RT1-code: A mixed $R T_{0}-P_{0}$ Raviart-Thomas finite element implementation

R. Blaheta, M. Hasal, S. Domesová, M. Bereš
Report Institute of Geonics AS CR, Department IT4Innovations
Ostrava, Czech Republic

Abstract

In this paper we shall describe mixed formulations - differential and variational- of a model elliptic problem, which can be interpreted as Darcy flow model. We describe * Galerkin method with finite dimensional spaces; * Local matrices and assembling; * Raviart-Thomas $R T_{0}-P_{0}$ elements; * Edge basis and local matrices for $R T_{0}-P_{0}$ FEM; * Model problem with corresponding local matrices, right hand side and treatment of boundary conditions; * Efficient assembling, * Use for generating saddle point systems, testing solvers and preconditioners.

Contents

1 Introduction 1
2 Problem formulation 1
3 Galerkin method - Mixed FEM 2
4 Local matrices and assembling 3
5 Lowest order Raviart-Thomas finite elements 3
6 Local properties and local edge basis for RT(0) elements 4
7 Local matrices 5
8 Model problem 7
9 Assembling 9

1 Introduction

This report describes basis of RT1 code, which can be characterized as a code for testing solvers and preconditioners for FEM systems arising from lowest order Raviart-Thomas discretization of Darcy flow problems, see also [2, 1]. The code is characterized by

- simplicity and possibility of easy modifications,
- directly solving model problems on square domains (generalization possible),
- stochastic generation of heterogeneity,
- fast system assembling using vectorization and sparse reconstruction,
- possible testing of Krylov type solvers with both (block) matrix and matrix free (variable) preconditioners.

This report describes the finite element system generation, experiments are involved in papers, e.g. [3].

2 Problem formulation

Let us consider Darcy flow elliptic problem in the form

$$
\begin{aligned}
-\operatorname{div}(k(-g+\operatorname{grad} p) & =f & & \text { in } \Omega \\
p & =\hat{p} & & \text { on } \Gamma_{D} \\
(-k \operatorname{grad} p) \cdot n & =\hat{u} & & \text { on } \Gamma_{N}
\end{aligned}
$$

where $g \neq 0$ if we consider elevation changes. It can be also written in a two field form with two basic variables $p: \Omega \rightarrow R^{1}$ and $u: \Omega \rightarrow R^{n}$

$$
\begin{aligned}
k^{-1} u+\operatorname{grad} p & =g \\
\operatorname{div}(u) & =f \\
p & =\hat{p} \text { on } \Gamma_{D} \\
(-k \operatorname{grad} p) \cdot n & =\hat{u} \text { on } \Gamma_{N}
\end{aligned}
$$

The variational formulation uses test functions v and q to get

$$
\begin{gathered}
\int_{\Omega} k^{-1} u \cdot v d x+\int_{\Omega} \nabla p \cdot v d x=\int_{\Omega} g \cdot v d x \\
\int_{\Omega} \operatorname{div}(u) q=\int_{\Omega} f q d x
\end{gathered}
$$

Transformation of one mixed term then provides

$$
\begin{aligned}
\int_{\Omega} \nabla p \cdot v & =\int_{\Omega} \sum_{k} \frac{\partial p}{\partial x_{k}} v_{k} d x=\sum_{k}\left\{\int_{\partial \Omega} p v_{k} \cdot n_{k}-\int_{\Omega} p \frac{\partial v_{k}}{\partial x_{k}} d x\right\}= \\
& =\int_{\partial \Omega} p(v \cdot n)-\int_{\Omega} p \operatorname{div}(v) d x
\end{aligned}
$$

Then the variational formulation gets the form

$$
\begin{array}{cccc}
\int_{\Omega} k^{-1} u \cdot v & -\int_{\Omega} \operatorname{div}(v) \cdot p=\int_{\Omega} g \cdot v d x & -\int_{\Gamma_{D}} \hat{p}(v \cdot n) & -\int_{\Gamma_{N}} p(v \cdot n) \\
-\int_{\Omega} \operatorname{div}(u) q & = & -\int_{\Omega} f q & \forall v \\
& \forall q
\end{array}
$$

or in abstract form: find $(u, p) \in U_{N} \times P$

$$
\begin{array}{rlll}
m(u, v)+b(v, p) & =G(v) & & \forall v \in U_{0} \\
b(u, q) & & =F(v) & \\
& \forall q \in P
\end{array}
$$

