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Abstract. Sufficient conditions for destabilizing effects of certain unilateral boundary con-
ditions and for the existence of bifurcation points for spatial patterns to reaction-diffusion
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mollification method employed to overcome difficulties connected with empty interiors of
appropriate convex cones.
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0. Introduction

Systems of reaction-diffusion and the effect of diffusion driven instability, the

growth of spatial patterns (stationary but spatially nonconstant solutions) and re-
lated eigenvalue and bifurcation problems have been studied for a long time by many

authors. The motivation for the study of such problems comes from biology and eco-
logy where the behaviour of two or more species is modeled ([11], [21], [22]); the effect

of diffusion driven instability was described for the first time in [27]. Multivalued
boundary conditions can describe e.g. a certain control process, a semipermeable or

another type of the membrane on a part of the boundary. The system with vari-
ous types of unilateral boundary conditions was studied by M.Kučera, P.Quittner,

M.Bosák, P.Drábek in [2], [3], [4], [6], [12], [15], [16], [19], [26] (the destabilizing
effect—the bifurcation for the unilateral problem occurs in a domain of stability of
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the system with classical Dirichlet and/or Neumann boundary conditions) and in

[13], [17], [18] (stabilizing effect). For a detailed survey see e.g. [8], [6].
In this paper, the results of [16], i.e. the existence of a bifurcation point for system

with multivalued boundary conditions proved for an interval, are generalized to do-

mains with higher dimension and the localization of bifurcation points is specified. In
[16] the fact that the Sobolev spaceW 1,2(Ω) is embedded into the space of continuous

functions was used. Therefore, the cone K := {v ∈ W 1,2(0, 1); v(0) = 0, v(1) � 0}
has a nonempty interior. An analogue of this cannot hold for higher dimension. In

order to prove the existence of a bifurcation point by a similar process as in [16],
we can either define a pseudointerior of K like in [26], [4] or [6] and use a tech-

nique similar to [3]—this requires an additional condition for the reaction terms (see
Remark 8.1 in Appendix)—or approximate our problem (see Section 3) where the

corresponding approximate cone Kδ, defined with help of mollification, has a non-
empty interior. Similarly to [16] we show the existence of a bifurcation point for

the approximate problem and obtain a bifurcation point for the original one by the
limiting process for δ → 0.

1. Problem formulation

Let Ω be a bounded domain in �n with a Lipschitzian boundary, let ΓD, ΓN , ΓU

be open (in ∂Ω) disjoint subsets of ∂Ω. Let ∂ΓU be Lipschitz with respect to ∂Ω,

meas(∂Ω \ (ΓD ∪ ΓN ∪ ΓU )) = 0 and

(1.1) measΓD > 0, dist(ΓD, ΓU ) > δ0 with δ0 > 0 small.

Let us consider a reaction-diffusion system

(RD)
ut = d1∆u+ f(u, v),

vt = d2∆v + g(u, v)
in [0,+∞)× Ω

with multivalued boundary conditions

(MC)

u = ũ, v = ṽ on [0,+∞)× ΓD,

∂u

∂n
= 0,

∂v

∂n
∈ −m(v − ṽ)

d2
on [0,+∞)× ΓU ,

∂u

∂n
=
∂v

∂n
= 0 on [0,+∞)× ΓN ,

where d1, d2 are positive diffusion parameters, f, g : �2 → � are differentiable func-
tions such that f(ũ, ṽ) = g(ũ, ṽ) = 0, ũ, ṽ ∈ � are constants, m : � → 2� is a suitable
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multivalued function (e.g.m(ξ) = 0 for ξ > 0, m(0) = [m0, 0], m(ξ) is singlevalued,

negative for ξ < 0).
We will prove that there is a bifurcation point dI = [dI

1, d
I
2] at which stationary

spatially nonconstant solutions (“spatial patterns”) for the system (RD) with (MC)

bifurcate from a branch of the trivial solution [ũ, ṽ]. Moreover, this bifurcation point
can lie in the region of stability of [ũ, ṽ] as a solution of (RD) with classical boundary

conditions

(CC)
u = ũ, v = ṽ on [0,+∞)× ΓD,

∂u

∂n
=
∂v

∂n
= 0 on [0,+∞)× (ΓN ∪ ΓU ),

where the bifurcation for (RD), (CC) is excluded.

Set b11 =
∂f
∂u (ũ, ṽ), b12 =

∂f
∂v (ũ, ṽ), b21 =

∂g
∂u (ũ, ṽ), b22 =

∂g
∂v (ũ, ṽ). It is known

that under the assumption

(SIGN)
b11 > 0, b12 < 0, b21 > 0, b22 < 0,

b11 + b22 < 0, b11b22 − b12b21 > 0,

the effect of diffusion driven instability occurs: the constant solution [ũ, ṽ] is stable
as a solution of ODE’s

ut = f(u, v), vt = g(u, v) on [0,+∞)

but it is stable as a solution of (RD), (CC) only for some d = [d1, d2] ∈ �2+ lying
in the domain of stability DS and unstable for the other ones (lying in the domain

