n variables is a set H ⊆
{0, 1}n such that for every function f in the class, the following is satisfied: If
a random input is accepted by f with probability at least ε, then there is also
an input in H that is accepted by f . An efficiently constructible sequence of
hitting sets for increasing n is a straightforward generalization of the hitting
set generator introduced in [9], which is a weaker (one-sided error) version of
pseudorandom generator [13]. Recall that an ε-pseudorandom generator for
a class of Boolean functions of n variables is a function g : {0, 1}s −→ {0, 1}n

which stretches a short uniformly random seed of length s bits into n bits (s ¿ n)
that cannot be distinguished from uniform ones. In particular, for every function

∗Corresponding author
Email addresses: sima@cs.cas.cz (Jǐŕı Š́ıma), stan@cs.cas.cz (Stanislav Žák)

Preprint submitted to Elsevier June 28, 2012

f in the class, condition |Prx∼Un [f(x) = 1]− Pry∼Us [f(g(y)) = 1]| ≤ ε holds
where x ∼ Un means that x is uniformly distributed in {0, 1}n.

For the class of Boolean functions of polynomial complexity in any reasonable
model, it is easy to prove the existence of ε-hitting set of polynomial size, if
ε > 1/nc for a constant c where n is the number of variables. The proof is
nonconstructive, since it uses a counting argument. An important problem
in complexity theory is to find polynomial time constructible hitting sets for
functions of polynomial complexity in different standard models like circuits,
formulas, branching programs etc. Such constructions would have consequences
for the relationship between deterministic and probabilistic computations in the
respective models.

Looking for polynomial time constructions of hitting sets for unrestricted
models belongs to the hardest problems in computer science. Hence, restricted
models are investigated. We consider read-once branching (1-branching) pro-
grams of polynomial size, which is a restricted model of space-bounded compu-
tations [17] for which pseudorandom generators with seed length O(log2 n) have
been known for a long time through a result of Nisan [12]. Note that an ex-
plicit pseudorandom generator for this model which is computable in logarithmic
space and has seed length O(log n) would suffice to derandomize the complexity
class BPL (Bounded-error Probabilistic Logarithmic-space). Recently, consid-
erable attention has been paid to improving the seed length to O(log n) in the
constant-width case, which is a fundamental problem with many applications in
circuit lower bounds and derandomization [11]. The problem has been resolved
for width 2 but the known techniques provably fail for width 3 [3, 5, 6, 8, 11],
which applies even to hitting set generators [5].

In the case of width 3, we do not know of any significant improvement
over Nisan’s result except for some recent progress in the severely restricted
case of so-called regular oblivious read-once branching programs. Recall that
an oblivious branching program queries the input variables in a fixed order,
which represents a provably weaker computational model [2]. For constant-
width regular oblivious 1-branching programs which have the in-degree of all
nodes equal to 2 (or 0), three independent constructions of ε-pseudorandom
generator with seed length O(log n(log log n+ log(1/ε))) were achieved [4, 5, 6].
This seed length has later been improved to O(log n log(1/ε)) for constant-width
permutation oblivious 1-branching programs [10, 6] which are regular programs
with the two edges incoming to any node labeled 0 and 1, i.e. edges labeled with
0 respectively 1 create a permutation for each level-to-level transition [11].

In the constant-width regular 1-branching programs the fraction of inputs
that are queried at any node is always lower bounded by a positive constant.
This excludes the fundamental capability of general (non-regular) branching pro-
grams to recognize the inputs that contain a given substring on a non-constant
number of selected positions. In our approach, we manage the analysis also for
this essential case. In particular, we identify two types of convergence of the
number of inputs along a computational path towards zero which implement
read-once DNFs and CNFs, respectively. Thus, we achieve the construction of
a hitting set generator for general width-3 1-branching programs which need

2

not be regular nor oblivious. In our previous work [14], we constructed the hit-
ting set for so-called simple width-3 1-branching programs which exclude one
specific pattern of level-to-level transition in their normalized form and cover
the width-3 regular case.

In the present paper, we provide a polynomial time construction of a hitting
set for read-once branching programs of width 3 with acceptance probability
ε > 5/6, which need not be oblivious. This represents an important step in the
effort of constructing hitting set generators for the model of read-once branching
programs of bounded width. For this purpose, we formulate a so-called richness
condition which is independent of a rather technical definition of branching
programs. In fact, the (full) richness condition implies its weaker version which
is equivalent to the definition of hitting sets for read-once conjunctions of DNF
and CNF. Thus, a related line of study concerns pseudorandom generators for
read-once formulas, such as read-once DNFs [7].

We show that the richness property characterizes in a certain sense the
hitting sets for width-3 1-branching programs. In particular, its weaker version
proves to be necessary for such hitting sets, while the sufficiency of richness
represents the main result of this paper. More precisely, we show that any
rich set extended with all strings within Hamming distance of 3 is a hitting set
for 1-branching programs of width 3 with the acceptance probability greater
than 5/6. The proof is based on a detailed analysis of structural properties of
the width-3 1-branching programs that reject all the inputs from the candidate
hitting set. Then, we prove that for a suitable constant C, any almost (C log n)-
wise independent set which can be constructed in polynomial time by the result
due to Alon et al. [1] satisfies the richness condition, which implies our result. In
addition, it follows from the latter result that almost O(log n)-wise independent
sets are weakly rich and hence, they hit the class of read-once conjunctions
of DNF and CNF which is a generalization of the earlier result from [7]. A
preliminary version of this article appeared as extended abstracts [16, 15] where
our result is formulated for acceptance probability ε > 11/12.

The paper is organized as follows. After a brief review of basic definitions
regarding branching programs in Section 2 (see [17] for more information), the
weak richness condition is formulated and proved to be necessary in Section 3.
The richness condition and its sufficiency is presented in Section 4 including the
intuition behind the proof. The subsequent four Sections 5–8 are devoted to the
technical proof of this proposition. Furthermore, our theorem that any almost
O(log n)-wise independent set is rich is presented in Section 9 where also the
main steps of the technical proof occupying the subsequent four Sections 10–13
are introduced. Finally, our result is summarized in Section 14.

2. Normalized Width-w 1-Branching Programs

A branching program P on the set of input Boolean variables Xn = {x1, . . . ,
xn} is a directed acyclic multi-graph G = (V, E) that has one source s ∈ V of
zero in-degree and, except for sinks of zero out-degree, all the inner (non-sink)
nodes have out-degree 2. In addition, the inner nodes get labels from Xn and

3

the sinks get labels from {0, 1}. For each inner node, one of the outgoing edges
gets the label 0 and the other one gets the label 1. The branching program P
computes Boolean function P : {0, 1}n −→ {0, 1} as follows. The computational
path of P for an input a = (a1, . . . , an) ∈ {0, 1}n starts at source s. At any inner
node labeled by xi ∈ Xn, input variable xi is tested and this path continues
with the outgoing edge labeled by ai to the next node, which is repeated until
the path reaches the sink whose label gives the output value P (a). Denote
by P−1(a) = {a ∈ {0, 1}n |P (a) = a} the set of inputs for which P outputs
a ∈ {0, 1}. For inputs of arbitrary lengths, infinite families {Pn} of branching
programs, each Pn for one input length n ≥ 1, are used.

A branching program P is called read-once (or shortly 1-branching program)
if every input variable from Xn is queried at most once along each computational
path. Here we consider leveled branching programs in which each node belongs
to a level, and edges lead from level k ≥ 0 only to the next level k + 1. We
assume that the source of P creates level 0, whereas the last level is composed
of all sinks. The number of levels decreased by 1 equals the depth of P which is
the length of its longest path, and the maximum number of nodes on one level
is called the width of P . In addition, P is called oblivious if all nodes at each
level are labeled with the same variable.

For a 1-branching program P of width w define a w×w transition matrix Tk

on level k ≥ 1 such that t
(k)
ij ∈ {0, 1

2 , 1} is the half of the number of edges leading

from node v
(k−1)
j (1 ≤ j ≤ w) on level k − 1 of P to node v

(k)
i (1 ≤ i ≤ w) on

level k. For example, t
(k)
ij = 1 implies there is a double edge from v

(k−1)
j to v

(k)
i .

Clearly,
∑w

i=1 t
(k)
ij = 1 since this sum equals the half of the out-degree of inner

node v
(k−1)
j , and 2 ·∑w

j=1 t
(k)
ij is the in-degree of node v

(k)
i . Denote by a column

vector p(k) = (p(k)
1 , . . . , p

(k)
w)T the distribution of inputs among w nodes on level

k of P , that is, p
(k)
i is the probability that a random input is tested at node

v
(k)
i , which equals the ratio of the number of inputs from M(v(k)

i) ⊆ {0, 1}n that
are tested at v

(k)
i to all 2n possible inputs. It follows

⋃w
i=1 M(v(k)

i) = {0, 1}n

and
∑w

i=1 p
(k)
i = 1 for every level k ≥ 0. Given the distribution p(k−1) on

level k − 1, the distribution on the subsequent level k can be computed using
transition matrix Tk as

p(k) = Tk · p(k−1) . (1)

It is because the ratio of inputs coming to node v
(k)
i from previous-level nodes

equals p
(k)
i =

∑w
j=1 t

(k)
ij p

(k−1)
j since each of the two edges outgoing from node

v
(k−1)
j distributes exactly the half of the inputs tested at v

(k−1)
j .

We say that a 1-branching program P of width w is normalized if P has the
minimum depth among the programs computing the same function (e.g. P does
not contain the identity transition Tk) and P satisfies

1 > p
(k)
1 ≥ p

(k)
2 ≥ · · · ≥ p(k)

w > 0 (2)

for every k ≥ log w (hereafter, log denotes the binary logarithm). Obviously,

4

condition (2) can always be met by possible splitting (if p
(k)
w = 0) and permuting

the nodes at each level of P :

Lemma 1 ([14]). Any width-w 1-branching program can be normalized.

In the sequel, we confine ourselves to the 1-branching programs of width w = 3.
Any such normalized program P satisfies p

(k)
1 + p

(k)
2 + p

(k)
3 = 1 and 1 > p

(k)
1 ≥

p
(k)
2 ≥ p

(k)
3 > 0, which implies

p
(k)
1 >

1
3

, p
(k)
2 <

1
2

, p
(k)
3 <

1
3

(3)

for every level 2 ≤ k ≤ d where d ≤ n is the depth of P . Note that the strict
inequalities for p

(k)
1 and p

(k)
3 in (3) hold since p

(k)
i 6= 1

3 according to (1) and
t
(k)
ij ∈ {0, 1

2 , 1}.

3. The Weak Richness Condition Is Necessary

Let P be a class of branching programs and ε > 0 be a real constant. A set
of input strings H ⊆ {0, 1}∗ is called an ε-hitting set for class P if for sufficiently
large n, for every branching program P ∈ P with n input variables

∣∣P−1(1)
∣∣

2n
≥ ε implies (∃a ∈ H ∩ {0, 1}n)P (a) = 1 . (4)

Furthermore, we say that a set A ⊆ {0, 1}∗ is weakly ε-rich if for sufficiently large
n, for any index set I ⊆ {1, . . . , n}, and for any partition {Q1, . . . , Qq, R1, . . . , Rr}
of I where q ≥ 0 and r ≥ 0, and for any c ∈ {0, 1}n the following implication
holds: If 

1−
q∏

j=1

(
1− 1

2|Qj |

)
×

r∏

j=1

(
1− 1

2|Rj |

)
≥ ε , (5)

then there exists a ∈ A ∩ {0, 1}n such that

(∃ j ∈ {1, . . . , q}) (∀ i ∈ Qj) ai = ci (6)
and (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai 6= ci . (7)

Particularly for q = 0 inequality (5) reads

r∏

j=1

(
1− 1

2|Rj |

)
≥ ε (8)

and conjunction (6) and (7) reduces to the second conjunct (7), while for r = 0
inequality (5) reads

1−
q∏

j=1

(
1− 1

2|Qj |

)
≥ ε (9)

5

and conjunction (6) and (7) reduces to the first conjunct (6).
Note that the product on the left-hand side of inequality (5) expresses the

probability that a random string a ∈ {0, 1}n (not necessarily in A) satisfies
conjunction (6) and (7). Moreover, this formula can be interpreted as a read-
once conjunction of a DNF and a CNF (each variable occurs at most once)

q∨

j=1

∧

i∈Qj

`(xi) ∧
r∧

j=1

∨

i∈Rj

¬`(xi) , where `(xi) =
{

xi for ci = 1
¬xi for ci = 0 (10)

which accepts a random input with probability at least ε according to (5).
Hence, the weak richness condition is, in fact, equivalent to the definition of a
hitting set for read-once conjunctions of DNF and CNF. The following theorem
shows that the weak richness condition is necessary for any set to be a hitting
set for width-3 1-branching programs. It is because the 1-branching programs
of width 3 can implement any read-once conjunction of DNF and CNF and a
hitting set for a class of functions hits any of its subclass.

Theorem 1. Every ε-hitting set for the class of read-once branching programs
of width 3 is weakly ε-rich.

Proof. We proceed by transposition. Assume a set H ⊆ {0, 1}∗ is not weakly
ε-rich which means that for infinitely many n there is an index set I ⊆ {1, . . . , n},
a partition {Q1, . . . , Qq, R1, . . . , Rr} of I satisfying (5), and a string c ∈ {0, 1}n

such that every a ∈ H ∩ {0, 1}n meets

(∀ j ∈ {1, . . . , q}) (∃ i ∈ Qj) ai 6= ci (11)
or (∃ j ∈ {1, . . . , r}) (∀i ∈ Rj) ai = ci . (12)

We will use this partition and c for constructing a (non-normalized oblivious)
width-3 1-branching program P such that

∣∣P−1(1)
∣∣

2n
≥ ε and (∀a ∈ H ∩ {0, 1}n)P (a) = 0 , (13)

which negates that H is an ε-hitting set for 1-branching programs of width 3
according to (4). In fact, P implements the corresponding conjunction of DNF
and CNF (10).

We assume q ≥ 1, r ≥ 1, and |Qq| > 1, while the proof for q = 0 or
r = 0 or |Qq| = 1 is similar. As depicted in Figure 1, branching program P
is composed of q + r consecutive blocks corresponding to the partition classes
Q1, . . . , Qq, R1, . . . , Rr which determine the indices of variables that are queried
within these blocks. The block associated with Qj for j ∈ {1, . . . , q} starts on
level kj =

∑j−1
`=1 |Q`| of P (e.g. k1 = 0) with a transition satisfying t

(kj+1)
11 =

t
(kj+1)
21 = 1

2 , followed by a sequence of transitions that meet t
(k)
11 = 1 and t

(k)
12 =

t
(k)
22 = 1

2 for every k = kj + 2, . . . , kj + |Qj |, except for the boundary level
kq + |Qq| = kq+1, which is defined below. In addition, there is a parallel double-
edge path leading from the node v

(k2+1)
3 on level k2 + 1 up to node v

(kq+1−1)
3 ,

6

Figure 1: The Necessary Condition.