where

$$
\begin{aligned}
U & =\left\{v \in L_{2}(\Omega)^{n}: \operatorname{div}(v) \in L_{2}(\Omega)\right\} \rightarrow H(\text { div }) \\
U_{0} & =\left\{v \in U: v \cdot n=0 \text { on } \Gamma_{N}\right\} \\
U_{N} & =\left\{v \in U: v \cdot n=\hat{u} \text { on } \Gamma_{N}\right\} \\
P & =\left\{q \in L_{2}(\Omega)\right\}
\end{aligned}
$$

Note that pressure BC enters $G(v)=\ldots-\int_{\Gamma_{0}} \hat{p}(v \cdot n)$ whereas velocity BC are included in U_{N}.

3 Galerkin method - Mixed FEM

We start with introducing FEM spaces $U_{h} \subset U, U_{N h} \subset U_{N}, U_{0 h} \subset U_{0}$ and $P_{h} \subset P$. Then the Galerkin method is to find $\left(u_{h}, p_{h}\right) \in U_{h N} \times P_{h}$

$$
\begin{array}{rlrl}
m\left(u_{h}, v_{h}\right)+b\left(v_{h}, p_{h}\right) & =G\left(v_{h}\right) & & \forall v_{h} \in U_{0 h} \\
b\left(u_{h}, q_{h}\right) & & =F\left(q_{h}\right) & \\
\forall p_{h} \in P_{h}
\end{array}
$$

After a choice of bases

$$
\begin{aligned}
U_{h} & =\operatorname{lin}\left\{\Phi_{i}, i \in I\right\}, \quad P_{h}=\operatorname{lin}\left\{\Psi_{j}: j \in J\right\} \\
U_{N h} & =u_{N}+u, \quad u \in U_{0 h} \\
U_{0 h} & =\operatorname{lin}\left\{\Phi_{i}: i \in I_{0}\right\} \\
u_{N} & \in \operatorname{lin}\left\{\Phi_{i}: i \in I \backslash I_{0}\right\}, u_{N}=\sum(\hat{u} \cdot n)\left(x_{i}\right) \Phi_{i}
\end{aligned}
$$

the discrete mixed problem can be written as - find $\left(u_{h}, p_{h}\right) \in U_{h N} \times P_{h}, \quad u_{h}=u_{N}+\sum_{i \in I_{0}} \alpha_{i} \Phi_{i}, \quad p_{h}=\sum_{j \in J} \beta_{j} \Psi_{j}$

$$
\begin{aligned}
\sum_{i \in I_{0}} \alpha_{i} m\left(\Phi_{i}, \Phi_{k}\right)+\sum_{j \in J} \beta_{j} b\left(\Phi_{k}, \Psi_{j}\right) & =G\left(\Phi_{k}\right)-m\left(u_{N}, \Phi_{k}\right) \quad \forall k \in I_{0} \\
\sum_{i \in I_{0}} \alpha_{i} b\left(\Phi_{i}, \Psi_{l}\right) & =F\left(\Psi_{l}\right)-b\left(u_{N}, \Psi_{l}\right) \quad \forall l \in J
\end{aligned}
$$

Rewritting to matrix form provides

$$
\begin{aligned}
M \underline{\alpha}+B^{T} \underline{\beta} & =\underline{G} & \underline{\alpha} \in R^{n_{1}}, n_{1}=\# I_{0} \\
B \underline{\alpha} & =\underline{F} & \underline{\beta} \in R^{n_{2}}, n_{2}=\# J
\end{aligned}
$$

where $M \in R^{n_{1} \times n_{1}}, M_{i j}=m\left(\Phi_{j}, \Phi_{i}\right), B \in R^{n_{2} \times n_{1}}, B_{i j}=b\left(\Phi_{j}, \Psi_{i}\right), B^{T} \in R^{n_{1} \times n_{2}}, B_{i j}^{T}=b\left(\Phi_{i}, \Psi_{j}\right)=B_{j i}$, $G=\left(G_{i}\right), G_{i}=G\left(\Phi_{i}\right), F=\left(F_{k}\right), F_{k}=F\left(\Psi_{k}\right)$.