of instability DU )—for the notation see Fig. 1, Notation 2.1 and Section 3. Further,
spatial patterns of (RD), (CC) bifurcate from [ũ, ṽ] on the boundary C between DS

and DU (see Fig. 1 and e.g. [20], [25]).
For the sake of simplicity we assume ũ = ṽ = 0 in the sequel. We study only

stationary solutions. Hence we solve the system

(SRD)
d1∆u+ f(u, v) = 0

d2∆v + g(u, v) = 0
in Ω

with boundary conditions (MC) and (CC) in the form

(1.2)

u = v = 0 on ΓD,

∂u

∂n
= 0,

∂v

∂n
∈ −m(v)

d2
on ΓU ,

∂u

∂n
=
∂v

∂n
= 0 on ΓN
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and

(1.3) u = v = 0 on ΓD,
∂u

∂n
=
∂v

∂n
= 0 on ΓN ∪ ΓU .

2. Weak formulation, general assumptions, model example

�������� 2.1. �+—the set of all positive reals, �2+ = �+ ×�+ , � = {−∞}∪�
dA � dB for any dA = [dA

1 , d
A
2 ], d

B = [dB
1 , d

B
2 ] ∈ �

2
+ if and only if d

A
1 � dB

1 and
dA
2 � dB

2

κj , ej (j = 1, 2, 3, . . .)—the eigenvalues and eigenvectors of −∆ with condition (1.3)
Cj :=

{
d = [d1, d2] ∈ �

2
+ ; d2 =

b12b21/κ2j
d1−b11/κj

+ b22
κj

}
, j = 1, 2, 3, . . . (see Fig. 1)

C—the envelope of the hyperbolas Cj , j = 1, 2, 3, . . . (see Fig. 1)

DU := {d = [d1, d2] ∈ �
2
+ ; d2 >

b12b21/κ2j
d1−b11/κj

+ b22
κj
for at least one j = 1, 2, 3, . . .}—the

set of all d ∈ �
2
+ lying to the left from C (domain of instability) (see Fig. 1)

DS := �
2
+ \ (C ∪DU )—the set of all d ∈ �

2
+ lying to the right from C (domain of

stability) (see Fig. 1)

T—the common tangent to all Cj , j = 1, 2, 3, . . . (see Fig. 1)

d1

d2
C3 C2 C1

C

C

DU

DS

b11
κ1

b11
κ2

b11
κ3

s0
sI s̃

σ(s)

T

�
Fig. 1

C0(cl Ω)—the space of continuous functions on cl Ω equipped with the usual Cheby-
shev norm

� a real Hilbert space, �2 = � × � endowed with the inner product 〈U,W 〉 =
〈u,w〉+ 〈v, z〉, U = [u, v],W = [w, z] ∈ �2
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A, N1, N2—operators satisfying (2.4), (2.5)

M = [{0},M2], M0 = [{0},M02]—multivalued mappings of �2 into 2�
2
defined in

Model Example
U = [u, v] elements of �2, AU = [Au,Av], N(U) = [N1(U), N2(U)] for U = [u, v] ∈
�2

U∗ = [ b21b12
u, v] for U = [u, v] ∈ �2

K := {U ∈ �2 ; 0 ∈M0(U)}—closed convex cone with the vertex at the origin
We denote by →,⇀ the strong and weak convergence, respectively.

D(d) =

[
d1 0

0 d2

]
, D−1(d) =

[
1/d1 0

0 1/d2

]
, B =

[
b11 b12

b21 b22

]
, B∗ =

[
b11 b21

b12 b22

]
EB(d) := {U ∈ �

2 ; D(d)U −BAU = 0}
EB∗(d) := {U ∈ �

2 ; D(d)U −B∗AU = 0}
EI(d) := {U ∈ �

2 ; D(d)U −BAU ∈ −M0(U)}
critical point of a problem (P) (where (P) stands e.g. for (2.7) or (2.11))—a parameter
d ∈ �

2
+ for which (P) has a nontrivial solution

bifurcation point of a problem (P) (where (P) stands e.g. for (2.6) or (2.10))—
a parameter d0 ∈ �

2
+ such that for any neighbourhood of [d

0, 0, 0] ∈ �
2
+ × �

2

there exists [d, U ] = [d, u, v], ‖U‖ 	= 0 satisfying (P).

�������� 2.2. Set � := {u ∈ W 1,2(Ω); u = 0 on ΓD in the sense of traces},
�2 := � × �,

(2.1) 〈u, ϕ〉 :=
∫
Ω

n∑
j=1

uxjϕxj dx for all u, ϕ ∈ �.

Then 〈·, ·〉 is the inner product on � and the corresponding norm ‖ · ‖ is equivalent
to the usual Sobolev norm on the space � under the assumption (1.1) and the
embeddings

(2.2) � ↪→ L2(Ω),� ↪→ L2(∂Ω)

are compact—see e.g. [10].