7

and thus t
(k)
33 = 1 for every k = k2 + 2, k2 + 3, . . . , kq+1 − 1. This path is wired

up by q− 1 double edges coming from nodes v
(kj)
2 , that is, t

(kj+1)
32 = 1 for every

j = 2, . . . , q. Finally, a special boundary transition is defined on level kq+1 as
t
(kq+1)
31 = t

(kq+1)
13 = 1 and t

(kq+1)
12 = t

(kq+1)
32 = 1

2 . Note that there are only two
nodes v

(kq+1)
1 , v

(kq+1)
3 on the boundary level kq+1.

Furthermore, P continues analogously with blocks corresponding to Rj for
j = 1, . . . , r, each starting on level kq+j = kq+1 +

∑j−1
`=1 |R`| (e.g. kq+r+1 = d

is the depth of P) with the transition satisfying t
(kq+j+1)
11 = t

(kq+j+1)
21 = 1

2 ,
followed by t

(k)
11 = 1 and t

(k)
12 = t

(k)
22 = 1

2 for every k = kq+j + 2, . . . , kq+j + |Rj |,
including the parallel double-edge path, that is, t

(k)
33 = 1 for every k = kq+1 +

1, . . . , d and t
(kq+j+1)
32 = 1 for every j = 2, . . . , r. The branching program P then

queries the value of each variable xi such that i ∈ Qj for some j ∈ {1, . . . , q}
or i ∈ Rj for some j ∈ {1, . . . , r} only on one level k ∈ {kj , . . . , kj+1 − 1} or
k ∈ {kq+j , . . . , kq+j+1 − 1}, respectively (i.e. the nodes on level k are labeled
with xi), while the single edge leading to v

(k+1)
2 (or to v

(kq+1)
1 for k = kq+1 − 1)

on the subsequent level k +1 (indicated by a bold line in Figure 1) gets label ci.
Finally, the sink v

(d)
1 gets label 1, whereas the sinks v

(d)
2 , v

(d)
3 are labeled with

the output 0, which completes the construction of P .
Clearly, P is an (oblivious) read-once branching program of width 3. The

probability that an input reaches the node v
(kq+1)
3 on the boundary level kq+1

can simply be computed as

p
(kq+1)
3 =

q∏

j=1

(
1− 1

2|Qj |

)
, (14)

while the probability of the complementary event that an input reaches v
(kq+1)
1

equals p
(kq+1)
1 = 1− p

(kq+1)
3 . Therefore, the probability that P outputs 1 can be

expressed and lower bounded by (5):

∣∣P−1(1)
∣∣

2n
= p

(d)
1 =


1−

q∏

j=1

(
1− 1

2|Qj |

)
×

r∏

j=1

(
1− 1

2|Rj |

)
≥ ε . (15)

Furthermore, we split H ∩ {0, 1}n = A1 ∪ A2 into two parts so that every
a ∈ A1 satisfies the first term (11) of the underlying disjunction, whereas every
a ∈ A2 = H \ A1 meets the second term (12). Thus, for any input a ∈ A1

and for every j ∈ {1, . . . , q} the block of P corresponding to Qj contains a
level k ∈ {kj , . . . , kj+1 − 1} where variable xi is tested such that ai 6= ci. This
ensures that the computational path for a ∈ A1 reaches v

(kq+1)
3 and further

continues through v
(kq+1+1)
3 , . . . , v

(d)
3 , which gives P (a) = 0 for every a ∈ A1.

Similarly, for any input a ∈ A2 there exists a block of P corresponding to
Rj for some j ∈ {1, . . . , r} such that the computational path for a traverses
nodes v

(kq+j)
1 , v

(kq+j+1)
2 , v

(kq+j+2)
2 , . . . , v

(kq+j+|Rj |)
2 . For j < r this path continues

8

through v
(kq+j+1+1)
3 , . . . , v

(d)
3 , whereas for j = r it terminates at v

(d)
2 , which gives

P (a) = 0 in both cases. Hence, P satisfies (13), which completes the proof. 2

4. The Richness Condition Is Sufficient

We say that a set A ⊆ {0, 1}∗ is ε-rich if for sufficiently large n, for any index
set I ⊆ {1, . . . , n}, and for any partition {R1, . . . , Rr} of I (r ≥ 0) satisfying

r∏

j=1

(
1− 1

2|Rj |

)
≥ ε , (16)

and for any Q ⊆ {1, . . . , n} \ I such that |Q| ≤ log n, for any c ∈ {0, 1}n there
exists a ∈ A ∩ {0, 1}n that meets

(∀ i ∈ Q) ai = ci and (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai 6= ci . (17)

One can observe that an ε-rich set is weakly ε-rich (see Section 3) since inequality
(5) implies (16) and ensures that there is index j ∈ {1, . . . , q} of Qj = Q such
that |Q| ≤ log n. In particular, if |Qj | > log n for every j = 1, . . . , q, then
inequality (5) would give

1− ε ≥
q∏

j=1

(
1− 1

2|Qj |

)
≥

(
1− 1

2log n

) n
log n

> 1− 1
n
· n

log n
= 1− 1

log n
(18)

which is a contradiction for n > 21/ε. Thus, we have (17) which validates the
conjunction of (6) and (7) completing the argument.

It follows that any rich set is a hitting set for read-once conjunctions of DNF
and CNF. Also note that formula (17) can be interpreted as a read-once CNF
(cf. 10)

∧

i∈Q

`(xi) ∧
r∧

j=1

∨

i∈Rj

¬`(xi) , where `(xi) =
{

xi for ci = 1
¬xi for ci = 0 (19)

which contains at most logarithmic number of single literals together with
clauses whose sizes satisfy (16). Moreover, Theorem 3 in Section 9 proves that
any almost O(log n)-wise independent set satisfies the richness condition.

The following theorem shows that the richness condition is, in a certain
sense, sufficient for a set to be a hitting set for 3-width 1-branching programs.
For an input a ∈ {0, 1}n and an integer constant c ≥ 0, denote by Ωc(a) =
{a′ ∈ {0, 1}n |h(a,a′) ≤ c} the set of so-called h-neighbors of a, where h(a,a′)
is the Hamming distance between a and a′ (i.e. the number bits in which a and
a′ differ). We also define Ωc(A) =

⋃
a∈A Ωc(a) for a given set A ⊆ {0, 1}∗.

Theorem 2. Let ε > 5
6 . If A is ε′11-rich for some ε′ < ε, then H = Ω3(A) is

an ε-hitting set for the class of read-once branching programs of width 3.

9

Proof. Suppose a read-once branching program P of width 3 with sufficiently
many input variables n meets

∣∣P−1(1)
∣∣

2n
≥ ε >

5
6

. (20)

We will prove that there exists a ∈ H such that P (a) = 1. On the contrary, we
assume that

P (a) = 0 for every a ∈ H , (21)

which will lead to a contradiction. Without loss of generality1, we assume that
P is normalized according to Lemma 1.

4.1. The Plan of the Proof
In this paragraph we will informally explain the main ideas of the proof with

the pointers to the subsequent paragraphs and sections where the precise and
detailed argument is given. The assumption that branching program P accepts
large fraction of inputs and rejects all the inputs from candidate hitting set H
constrains the structure of P severely. In particular, we inspect the structure
of P with respect to (20) and (21) from its last level d (containing the sinks)
and we proceed in the analysis step by step backwards to lower levels2. For
this purpose, various parameters denoting certain levels in P are defined which
are used to describe the structure of P . These definitions of levels, indicated in
boldface, are scattered in the following proof since the definition of a level often
builds on the previous analysis of P .

The underlying inspection reveals that the structure at the end of branching
program P can be split into blocks whose typical shape is schematically depicted
in Figure 2 while the subsequent Figures 3–8 focus on particular parts of the
block. Figure 2 also summarizes the definitions of levels in the block having the
form of “a ≤ b ↑ ≤ c : C(b)” which means b is the greatest level such that
a ≤ b ≤ c and condition C(b) is satisfied (similarly, ↓ denotes the least such
level). In addition, there are main equations listed in Figure 2 concerning the
distribution p

(k)
1 , p

(k)
2 , p

(k)
3 of inputs among three nodes at important levels of

the block.
The last level of the block is denoted by m and this level m satisfies the

following four so-called m-conditions:

1 More precisely, the logical argument goes as follows. Branching program P is trans-
formed to an equivalent branching program P1 which computes the same function as P (i.e.
P1 preserves (20) and (21)) and has some additional property (e.g. P1 is normalized). In
the following proof, several equivalent transformations are employed one after the other in
order to achieve various extra properties, which generates a sequence of branching programs
P, P1, P2, . . . , Pc. After showing that the existence of the last program Pc eventually leads to
a contradiction one can conclude that the original program P cannot exist.

2 Recall that we number the levels of P from the zero level containing the source up to
the last level d which is composed of sinks. This means that, in figures, the lower levels are
situated on the top of branching program whereas the upper levels are located at the bottom.

10

Figure 2: The structure of a typical block

11

1. t
(m)
11 = t

(m)
21 = 1

2 ,

2. t
(m)
32 > 0,

3. p
(m)
3 < 1

6 ,

4. there is a(m) ∈ A such that if we put a(m) at node v
(m)
1 or v

(m)
2 , then its

onward computational path arrives to the sink labeled with 1.

Without loss of generality1, these m-conditions can also be met for m = d

(Paragraph 4.2) which is the last level of P . In particular, the sinks v
(d)
1 and

v
(d)
2 are labeled with 1 according to m-condition 4. Thus, the inspection of the

structure of P starts with the analysis of the first3 block which constitutes the
tail of P .

The first level of the block is denoted by m′ (its formal definition can be
found in Paragraph 6.2) which, in a typical case, proves also to satisfy the four
m′-conditions 1–4. Thus the block is delimited by levels m′ and m. The shape
of the block is being revealed step by step by the case analysis (Sections 5 and 6)
which starts from m and proceeds towards lower levels down to m′. We will now
shortly outline the structure of a typical block as depicted in Figure 2 which
results from this analysis. From the first level m′ through µ, there is no edge
between the first two columns on the one hand, and the third column on the
other hand, which means there is a double-edge path in the third column from
m′ through µ (Paragraph 6.2). Moreover, there is a double-edge path in the
first column starting at level µ which leads up to level m − 1 where it is split
into vertices v

(m)
1 and v

(m)
2 at the next level m (cf. m-condition 1).

On the top of Figure 2, a single-edge path from µ to ν is indicated in boldface
which is used to define the partition class R associated with this block (Para-
graph 5.1). In particular, class R contains all the indices of the variables that
are queried on this computational path up to level ν − 1. Moreover, the edge
labels on this path define relevant bits of c ∈ {0, 1}n so that any input passing
through this path that differs from c in at least one bit location from R turns to
the double-edge path in the first column and consequently comes in node v

(m)
1

or v
(m)
2 . This implements one CNF clause ∨i∈R ¬`(xi) from (19). Similarly,

sets Qj for j = 1, . . . , q associated with this block are defined (Paragraph 5.2)
using the single-edge paths from λj to κj which are also highlighted in Figure 2
so that any input that passes through v

(λj)
3 and agrees with c on all the bit

locations from Qj reaches the double-edge path in the first column coming in
v
(m)
1 or v

(m)
2 . This implements DNF monomials ∧i∈Qj `(xi) in (10) which are

candidates for the monomial ∧i∈Q `(xi) in (19).
Under certain assumptions ((34) and (35)), one can show that level m′ sat-

isfies m′-condition 1–3 (Paragraph 6.2). This opens the possibility that the first
level m′ = mr of the current rth block at the same time represents the last level
of the next lower-level (r + 1)st block to which the structural analysis could

3The blocks are numbered from the bottom to the top of branching program P in the order
reverse to that of levels.

12

recursively be applied (Section 7). It suffices to show that level m′ also meets
m′-condition 4. For this purpose, the richness condition (17) is employed for
Q = ∅ and for the partition classes R1, . . . , Rr associated with the first r blocks
(that have been analyzed so far), provided that this partition satisfies (16). This
gives an input a(m′) ∈ A such that for every block j = 1, . . . , r there is i ∈ Rj

such that a
(m′)
i 6= ci according to (17), that is, a(m′) satisfies ∧r

j=1 ∨i∈Rj
¬`(xi)

from (19). Hence, if we put this a(m′) at node v
(m′)
1 or v

(m′)
2 (m′ = mr), then

the block structure in Figure 2 ensures that a(m′) also traverses v
(µ)
1 or v

(µ)
2

and reaches the double-edge path in the first column coming in v
(m)
1 or v

(m)
2

(m = mr−1), by the definition of R and ci for i ∈ R. This argument is applied
recursively to each block j = r, r − 1, . . . , 1 which implies that a(m′) eventually
arrives to the sink v

(d)
1 or v

(d)
2 (m0 = d) labeled with 1. This proves the m′-

condition 4 also for level m′. Thus the analysis including the definition of an
associated partition class R = Rr+1 and sets Qj = Qr+1,j is applied recursively
to the next (r + 1)st block for m replaced with m′ etc.

If, on the other hand, the underlying partition does not satisfy (16), then
one can prove that there is a set Q = Qbj associated with the bth block among
the first r blocks (that have been analyzed so far) such that |Q| ≤ log n, and
the recursive analysis ends (Section 8). In this case, the richness condition (17)
for this set Q and for partition R1, . . . , Rb−1 provides a ∈ A such that ai = ci

for each i ∈ Q and for every block j = 1, . . . , b − 1 there is i ∈ Rj such that
ai 6= ci, that is, a ∈ A satisfies ∧i∈Q `(xi) ∧ ∧b−1

j=1∨i∈Rj ¬`(xi) according to (19).
Moreover, one can show (Lemma 8) that there is an h-neighbor a′ ∈ Ω2(a) ⊆ H
that differs from this a in at most two bits so that these bits guarantee that the
computational path for a′ in the bth block either reaches the double-edge path
in the first column, or comes in node v

(λj)
3 (see Figure 2). In the latter case,

a′ further traverses the path corresponding to Q which reaches the double-edge
path in the first column anyway by the definition of Qj and ci for i ∈ Qj . In both
cases, input a′ traverses node v

(mb−1)
1 or v

(mb−1)
2 , and by the above-mentioned

recursive argument it eventually arrives to the sink v
(d)
1 or v

(d)
2 labeled with 1.

This provides the desired contradiction P (a′) = 1 for a′ ∈ H.

4.2. The Initial Case of m = d

We will first observe that the four m−conditions can be met for m = d.
Clearly, both edges outgoing from v

(d−1)
1 lead to the sink(s) labeled with 1

since p
(d−1)
1 > 1

3 due to (3) and |P−1(0)|/2n < 1
6 according to (20). Hence,

we will assume without loss of generality that t
(d)
11 = t

(d)
21 = 1

2 (m-condition 1)
while the remaining edges that originally led to the sinks labeled with 1 or 0
are possibly redirected to v

(d)
1 or v

(d)
3 , respectively, so that the normalization

condition p
(d)
1 ≥ p

(d)
2 > 1

6 > p
(d)
3 (m-condition 3) is preserved by (20). Thus,

sinks v
(d)
1 and v

(d)
2 are labeled with 1 (m-condition 4) whereas sink v

(d)
3 gets

label 0. Finally, we show that t
(d)
32 > 0 (m-condition 2). On the contrary,

suppose t
(d)
32 = 0, which implies t

(d)
33 > 0 and H ⊆ P−1(0) ⊆ M(v(d−1)

3) due to

13

t
(d)
31 = 0. In the case of t

(d)
13 + t

(d)
23 > 0, the computational path for an h-neighbor

a′ ∈ Ω1(a) of a ∈ A ⊆ H ⊆ M(v(d−1)
3) that differs from a in the ith bit that is

tested at node v
(d−1)
3 (i.e. v

(d−1)
3 is labeled with xi), would reach the sink labeled

with 1, and hence P (a′) = 1 which contradicts the assumption H ⊆ P−1(0).
For t

(d)
33 = 1, on the other hand, we could shorten P by removing the last level d

while preserving its function and condition (20), which is in contradiction with
the normalization of P . This completes the proof that m-conditions 1–4 can be
assumed for m = d without loss of generality1.