4 Local matrices and assembling

Assume that Φ_{i} and Ψ_{i} are constructed as finite element basis functions above some triangulation \mathcal{T}_{h}, i.e. $\forall T \in \mathcal{T}_{h}$

$$
\begin{aligned}
& \left.\Phi_{i}\right|_{T} \in\left\{\bar{\Phi}_{1}, \ldots \bar{\Phi}_{\rho}, 0=\bar{\Phi}_{0}\right\} \\
& \left.\Psi_{j}\right|_{T} \in\left\{\bar{\Psi}_{1}, \ldots \bar{\Phi}_{\sigma}, 0=\bar{\Psi}_{0}\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& m\left(\Phi_{i}, \Phi_{k}\right)=\int_{\Omega} k^{-1} \Phi_{i} \cdot \Phi_{k} d x=\sum_{T \in \mathcal{T}_{h}} \int_{T} K^{-1} \Phi_{i} \cdot \Phi_{k} d x=\sum_{T \in \mathcal{T}_{h}} \int_{T} k^{-1} \bar{\Phi}_{l o c(i)} \bar{\Phi}_{l o c(k)} d x \\
& b\left(\Phi_{i}, \Psi_{j}\right)=\int_{\Omega}\left(\operatorname{div} \Phi_{i}\right) \Psi_{j} d x=\sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\operatorname{div} \bar{\Phi}_{l o c(i)}\right) \bar{\Psi}_{l o c(j)} d x
\end{aligned}
$$

where $l o c_{k}(i)=l o c_{k}(i, T)$ is a transformation from global index to local index of basis function on T. It can be also zero.

Vice versa, for $T \in \mathcal{T}_{h}$, it is possible to construct local matrices

$$
\begin{aligned}
M_{T},\left(M_{T}\right)_{r s} & =\int_{T} k^{-1} \bar{\Phi}_{s} \cdot \bar{\Phi}_{r} d x \\
B_{T},\left(B_{T}\right)_{r s} & =-\int_{T} \operatorname{div} \bar{\Phi}_{s} \cdot \bar{\Psi}_{r} d x
\end{aligned}
$$

and then perform the assembling of local matrices to global M, B

$$
\begin{aligned}
\left(M_{T}\right)_{r s} & \rightarrow M_{g l o b(T, r) g l o b(T, s)}=+\left(M_{T}\right)_{r s} \\
\left(B_{T}\right)_{r s} & \rightarrow B_{g l o b_{1}(T, r) g l o b_{2}(T, s)}=+\left(B_{T}\right)_{r s}
\end{aligned}
$$

Note there are two sets of basis functions $\left\{\Phi_{i}\right\},\left\{\Psi_{j}\right\}$, two sets of local basis functions $\left\{\bar{\Phi}_{i}\right\},\left\{\bar{\Psi}_{j}\right\}$ and two mappings

$$
\begin{aligned}
\operatorname{loc}_{1}(i) & =l o c_{1}(i, T), l o c_{2} \\
g l o b_{1}(r, T) & =i, g l o b_{2}(s, T)=j
\end{aligned}
$$

5 Lowest order Raviart-Thomas finite elements

Let $\Omega \subset R^{2}$ be a 2 D polygonal domain, \mathcal{T}_{h} be its triangulation, \mathcal{E}_{h} be set of edges of all elements $T \in \mathcal{T}_{h}$, see the situation in the following Figure 1.

Figure 1: $\left\{x^{(i)}\right\}$ set of centres of $E_{i} \in \mathcal{E}_{h},\left\{y^{(j)}\right\}$ barycentres of $T_{j} \in \mathcal{T}_{h}$

Then, we can define

$$
\begin{gathered}
R T_{0}(T)=\left\{v: T \rightarrow R^{2}, v(x)=\xi\binom{x_{1}}{x_{2}}+\binom{\eta_{1}}{\eta_{2}}, \xi, \eta_{1}, \eta_{2} \in R\right\} \\
U_{h}=\left\{v: \Omega \rightarrow R^{2},\left.v\right|_{T} \in R T_{0}(T) \quad \forall T \in \mathcal{T}_{h}, v \cdot n_{E} \text { is continuous over } E \in \mathcal{E}_{h}\right\} \\
P_{h}=\left\{q: \Omega \rightarrow R^{1},\left.q\right|_{T} \text { is constant } \forall T \in \mathcal{T}_{h}\right\} .
\end{gathered}
$$

Continuity of $v \cdot n_{E}$ guarentees $U_{h} \subset U, P_{h} \subset P$ is obvious. Note that $\forall E \in \mathcal{E}_{h}$ we define n_{E} (unit normal vector), independently of relation to triangles and consequently in possibly inner or outer direction, see Figure 2.