Set n1(u, v) = f(u, v) − b11u − b12v, n2(u, v) = g(u, v) − b21u − b22v and define
operators A : � → �, Nj : �2 → � (j = 1, 2) by

(2.3)
〈Au,ϕ〉 =

∫
Ω
uϕdx for all u, ϕ ∈ �

〈Nj(U), ϕ〉 =
∫
Ω
nj(u, v)ϕdx for all U = [u, v] ∈ �

2, ϕ ∈ �.
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It follows from embedding theorems (see e.g. [10]) that

(2.4) A is a linear, symmetric, positive and completely continuous operator.

Further, if u, v ∈ W 1,2(Ω) then it follows from the embedding theorem that u, v ∈
Lq(Ω) with any real q � 1 for n � 2 and 1 � q � 2n

n−2 for n > 2. If nj satisfy a growth

condition nj(ξ, η) � C(1 + |ξ|q−1 + |η|q−1) for any ξ, η ∈ � then nj(u, v) ∈ Lq∗
(Ω)

with q∗ = q
q−1 by the Nemytskii theorem (see e.g. [10]) and this together with the

compactness of the embedding mentioned implies that

(2.5)

N1, N2 are nonlinear, completely continuous operators from �
2 to �

lim
‖U‖→0

‖Nj(U)‖
‖U‖ = 0 (j = 1, 2)

(for the last condition, see [18], Lemma 1.A in Appendix).

Now, a weak solution of the problem (SRD), (1.3) is a solution of the operator
equations

(2.6)
d1u− b11Au− b12Av −N1(u, v) = 0

d2v − b21Au− b22Av −N2(u, v) = 0.

We also consider the linear problem corresponding to (2.6), i.e.

(2.7)
d1u− b11Au− b12Av = 0

d2v − b21Au− b22Av = 0.

����	 
���
	�. (Cf. [16].) Let us consider a multivalued mapping m : � →
2� which is a singlevalued real continuous function on � \ {0} and a multivalued one
at ξ = 0 such that

m(ξ) = 0 for ξ > 0, m(ξ) � 0 for ξ < 0,
lim

ξ→0−
m(ξ) = m0 with some m0 ∈ (−∞, 0), m(0) = [m0, 0].

Set
m(ξ) = m(ξ) = m(ξ) for ξ 	= 0,
m(0) = m0, m(0) = 0

and let us assume that

(2.8) |m(ξ)|, |m(ξ)| � k · (1 + |ξ|) with some k > 0.
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Consider the situation from Notation 2.2 and define a multivalued mappingM2 : � →
2� by

(2.9)
M2(v) :=

{
z ∈ � ;

∫
ΓU

m(v)ϕ dΓ � 〈z, ϕ〉 �
∫

ΓU

m(v)ϕ dΓ

for all ϕ ∈ �, ϕ � 0 on ΓU

}
.

(The inequalities on ΓU are understood in the sense of traces.) Then a solution of

(2.10)
d1u− b11Au− b12Av −N1(u, v) = 0

d2v − b21Au− b22Av −N2(u, v) ∈ −M2(v)

is a weak solution of the problem (SRD), (1.2)—see [9] for details. Further, intro-

duce a positively homogeneous mapping M0 : �2 → 2�2 corresponding to M(U) =
[{0},M2(v)], U = [u, v], which is defined by M0(U) = [{0},M02(v)] with

M02(v) := {z ∈ � ; 〈z, v〉 = 0, 〈z, ϕ〉 � 0 for all ϕ ∈ �, ϕ � 0 a.e. on ΓU}
if v � 0 a.e. on ΓU

M02(v) := ∅ if v < 0 on a subset of ΓU of a positive measure.

Then a solution of

(2.11)
d1u− b11Au− b12Av = 0

d2v − b21Au− b22Av ∈ −M02(v)

is a weak solution of
d1∆u+ b11u+ b12v = 0

d2∆v + b21u+ b22v = 0
in Ω

with the boundary conditions

(2.12)

u = v = 0 on ΓD,

∂u

∂n
= 0, v � 0, ∂v

∂n
� 0, ∂v

∂n
· v = 0 on ΓU ,

∂u

∂n
=
∂v

∂n
= 0 on ΓN .

Note that the problem (2.11) is still nonlinear because M0 is cone-valued and non-

linear. Hence we cannot use the standard technique (as e.g. the degree theory for
linear mappings) to obtain the bifurcation points.

������ 2.1. We can also consider m0 = −∞ in Model Example. Then we
define M in the same way as M0 and do not assume (2.8).
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������ 2.2. It is easy to see from the definition of M0 that the inclusion

problem (2.11) is equivalent to the variational inequality

(2.13)
U ∈ K;

〈D(d)U −BAU, V − U〉 � 0 for any V ∈ K

with

(2.14) K := {U ∈ �
2 ; 0 ∈M0(U)} = � × {ϕ ∈ � ; ϕ � 0 on ΓU}.

Therefore, the inclusion (2.10) is a generalization of such problems (2.13) and also
of variational inequalities

〈D(d)U −BAU −N(U), V − U〉+Ψ(V )−Ψ(U) � 0 for any V ∈ K

with a positive convex lower semicontinuous functional Ψ: �2 → (−∞,+∞], Ψ 	≡
+∞, where M = ∂Ψ—the subdifferential of Ψ (cf. e.g. [5]).