4.3. A Technical Lemma

Let level µ′ be the least level of P such that 2 ≤ µ′ < m and t
(`)
11 = 1 for

every ` = µ′ + 1, . . . , m− 1. We define level µ as

µ =
{

µ′ − 1 if t
(µ′)
12 = 1 and t

(µ′)
11 = t

(µ′)
21 = 1

2
µ′ otherwise.

(22)

For the analysis of a single block structure (Sections 4–6, 8), we swap v
(µ)
1

and v
(µ)
2 if µ = µ′ − 1 for the notation simplicity so that t

(`)
11 = 1 for every

` = µ + 1, . . . ,m− 1 at the cost of violating condition p
(µ)
1 ≥ p

(µ)
2 given by (2).

Thus, for µ = µ′ − 1, assume p
(µ)
1 < p

(µ)
2 , t

(µ+1)
11 = 1, and t

(µ+1)
12 = t

(µ+1)
22 = 1

2 .
For the recursion (Section 7) when the last level m in the next (lower-level)
block may coincide with level µ of the current block we will nevertheless assume
the original node order and p

(µ)
1 ≥ p

(µ)
2 .

The following lemma represents a technical tool which will be used for the
analysis of the block from level µ through m. For this purpose, define a so-called
switching path starting from v ∈ {v(k)

2 , v
(k)
3 } at level k, where µ ≤ k < m, to be

a computational path of length at most 3 edges leading from v to v
(`)
1 at level `

such that k < ` ≤ min(k + 3,m) or possibly to v
(m)
2 for m ≤ k + 3.

Lemma 2.

(i) µ > 3.
(ii) There are no two simultaneous switching paths starting from v

(k)
2 and v

(k)
3 ,

respectively, at any level k such that µ ≤ k < m.
(iii) If t

(k+1)
12 > 0 for some level k such that µ ≤ k < m, then t

(`)
11 = t

(`)
33 = 1,

t
(`)
12 = t

(`)
22 = 1

2 for every ` = µ + 1, . . . , k, and t
(k+1)
12 = 1

2 (see Figure 3).

(iv) If t
(k+1)
13 > 0 for some level k such that µ < k < m, then one of the

following four cases occurs:
1. t

(k)
11 = t

(k)
23 = 1 and t

(k)
12 = t

(k)
32 = 1

2 ,
2. t

(k)
11 = t

(k)
23 = 1 and t

(k)
22 = t

(k)
32 = 1

2 ,
3. t

(k)
11 = t

(k)
22 = 1 and t

(k)
13 = t

(k)
33 = 1

2 ,
4. t

(k)
11 = t

(k)
22 = 1 and t

(k)
23 = t

(k)
33 = 1

2 .

14

In addition, if t
(k)
23 = 1 (case 1 or 2), then t

(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2
for every ` = µ + 1, . . . , k − 1 (see Figure 3).

Proof.

(i) Suppose µ ≤ 3 and let a(m) ∈ A be the input from m-condition 4. Then
there exists an h-neighbor a′ ∈ Ω3(a(m)) of a(m) whose computational
path starting from source v

(0)
1 reaches v

(µ)
1 . Hence, P (a′) = 1 for a′ ∈ H

follows from M(v(µ)
1) ⊆ M(v(m)

1) ∪M(v(m)
2) and m-condition 4, which is

a contradiction, and thus µ > 3.
(ii) Suppose there are two simultaneous switching paths starting from v

(k)
2

and v
(k)
3 , respectively, at some level k such that µ ≤ k < m, and let

a(m) ∈ A be the input satisfying m-condition 4. Clearly, a(m) 6∈ M(v(k)
1) ⊆

M(v(m)
1) ∪ M(v(m)

2) since otherwise P (a(m)) = 1 for a(m) ∈ H. Thus,
assume a(m) ∈ M(v) for v ∈ {v(k)

2 , v
(k)
3 }. Then there is an h-neighbor a′ ∈

Ω3(a(m)) ∩M(v) of a(m) whose computational path follows the switching
path starting from v. Hence, a′ ∈ M(v(m)

1)∪M(v(m)
2) implying P (a′) = 1

for a′ ∈ H due to P is read-once. This completes the proof of (ii).

Figure 3: Lemma 2.iii and iv.

As depicted in Figure 3, at level k such that µ < k < m, denote by v ∈
{v(k)

2 , v
(k)
3 } a node with the edge outgoing to v

(k+1)
1 , and let u be a node on

level k − 1 from which an edge leads to v, while v′ ∈ {v(k)
2 , v

(k)
3 } \ {v} and

u′ ∈ {v(k−1)
2 , v

(k−1)
3 } \ {u} denote the other nodes. It follows from (ii) there

is no edge from u′ to v nor to v
(k)
1 , which would establish two simultaneous

switching paths starting from v
(k−1)
2 and v

(k−1)
3 , respectively. Hence, there

15

must be a double edge from u′ to v′. Since P is normalized, u′ = v
(k−1)
2 and

v′ = v
(k)
3 cannot happen simultaneously. Moreover, the second edge from u

may lead either to v
(k)
1 or to v′ if v′ 6= v

(k)
3 . Now, the possible cases can be

summarized:

(iii) For t
(k+1)
12 > 0 we know v = v

(k)
2 and v′ = v

(k)
3 , which implies t

(k)
11 = t

(k)
33 =

1 and t
(k)
12 = t

(k)
22 = 1

2 . The proposition follows when this argument is
applied recursively for k replaced with k−1 etc. In addition, we will prove
that t

(k+1)
12 < 1 for µ ≤ k < m. Clearly, t

(m)
12 < 1 from m-condition 2, and

hence suppose k < m−1. Also for k = µ = µ′−1 we know t
(µ+1)
12 = 1

2 and
thus we further assume k ≥ µ′. On the contrary, suppose t

(k+1)
12 = 1 which

implies t
(k+1)
23 = t

(k+1)
33 = 1

2 . For k > µ, one could shorten P by identifying
level k with µ without changing its function, which is a contradiction with
the normalization of P .
For k = µ, on the other hand, we know that µ = µ′ > 3 from the def-
inition of µ and we will first observe that there are at least two edges
leading to v

(µ)
3 . Suppose that only one edge leads to v

(µ)
3 from u ∈

{v(µ−1)
1 , v

(µ−1)
2 , v

(µ−1)
3 }. If a(m) 6∈ M(u), then a(m) ∈ M(v(µ)

1)∪M(v(µ)
2) =

M(v(µ+1)
1) ⊆ M(v(m)

1) ∪M(v(m)
2) implying P (a(m)) = 1 according to m-

condition 4. If a(m) ∈ M(u), then an h-neighbor a′ ∈ Ω1(a(m)) ∩M(u) ⊆
H of a(m) exists which differs from a(m) in the variable that is tested at u
and thus a′ ∈ M(v(µ)

1) ∪M(v(µ)
2) implying P (a′) = 1. Now, with the two

edges leading to v
(µ)
3 , we could split v

(µ)
3 into two nodes and merge v

(µ)
1

and v
(µ)
2 while preserving the function of P . Thus, for t

(µ+1)
12 = 1 we can

construct an equivalent branching program with t
(µ+1)
12 = 01.

(iv) For t
(k+1)
13 > 0 we know v = v

(k)
3 and v′ = v

(k)
2 and the four cases listed

in the proposition are obtained when the choice of u ∈ {v(k−1)
2 , v

(k−1)
3 }

is combined with whether the second edge from u leads to v
(k)
1 or v′.

In addition, the remaining part for case 1 and 2 follows from (iii) when
k+1 is replaced with k. In particular, we know t

(k)
12 > 0 in case 1, while in

case 2 there is a switching path from v
(k−1)
2 to v

(k+1)
1 via v

(k)
3 (substituting

for t
(k)
12 > 0) and a similar analysis applies to v = v

(k−1)
2 excluding two

switching paths starting from v
(k−2)
2 and v

(k−2)
3 , respectively. 2

5. Definition of Partition Class R and Sets Q1, . . . , Qq

5.1. The Block Structure from µ to ν (Definition of R)
In the following corollary, we summarize the block structure from level µ

through level ν by using Lemma 2, where ν is the greatest level such that
µ ≤ ν ≤ m and t

(`)
12 + t

(`)
13 > 0 for every ` = µ + 1, . . . , ν. Note that ν = µ

for t
(µ+1)
12 = t

(µ+1)
13 = 0. In addition, let level γ be the greatest level such that

µ ≤ γ ≤ ν and t
(γ)
12 > 0 if such γ exists, otherwise set γ = µ.

16

Corollary 1.

1. t
(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2 for ` = µ + 1, . . . , γ − 1 (Lemma 2.iii),

2. t
(γ)
11 = t

(γ)
23 = 1 and t

(γ)
12 = t

(γ)
32 = 1

2 if µ < γ < ν (case 1 of Lemma 2.iv),

3. t
(`)
11 = t

(`)
22 = 1 and t

(`)
33 = 1

2 for ` = γ +1, . . . , ν−1 (case 3 of Lemma 2.iv),

4. if ν > µ, then t
(ν)
12 < 1 (Lemma 2.iii) and t

(ν)
13 < 1 for ν < m (similarly),

5. t
(`)
12 = 0 for ` = ν + 1, . . . , m (Lemma 2.iii).

Figure 4: The block structure from level µ through ν < m according to Corollary 1.

Figure 4 shows a typical structure of the block from level µ through ν for
the case of ν < m, which comes out of Corollary 1. In particular, there are two
disjoint double-edge paths starting from level µ. One follows the first column
from v

(µ)
1 through v

(ν)
1 . For ν < γ < ν, the other double-edge path starts

from v
(µ)
3 , follows the third column and turns to v

(γ)
2 on level γ, and further

continues through the second column up to v
(ν−1)
2 . For γ = µ, this double-

edge path follows only the second column leading from v
(µ)
2 through v

(ν−1)
2 ,

whereas for γ = ν, it follows the third column from v
(µ)
3 through v

(ν−1)
3 . In

addition, there is a node left on each level from µ through ν − 1 that does not
lay on the underlying two disjoint double-edge paths. These remaining nodes
are connected in a single-edge path from level µ through ν−1 extended with an
edge to v

(ν)
2 or v

(ν)
3 . For each node on this single-edge path the other outgoing

edge leads to the double-edge path in the first column.
Furthermore, we shortly analyze level m for the special case of ν = m as

depicted in Figure 5. Recall that t
(m)
11 = t

(m)
21 = 1

2 and t
(m)
32 > 0 by m-condition 1

17

and 2, respectively. Moreover, either t
(m)
12 = 1

2 (i.e. ν = γ) or t
(m)
13 > 0 (i.e. ν > γ)

by the definition of ν. It follows from Lemma 2.ii that either t
(m)
33 = 1 for ν = γ

or t
(m)
32 = 1 for ν > γ. In the latter case of ν > γ, the other edge from v

(m−1)
3

may lead either to v
(m)
3 (i.e. t

(m)
13 = t

(m)
33 = 1

2) or to v
(m)
1 (i.e. t

(m)
13 = 1) or v

(m)
2

(i.e. t
(m)
13 = t

(m)
23 = 1

2). This completes the analysis of level ν = m. We say that
the underlying block is an empty block if ν = m and t

(m)
33 = 0 (i.e. t

(m)
13 +t

(m)
23 = 1

and t
(m)
32 = 1).

Figure 5: Level m for ν = m.

Corollary 1 will be used for the definition of partition class R associated with
the current block, if this block is not empty, which is illustrated in Figure 4.
Moreover, class R is neither defined for ν = µ when only sets Q1, . . . , Qq are
associated with the block (see Paragraph 5.2 and Lemma 3 in particular). Thus,
for a non-empty block and ν > µ, we define the partition class R to be a set
of indices of the variables that are tested on the single-edge computational
path v

(µ)
2 , v

(µ+1)
2 , . . . , v

(γ−1)
2 , v

(γ)
3 , v

(γ+1)
3 , . . . , v

(ν′−1)
3 (or v

(µ)
3 , v

(µ+1)
3 , . . . , v

(ν′−1)
3

if γ = µ or v
(µ)
2 , v

(µ+1)
2 , . . . , v

(ν′−1)
2 if γ = ν) where level ν′ is defined as

ν′ = min(ν, m− 1) . (23)

For the future use of condition (17) we also define relevant bits of string c ∈
{0, 1}n. Thus, let cR

i be the corresponding labels of the edges creating this com-
putational path (indicated by a bold line in Figure 4) including the edge outgoing
from the last node v

(ν′−1)
3 (or v

(ν′−1)
2 if γ = ν) that leads to v

(ν′)
2 or v

(ν′)
3 .

5.2. The Block Structure from ω to m (Definition of Q1, . . . , Qq)
Furthermore, we define level ω to be the greatest level such that µ ≤ ω ≤

m and there is a double-edge path from µ through ω containing only nodes
v` ∈ {v(`)

2 , v
(`)
3 } for every ` = µ, . . . , ω. Note that this path possibly extends the

double-edge path from Corollary 1 (see Figure 4) leading from v
(µ)
2 to v

(ν−1)
2

18

(for γ = µ < ν) or from v
(µ)
3 to v

(ν−1)
2 (for µ < γ < ν) or from v

(µ)
3 to v

(ν−1)
3

(for γ = ν > µ). Hence,
ω ≥ max(ν − 1, µ) . (24)

For the special case of ω = m (including the empty block) when this double-
edge path reaches level m, no sets Q1, . . . , Qq are associated with the current
block and we set q = 0. In this case, we will observe in the following lemma
that ν > µ, which ensures that at least class R is defined for a non-empty block
(Paragraph 5.1) when ω = m.

Lemma 3. If ω = m, then ν > µ.

Proof. On the contrary, suppose ω = m and ν = µ. It follows from Corol-
lary 1.5 that t

(m)
12 = 0. Moreover, t

(m)
22 = 0 since t

(m)
22 > 0 would require t

(m)
13 > 0

by the normalization of P , which contradicts Lemma 2.ii, and hence, t
(m)
32 = 1.

If t
(m−1)
21 + t

(m−1)
31 > 0, then p

(m)
3 ≥ p

(m−1)
2 ≥ p

(m−2)
1 /2 > 1

6 due to (3) which is
in contradiction to m-condition 3. Hence, t

(m−1)
11 = 1 which means µ′ < m− 1.