Figure 2: Prescribed normal n_{E}. Possible definition of $n_{E}, E \in \mathcal{E}_{h}$.

6 Local properties and local edge basis for RT(0) elements

Figure 3: $T \in \mathcal{T}_{h}$

Lemma 6.1. Let $T \in \mathcal{T}_{h}, v \in R T_{0}(T)$. Then $\forall E \in \mathcal{E}_{h} \cup \partial T:\left.v \cdot n\right|_{E}=$ const.
Proof. Let $E \in \mathcal{E}_{h} \cup \partial T, n_{E}$ be normal to E (can be either outer or inner to T), $x^{*} \in E$ be arbitrary point at E. Then

$$
\begin{gathered}
x \in E \Rightarrow\left(x-x^{*}\right) \cdot n_{E}=0, \quad n_{E}=\left(n_{1}, n_{2}\right) \quad \Rightarrow \\
x_{1} n_{1}+x_{2} n_{2}=x_{1}^{*} n_{1}+x_{2}^{*} n_{2}=\text { const. } \quad \Rightarrow \\
\begin{aligned}
v(x) \cdot n & =\xi x_{1} n_{1}+\xi x_{2} n_{2}+\eta_{1} n_{1}+\eta_{2} n_{2} \\
= & \xi\left(x_{1}^{*} n_{1}+x_{2}^{*} n_{2}\right)+\eta_{1} n_{1}+\eta_{2} n_{2}=\text { const. }
\end{aligned}
\end{gathered}
$$

Lemma 6.2. (Expression for local basis functions.) Let

$$
\bar{\Phi}_{i}(x)=\sigma_{i} \frac{\left|E_{i}\right|}{2|T|}\left(x-P_{i}\right), \quad \sigma_{i}=n_{E_{i}} \cdot n^{(i)},
$$

where $n_{E_{i}}$ are global prescribed normals and $n^{(i)}$ are outer normals for $T \in \mathcal{T}_{h}$, see Figure 3. Then
(i) $\bar{\Phi}_{j}(x) \cdot n_{E_{i}}=\delta_{i j}$,
(ii) $\bar{\Phi}_{i} \in R T_{0}(T)$,
(iii) $\bar{\Phi}_{1}, \bar{\Phi}_{2}, \bar{\Phi}_{3}$ create a basis of $R T_{0}(T)$,
(iv) div $\bar{\Phi}_{i}=\sigma_{i} \frac{\left|E_{i}\right|}{|T|}$.

Proof.
(i) If $i \neq j$, then $P_{i} \in E_{j}$ and $\left(x-P_{i}\right) \cdot n_{E_{j}}=0$ for $x \in E_{j}$. If $i=j$ then for $x \in E_{i}$ the value $\left(x-P_{i}\right) \cdot n_{E_{i}}$ appears in the projection of $\left(x-P_{i}\right)$ to the height of T passing through P_{i} and therefore $\left|\left(x-P_{i}\right) \cdot n_{E_{i}}\right|=h_{i}$. Moreover, $\frac{1}{2} h_{i}\left|E_{i}\right|=|T|$ and $h_{i}=2|T| /\left|E_{i}\right|,\left(x-P_{i}\right) \cdot n^{(i)} \geq 0$ - both vectors have outward direction w.r.t. T. Finally

$$
\left(x-P_{i}\right) \cdot n_{E_{i}}=\sigma_{i} \frac{2|T|}{\left|E_{i}\right|}
$$

(ii) and (iv) are obvious
(iii) $u \in R T_{0}(T), \quad w=u-\sum_{1}^{3}\left(u \cdot n_{E_{i}}\right) \bar{\Phi}_{i}$. Obviously $w \cdot n_{E_{i}}=0 \quad \forall E_{i}$. Therefore $\forall P_{j}: \quad w\left(P_{j}\right) \cdot n_{E_{i}}=0$ and because $\forall E_{i}: P_{j} \in E_{i}$, it holds $w\left(P_{j}\right)=0 \quad \forall j=1,2,3$. As w is linear polynomial, $w \equiv 0$. Proof of uniqueness: $w=\sum_{1}^{3} \alpha_{i} \bar{\Phi}_{i}=0 \Rightarrow w \cdot n_{E_{j}}=\alpha_{j} \bar{\Phi}_{j} n_{E_{j}}=\alpha_{j}=0 \quad \forall j$.