3. Properties of the linear equation

In the sequel, we consider a general real Hilbert space � and operators A : � → �,
N : �2 → � satisfying (2.4), (2.5).

����������� 3.1. (Cf. [4], Section 2, [6], Section 4.) It follows from (2.4)
that the characteristic values of A (i.e. the eigenvalues of the Laplacian with (1.3)

for A from Notation 2.2) form a sequence {κi}∞i=1, (κi → +∞ for i → +∞) of
positive numbers. The set of all corresponding eigenvectors {ei}∞i=1 forms a complete
orthonormal system in �.

Proposition 3.1. The eigenvalue problem

(3.1) D(d)U −BAU + µAU = 0

has a system of eigenvalues

(3.2) µ
(r)
i = 1

2 [b11 + b22 − (d1 + d2)κi ±
√
D], r = 1, 2

with D := [b11+b22− (d1+d2)κi]2−4 · [(d1κi−b11)(d2κi−b22)−b12b21], i = 1, 2, . . .,
which are roots of

(3.3) µ2 − µ[b11 + b22 − (d1 + d2)κi] + (d1κi − b11)(d2κi − b22)− b12b21 = 0.
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In particular, d = [d1, d2] is a critical point of (2.7) if and only if µ = 0 is a solution

of (3.3), i.e. if and only if

(3.4) (d1κi − b11)(d2κi − b22)− b12b21 = 0,

i.e. if d lies on a hyperbola Ci =
{
d = [d1, d2] ∈ �

2
+ ; d2 =

b12b21/κ
2
i

d1 − b11/κi
+
b22
κi

}
for

some i = 1, 2, . . ..

For the proof see e.g. [4], Section 2.

����������� 3.2. (See [20] and [4] for the proof of the following statement.)

Under the assumption (SIGN), for a given i there are two real roots µ(1)i (d), µ
(2)
i (d) of

(3.3) for any d lying to the left from Ci or in the right neighbourhood of Ci (including
Ci). The smaller one (say µ

(2)
i (d)) is always negative.

It follows from the definition of Ci that µ
(1)
i (d) < 0 or µ

(1)
i (d) > 0 for d to the right

or to the left, respectively, from Ci and in a neighbourhood of Ci. For d lying to the

right and sufficiently far from Ci, we have µ
(r)
i (d) ∈ � \� with Reµ(r)i (d) < 0, r = 1, 2.

Further, for any d ∈ �
2
+ , let us set µ(d) := max{µ

(1)
i (d) ; µ

(1)
i (d) ∈ �}. Hence, µ(d)

is the greatest eigenvalue of (3.1). Then the envelope C of all Ci, i = 1, 2, . . . is
equal to {d ∈ �2+ ; µ(d) = 0} and µ(d) < 0 or µ(d) > 0 for d from a neighbourhood
of C and to the right or to the left from C, respectively.

����������� 3.3. It follows from Proposition 3.1 and Observation 3.2 that

EB(d) 	= {0} if and only if d ∈
∞⋃

j=1
Cj . Moreover, let p be an index such that the

characteristic value κp of A (i.e. the eigenvalue of the Laplacian with (1.3) for A from
Notation 2.2) has a multiplicity k, κp = . . . = κp+k−1. Then for any d ∈ Cp = . . . =

Cp+k−1, d /∈ Cq for Cq 	= Cp we have

(3.5) EB(d) = Lin{Ui(d)}p+k−1
i=p with Ui(d) = [αi(d)ei, ei],

where αi(d) =
d2κp−b22

b21
> 0. Further, if d ∈ Cp ∩ Cq for some Cq 	= Cp, κp 	= κq =

. . . = κq+�−1 (κq has the multiplicity �) then

(3.6) EB(d) = Lin{Ui(d)}i=p,...,p+k−1,q,...,q+�−1.

For the proof see [4], Section 2.
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4. The main result

We will show in Theorem 4.1 the existence of a bifurcation point to (2.10). The
method of the proof of this fact will be the same as in [16]. One of the assumptions

in [16] was intK 	= ∅. Here, we have n > 1 and therefore intK = ∅ in general. We
consider an auxiliary problem with an additional parameter δ (see below) which has

the property intKδ 	= ∅ and which approximates our original problem for δ → 0.

�������� 4.1. Let δ > 0 be fixed. Let G be a bounded domain in �n with a

Lipschitz boundary such that cl Ω ⊂ G. We define a mollification mapping Φδ : � →
W 1,2(G) in the following way: Let ϕδ : �n → [0,+∞) be a C∞-smooth function
such that ϕδ(0) > 0, ϕδ(x) � ϕδ(0) for any x ∈ �

n , ϕδ(x) = 0 for all x /∈ Bδ(0)
(the ball with a radius δ centered at the origin) and

∫
�n ϕ

δ(x) dx = 1. Then ϕδ is
bounded on �n and ϕδ converges in the sense of distributions to the Dirac measure

centered at the origin for δ → 0+. For an example of such a function see [23]. There
exists a continuous “extension” mapping E : W 1,2(Ω)→ W 1,2

0 (G) (see [23]). Let us

define a mapping

Φδ(v, x) :=
∫

G

ϕδ(x− y)Ev(y) dy for any v ∈ �, x ∈ G.