Furthermore, t
(µ+1)
12 = t

(µ+1)
13 = 0 by the definition of ν implying µ = µ′. Since

P is normalized, we know t
(µ+1)
22 > 0 and either t

(µ+1)
22 = 1 or t

(µ+1)
23 = 1 due

to ω = m, which implies t
(`)
22 = 1 for ` = µ + 2, . . . , m − 1. It follows that

p
(µ+1)
2 ≤ p

(m)
3 < 1

6 according to m-condition 3.
On the other hand, we know t

(µ)
21 + t

(µ)
31 > 0 by the definition of µ′, which

implies p
(µ)
2 > 1

6 due to (3). Hence, t
(µ+1)
22 = t

(µ+1)
32 = 1

2 and t
(µ+1)
23 = 1 because

of p
(µ+1)
2 < 1

6 . This ensures t
(µ)
11 = t

(µ)
21 = 1

2 since p
(µ−1)
1 > 1

3 . Thus, 1
6 >

p
(µ+1)
2 > p

(µ−1)
1 /4 which rewrites as p

(µ−1)
1 < 2

3 implying p
(µ−1)
2 + p

(µ−1)
3 > 1

3 ,
and hence p

(µ−1)
2 > 1

6 due to p
(µ−1)
2 ≥ p

(µ−1)
3 . Clearly, t

(µ)
32 = 0 since otherwise

we get a contradiction 1
6 > p

(µ+1)
2 ≥ 1

4p
(µ−1)
1 + 1

2p
(µ−1)
2 > 1

4 · 1
3 + 1

2 · 1
6 = 1

6 .
Similarly, t

(µ)
22 = 1 produces a contradiction 1

6 > p
(µ+1)
2 ≥ 1

4p
(µ−1)
1 + 1

2p
(µ−1)
2 > 1

6 .
It follows that t

(µ)
12 > 0 whereas t

(µ)
12 = 1 contradicts µ = µ′ according to

(22), and hence t
(µ)
12 = t

(µ)
22 = 1

2 and t
(µ)
33 > 0. This gives a contradiction

1
6 > p

(µ+1)
2 ≥ 1

4 (p(µ−1)
1 +p

(µ−1)
2)+ 1

2p
(µ−1)
3 > 1

4 (p(µ−1)
1 +p

(µ−1)
2 +p

(µ−1)
3) = 1

4 . 2

Thus, we will further assume ω < m throughout this Section 5. This implies
t
(m)
12 = 0 since otherwise t

(m)
12 = t

(m)
32 = 1

2 (m-condition 2) forces t
(m)
33 = 1 by

Lemma 2.ii which would prolong the double-edge path from v
(µ)
3 up to v

(m)
3

according to Lemma 2.iii.
We will show that one can assume t

(m)
13 > 0 without loss of generality1.

Suppose that t
(m)
13 = 0, which implies t

(m)
22 = t

(m)
23 = 0 due to P is normalized,

and hence t
(m)
32 = t

(m)
33 = 1. Moreover, we know t

(m)
11 = t

(m)
21 = 1

2 by m-
condition 1 and m-condition 3 ensures t

(m−1)
11 = 1. If t

(m−1)
12 = t

(m−1)
13 = 0,

then v
(m−1)
2 and v

(m−1)
3 can be merged and replaced by v

(m)
3 , while v

(m−1)
1

replaces v
(m−2)
1 , which shortens P without changing its function. Hence, either

19

t
(m−1)
12 > 0 or t

(m−1)
13 > 0 by Lemma 2.ii. In fact, t

(m−1)
12 > 0 contradicts ω < m

according to Lemma 2.iii since t
(m−1)
23 + t

(m−1)
33 = t

(m)
32 = t

(m)
33 = 1 can, without

loss of generality, prolong the double-edge path from v
(µ)
3 through v

(m−2)
3 up

to v
(m)
3 . For t

(m−1)
13 > 0, on the other hand, v

(m−1)
2 and v

(m−1)
3 can be merged

while v
(m−1)
1 is split into two its copies, which produces t

(m−1)
11 = t

(m−1)
21 =

1
2 , t

(m−1)
32 = 1, and t

(m)
11 = t

(m)
21 = t

(m)
12 = t

(m)
22 = 1

2 , t
(m)
33 = 1. After this

modification, level m−1 satisfies the four m-conditions 1–4 (see Paragraph 4.1)
and thus, it can serve as a new level m while the original level m > d (for m = d
program P could be shortened by removing its last level) is included in the
previous upper-level neighboring block, which is consistent with its structure
(see Paragraph 6.2 and Figure 7 in particular).

Thus, we assume t
(m)
13 > 0 without loss of generality, which implies t

(m)
32 = 1

by Lemma 2.ii and t
(m−1)
11 = 1 according to m-condition 3. Then Lemma 2.iv

can be employed for k = m − 1 where only case 3 and 4 may occur due to
ω < m is assumed, which even implies ω < m − 1. In case 3, t

(m−1)
13 > 0 and

Lemma 2.iv can again be applied recursively to k = m− 2 etc.
In general, we start with level σ1 = m that meets t

(σj)
13 > 0 for j = 1.

We proceed to lower levels and inspect recursively the structure of subblocks
indexed as j from level λj through σj where λj is the least level such that
ω ≤ λj < σj−1 and the transitions from case 3 or 4 of Lemma 2.iv occur for all
levels ` = λj + 1, . . . , σj − 1 as depicted in Figure 6. This means t

(`)
11 = t

(`)
22 = 1

and t
(`)
33 = 1

2 for every ` = λj + 1, . . . , σj − 1. Note that λj > µ because λj = µ

ensures t
(µ+1)
22 = 1 implying ω > µ = λj by the definition of ω, which contradicts

ω ≤ λj . In addition, we will observe that case 4 from Lemma 2.iv occurs at level
λj + 1, that is t

(λj+1)
23 = 1

2 . On the contrary, suppose that t
(λj+1)
13 = 1

2 (case 3).
For λj > ω, this means case 1 or 2 occurs at level λj < µ by the definition
of λj , which would be in contradiction to ω ≤ λj according to Lemma 2.iv.
For λj = ω, on the other hand, t

(ω+1)
13 = 1

2 contradicts the definition of ω by
Lemma 2.iv. This completes the argument for t

(λj+1)
23 = 1

2 .
Furthermore, let level κj be the least level such that λj + 1 < κj ≤ σj

and t
(κj)
13 > 0, which exists since at least t

(σj)
13 > 0. Now we can define Qj

associated with the current block (a candidate for Q in the richness condition
(17)) to be a set of indices of the variables that are tested on the computational
path v

(λj)
3 , v

(λj+1)
3 , . . . , v

(κj−1)
3 , and let c

Qj

i be the corresponding labels of the
edges creating this path including the edge from v

(κj−1)
3 to v

(κj)
1 (indicated by

a bold line in Figure 6). This extends the definition of c ∈ {0, 1}n associated
with R and Qk for 1 ≤ k < j, which are usually pairwise disjoint due to P
is read-once. Nevertheless, the definition of c may not be unique for indices
from their nonempty intersections in some very special cases (including those
corresponding to neighboring blocks) but the richness condition will only be
used for provably disjoint sets (see Section 7).

20

Figure 6: The definition of Q1, . . . , Qq .

Finally, define next level σj+1 to be the greatest level such that ω + 1 <

σj+1 ≤ λj and t
(σj+1)
13 > 0, if such σj+1 exists, and continue in the recursive

definition of λj+1, κj+1, Qj+1 with j replaced by j + 1 etc. If such σj+1 does
not exist, then set q = j and the definition of sets Q1, . . . , Qq associated with
the current block is complete.

5.3. An Upper Bound on p
(m)
1 + p

(m)
2 in Terms of p

(ω+1)
1

In this paragraph, we will upper bound p
(m)
1 +p

(m)
2 in terms of p

(ω+1)
1 which

will later be used for verifying the condition (16). For any 1 ≤ j ≤ q, we know
that t

(`)
11 = t

(`)
22 = 1 and t

(`)
23 = t

(`)
33 = 1

2 for every ` = λj + 1, . . . , κj − 1 (see

21

Figure 6), which gives

p
(κj−1)
2 + p

(κj−1)
3 = p

(λj)
2 + p

(λj)
3 , (25)

p
(κj−1)
3 =

p
(λj)
3

2|Qj |−1
≤ p

(λj)
2 + p

(λj)
3

2|Qj | (26)

because p
(λj)
3 ≤ 1

2 (p(λj)
2 + p

(λj)
3). We know t

(`)
12 = 0 for every ` = ω + 2, . . . , m

according to Corollary 1.5 where ν + 1 ≤ ω + 2 by (24). Moreover, it follows
from the definition of σj+1 > ω + 1 that t

(`)
13 = 0 for every ` = σj+1 + 1, . . . , λj

for any 1 ≤ j < q, and t
(`)
13 = 0 for every ` = ω + 2, . . . , λq. Hence,

p
(σj+1)
2 + p

(σj+1)
3 = p

(λj)
2 + p

(λj)
3 = p

(κj−1)
2 + p

(κj−1)
3 (27)

for 1 ≤ j < q and

p
(ω+1)
2 + p

(ω+1)
3 = p

(λq)
2 + p

(λq)
3 = p

(κq−1)
2 + p

(κq−1)
3 (28)

according to (25). Note that equation (28) holds trivially for λq = ω+1 and it is
also valid for λq = ω (recall λq ≥ ω from the definition of λj) because t

(λq+1)
11 =

t
(λq+1)
22 = 1 and t

(λq+1)
23 = t

(λq+1)
33 = 1

2 (case 4 of Lemma 2.iv). Furthermore, we
know t

(`)
22 = 1 for every ` = κj , . . . , σj − 1 and t

(σj)
12 = 0, which implies

p
(σj)
2 + p

(σj)
3 ≥ p

(κj−1)
2 + p

(κj−1)
3 − p

(κj−1)
3

≥ p
(κj−1)
2 + p

(κj−1)
3 − p

(λj)
2 + p

(λj)
3

2|Qj |

=
(
p
(σj+1)
2 + p

(σj+1)
3

) (
1− 1

2|Qj |

)
(29)

for 1 < j < q according to (26) and (27), while formula (29) reads

p
(m)
3 = p

(σ1)
3 ≥

(
p
(σ2)
2 + p

(σ2)
3

) (
1− 1

2|Q1|

)
(30)

for j = 1 < q due to t
(m)
32 = 1, whereas (29) is rewritten as

p
(σq)
2 + p

(σq)
3 ≥

(
p
(ω+1)
2 + p

(ω+1)
3

) (
1− 1

2|Qq|

)
(31)

for j = q > 1 according to (28). Thus starting with (30), inequality (29)
is applied recursively for j = 2, . . . , q − 1, and, in the end, formula (31) is
employed, leading to

p
(m)
3 ≥

(
p
(ω+1)
2 + p

(ω+1)
3

) q∏

j=1

(
1− 1

2|Qj |

)
(32)

22

which is also obviously valid for the special case of q = 1. This can be rewritten
as

p
(m)
1 + p

(m)
2 ≤ 1−

(
1− p

(ω+1)
1

) q∏

j=1

(
1− 1

2|Qj |

)
(33)

which represents the desired upper bound on p
(m)
1 + p

(m)
2 in terms of p

(ω+1)
1 .

6. The Conditional Block Structure below µ

6.1. Assumptions and Level µ + 1
Throughout this Section 6, we will assume

p
(µ)
3 <

1
6

, (34)
q∏

j=1

(
1− 1

2|Qj |

)
>

2
3

(35)

where the product in (35) equals 1 for q = 0. Based on these assumption, we
will further analyze the block structure below2 level µ in order to satisfy the m′-
conditions 1–4 (see Paragraph 4.1) also for the first block level m′ (the formal
definition of m′ appears at the beginning of Paragraph 6.2) so that the analysis
can be applied recursively when inequalities (34) and (35) hold (Section 7). For
this purpose, we still analyze level µ + 1 in the following lemma which implies
ν > µ and thus guarantees that partition class R is defined for the underlying
block if not empty.

Lemma 4. t
(µ+1)
12 = 1

2 .

Proof. For µ = µ′−1, the proposition follows from the definition of µ, and thus
assume µ = µ′. Consider first the special case of µ + 1 = m for which t

(m)
12 = 0

implies t
(m)
32 = 1 by using m-condition 2, Lemma 2.ii, and the normalization

of P . Hence, we get a contradiction 1
6 > p

(m)
3 ≥ p

(m−1)
2 ≥ 1

2p
(m−2)
1 > 1

6 by
m-condition 3 and the definition of µ′. Thus further assume µ < m−1. Clearly,
t
(µ+1)
32 < 1 by the normalization of P whereas t

(µ+1)
33 = 1 implies t

(µ+1)
12 = 1

2 ,
and thus, further consider the case when no double edge leads to v

(µ+1)
3 . If

t
(µ+1)
12 > 0, then t

(µ+1)
12 = 1

2 by Lemma 2.iii for k = µ. On the contrary, suppose
t
(µ+1)
12 = 0, which gives t

(µ+1)
22 > 0 due to t

(µ+1)
32 < 1. Assumption (34) ensures

t
(µ)
31 = 0 which implies t

(µ)
21 > 0 by the definition of µ′.

We will first show that
p
(µ+1)
2 <

1
4

. (36)

For ω < m, assumption (35) together with m-condition 3 ensures

p
(ω+1)
2 + p

(ω+1)
3 <

1
4

(37)

23

according to (32), which gives (36) for ω = µ. For ω > µ, we know by the
definition of ω that there is a double-edge path starting from v

(µ)
2 or v

(µ)
3 and

traversing v
(µ+1)
2 as we assume no double edge to v

(µ+1)
3 . For ω < m, we have

t
(`)
22 = 1 for ` = µ + 2, . . . , ω, and t

(ω+1)
12 = 0 according to Lemma 2.iii, and

hence, p
(µ+1)
2 ≤ p

(ω+1)
2 + p

(ω+1)
3 < 1

4 due to (37). Similarly, p
(µ+1)
2 ≤ p

(m)
3 < 1

6
for ω = m by m-condition 3, which completes the argument for (36).

Suppose first that t
(µ)
21 = 1, which together with p

(µ−1)
1 > 1

3 implies t
(µ+1)
22 =

t
(µ+1)
32 = 1

2 according to (36). Obviously, 1
2 < t

(µ)
12 +t

(µ)
13 < 2 by the normalization

of P . For t
(µ)
12 + t

(µ)
13 = 1, either t

(µ)
12 = t

(µ)
33 = 1 or t

(µ)
32 = t

(µ)
13 = 1 when P could

be shortened without changing its function, or t
(µ)
12 = t

(µ)
13 = t

(µ)
32 = t

(µ)
33 = 1

2

implying p
(µ)
1 = p

(µ)
2 = p

(µ)
3 = 1

3 which contradicts (3). Hence, t
(µ)
12 + t

(µ)
13 = 3

2 .
Denote i ∈ {2, 3} so that t

(µ)
1i = 1 whereas j ∈ {2, 3} satisfies t

(µ)
1j = t

(µ)
3j = 1

2 .