7 Local matrices

Let us consider the local basis on T created by $\bar{\Phi}_{1}, \bar{\Phi}_{2}, \bar{\Phi}_{3} \in R T_{0}(T)$ and $\Psi_{1} \equiv 1$. Then $B_{T} \in R^{1 \times 3}$,

$$
\left(B_{T}\right)_{1 s}=\int_{T}\left(\operatorname{div} \bar{\Phi}_{s}\right) \Psi_{1}=\sigma_{s} \frac{\left|E_{s}\right|}{|T|} \cdot|T|=\sigma_{s}\left|E_{s}\right|
$$

i.e. $B_{T}=\left[\sigma_{1}\left|E_{1}\right|, \sigma_{2}\left|E_{2}\right|, \sigma_{3}\left|E_{3}\right|\right] \in R^{1 \times 3}$. Further, $M_{T} \in R^{3 \times 3}$,

$$
\left(M_{T}\right)_{r s}=\int_{T} k^{-1} \bar{\Phi}_{s} \bar{\Phi}_{r} d x=\sigma_{r} \sigma_{s} \frac{\left|E_{r}\right|\left|E_{s}\right|}{4|T|^{2}} \int_{T} k^{-1}\left(x-P_{s}\right) \cdot\left(x-P_{r}\right) d x
$$

To compute the integral $\int_{T} k^{-1}\left(x-P_{s}\right) \cdot\left(x-P_{r}\right) d x$, we can use barycentric coordinates at T,

$$
x=\lambda_{1}(x) P_{1}+\lambda_{2}(x) P_{2}+\lambda_{3}(x) P_{3}, \quad \lambda_{1}+\lambda_{2}+\lambda_{3}=1
$$

thus

$$
x-P_{r}=\lambda_{1}(x)\left(P_{1}-P_{r}\right)+\lambda_{2}(x)\left(P_{2}-P_{r}\right)+\lambda_{3}(x)\left(P_{3}-P_{r}\right)
$$

and

$$
\left(M_{T}\right)_{r s}=\sigma_{r} \sigma_{s} \frac{\left|E_{r}\right|\left|E_{s}\right|}{4|T|^{2}} \sum_{\alpha, \beta=1}^{3} \int_{T} \lambda_{\alpha} \lambda_{\beta} \cdot k^{-1}\left(P_{\alpha}-P_{s}\right) \cdot\left(P_{\beta}-P_{r}\right) d x .
$$

Assuming k constant on T and using the integration formula $\int_{T} \lambda_{\alpha} \lambda_{\beta}=\frac{|T|}{12}\left(1+\delta_{\alpha \beta}\right)$, which is a pecial case of

$$
\begin{aligned}
\int_{T} \lambda_{1}^{a} \lambda_{2}^{b} \lambda_{3}^{c} d x & =\frac{a!b!c!}{(a+b+c+2)!} 2|T| \\
\int_{V} \lambda_{1}^{a} \lambda_{2}^{b} \lambda_{3}^{c} \lambda_{4}^{d} d x & =\frac{a!b!c!d!}{(a+b+c+d+3)!} 6|V|
\end{aligned}
$$

see e.g. [4, 5] the elements of M_{T} can be expressed as

$$
\left(M_{T}\right)_{r s}=\frac{1}{48|T|} \sigma_{r}\left|E_{r}\right| \sum_{\alpha, \beta=1}^{3}\left(1+\delta_{\alpha \beta}\right) k^{-1}\left(P_{\alpha}-P_{s}\right) \cdot\left(P_{\beta}-P_{r}\right) \sigma_{s}\left|E_{s}\right| .
$$