Hence, Φδ(v, ·) is a continuous function on cl Ω and it is easy to see that if vn, v ∈ �,
vn → v in � then Φδ(vn, ·) → Φδ(v, ·) in C0(cl Ω). Further, define M δ, M δ

0 , K
δ by

M δ(U) = [{0},M δ
2 (v)], M

δ
0 (U) = [{0},M δ

02(v)], K
δ = � ×Kδ

2 with

M δ
2 (v) :=

{
z ∈ � ;

∫
ΓU

m(Φδ(v, x))[Φδ(ϕ, x)]+ dΓ −
∫

ΓU

m(Φδ(v, x))[Φδ(ϕ, x)]− dΓ

� 〈z, ϕ〉 �
∫

ΓU

m(Φδ(v, x))[Φδ(ϕ, x)]+ dΓ −
∫

ΓU

m(Φδ(v, x))[Φδ(ϕ, x)]− dΓ

for all ϕ ∈ �

}
;

M δ
02(v) :=

{
z ∈ � ; 〈z, v〉 = 0, 〈z, ϕ〉 � 0 for all ϕ ∈ �,Φδ(ϕ, ·) � 0 on ΓU

}
if Φδ(v, ·) � 0 on ΓU ;

M δ
02(v) := ∅ if Φδ(v, x0) < 0 for some x0 ∈ ΓU ;

Kδ
2 := {ϕ ∈ � ; 0 ∈M δ

02(ϕ)}.

Here, ϕ+, ϕ− denote the positive and negative parts of ϕ, respectively, ϕ = ϕ+−ϕ−.
Note that we have Kδ

2 = {ϕ ∈ � ; Φδ(ϕ, ·) � 0 on ΓU} and intKδ
2 ⊇ {ϕ ∈ � ;

Φδ(ϕ, ·) > 0 on clΓU} 	= ∅ because Φδ is (� → C0(cl Ω))-continuous and the interior
of Kδ is the preimage of an open set.
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����������� 4.1. The mappings M δ and M δ
0 obviously satisfy the following

conditions:

0 ∈M δ(0);(4.1)

Kδ is a closedconvex cone with the vertex at the origin, {0} 	= Kδ 	= �
2;(4.2)

if U ∈ Kδ then U∗ ∈ Kδ;(4.3)

M δ
0 (tV ) = tM

δ
0 (V ) for all t > 0, V ∈ �

2;(4.4)

if U ∈ �
2 then 〈Z,U〉 = 0 for all Z ∈M δ

0 (U);(4.5)

if U ∈ �
2 then 〈Z,Ψ〉 � 0 for all Ψ ∈ Kδ, Z ∈ −M δ

0 (U).(4.6)

Proposition 4.1. Let Un → 0, Wn = Un

‖Un‖ ⇀W, Zn → Z in �2 and dn → d in

�
2
+ such that D(dn)Wn +Zn ∈ −Mδ(Un)

‖Un‖ . Then Wn →W, D(d)W +Z ∈ −M δ
0 (W ).

The proof is given in [9].

There exists a system of continuous functions pτ : � → � with a real parameter
τ ∈ [0,+∞) such that

(4.7) p0 ≡ 0, pτ (ξ) = 0 for ξ � 0, pτ (ξ) ∈ (m(ξ), 0] for ξ < 0

satisfying the following conditions:

(4.8)

if τn → τ ∈ [0,+∞), ξn → ξ then pτn(ξn)→ pτ (ξ);

if τn → τ ∈ (0,+∞), ξn → 0− then p̃τ := lim inf
n→+∞

pτn(ξn)
ξn

> 0;

if τn → 0+, ξn → 0− then
pτn(ξn)
ξn

→ 0, lim inf
n→+∞

pτn(ξn)
τnξn

> 0;

if τn → +∞, ξn → ξ, pτn(ξn)→ p

then p ∈ m(ξ) or p = m(ξ) for ξ = 0 or ξ 	= 0, respectively.

Let us define for any τ ∈ [0,+∞) a function p0,τ : � → � such that p0,τ (ξ) = 0

for all ξ � 0 and p0,τ (ξ) = p̃τ · ξ for all ξ < 0. Moreover, a system of operators
P δ

τ , P
δ
0,τ : �

2 → �2 with a parameter τ ∈ [0,+∞) is defined by P δ
τ (U) = [0, P

δ
τ,2(v)],

P δ
0,τ (U) = [0, P

δ
0,τ,2(v)] for U = [u, v], where

〈P δ
τ,2(v), ψ〉 =

∫
ΓU

pτ (Φδ(v, x))Φδ(ψ, x) dΓ

〈P δ
0,τ,2(v), ψ〉 =

∫
ΓU

p0,τ (Φδ(v, x))Φδ(ψ, x) dΓ

 for all v, ψ ∈ �.
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����������� 4.2. For such a system of operators and a fixed δ ∈ (0, δ0) the
following conditions are clearly fulfilled:

(4.9)

{
P δ

τ (U) = 0 for all U ∈ Kδ,

〈P δ
τ (U), V 〉 � 0 for all U ∈ � × �, V ∈ Kδ, τ ∈ [0,+∞);

(4.10) 〈P δ
τ (U), U〉 � 0, 〈P δ

0,τ (U), U〉 � 0 for all U ∈ � × �, τ ∈ [0,+∞).