If t
(µ+1)
13 = 1, then we could shorten P while preserving its function, and hence

t
(µ+1)
23 > 0 due to t

(µ+1)
33 < 1. It follows that p

(µ+1)
2 ≥ 1

2p
(µ−1)
1 + 1

4p
(µ−1)
j =

1
4 (2p

(µ−1)
1 +p

(µ−1)
j) = 1

4 (1−p
(µ−1)
i +p

(µ−1)
1) ≥ 1

4 which contradicts (36). Hence,

t
(µ)
11 = t

(µ)
21 = 1

2 due to t
(µ)
11 < 1 and t

(µ)
31 = 0, which implies t

(µ)
12 < 1 since µ = µ′.

In addition, there are no ‘switching paths’ (cf. Lemma 2.ii) starting si-
multaneously from all three vertices v

(µ−1)
1 , v

(µ−1)
2 , v

(µ−1)
3 and leading to v

(µ)
1

or v
(µ+1)
1 since otherwise an h-neighbor a′ ∈ Ω2(a(m)) ∩ M(v(µ−1)

i) ⊆ H of
a(m) ∈ M(v(µ−1)

i) from m-condition 4 would exist for some i ∈ {1, 2, 3} such
that a′ ∈ M(v(µ+1)

1) implying P (a′) = 1. Recall we still need to contradict
t
(µ+1)
12 = 0, provided that t

(µ)
11 = t

(µ)
21 = 1

2 , t
(µ)
12 < 1, t

(µ+1)
11 = 1, t

(µ+1)
22 > 0, and

t
(µ+1)
33 < 1.

We will first consider the case of t
(µ)
12 = 1

2 which implies t
(µ)
13 = 0 since three

parallel switching paths starting from level µ − 1 are excluded. Suppose that
t
(µ)
33 > 0 which also gives t

(µ+1)
13 = 0 because of ruling out the three switching

paths, and hence t
(µ+1)
23 > 0 due to t

(µ+1)
33 < 1. In addition, we know t

(µ)
22 +t

(µ)
32 =

1
2 since we assume t

(µ)
12 = 1

2 . It follows that p
(µ+1)
2 ≥ 1

4p
(µ−1)
1 + 1

4p
(µ−1)
2 +

1
4p

(µ−1)
3 = 1

4 which contradicts (36). Hence, t
(µ)
33 = 0 implying t

(µ)
23 = 1 due

to t
(µ)
13 = 0, which gives t

(µ)
32 = 1

2 . For t
(µ+1)
23 > 0, we would again get a

contradiction p
(µ+1)
2 ≥ 1

4p
(µ−1)
1 + 1

4p
(µ−1)
2 + 1

2p
(µ−1)
3 ≥ 1

4 , and hence we have
t
(µ+1)
23 = 0 and t

(µ+1)
13 > 0 because of t

(µ+1)
33 < 1. We can assume without loss

of generality1 that t
(µ+1)
13 = 1

2 since otherwise t
(µ)
12 = t

(µ)
32 = 1

2 and t
(µ+1)
13 = 1

(implying t
(µ+1)
22 = t

(µ+1)
32 = 1

2) could be replaced with t
(µ)
12 = 1 while t

(µ)
23 = 1 is

replaced with t
(µ)
22 = t

(µ)
32 = t

(µ)
23 = t

(µ)
33 = 1

2 and t
(µ+1)
23 = t

(µ+1)
33 = 1

2 where v
(µ)
3

is a copy of v
(µ)
2 , which redefines level µ. Thus, it follows from t

(µ+1)
13 = 1

2 and
t
(µ+1)
23 = 0 that t

(µ+1)
33 = 1

2 and t
(µ+1)
22 = 1 by the normalization of P .

Recall once more we have t
(µ)
11 = t

(µ)
21 = t

(µ)
12 = t

(µ)
32 = 1

2 , t
(µ)
23 = 1, t

(µ+1)
11 =

24

Figure 7: The block structure from m′ to µ.

t
(µ+1)
22 = 1, and t

(µ+1)
13 = t

(µ+1)
33 = 1

2 . We know p
(µ−1)
1 ≤ 2p

(µ+1)
2 < 1

2 due to (36)
and p

(µ−1)
2 = 2p

(µ)
3 < 1

3 by (34), which implies p
(µ+1)
1 = 1

2p
(µ−1)
1 + 3

4p
(µ−1)
2 < 1

2 .
This gives a contradiction p

(µ+1)
2 ≥ 1

2 (p(µ+1)
2 + p

(µ+1)
3) = 1

2 (1 − p
(µ+1)
1) > 1

4

according to (36), which completes the argument for t
(µ)
12 = 1

2 .
Further consider the case of t

(µ)
13 > 0 which ensures t

(µ)
12 = 0 or equivalently

t
(µ)
22 + t

(µ)
32 = 1. We know t

(µ)
22 < 1 by the normalization of P , and hence t

(µ)
32 > 0,

which also ensures t
(µ+1)
13 = 0 since the three parallel switching paths starting

from level µ − 1 are excluded. It follows that t
(µ+1)
23 > 0 due to t

(µ+1)
33 < 1.

Thus, we get a contradiction p
(µ+1)
2 ≥ 1

4p
(µ−1)
1 + 1

2p
(µ−1)
2 ≥ 1

4p
(µ−1)
1 + 1

4p
(µ−1)
2 +

1
4p

(µ−1)
3 = 1

4 according to (36).
Similarly, for the remaining case of t

(µ)
12 = t

(µ)
13 = 0 we obtain t

(µ)
32 = t

(µ)
33 = 1

by the normalization of P , which again ensures t
(µ+1)
13 = 0 implying t

(µ+1)
23 > 0.

Hence, p
(µ+1)
2 ≥ 1

4p
(µ−1)
1 + 1

2p
(µ−1)
2 + 1

2p
(µ−1)
3 ≥ 1

4 , which contradicts (36). This
completes the proof of the lemma. 2

6.2. The Block Structure from m′ to µ (m′-Conditions 1–3)
We define the first level m′ of the underlying block to be the greatest level

such that 2 ≤ m′ ≤ µ and t
(m′)
32 > 0 (m′-condition 2), which exists since at least

t
(2)
32 > 0. In the following lemma, we will analyze the initial block structure

from level m′ through µ, which is illustrated in Figure 7 (where the dashed line
shows that there is no edge from v

(k−1)
1 or v

(k−1)
2 to v

(k)
3 for any m′ < k ≤ µ).

Lemma 5. t
(k)
31 = t

(k)
32 = 0 and t

(k)
33 = 1 for every k = m′ + 1, . . . , µ.

Proof. On the contrary, let k be the greatest level such that m′ < k ≤ µ and
t
(k)
33 < 1, that is t

(`)
33 = 1 for ` = k+1, . . . , µ. Obviously, t

(k)
33 > 0 because t

(`)
32 = 0

25

for every ` = m′ + 1, . . . , k, . . . , µ by the definition of m′, and t
(`)
31 = 0 for every

` = k, . . . , µ since otherwise p
(µ)
3 ≥ p

(`)
3 > 1

6 , which contradicts (34). Hence,
t
(k)
33 = 1

2 and the edge from v
(k−1)
3 to v

(k)
3 is the only edge that leads to v

(k)
3 due

to t
(k)
31 = t

(k)
32 = 0, while the other edge from v

(k−1)
3 goes either to v

(k)
1 or to

v
(k)
2 . Thus, either a(m) ∈ M(v(k)

1) ∪M(v(k)
2) for a(m) satisfying m-condition 4

(Paragraph 4.1), or an h-neighbor a′ ∈ Ω1(a(m)) ∩ M(v(k−1)
3) of a(m) exists

that differs from a(m) in the variable that is tested at v
(k−1)
3 so that also a′ ∈

M(v(k)
1)∪M(v(k)

2). Since M(v(k)
1)∪M(v(k)

2) = M(v(µ)
1)∪M(v(µ)

2) and t
(µ+1)
12 = 1

2

by Lemma 4, there is an h-neighbor a′′ ∈ Ω2(a(m)) ∩ M(v(µ+1)
1) ⊆ H of a(m)

such that P (a′′) = 1 by m-condition 4 since M(v(µ+1)
1) ⊆ M(v(m)

1) ∪M(v(m)
2),

which is a contradiction. Thus t
(k)
33 = 1 for k = m′ + 1, . . . , µ. 2

Lemma 5 together with assumption (34) gives

p
(m′)
1 + p

(m′)
2 = p

(µ)
1 + p

(µ)
2 , (38)

p
(m′)
3 = p

(µ)
3 <

1
6

(39)

which verifies m′-condition 3 for the first block level m′. Note that inequality
(39) ensures m′ ≥ 3 due to p

(2)
3 ≥ 1

4 . Finally, the following lemma shows
m′-condition 1.

Lemma 6. t
(m′)
11 = t

(m′)
21 = 1

2 (m′-condition 1).

Proof. Obviously, t
(m′)
31 = 0 since otherwise p

(m′)
3 > 1

6 which contradicts (39).

For t
(m′)
11 = 1 or t

(m′)
21 = 1 we obtain t

(m′)
12 +t

(m′)
22 > 0 and t

(m′)
13 +t

(m′)
23 > 0 by the

normalization of P . Thus either a(m) ∈ M(v(m′−1)
1) ⊆ M(v(m′)

1) ∪M(v(m′)
2) or

an h-neighbor a′ ∈ Ω1(a(m))∩(M(v(m′−1)
2)∪M(v(m′−1)

3)) of a(m) exists such that
a′ ∈ M(v(m′)

1)∪M(v(m′)
2). Since M(v(m′)

1)∪M(v(m′)
2) = M(v(µ)

1)∪M(v(µ)
2) and

t
(µ+1)
12 = 1

2 by Lemma 4, there is an h-neighbor a′′ ∈ Ω2(a(m))∩M(v(µ+1)
1) ⊆ H

of a(m) such that P (a′′) = 1 which is a contradiction. The last possibility
t
(m′)
11 = t

(m′)
21 = 1

2 follows. 2

6.3. An Upper Bound on p
(ω+1)
1 in Terms of p

(m′)
1 + p

(m′)
2

In Paragraph 5.3, we have upper bounded p
(m)
1 + p

(m)
2 at the last block level

m in terms of p
(ω+1)
1 provided that ω < m. In this paragraph, we will extend

this estimate by upper bounding p
(ω+1)
1 (or p

(m)
1 + p

(m)
2 for ω = m) in terms of

p
(m′)
1 + p

(m′)
2 from the first block level m′. Putting these two bounds together,

we will obtain a recursive formula for an upper bound on p
(m)
1 + p

(m)
2 in terms

of p
(m′)
1 + p

(m′)
2 which will be used in Section 7 for verifying condition (16).

We first resolve the case of the empty block when ν = m = ω, t
(m)
33 = 0, t

(m)
13 +

t
(m)
23 = 1, and t

(m)
32 = 1 (see Figure 5). It follows from Corollary 1 and Lemma 5

26

(see Figures 4 and 7, respectively) that M(v(m′)
1) ∪ M(v(m′)

2) = M(v(m)
1) ∪

M(v(m)
2) which ensures m′-condition 4 (m′-conditions 1–3 have already been

checked in Paragraph 6.2) and p
(m′)
1 + p

(m′)
2 = p

(m)
1 + p

(m)
2 . Hence, the empty

block can be skipped in our analysis by replacing m′ with m, and we will further
consider only the non-empty blocks.

It follows from the definition of partition class R (see Figure 4) and Lemma 4
that

p
(ν)
1 = p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|

)
for ν < m . (40)

For ν = m when ν′ = ν − 1, we know t
(m)
33 > 0 because we assume a non-empty

block, and hence, either t
(m)
12 = t

(m)
32 = 1

2 and t
(m)
33 = 1, or t

(m)
13 = t

(m)
33 = 1

2 and
t
(m)
32 = 1 (see Figure 5) by the definition of ν, Lemma 2.ii, and m-conditions 1

and 2, which also ensures ω = m in both cases. Thus,

p
(m)
1 + p

(m)
2 = p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|+1

)
for ν = m = ω (41)

according to (23). For ν = m − 1 we know t
(m)
12 = t

(m)
13 = 0 leading to t

(m)
32 =

t
(m)
33 = 1, for which ω = m can be assumed without loss of generality1.

Further assume ν < m−1, while the resulting formula for ν < m will also be
verified for the case of ν = m− 1 (when ω = m) below in (43). We know by the
definition of ν that t

(ν+1)
12 = t

(ν+1)
13 = 0, which excludes t

(ν+1)
32 = 1 and t

(ν+1)
33 = 1

since P is normalized. First consider the case of ω > ν excluding ω = ν− 1 ≥ µ
and ω = ν for now, cf. (24). Then the double-edge path from the definition of ω

passes through a double edge from v ∈ {v(ν)
2 , v

(ν)
3 } to v

(ν+1)
2 , while the two edges

from the other node v′ ∈ {v(ν)
2 , v

(ν)
3 }\{v} lead to v

(ν+1)
2 and v

(ν+1)
3 , respectively,

as depicted in Figure 8. For ` = ν + 2, . . . , ω, we have either t
(`)
22 = 1 implying

t
(`)
33 = 1

2 if ` < m, or t
(`)
32 = 1 if ` = m. Moreover, t

(ω+1)
12 = 0 for ω < m by

Corollary 1.5. Hence, p
(ν+1)
3 = p

(µ)
2 /2|R|+1 (cf. Figure 4 and Lemma 4) upper

bounds the fraction of all the inputs whose computational path traverses nodes
v′, v(ν+1)

3 , v
(ν+2)
3 , . . . , v

(`)
3 , v

(`+1)
1 for some ν + 1 ≤ ` ≤ min(ω, m− 1). It follows

that

p
(ω+1)
1 ≤ p

(ν)
1 +

p
(µ)
2

2|R|+1
for ω < m (42)

which is even valid for any max(ν−1, µ) ≤ ω < m since obviously p
(ω+1)
1 = p

(ν)
1

for ω = ν − 1 ≥ µ as well as for ω = ν < m, while

p
(m)
1 + p

(m)
2 ≤ p

(ν)
1 +

p
(µ)
2

2|R|+1
for ω = m (43)

which also holds for ν = m− 1 because p
(m)
1 + p

(m)
2 = p

(ν)
1 in this case.

In addition, we will prove the following lemma:

27

Figure 8: The block structure from ν < ω to ω + 1 (or to m if ω = m).