If we define vectors $v_{r}, v_{s} \in R^{6 \times 1}$,

$$
v_{r}=\left[\begin{array}{c}
P_{1}-P_{r} \\
P_{2}-P_{r} \\
P_{3}-P_{r}
\end{array}\right], \quad v_{s}=\left[\begin{array}{c}
P_{1}-P_{s} \\
P_{2}-P_{s} \\
P_{3}-P_{s}
\end{array}\right], \quad p_{i}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Then

$$
\left(M_{T}\right)_{r s}=\frac{1}{48|T|} \sigma_{r}\left|E_{r}\right| v_{r}^{T} \underbrace{\left[\begin{array}{cccccc}
2 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 0 & 1 \\
1 & 0 & 2 & 0 & 1 & 0 \\
0 & 1 & 0 & 2 & 0 & 1 \\
1 & 0 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 2
\end{array}\right]}_{=d f}\left[\begin{array}{llll}
k^{-1} & & \\
& k^{-1} & \\
& & k^{-1}
\end{array}\right] v_{s} \sigma_{s}\left|E_{s}\right|
$$

Note that the diagonal elements are equal to elements of B_{T}. If we denote $C \in R^{6 \times 6}$ the matrix, which appeared in the expression above and

$$
V=\left[v_{1}, v_{2}, v_{3}\right]=\left[\begin{array}{ccc}
0 & P_{1}-P_{2} & P_{1}-P_{3} \\
P_{2}-P_{1} & 0 & P_{2}-P_{3} \\
P_{3}-P_{1} & P_{3}-P_{2} & 0
\end{array}\right] \in R^{6 \times 3},
$$

then

$$
\left(M_{T}\right)=\frac{1}{48|T|} \underbrace{\left[\begin{array}{ccc}
\sigma_{1}\left|E_{1}\right| & 0 & 0 \\
0 & \sigma_{2}\left|E_{2}\right| & 0 \\
0 & 0 & \sigma_{3}\left|E_{3}\right|
\end{array}\right]}_{S \in R^{3 \times 3}} V^{T} C \underbrace{\left[\begin{array}{ccc}
k^{-1} & & \\
& k^{-1} & \\
& & k^{-1}
\end{array}\right]}_{L \in R^{6 \times 6}} V \underbrace{\left[\begin{array}{ccc}
\sigma_{1}\left|E_{1}\right| & 0 & 0 \\
0 & \sigma_{2}\left|E_{2}\right| & 0 \\
0 & 0 & \sigma_{3}\left|E_{3}\right|
\end{array}\right]}_{S},
$$

i.e.

$$
\left(M_{T}\right)=\frac{1}{48|T|} S V^{T} C L V S
$$

where $S=\operatorname{diag}\left[b_{1}\left|E_{1}\right|, b_{2}\left|E_{2}\right|, b_{3}\left|E_{3}\right|\right], V=\left[\begin{array}{ccc}0 & P_{1}-P_{2} & P_{1}-P_{3} \\ P_{2}-P_{1} & 0 & P_{2}-P_{3} \\ P_{3}-P_{1} & P_{3}-P_{2} & 0\end{array}\right], L=\left[\begin{array}{ccc}k & & \\ & k & \\ & & k\end{array}\right]^{-1}=\frac{1}{k_{T}} I$, if we consider the isotropic environment, $k=k_{T} I$ on T. For comparison see [2] formula (4.6).

Note that we constructed velocity mass matrix M. In the case of time dependent problems, we also need the pressure mass matrix $\left(\bar{M}_{T}\right)_{r s}=\int_{T} \Psi_{r} \Psi_{s}=\delta_{r s}|T|$.

8 Model problem

We shall consider a model Darcy flow problems on a square domain with flow from left to right induced by the pressure gradient.

Figure 4: Model problem

The problem domain is divided into rectangular elements with the size characterized by the parameter $n s=$ number of segments on the side.

Figure 5: Discretization of the model problem.

Heterogeneity. We assume that each cell can possess a different permeability coefficient $k_{i}, i=1, \ldots, n c=(n s)^{2}$. This can be produced by MATLAB using command sequence

1) $\quad \operatorname{rng}($ 'default');
2) $\quad \mathrm{RM}=\operatorname{randn}(\mathrm{ns}, \mathrm{ns})$;
3) $\quad \mathrm{LK}=\left(\exp (1) .^{\wedge}(\operatorname{sigma} * R M)\right)$;

The first command initializes the random number generator to make the results in this example repeatable. The same sequence is generated as after restart of MATLAB. The second command generate a ns-by-ns matrix of normally distributed random numbers from $N(0,1)$, i.e. with mean $\mu=0$ and standard deviation 1 . Then $\sigma * R M$ is a matrix of normally distributed random numbers with the mean $\mu=0$ and standard deviation σ^{2}. Third command then creates matrix of conductivities such that $\ln (L K)$ has normal distribution.