The proofs of the following propositions for Model Example will be given in [9].

Proposition 4.2. Let Un ⇀ U in �2, τn � 0, dn → d ∈ �2+ . Then

lim inf
n→+∞〈D−1(dn)P

δ
τn
(Un), Un − U〉 � 0.

If, moreover, U = 0,
P δ

τn
(Un)

‖Un‖ are bounded and Wn = Un

‖Un‖
�
2

⇀W , then

lim inf
n→+∞

〈D−1(dn)P δ
τn
(Un)

‖Un‖
,Wn −W

〉
� 0.

Proposition 4.3. Let Un
�
2

⇀ U, τn → τ ∈ [0,+∞). Then P δ
τn
(Un)

�
2

→ P δ
τ (U).

For τ = +∞ and P δ
τn
(Un)

�
2

→ Z this Z belongs to M δ(U). For U = 0 and τ = 0 the
convergence

‖Un‖−1P δ
τn
(Un)

�
2

→ 0

holds. Moreover, if U = 0, Wn = ‖Un‖−1Un
�
2

⇀ W and τn → τ ∈ [0,+∞), then
‖Un‖−1P δ

τn
(Un)

�
2

→ P δ
0,τ (W ). For τ = +∞ and ‖Un‖−1P δ

τn
(Un)

�
2

→ Z we have Z ∈
M δ
0 (W ).

Proposition 4.4. Let Un
�
2

→ 0, Wn = ‖Un‖−1Un
�
2

⇀ W /∈ Kδ, τn → τ0 > 0 and

V ∈ intKδ. Then lim sup
n→+∞

‖Un‖−1
〈
P δ

τn
(Un), V

〉
< 0. For τ0 = 0, moreover,

lim sup
n→+∞

(τn‖Un‖)−1
〈
P δ

τn
(Un), V

〉
< 0.

Proposition 4.5. Let us assume that Un
�
2

⇀ U , Zn
�
2

→ Z, dn → d ∈ �
2
+ and

δn → 0+. Then the following implications hold:

D(dn)Un + Zn ∈ −M δn(Un) =⇒ Un
�
2

→ U, D(d)U + Z ∈ −M(U);(4.11)

D(dn)Un + Zn ∈ −M δn
0 (Un) =⇒ Un

�
2

→ U, D(d)U + Z ∈ −M0(U).(4.12)
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Let us remark that (4.11) is essential for the proof of Theorem 4.1 and (4.12) is used

for the proof of the destabilizing effect (sI > s0)—see Remark 4.2.

Let δ0 be from (1.1) and let d0 ∈ Cp be a fixed point such that there is an
eigenfunction e corresponding to the eigenvalue κp of the Laplacian with (1.3) such

that

(4.13) e � −ε on a δ0-neighbourhood of ΓU in cl Ω for some ε > 0.

Then the system {ei}∞i=1 can be chosen in such a way that κp = . . . = κp+k−1, k is
the multiplicity of κp and (4.13) holds with e = ep. In particular, it follows from
Observation 3.3 and the definition of Kδ that

(4.14) −U0 ∈ EB(d0) ∩ intKδ for any δ ∈ (0, δ0)

is fulfilled with U0 = Up(d0)
(
= [αp(d0)ep, ep], see (3.5)

)
.

In the sequel we consider a curve σ given by a differentiable mapping σ : � → �2+

satisfying

(4.15)



σ(s) ∈ DS for all s ∈ (s0,+∞),
σ intersects the envelope C at the point σ(s0) = d0,

σ intersects the line d1 = b11
κ1
at a point σ(s̃), s̃ > s0,

σ1(s) < b11
κ1
for all s ∈ (s0, s̃),

σ1(s) > b11
κ1
for s ∈ (s̃, s̃+ ζ0) with some ζ0 > 0.

It is essential that if d0 ∈ C ∩ Cp and (4.14) holds with U0 = Up(d0) then

(4.16) the curve σ is transversal to Cp at d0.

Note that if, moreover, d0 ∈ Cp ∩ Cq, Cp 	= Cq then σ has to be transversal to Cp

but not necessarily to both Cp and Cq.