Lemma 7.
p
(µ)
1 + p

(µ)
2 ≤ 4p

(µ)
2 . (44)

Proof. First consider the case of µ > m′. Clearly, t
(µ)
21 > 0 follows from the

definition of µ′ for µ = µ′, while for µ = µ′ − 1, the case of t
(µ)
21 = 0 translates

to original t
(µ)
11 = 0 (before v

(µ)
1 and v

(µ)
2 were swapped) which contradicts the

normalization of P by Lemma 5. Hence, we have p
(µ)
1 +p

(µ)
2 = p

(µ−1)
1 +p

(µ−1)
2 ≤

2p
(µ−1)
1 ≤ 4p

(µ)
2 according to Lemma 5. For µ = m′, on the other hand, we will

distinguish three cases. For t
(µ)
32 = t

(µ)
33 = 1, we know p

(µ)
1 = p

(µ)
2 by Lemma 6,

which implies (44). For t
(µ)
12 + t

(µ)
22 = 1

2 , we have t
(µ)
33 = 1 by Lemma 2.ii, which

gives p
(µ)
1 ≤ 1

2p
(µ−1)
1 + 1

2p
(µ−1)
2 < 1

2 + 1
6 = 2

3 since p
(µ−1)
2 < 1

3 by m′-conditions 2
and (39). In addition, p

(µ−1)
3 < p

(µ)
3 < 1

6 implying p
(µ−1)
2 + p

(µ−1)
3 < 1

2 which
means p

(µ)
2 ≥ 1

2p
(µ−1)
1 > 1

4 by Lemma 6. It follows that p
(µ)
1 < 2

3 < 3
4 < 3p

(µ)
2

which gives (44). Similarly for t
(µ)
13 + t

(µ)
23 > 0, we have t

(µ)
32 = 1 implying

1
6 > p

(µ)
3 ≥ p

(µ−1)
2 ≥ p

(µ−1)
3 due to (39), and hence p

(µ−1)
1 > 2

3 which ensures
p
(µ)
2 > 1

3 by Lemma 6, while p
(µ)
1 ≤ 1

2p
(µ−1)
1 + p

(µ−1)
3 < 1

2 + 1
6 = 2

3 < 1 < 3p
(µ)
2

which completes the proof of the lemma. 2

For ν < m, equation (40) is plugged into (42) if ω < m or into (43) if ω = m,
while equation (41) is considered for ν = m (implying ω = m). Then Lemma 7
and equation (38) are employed, which results in

p
(ω+1)
1 ≤ p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|

)
+

p
(µ)
2

2|R|+1
= p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|+1

)

≤
(
p
(m′)
1 + p

(m′)
2

) (
1− 1

2|R|+3

)
for ω < m , (45)

28

p
(m)
1 + p

(m)
2 ≤

(
p
(m′)
1 + p

(m′)
2

)(
1− 1

2|R|+3

)
for ω = m. (46)

Formula (45) can further be plugged into (33) giving

p
(m)
1 + p

(m)
2 ≤ 1−

(
1−

(
p
(m′)
1 + p

(m′)
2

)(
1− 1

2|R|+3

)) q∏

j=1

(
1− 1

2|Qj |

)
(47)

which is even valid for ω = m (i.e. q = 0) since equation (47) coincides with
(46) in this case.

7. The Recursion

In the previous Sections 4–6, we have analyzed the structure of the block of
P from level m′ through m (see Figure 2). We will now employ this block anal-
ysis recursively so that m = mr is replaced by m′ = mr+1. For this purpose, we
introduce additional index b = 1, . . . , r to the underlying objects in order to dif-
ferentiate among respective blocks. For example, the sets R, Q1, . . . , Qq, defined
in Section 5, corresponding to the bth block are denoted as Rb, Qb1, . . . , Qbqb

,
respectively.

It follows from the definition of partition class in Paragraph 5.1 that, for
any b > 1, the nodes labeled with the variables whose indices are in Rb are
connected with the nodes corresponding to Rb−1 through a computational path
which traverses nodes v

(ν′b)
1 , v

(ν′b+1)
1 , . . . , v

(mb−1)
1 since ν′b ≤ mb − 1 according to

(23). Hence, sets R1, . . . , Rr are pair-wise disjoint because P is read-once, and
thus they create a partition.

7.1. Inductive Assumptions
In particular, we will proceed by induction on r, starting with r = 0 and

m0 = d. In the induction step for r + 1, we assume that the four mr-conditions
from Paragraph 4.1 are met for the last level m = mr of the (r + 1)st block
(see Paragraph 4.2 for r = 0), and let the assumption (34) be satisfied for the
previous blocks, that is,

p
(µb)
3 <

1
6

(48)

for every b = 1, . . . , r. In addition, assume

1−Πr < δ = min
(

ε− ε′,
6ε− 5

7

)
<

1
7

(49)

where ε > 5
6 and ε′ < ε are the parameters of Theorem 2 and denote

Πk =
k∏

b=1

πb , πb =
qb∏

j=1

(
1− 1

2|Qbj |

)
, (50)

29

%k =
k∏

b=1

αb , αb =
(

1− 1
2|Rb|+3

)
(51)

for k = 1, . . . , r, %0 = Π0 = 1, and πb = 1 for qb = 0. It follows from (50) and
(49) that

πb ≥ Πr > 1− δ >
2
3

(52)

which verifies assumption (35) for every b = 1, . . . , r. Hence, we can employ
recursive inequality (47) from Section 6 which is rewritten as

pb−1 ≤ 1− (1− pbαb)πb = 1− πb + pbαbπb (53)

for b = 1, . . . , r where notation pb = p
(mb)
1 + p

(mb)
2 is introduced. Starting with

p0 = p
(d)
1 + p

(d)
2 ≥ ε (54)

which follows from (20), recurrence (53) can be solved as

ε ≤
r∑

k=1

(1− πk)
k−1∏

b=1

αbπb + pr

r∏

b=1

αbπb <

r∑

k=1

(1− πk)Πk−1 + pr%rΠr

= 1−Πr + pr%rΠr . (55)

In addition,
%r > pr%rΠr > ε− δ ≥ ε′ (56)

follows from (55) and (49).

7.2. Recursive Step
Throughout this paragraph, we will consider the case when

1−Πr+1 < δ (57)

(cf. assumption (49)), while the case complementary to (57), which concludes
the recursion, will be resolved below in Section 8. Assuming condition (57),
we will prove that inductive assumptions (48) and (49) are met for r replaced
with r +1 together with the four mr+1-conditions for the first level mr+1 of the
(r + 1)st block so that we can further proceed in the recursion.

By analogy to (52), inequality (57) implies

πr+1 > 1− δ >
2
3

. (58)

For ωr+1 < mr, we know

pr ≤ 1−
(
p
(ωr+1+1)
2 + p

(ωr+1+1)
3

)
πr+1 (59)

according to (33), and

p
(ωr+1+1)
2 + p

(ωr+1+1)
3 ≥ p

(µr+1)
3 (60)

30

by the definition of ωr+1 and Lemma 2.iii–iv (for k = ωr+1), which altogether
gives

ε < 1−Πr +
(
1− p

(µr+1)
3 πr+1

)
%rΠr (61)

according to (55). Hence,

ε− δ <
(
1− p

(µr+1)
3 πr+1

)
%rΠr < 1− p

(µr+1)
3 πr+1 (62)

follows from (49), which gives

p
(µr+1)
3 <

1− ε + δ

1− δ
≤ 1

6
for ωr+1 < mr (63)

by (58) and (49). Inequality (63) is even valid for ωr+1 = mr since

p
(µr+1)
3 ≤ p

(mr)
3 <

1
6

for ωr+1 = mr (64)

according to mr-condition 3. Therefore, assumptions (34) and (35) of the anal-
ysis in Section 6 are also met for the (r + 1)st block according to (63)–(64) and
(58), respectively, which justifies recurrence inequality (53) for b = r+1 leading
to the solution

ε < 1−Πr+1 + pr+1%r+1Πr+1 (65)

by analogy to (55) where r is replaced with r + 1. Similarly to (56), we obtain

%r+1 > ε′ (66)

by combining (65) with (57). Thus, inductive assumptions (48) and (49) are
valid for r replaced by r + 1 according to (63)–(64) and (57), respectively.

In order to proceed in the next induction step, we still need to verify the
four mr+1-conditions from Paragraph 4.1 for level mr+1. In Paragraph 6.2,
mr+1-conditions 1–3 have been proven, and thus, it suffices to validate mr+1-
condition 4. For this purpose, we exploit the fact that A is ε′11-rich after we
show corresponding condition (16) for partition {R1, . . . , Rr+1} of I =

⋃r+1
b=1 Rb.

In particular,

ε′11 < %11
r+1 <

r+1∏

b=1

(
1− 1

2|Rb|

)
(67)

follows from (66) since for any 1 ≤ b ≤ r + 1,

(
1− 1

2|Rb|+3

)11

< 1− 1
2|Rb| (68)

for |Rb| ≥ 1 because f(x) = ln(1 − 1
x)/ ln(1 − 1

8x) is a decreasing function for
x = 2|Rb| ≥ 2, and f(2) < 11. This provides required a(mr+1) ∈ A such that for
every b = 1, . . . , r + 1 there exists i ∈ Rb that meets a

(mr+1)
i 6= ci according to

(17) for Q = ∅. Obviously, the computational path for this a(mr+1) ends up in

31

sink v
(d)
1 or v

(d)
2 labeled with 1 when we put a(mr+1) at node v

(mr+1)
1 or v

(mr+1)
2

by the definition of Rb, ci and by the structure of branching program P (see
Figure 4), which proves mr+1-condition 4. Thus, the inductive assumptions are
met for r +1 and we can proceed recursively for r replaced with r +1 etc. until
condition (57) is broken.

8. The End of Recursion

In this section, we will consider the case of

1−Πr+1 ≥ δ (69)

complementary to (57), which concludes the recursion from Section 7 as follows.
Suppose |Qbj | > log n for every b = 1, . . . , r+1 and j = 1, . . . , qb, then we would
have

Πr+1 =
r+1∏

b=1

qb∏

j=1

(
1− 1

2|Qbj |

)
≥

(
1− 1

2log n

) n
log n

(70)

> 1− 1
n
· n

log n
= 1− 1

log n
, (71)

which breaks (69) for sufficiently large n. Hence, there must be 1 ≤ b∗ ≤ r + 1
and 1 ≤ j∗ ≤ qb∗ such that |Qb∗j∗ | ≤ log n, and we denote Q = Qb∗j∗ . Clearly,
Q∩Rb = ∅ for b = 1, . . . , b∗− 2 due to P is read-once while it may happen that
Q ∩ Rb∗−1 6= ∅ for j∗ = 1, κb∗1 = σb∗1 = mb∗−1, and t

(mb∗−1)
23 = 0. Thus, let r∗

be the maximum of b∗−2 and b∗−1 such that Q∩Rr∗ = ∅. We will again employ
the fact that A is ε′11-rich. First condition (16) for partition {R1, . . . , Rr∗} of
I =

⋃r∗

b=1 Rb is verified as

r∗∏

b=1

(
1− 1

2|Rb|

)
> %11

r > ε′11 (72)

according to (68) and (56). This provides a∗ ∈ A such that a∗i = cQ
i for every

i ∈ Q and at the same time, for every b = 1, . . . , r∗ there exists i ∈ Rb that
meets a∗i 6= cRb

i according to (17).

Lemma 8. Denote λ = λb∗j∗ . There are two generalized ‘switching’ paths (cf.
Lemma 2.ii) starting from v

(k)
2 and v

(k)
3 , respectively, at level k satisfying 3 <

max(λ− 2, µb∗) ≤ k < λ, which may lead to v
(λ)
3 in addition to v

(λ−1)
1 or v

(λ)
1 .

Proof. For the notation simplicity, we will omit the block index b∗ in this proof.
We know ω < m due to q > 0, and λ > µ from Paragraph 5.2. Consider first
the case when t

(λ)
12 = t

(λ)
13 = 0. Obviously, t

(λ)
22 < 1 follows from the definition of

λ for λ > ω and from the definition of ω for λ = ω, which gives t
(λ)
22 = t

(λ)
32 = 1

2

and t
(λ)
23 > 0 by the normalization of P . For t

(λ)
33 = 1

2 , we obtain two switching

32

paths v
(λ−1)
2 , v

(λ)
3 and v

(λ−1)
3 , v

(λ)
3 . Thus assume t

(λ)
33 = 0 which ensures t

(λ)
23 = 1

and λ > µ + 1 since λ = µ + 1 would give ω > λ. Consider first the case when
t
(λ−1)
12 = t

(λ−1)
13 = 0, which implies t

(λ−1)
22 > 0 and t

(λ−1)
23 > 0 by t

(λ−1)
11 = 1

and the normalization of P , providing two switching paths v
(λ−2)
2 , v

(λ−1)
2 , v

(λ)
3

and v
(λ−2)
3 , v

(λ−1)
2 , v

(λ)
3 . Two switching paths v

(λ−2)
2 , v

(λ−1)
1 and v

(λ−2)
3 , v

(λ−1)
1

are also guaranteed when t
(λ−1)
12 > 0 and t

(λ−1)
13 > 0 appear simultaneously. For

t
(λ−1)
12 = 0 and t

(λ−1)
13 > 0, we have t

(λ−1)
22 > 0 by the normalization of P , which

together with t
(λ)
32 = 1

2 produces two switching paths v
(λ−2)
2 , v

(λ−1)
2 , v

(λ)
3 and

v
(λ−2)
3 , v

(λ−1)
1 . For t

(λ−1)
12 > 0 and t

(λ−1)
13 = 0, the case of t

(λ−1)
23 > 0 ensures two

switching paths v
(λ−2)
2 , v

(λ−1)
1 and v

(λ−2)
3 , v

(λ−1)
2 , v

(λ)
3 , while for t

(λ−1)
23 = 0 we

obtain t
(λ−1)
12 = t

(λ−1)
22 = 1

2 and t
(λ−1)
33 = 1, which implies λ = ν + 1 and ω > λ

by Lemma 2.iii contradicting the definition of λ ≥ ω ≥ ν − 1. This completes
the argument for t

(λ)
12 = t

(λ)
13 = 0.

The case of t
(λ)
13 > 0 and t

(λ)
12 > 0 produces two switching paths v

(λ−1)
2 , v

(λ)
1

and v
(λ−1)
3 , v

(λ)
1 . Further consider the case when t

(λ)
13 > 0 and t

(λ)
12 = 0. Obvi-

ously, t
(λ)
22 < 1 follows from the definition of λ for λ > ω and from the definition

of ω for λ = ω. Hence, t
(λ)
32 > 0 which provides two switching paths v

(λ−1)
2 , v

(λ)
3

and v
(λ−1)
3 , v

(λ)
1 . Finally, consider the case when t

(λ)
12 > 0 and t

(λ)
13 = 0, for which

t
(λ)
33 > 0 generates two switching v

(λ−1)
2 , v

(λ)
1 and v

(λ−1)
3 , v

(λ)
3 , while for t

(λ)
33 = 0

we obtain t
(λ)
32 = 1

2 and t
(λ)
23 = 1, which implies λ = ν and ω > λ by Lemma 2.iii

contradicting the definition of λ ≥ ω ≥ ν − 1. 2

By a similar argument to Lemma 2.ii, Lemma 8 gives an h-neighbor a′ ∈
Ω2(a∗) ⊆ H of a∗ ∈ A such that a′ ∈ M(v(λ)

1) ∪ M(v(λ)
3). Thus, either a′ ∈

M(v(λ)
1) ⊆ M(v(mb∗−1)

1) ∪ M(v(mb∗−1)
2) or a′ ∈ M(v(λ)

3) which implies a′ ∈
M(v(κb∗j∗)

1) ⊆ M(v(mb∗−1)
1) ∪M(v(mb∗−1)

2) since a′i = a∗i = cQ
i for every i ∈ Q

according to (17) (see Figure 2 and 6). Note that M(v(κb∗j∗)
1) = M(v(mb∗−1)

1) for
r∗ = b∗−2. Hence, P (a′) = 1 because for every b = 1, . . . , r∗ there exists i ∈ Rb

that meets a′i = a∗i 6= cRb
i due to (17) (see Figure 2 and 4). This completes the

proof of Theorem 2. 2

9. The Richness of Almost k-wise Independent Sets

In order to achieve an explicit polynomial time construction of a hitting set
for read-once branching programs of width 3 we will combine Theorem 2 with the
result due to Alon et al. [1] who provided simple efficient constructions of almost
k-wise independent sets. In particular, for β > 0 and k = O(log n) it is possible
to construct a (k, β)-wise independent set A ⊆ {0, 1}∗ in time polynomial in
n
β such that for sufficiently large n and any index set S ⊆ {1, . . . , n} of size
|S| ≤ k, the probability distribution on S is almost uniform, i.e. the probability
that a given c ∈ {0, 1}n coincides with the strings from An = A ∩ {0, 1}n on

33

the bit locations from S can be approximated as
∣∣∣∣∣

∣∣AS
n(c)

∣∣
|An| − 1

2|S|

∣∣∣∣∣ ≤ β , (73)

where AS
n(c) = {a ∈ An | (∀i ∈ S) ai = ci}. We will prove that, for suitable k,

any almost k-wise independent set is ε-rich. It follows that almost O(log n)-wise
independent sets are hitting sets for the class of read-once conjunctions of DNF
and CNF (cf. [7]).