Figure 6: Global normals.
Orientation of (global) normals to element edges

Model problem - local matrices

$$
M_{T}=\frac{1}{24 h^{2}} S V^{T} C L V S, \quad L=\frac{1}{k_{\text {cell }}} I
$$

Lower triangle

Upper triangle

As a conclusion - the matrices $M_{T}=\frac{1}{24 h^{2}} S V^{T} C L V S$ are the same for both lower and upper triangles.
Right hand side and boundary conditions Consider the global system

$$
\begin{aligned}
M \underline{\alpha}+B^{T} \underline{\beta} & =\underline{G} \\
B \underline{\alpha} & =\underline{F}
\end{aligned}
$$

where

$$
\begin{gathered}
\underline{G}_{i}=\underbrace{\int_{\Gamma_{0}} \hat{p}\left(p_{i} \cdot n\right)}_{\text {r.h.s. contribution }}-\underbrace{\sum_{k \in I \backslash I_{0}} \hat{u}_{k} m\left(\Phi_{k}, \Phi_{i}\right)}_{\text {l.h.s., in our case } \hat{u}_{k}=0} \\
\underline{F}_{j}=-\underbrace{}_{T_{j}} \int_{f=0} f \Psi_{j} \text { in our case }_{\int_{k \in I \backslash I_{0}}}^{\hat{u}_{k}} \underbrace{}_{\int_{T_{j}}} \underbrace{\int_{\Omega} \operatorname{div}\left(\Phi_{k}\right) ; \hat{u}_{k} \text { are zero in our case }\left(\Phi_{k}\right) \Psi_{j} d x}
\end{gathered}
$$

- \rightarrow add $+h \cdot \hat{p}, \hat{p}=1$ to the corresponding entry of \underline{G}_{i}

Figure 7: Pressure boundary conditions for the model problem.

Figure 8: Treatment of velocity boundary conditions: a) exclude corresponding rows and columns and rhs entries, b) or put 1 on diagonal otherwise zeros in corresponding row, columns and rhs entries

$9 \quad$ Assembling

Standard assembling

```
Algorithm 1 Standard assembling
define \(M \equiv 0, B \equiv 0\)
for 1:nt
    take \(M_{T}, B_{T}\)
        for \(r=1, \ldots, 3\)
            for \(s=1,2,3\)
            \(M_{i(T, r)}{ }_{j(T, s)}=\left(M_{T}\right)_{r s}\)
            \(B_{\kappa(T) i(T, r)}=\left(B_{T}\right)_{1 r}\)
            end
        end
end
```

The standard assembing has two drawbacks: for cycles, which are not efficient in MATLAB, and dense matrix storage of the global matrix. Just replacing the global matrix declaration as sparse is not a good solution as it the sparse structure is not given apriori but must be constructed during the assembling process. This inefficiency can be removed by gradual recording the nonzero components and indices into one dimensional vectors X, I, J and constructin the matrix through

$$
\operatorname{sparse}(X, I, J, n, m)
$$

Further improvement and loop avoiding can be done by vectorization, see [6]. The resulting code is able fast assembly very large matrices.

References

[1] C. Carstensen, Lectures on Adaptive Mixed Finite Element Methods. In: C. Carstensen, P. Wriggers: Mixed finite element technologies, CISM Udine, Courses and Lectures No.509, Springer, Wien 2009
[2] C. Bahriawati, C. Carstensen: Three MATLAB implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Computational Methods in Applied Mathematics 5(2005), 333-361.
[3] O. Axelsson, R. Blaheta, P. Byczanski, J. Karátson and B. Ahmad. Preconditioners for regularized saddle point operators with an application for heterogeneous Darcy flow and transport problems. Journal of Computational and Applied Mathematics
[4] J.E. Akin, Finite Element Analysis with Errror Estimators, Wiley 2005
[5] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Third ed., Cambridge University Press 2007
[6] L. Chen, Programming of finite element methods in MATLAB, www.math.uci.edu/~ chenlong/226/Ch3FEMCode.pdf