������ 4.1. By introducing the curve σ(s) we have changed the two-parametric

system (2.10) with [d1, d2] ∈ �2+ to the system

(4.17) D(σ(s))U −BAU −N(U) ∈ −M(U)

with a single parameter s ∈ �. Further, by a critical point of

(4.18) D(σ(s))U −BAU = 0

397



or (2.11) written with d1, d2 replaced by σ1(s), σ2(s) we mean a parameter s1 such

that EB(σ(s1)) 	= {0} or EI(σ(s1)) 	= {0}, respectively, and by a bifurcation point
of (4.17) we mean a parameter s2 ∈ � such that for any neighbourhood of [s2, 0, 0] ∈
� × �

2 there exists [s, U ] = [s, u, v], ‖U‖ 	= 0 satisfying (4.17). Therefore, by
the assumption (4.15) s0 is the largest critical point of (4.18), because a nontrivial
solution of (4.18) exists only for σ(s) ∈ Cj for some j = 1, 2, . . .—see Observation 3.3.

Theorem 4.1. Let (SIGN), (1.1), (2.2), (2.4) and (2.5) hold, let σ(s) be a

differentiable curve satisfying (4.15), let d0 ∈ Cp and (4.16) hold. Let (4.14) hold
with U0 = Up(d0)

(
= [αp(d0)ep, ep], see (3.5)

)
. Consider a multivalued mapping

M such that there exists a system of multivalued mappings M δ and the corre-

sponding homogeneous multivalued mappings M0 and M δ
0 , the operators P

δ
τ , P

δ
0,τ

(τ ∈ [0,+∞), δ ∈ (0, δ0)) satisfying the assumptions (4.1)–(4.6), (4.9), (4.10) and for
which Propositions 4.1–4.4 and (4.11) in Proposition 4.5 remain valid. Then there

exists a bifurcation point sI ∈ [s0, s̃] of the inclusion (4.17). Hence, there is �0 > 0
such that for any � ∈ (0, �0) there are s�, U� satisfying (4.17), ‖U�‖2 = �, s� ∈ [s0, s̃]
and such that if �n → 0+, s�n → sI then sI ∈ [s0, s̃].

Proof will be given in Section 7. For n = 1, cf. [16], Theorem 2.10.

������ 4.2. If, moreover, either intK 	= ∅ or (2.11) is equivalent to (2.13) (this
assumption is satisfied in many reasonable situations) and the conditions

if U ∈ K then U∗ ∈ K,(4.19)

if U ∈ �
2 then 〈Z,Ψ〉 � 0 for all Ψ ∈ K, Z ∈ −M0(U)(4.20)

and (4.12) hold then we can prove sI > s0, which implies that s�, U� from Theo-

rem 4.1 do not satisfy

(4.21) D(σ(s))U −BAU −N(U) = 0

—see the proof of destabilizing effect in Appendix.

������ 4.3. There are two main improvements in comparison to [16], Theo-
rem 2.10. First, the localization of the bifurcation point is specified—we show that

sI < s̃, s̃ is from (4.15), i.e. dI = σ(sI) /∈ Z0 in the sense of [7], i.e. dI
1 = σ1(sI) � b11

κ1
.

Second, in [16] the case n = 1, dimEB(d0) = 1 and intK 	= ∅ was considered. Here,
n > 1 is admitted and therefore the possible difficulties dimEB(d0) > 1 and intK = ∅
must be overcome. To get over the former one the operator Lδ is involved (see No-

tation 5.2), to get over the latter, the approximate problem (5.13)—see below—is
considered. Notice that for δ fixed, the existence of a bifurcation point sδ

I for this
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δ-problem can be shown in the same way as in [16], cf. Remark 8.1 in Appendix

for another technique overcoming the emptiness of intK by using the notion of
pseudointerior.

Corollary 4.1. Let (SIGN) and (1.1) hold, let σ(s) be a differentiable curve

satisfying (4.15), let d0 ∈ Cp and (4.16) hold. Letm be the multivalued function from
Model Example and let us assume that there exists an eigenfunction ep corresponding

to an eigenvalue κp of the Laplacian with (1.3) such that (4.13) is fulfilled with e = ep.

Then stationary spatially nonconstant weak solutions (spatial patterns) of (SRD),

(1.2) bifurcate at some sI ∈ (s0, s̃].

This follows from Theorem 4.1, Propositions 4.1–4.5, Remark 4.2 and the fact that
no nontrivial constant functions can satisfy (1.3).

5. Reduction of dimension of the space EB(d0)

In this section we will keep the assumptions of Theorem 4.1. The following propo-
sition holds (cf. [16], Remark 4.5):

Proposition 5.1. Let σ satisfy (4.15) and (4.16). Then

(κpσ2(s0)− b22)2

b12b21
σ′
1(s0) + σ

′
2(s0) < 0.

For the proof see Appendix.

����������� 5.1. Similarly as in [6], Section 4 we will consider an eigenvalue

problem

(5.1) (D−1(d)BA − I)U = µU.

We will study the behaviour of eigenvalues of (5.1) with respect to the changing d

along the curve σ(s). The process will be the same as in [6]. Therefore, the detailed
calculations are explained in Appendix and here only the main steps are sketched.