Theorem 3. Let ε > 0, C be the least odd integer greater than (2
ε ln 1

ε)2, and
0 < β < 1

nC+3 . Then any (d(C + 2) log ne, β)-wise independent set is ε-rich.

Proof. Let A ⊆ {0, 1}∗ be a (d(C + 2) log ne, β)-wise independent set. We
will show that A is ε-rich. Assume {R1, . . . , Rr} is a partition of index set
I ⊆ {1, . . . , n} satisfying condition (16), and Q ⊆ {1, . . . , n} \ I such that
|Q| ≤ log n. In order to show for a given c ∈ {0, 1}n that there is a ∈ An that
meets (17) for Q and partition {R1, . . . , Rr}, we will prove that the probability

p = p(An) =

∣∣∣AQ
n (c) \⋃r

j=1ARj
n (c)

∣∣∣
|An| (74)

of the event that a ∈ An chosen uniformly at random satisfies a ∈ AQ
n (c) and

a 6∈ ARj
n (c) for every j = 1, . . . , r, is strictly positive.

The main idea of the proof lies in lower bounding the probability (74). By
using the assumption that A is almost O(log n)-wise independent this probabil-
ity can be approximated by the probability that any a ∈ {0, 1}n (not necessarily
in An) satisfies (17) which can be expressed and lower bounded as

p({0, 1}n) =
1

2|Q|

r∏

j=1

(
1− 1

2|Rj |

)
≥ ε

n
> 0 (75)

according to (16) and |Q| ≤ log n. In particular, we briefly comment on the
main steps of the proof which are schematically depicted in Figure 9 includ-
ing references to corresponding sections, lemmas, and equations. In Section 10,
we will first modify the partition classes Rj so that their cardinalities are at
most logarithmic whereas the classes of small constant cardinalities are merged
with Q and also c is adjusted correspondingly. Lemma 9 then ensures that
the probability p from (74) is lower bounded when using these modified classes.
Furthermore, Bonferroni inequality (the inclusion-exclusion principle) and the
assumption concerning the almost k-wise independence are employed in Sec-
tion 11 where also the classes of the same cardinality are grouped. In Section 12,
we will further reduce the underlying lower bound on p only to a sum over fre-
quent cardinalities of partition classes to which Taylor’s theorem is applied in
Section 13, whereas a corresponding Lagrange remainder is bounded using the
assumption on constant C.

34

Modifications of Partition Classes (Section 10)
• superlogarithmic cardinalities:

R′j ⊆ Rj so that |R′j | ≤ log n (76)
• small constant cardinalities:

R≤ =
S
|R′j |≤σ R′j where σ is a constant (82) & (85)

−→ Q′ = Q ∪R≤ (89), c′i = 1− ci for i ∈ R≤ (92)

Lemma 9: p ≥

˛̨
˛̨
˛A

Q′
n (c′)\Sr′

j=1A
R′j
n (c′)

˛̨
˛̨
˛

|An| (93)

Bonferroni inequality

p ≥
C′X

k=0

(−1)k
X

1≤j1<j2<···<jk≤r′

˛̨
˛̨A
Sk

i=1 R′ji
∪Q′

n (c′)

˛̨
˛̨

|An| (96)

almost k-wise independence (Section 11)

p ≥ 1

2|Q′|

0
@

C′X

k=0

(−1)k
X

1≤j1<j2<···<jk≤r′

kY
i=1

1

2

˛̨
˛R′ji

˛̨
˛
− ε′

8

1
A (99) & (100)

Grouping the Same Cardinalities (Lemma 10)
σ < s1, . . . , sm′ ≤ log n . . . cardinalities of R′j
ri =

˛̨˘
j |,
˛̨
R′j
˛̨
= si

¯˛̨
. . . the number of classes of cardinality si

p >
1

n2

0
BB@

C′X

k=0

(−1)k
X

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′Y
i=1

tki
i

ki!

ki−1Y
j=1

„
1− j

ri

«
− ε′

8

1
CCA (104)

where ti =
ri

2si
(78)

Frequent Cardinalities (Section 12 & Lemma 11)
r1 > r2 > · · · > rm′′ > % where % is a constant (81) & (83)

p >
1

n2

0
BB@

C′X

k=0

(−1)k
X

k1+···+km′′=k
k1≥0,...,km′′≥0

m′′Y
i=1

tki
i

ki!
− ε′

2

1
CCA (117) & Lemma 12.i

multinomial theorem

p > 1
n2

PC′

k=0

“
−Pm′′

i=1 ti

”k

k!
− ε′

2

!
(119)

Taylor’s theorem

p > 1
n2

“
e−

Pm′′
i=1 ti −RC′+1

“
−Pm′′

i=1 ti

”
− ε′

2

”
(120)

(16) −→ Pm
i=1 ti < ln 1

ε′ (80)

Lagrange remainder RC′+1

“
−Pm′′

i=1 ti

”
< ε′

4
(Lemma 12.ii)

p > ε′
4n2 > 0 (127)

Figure 9: The main steps of the proof of Theorem 3

35

10. Modifications of Partition Classes

We properly modify the underlying partition classes in order to further upper
bound their cardinalities by the logarithmic function so that the assumption
concerning almost d(C + 2) log ne-wise independence of A can be applied in the
following Section 11. Thus, we confine ourselves to at most logarithmic-size
arbitrary subsets R′j of partition classes Rj , that is

R′j

{
= Rj if |Rj | ≤ log n
⊂ Rj so that |R′j | = blog nc otherwise ,

(76)

which ensures R′j ⊆ Rj and |R′j | ≤ log n for every j = 1, . . . , r. For these new
classes, assumption (16) can be rewritten as

r∏

j=1

(
1− 1

2|R
′
j |

)
>

(
1− 1

2log n

) n
log n ∏

|Rj |≤log n

(
1− 1

2|Rj |

)

>

(
1− 1

n
· n

log n

)
ε =

(
1− 1

log n

)
ε = ε′ , (77)

where ε′ > 0 is arbitrarily close to ε for sufficiently large n.
Denote by {s1, s2, . . . , sm} = {|R′1|, . . . , |R′r|} the set of all cardinalities

1 ≤ si ≤ log n of classes R′1, . . . , R
′
r, and for every i = 1, . . . , m, let ri =

|{j | |R′j | = si}| be the number of classes R′j having cardinality si, that is,
r =

∑m
i=1 ri. Furthermore, we define

ti =
ri

2si
> 0 for i = 1, . . . , m . (78)

It follows from (77) and (78) that

0 < ε′ <

r∏

j=1

(
1− 1

2|R
′
j |

)
=

m∏

i=1

(
1− 1

2si

)ri

=
m∏

i=1

((
1− 1

2si

)2si
)ti

< e−
Pm

i=1 ti (79)

implying
m∑

i=1

ti < ln
1
ε′

. (80)

Moreover, we define constants

% =
C

1−
(
1− ε′2

4(1+ε′2)

) 1
C

> C ≥ 1 , (81)

σ = log
(

4% (1 + ε′2)
ε′2

)
(82)

36

which are used for sorting the cardinalities s1, . . . , sm so that

ri > % and si > σ for i = 1, . . . ,m′′ (83)
ri ≤ % and si > σ for i = m′′ + 1, . . . ,m′ (84)

si ≤ σ for i = m′ + 1, . . . , m . (85)

We will further confine ourselves to the first m′ ≥ 0 cardinalities satisfying
si > σ for i = 1, . . . , m′. Without loss of generality, we can also sort the
corresponding partition classes so that

|R′j | > σ for j = 1, . . . , r′ (86)
|R′j | ≤ σ for j = r′ + 1, . . . , r , (87)

which implies

r′ =
m′∑

i=1

ri =
m′∑

i=1

ti2si >
4% (1 + ε′2)

ε′2

m′∑

i=1

ti (88)

according to (78), (83)–(84), and (82). We include the remaining constant-size
classes R′j for j = r′ + 1, . . . , r into Q, that is,

Q′ = Q ∪
r⋃

j=r′+1

R′j (89)

whose size can be upper bounded as

|Q′| ≤ log n +
m∑

i=m′+1

ri log
(

4% (1 + ε′2)
ε′2

)
< 2 log n (90)

for sufficiently large n, since

m∑

i=m′+1

ri =
m∑

i=m′+1

ti2si <
4% (1 + ε′2)

ε′2
ln

1
ε′

(91)

according to (78), (80), (85), and (82). This completes the definition of new
classes Q′, R′1, . . . , R′r′ . In addition, we define c′ ∈ {0, 1}n that differs from c
exactly on the constant number of bit locations from R′r′+1, . . . , R

′
r, e.g.

c′i =
{

1− ci if i ∈ ⋃r
j=r′+1 R′j

ci otherwise.
(92)

The modified Q′, R′1, . . . , R
′
r′ and c′ are used in the following lemma for lower

bounding the probability (74).

Lemma 9.

p ≥

∣∣∣AQ′
n (c′) \⋃r′

j=1A
R′j
n (c′)

∣∣∣
|An| =

∣∣∣AQ′
n (c′)

∣∣∣
|An| −

∣∣∣⋃r′

j=1A
R′j∪Q′
n (c′)

∣∣∣
|An| . (93)

37

Proof. For verifying the lower bound in (93) it suffices to show that

AQ′
n (c′) \

r′⋃

j=1

AR′j
n (c′) ⊆ AQ

n (c) \
r⋃

j=1

ARj
n (c) (94)

according to (74). Assume a ∈ AQ′
n (c′) \ ⋃r′

j=1A
R′j
n (c′), which means a ∈

AQ′
n (c′) ⊆ AQ

n (c′) = AQ
n (c) and a 6∈ AR′j

n (c′) = AR′j
n (c) ⊇ ARj

n (c) for every
j = 1, . . . , r′ by definitions (76), (89), (92), and the fact that S1 ⊆ S2 im-
plies AS2

n (c) ⊆ AS1
n (c). In addition, a ∈ AQ′

n (c′) implies a 6∈ ARj
n (c) for every

j = r′ + 1, . . . , r according to (92), and hence, a ∈ AQ
n (c) \⋃r

j=1ARj
n (c). This

completes the proof of the lower bound, while the equality in (93) follows from

AR′j∪Q′
n (c′) ⊆ AQ′

n (c′) for every j = 1, . . . , r′. 2

11. Almost k-Wise Independence

Furthermore, we will upper bound the probability of the finite union of events
appearing in formula (93) by using Bonferroni inequality for constant number
C ′ = min(C, r′) of terms, which gives

p ≥

∣∣∣AQ′
n (c′)

∣∣∣
|An| −

C′∑

k=1

(−1)k+1
∑

1≤j1<j2<···<jk≤r′

∣∣∣∣
⋂k

i=1A
R′ji

∪Q′

n (c′)
∣∣∣∣

|An| (95)

=
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

∣∣∣∣A
Sk

i=1 R′ji
∪Q′

n (c′)
∣∣∣∣

|An| (96)

according to Lemma 9. For notational simplicity, the inner sum in (96) over
1 ≤ j1 < j2 < · · · < jk ≤ r′ for k = 0 reads formally as it includes one summand
|AQ′

n (c′)|/|An|. Note that C ′ is odd for C < r′, while equality holds in (95)
for C ′ = r′, which is the probabilistic inclusion-exclusion principle. For any
0 ≤ k ≤ C ′ ≤ C, we know

∣∣∣⋃k
i=1 R′ji

∪Q′
∣∣∣ ≤ d(C + 2) log ne according to (76)

and (90), and hence,
∣∣∣∣A
Sk

i=1 R′ji
∪Q′

n (c′)
∣∣∣∣

|An| ≥ 1

2|Q
′|+Pk

i=1

˛̨
˛R′ji

˛̨
˛
− β =

1
2|Q′|

k∏

i=1

1

2
˛̨
˛R′ji

˛̨
˛
− β (97)

(where the product in (97) equals formally 1 for k = 0) and similarly,

−

∣∣∣∣A
Sk

i=1 R′ji
∪Q′

n (c′)
∣∣∣∣

|An| ≥ − 1
2|Q′|

k∏

i=1

1

2
˛̨
˛R′ji

˛̨
˛
− β (98)

38

according to (73) since A is (d(C+2) log ne, β)-wise independent. We plug these
inequalities into (96), which leads to

p ≥
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

1
2|Q′|

k∏

i=1

1

2
˛̨
˛R′ji

˛̨
˛
− β

C′∑

k=0

(
r′

k

)

≥ 1
2|Q′|




C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

k∏

i=1

1

2
˛̨
˛R′ji

˛̨
˛
− β 2|Q

′| (r′ + 1)C′


 , (99)

where

β 2|Q
′| (r′ + 1)C′ <

1
nC+3

n2 nC =
1
n

<
ε′

8
(100)

for sufficiently large n > 8/ε′ by using the assumption on β, inequality (90),
r′ < n (e.g., r′ = n would break (86) and (82)), and C ′ ≤ C. The following
lemma rewrites the inner sum in formula (99).

Lemma 10. For 0 ≤ k ≤ C ′,

∑

1≤j1<j2<···<jk≤r′

k∏

i=1

1

2|R
′
ji
| =

∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′∏

i=1

tki
i

ki!

ki−1∏

j=1

(
1− j

ri

)
.

(101)

Proof. By grouping the classes of the same cardinality together, the left-hand
side of inequality (101) can be rewritten as

∑

1≤j1<j2<···<jk≤r′

k∏

i=1

1

2|R
′
ji
| =

∑

k1+k2+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′∏

i=1

(
ri

ki

)(
1

2si

)ki

, (102)

where k1, . . . , km′ denote the numbers of classes of corresponding cardinalities
s1, . . . , sm′ considered in a current summand, and

(
ri

ki

)(
1

2si

)ki

=
ri (ri − 1) · · · (ri − ki + 1)

ki!

(
ti
ri

)ki

=
tki
i

ki!

ki−1∏

j=1

(
1− j

ri

)

(103)
according to (78). 2

Thus, we plug equations (100) and (101) into (99) and obtain

p >
1
n2




C′∑

k=0

(−1)k
∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′∏

i=1

tki
i

ki!

ki−1∏

j=1

(
1− j

ri

)
− ε′

8


 . (104)

Note that for m′ = 0 (implying r′ = C ′ = 0), the inner sum in (104) equals 1.

39

12. Frequent Cardinalities

We sort out the terms with frequent cardinalities (83) from the sum in for-
mula (104), that is,

p >
1
n2




C′∑

k=0

(−1)k
∑

k1+···+km′′=k
0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏

i=1

tki
i

ki!

ki−1∏

j=1

(
1− j

ri

)
− T1 − ε′

8


 ,

(105)
where the inner sum in (105) equals zero for k > r′′ =

∑m′′

i=1 ri , and

T1 =
C′∑

k=0

(−1)k+1
∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′
(∃m′′+1≤`≤m′) k`>0

m′∏

i=1

tki
i

ki!

ki−1∏

j=1

(
1− j

ri

)
(106)

sums up the terms including rare cardinalities (84). In addition, we know

1 ≥
m′′∏

i=1

ki−1∏

j=1

(
1− j

ri

)
≥ (107)

m′′∏

i=1

(
1− C − 1

%

)ki−1

>

(
1− C

%

)C

= 1− ε′2

4(1 + ε′2)
(108)

according to (83), (81), and ki ≤ k =
∑m′′

i=1 ki ≤ C ′ ≤ C < % . The upper
bound (107) and lower bound (108) on the underlying product are used to
lower bound the negative terms of (105) for odd k and the positive ones for
even k, respectively, that is,

p >
1
n2




C′∑

k=0

(−1)k
∑

k1+···+km′′=k
0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏

i=1

tki
i

ki!
− ε′2

4(1 + ε′2)
T2 − T1 − ε′

8




(109)
where

T2 =
C′∑

k=0,2,4,...

∑

k1+···+km′′=k
0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏

i=1

tki
i

ki!
. (110)

The following lemma upper bounds the above-introduced terms T1 and T2.

Lemma 11.

(i) T1 < ε′
8 .

(ii) T2 < 1+ε′2
2 ε′ .

40

Proof.

(i) We can only take the terms of (106) for odd k = 1, 3, 5, . . . into account
since those for even k are nonpositive (e.g. the term for k = 0 equals zero
because there is no m′′ + 1 ≤ ` ≤ m′ such that k` > 0 in this case). Thus,

T1 ≤
C′∑

k=1,3,5,...

∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′
(∃m′′+1≤`≤m′) k`>0

r`

2s`

1
k`

tk`−1
`

(k` − 1)!

m′∏

i=1
i6=`

tki
i

ki!

≤ %

2σ

C′∑

k=1,3,5,...

∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′
(∃m′′+1≤`≤m′) k`>0

tk`−1
`

(k` − 1)!

m′∏

i=1
i 6=`

tki
i

ki!
(111)

according to (78) and (84). Formula (111) is rewritten by replacing indices
k`−1 and k−1 with k` and k, respectively, which is further upper bounded
by removing the upper bounds that are set on indices k1, . . . , km′ and
by omitting the condition concerning the existence of special index `, as
follows:

T1 ≤ %

2σ

C′−1∑

k=0,2,4,...

∑

k1+···+km′=k
k1≥0,...,km′≥0

m′∏

i=1

tki
i

ki!
=

%

2σ

C′−1∑

k=0,2,4,...

(∑m′

i=1 ti

)k

k!
, (112)

where the multinomial theorem is employed. Notice that the sum on the
right-hand side of equation (112) represents the first few terms of Taylor
series of the hyperbolic cosine at point

∑m′

i=1 ti ≥ 0, which implies

T1 <
%

2σ
cosh




m′∑

i=1

ti


 <

ε′2

4(1 + ε′2)
·

1
ε′ + ε′

2
=

ε′

8
(113)

according to (80) and (82) since the hyperbolic cosine is an increasing
function for nonnegative arguments.

(ii) Similarly as in the proof of (i), we apply the multinomial theorem (cf.
(112)) and the Taylor series of the hyperbolic cosine (cf. (113)) to (110),
which gives

T2 ≤
C′∑

k=0,2,4,...

∑

k1+···+km′′=k
k1≥0,...,km′′≥0

m′′∏

i=1

tki
i

ki!
=

C′∑

k=0,2,4,...

(∑m′′

i=1 ti

)k

k!
(114)

≤ cosh




m′′∑

i=1

ti


 <

1 + ε′2

2 ε′
. (115)

2

41

We plug the bounds from Lemma 11 into (109) and obtain

p >
1
n2




C′∑

k=0

(−1)k
∑

k1+···+km′′=k
0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏

i=1

tki
i

ki!
− 3 ε′

8


 . (116)

13. Taylor’s Theorem

In order to apply the multinomial theorem again, we remove the upper
bounds that are set on indices in the inner sum of formula (116), that is,

p >
1
n2




C′∑

k=0

(−1)k
∑

k1+···+km′′=k
k1≥0,...,km′′≥0

m′′∏

i=1

tki
i

ki!
− T − 3 ε′

8


 , (117)

which is corrected by introducing additional term

T =
C′∑

k=0

(−1)k
∑

k1+···+km′′=k
k1≥0,...,km′′≥0

(∃1≤`≤m′′) k`>r`

m′′∏

i=1

tki
i

ki!
. (118)

Thus, inequality (117) can be further rewritten as

p >
1
n2




C′∑

k=0

(
−∑m′′

i=1 ti

)k

k!
− T − 3 ε′

8


 (119)

=
1
n2


e−

Pm′′
i=1 ti −RC′+1


−

m′′∑

i=1

ti


− T − 3 ε′

8


 , (120)

where Taylor’s theorem is employed for the exponential function at point
−∑m′′

i=1 ti producing the Lagrange remainder

RC′+1


−

m′′∑

i=1

ti


 =

(
−∑m′′

i=1 ti

)C′+1

(C ′ + 1)!
e−ϑ

Pm′′
i=1 ti <

(∑m′′

i=1 ti√
C ′

)C′+1

(121)

with parameter 0 < ϑ < 1. Note that the upper bound in (121) assumes C ′ > 0,
whereas for C ′ = r′ = 0 implying m′′ = m′ = 0, we know R1(0) = 0. This
remainder and term T are upper bounded in the following lemma.

Lemma 12.

(i) T < ε′
8 .

42

(ii) RC′+1

(
−∑m′′

i=1 ti

)
< ε′

4 .

Proof.

(i) We take only the summands of (118) for even k ≥ 2 into account since
the summands for odd k are not positive, while for k = 0 there is no
1 ≤ ` ≤ m′′ such that 0 = k ≥ k` > r` ≥ 1, which gives

T ≤
C′∑

k=2,4,6,...

∑

k1+···+km′′=k
k1≥0,...,km′′≥0

(∃1≤`≤m′′) k`>r`

1
2s`

r`

k`

tk`−1
`

(k` − 1)!

m′′∏

i=1
i 6=`

tki
i

ki!

≤ 1
2σ

C′∑

k=2,4,6,...

∑

k1+···+km′′=k
k1≥0,...,km′′≥0

(∃1≤`≤m′′) k`>r`

tk`−1
`

(k` − 1)!

m′′∏

i=1
i 6=`

tki
i

ki!
(122)

using (78) and (83). Formula (122) is rewritten by replacing indices k`− 1
and k − 1 with k` and k, respectively, which is further upper bounded
by omitting the condition concerning the existence of special index `, as
follows:

T ≤ 1
2σ

C′−1∑

k=1,3,5,...

∑

k1+···+km′′=k
k1≥0,...,km′′≥0

m′′∏

i=1

tki
i

ki!
=

1
2σ

C′−1∑

k=1,3,5,...

(∑m′′

i=1 ti

)k

k!
, (123)

where the multinomial theorem is employed. Notice that the sum on the
right-hand side of equation (123) represents the first few terms of Taylor
series of the hyperbolic sine at point

∑m′′

i=1 ti, which implies

T ≤ 1
2σ

sinh




m′′∑

i=1

ti


 <

ε′2

4% (1 + ε′2)
·

1
ε′ − ε′

2
<

ε′

8
(124)

according to (80) and (82) since the hyperbolic sine is an increasing func-
tion.

(ii) For C ′ = C ≥ 1, Lagrange remainder (121) can further be upper bounded
as

RC′+1


−

m′′∑

i=1

ti


 <

(
ln 1

ε′√
C

)C+1

<

(
ε′

2

)C+1

<
ε′

4
(125)

for sufficiently large n by using (80) and the definition of C, while for
C ′ = r′ < C, the underlying upper bound

RC′+1


−

m′′∑

i=1

ti


 ≤

(∑m′

i=1 ti
4% (1+ε′2)

ε′2

) r′+1
2

<
ln 1

ε′
4% (1+ε′2)

ε′2
<

ε′

4
(126)

can be obtained from (88) and (80). 2

43

Finally, inequality (79) together with the upper bounds from Lemma 12 are
plugged into (120), which leads to

p >
ε′

4n2
=

ε

4n2

(
1− 1

log n

)
> 0 (127)

according to (77). Thus, we have proven that for any c ∈ {0, 1}n the proba-
bility that there is a ∈ An satisfying the conjunction (17) for Q and partition
{R1, . . . , Rr} is strictly positive, which means such a does exist. This completes
the proof that A is ε-rich. 2

14. Conclusion

In the present paper, we have made an important step in the effort of con-
structing hitting set generators for the model of read-once branching programs
of bounded width. Such constructions have so far been known only in the case
of width 2 and in very restricted cases of bounded width (e.g. regular oblivious
read-once branching programs). We have now provided an explicit polynomial-
time construction of a hitting set for read-once branching programs of width
3 with acceptance probability ε > 5

6 . Although this model seems to be rela-
tively weak, the presented proof is far from being trivial. In particular, we have
formulated a so-called richness condition which is independent of the notion of
branching programs. This condition characterizes the hitting sets for read-once
branching programs of width 3. We have shown that such a hitting set hits
read-once conjunctions of DNF and CNF, which corresponds to the weak rich-
ness condition. On the other hand, the richness condition proves to be sufficient
for a set extended with all strings within Hamming distance of 3 to be a hit-
ting set for width-3 1-branching programs. In addition, we have proven for a
suitable constant C that any almost (C log n)-wise independent set which can
be constructed in polynomial time due to Alon et al. [1], satisfies this richness
condition, which implies our result. It also follows that almost O(log n)-wise
independent sets are hitting sets for read-once conjunctions of DNF and CNF.

From the point of view of derandomization of unrestricted models, our result
still appears to be unsatisfactory but it is the best we know so far. The issue
of whether our technique based on the richness condition can be extended to
the case of width 4 or to bounded width represents an open problem for further
research. Another challenge for improving our result is to optimize parameter
ε, e.g. to achieve the result for ε ≤ 1

n , which would be important for practical
derandomizations.

Acknowledgements

The authors would like to thank Pavel Pudlák for pointing out the problem of
hitting sets for width-3 1-branching programs. J.Š.’s research was partially sup-
ported by project GA ČR P202/12/G061 and RVO: 67985807. S.Ž.’s research
was partially supported by project GA ČR P202/10/1333 and RVO: 67985807.

44

References

[1] N. Alon, O. Goldreich, J. H̊astad, R. Peralta, Simple constructions of almost
k-wise independent random variables, Random Struct. Algor. 3 (3) (1992)
289–304.

[2] P. Beame, W. Machmouchi, Making branching programs oblivious requires
superpolynomial overhead, in: Proceedings of the CCC 2011 Twenty-Sixth
Annual IEEE Conference on Computational Complexity, 2011, pp. 12–22.

[3] A. Bogdanov, Z. Dvir, E. Verbin, A. Yehudayoff, Pseudorandomness
for width 2 branching programs, Electron. Colloq. Computat. Complex.
(ECCC) TR09-070 (2009).

[4] M. Braverman, A. Rao, R. Raz, A. Yehudayoff, Pseudorandom generators
for regular branching programs, in: Proceedings of the FOCS 2010 Fifty-
First Annual IEEE Symposium on Foundations of Computer Science, 2010,
pp. 41–50.

[5] J. Brody, E. Verbin, The coin problem, and pseudorandomness for branch-
ing programs, in: Proceedings of the FOCS 2010 Fifty-First Annual IEEE
Symposium on Foundations of Computer Science, 2010, pp. 30–39.

[6] A., De, Pseudorandomness for permutation and regular branching programs,
in: Proceedings of the CCC 2011 Twenty-Sixth Annual IEEE Conference on
Computational Complexity, 2011, pp. 221–231.

[7] A. De, O. Etesami, L. Trevisan, M. Tulsiani, Improved pseudorandom gener-
ators for depth 2 circuits, in: Proceedings of the RANDOM 2010 Fourteenth
International Workshop on Randomization and Computation, in: LNCS,
vol. 6302, Springer-Verlag, 2010, pp. 504–517.

[8] B. Fefferman, R. Shaltiel, Ch. Umans, E. Viola, On beating the hybrid
argument, in: Proceedings of the ITCS 2012 Third ACM Conference on
Innovations in Theoretical Computer Science, 2012, pp. 468–483.

[9] O. Goldreich, A. Wigderson, Improved derandomization of BPP using a hit-
ting set generator, in: Proceedings of the RANDOM’99 Third International
Workshop on Randomization and Approximation Techniques in Computer
Science, in: LNCS, vol. 1671, Springer-Verlag, 1999, pp. 131–137.

[10] M. Koucký, P. Nimbhorkar, P. Pudlák, Pseudorandom generators for group
products, in: Proceedings of the STOC 2011 Forty-Third ACM Symposium
on Theory of Computing, ACM Press, 2011, pp. 263–272.

[11] R. Meka, D. Zuckerman, Pseudorandom generators for polynomial thresh-
old functions, in: Proceedings of the STOC 2010 Forty-Second ACM Sym-
posium on Theory of Computing, ACM Press, 2010, pp. 427–436.

45

[12] N. Nisan, Pseudorandom generators for space-bounded computation, Com-
binatorica 12 (4) (1992) 449–461.

[13] N. Nisan, A. Wigderson, Hardness vs. randomness, J. Comput. Syst. Sci.
49 (2) (1994) 149–167.

[14] J. Š́ıma, S. Žák, A polynomial time constructible hitting set for restricted
1-branching programs of width 3, in: Proceedings of the SOFSEM 2007
Thirty-Third International Conference on Current Trends in Theory and
Practice of Informatics, in: LNCS, vol. 4362, Springer-Verlag, 2007, pp. 522–
531.

[15] J. Š́ıma, S. Žák, Almost k-wise independent sets establish hitting sets for
width-3 1-branching programs, in: Proceedings of the CSR 2011 6th In-
ternational Computer Science Symposium in Russia, in: LNCS, vol. 6651,
Springer-Verlag, 2011, pp. 120–133.

[16] J. Š́ıma, S. Žák, A sufficient condition for sets hitting the class of read-
once branching programs of width 3, in: Proceedings of the SOFSEM 2012
Thirty-Eighth International Conference on Current Trends in Theory and
Practice of Informatics, in: LNCS, Springer-Verlag, 2012 (to appear).

[17] I. Wegener, Branching Programs and Binary Decision Diagrams—Theory
and Applications, SIAM Monographs on Discrete Mathematics and Its Ap-
plications, SIAM, Philadelphia, PA, 2000.

46