All eigenvalues of (5.1) are the roots of

(5.2) µ2d1d2κ
2
i − βi(d)κiµ+ γi(d) = 0,

i.e. the numbers

(5.3) µ
(r)
i (d) :=

βi(d)±
√
ω(d)

2d1d2κi
, r = 1, 2.
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Here, βi(d) := d1b22 + d2b11 − 2d1d2κi, γi(d) := (d1κi − b11)(d2κi − b22) − b12b21,

ω(d) := d21b
2
22 + d

2
2b
2
11 − 2d1d2b11b22 + 4d1d2b12b21, i = 1, 2, . . .. The set {d ∈ �

2
+ ;

ω(d) = 0} is a couple of half-lines, one of them is a common tangent T to all
hyperbolas Cj , j = 1, 2, . . . (see also [20] and Figures 1 and 2). The calculations

of the crucial signs of the eigenvalues µ(1)i (d), µ
(2)
i (d) from (5.3) in the domains

D1, . . . ,D6, are described in Appendix. They lead to the conclusion that for d lying
to the left from Ci, there is one positive root of (5.2) and for d lying to the right
from Ci, either none or both roots of (5.2) are positive.

d1

d2

CiC̃i

T

D1

D2 D3

D4

D5D6

γi = 0βi = 0
−++ −

ω = 0
+ −

ω = 0−
+�

Fig. 2

�������� 5.1. (Cf. [8], Notation 4.1.) The vectors

(5.4) U
(r)
i (d) =

[d2κi − b22 + µ
(r)
i (d)d2κi

b21
ei, ei

]
, i ∈ �, r = 1, 2

are the eigenvectors of (5.1) corresponding to µ(r)i (d).

Let η > 0 be a small number. Let d0 ∈ Cp = . . . = Cp+k−1, d0 /∈ T . Then the
curve σ(s) for s ∈ (s0 − η, s0 + η) goes either from D2 into D3 or from D1 into D6
for η small—see Fig. 2. By µp(s) for s ∈ (s0 − η, s0 + η) we denote the root of (5.2)
changing the sign at d0, i.e.

µp(s) = µ(1)p (σ(s)) if Cp ∩ T � d0

= µ(2)p (σ(s)) if d0 � Cp ∩ T(5.5)

(see Appendix for details).
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Let d0 ∈ Cp = . . . = Cp+k−1, d0 ∈ T . Then the curve σ(s) goes from the domains
(D1∪D2) into (D4∪D5). By µp(s) we denote the positive root of (5.2) on (s0−η, s0)
(i.e.µp(s) = µ

(1)
p (σ(s)) ) and for [s0, s0 + η) we put µp(s) = Reµ

(r)
p (σ(s)), r = 1, 2.

Let us denote by

(5.6) Ui(s) =
[σ2(s)κi − b22 + µi(s)σ2(s)κi

b21
ei, ei

]
, i = p, . . . , p+ k − 1

the corresponding eigenvectors if d0 /∈ T or d0 ∈ T and s ∈ (s0 − η, s0], or their real

parts in the case d0 ∈ T and s ∈ (s0, s0 + η).

����������� 5.2. (Cf. [8], Observation 4.2.) Let µq(s) 	= µp(s) for all q satis-

fying κq 	= κp. Then

Ker(D−1(σ(s))BA − (1 + µp(s))I) = Lin{Ui(s)}p+k−1
i=p

for all s ∈ (s0 − η, s0 + η) in the case d0 /∈ T and for all s ∈ (s0 − η, s0] in the case

d0 ∈ T . In particular, if d0 ∈ Cp and d0 /∈ Cq for all Cq 	= Cp, then

(5.7) EB(d0) = Lin{Ui(s0)}p+k−1
i=p .

If µq(s) = µp(s) for some q satisfying κp 	= κq = . . . = κq+�−1, where κq has the mul-

tiplicity �, then Ker(D−1(σ(s))BA−(1+µp(s))I) = Lin{Ui(s)}i=p,...,p+k−1,q,...,q+�−1
for all s ∈ (s0 − η, s0 + η). In particular, if d ∈ Cp ∩ Cq for some Cq 	= Cp, then

(5.8) EB(d
0) = Lin{Ui(s0)}i=p,...,p+k−1,q,...,q+�−1.

�������� 5.2. (Cf. [8], Notation 4.2.) Set I(d0) = {i ∈ � \ {p} ; d0 ∈ Ci}. Set
Ip(d0) = {i ∈ I(d0) ; Ci = Cp} and Iq(d0) = I(d0) \ Ip(d0). Choose η > 0 such that
µp(s) is well defined for any s ∈ (s0 − η, s0 + η). Moreover, for i ∈ I(d0) set

νi(d0) = 1 if µi(s0) = µ
(1)
i (d

0) or µ(1)i (d
0) = 0,

νi(d0) = −1 if µi(s0) = µ
(2)
i (d

0) and µ(1)i (d
0) 	= 0,

introduce a continuous cut-off function χ with a support in (s0− η, s0+ η) such that

χ(s0) = 1, χ(�) ⊂ [0, 1] and for any δ > 0, the linear completely continuous operator
Lδ(s) in �2 (for any s fixed) by

(5.9) Lδ(s) : U �→ δχ(s) ·
∑

i∈I(d0)

νi(d
0)
〈Ui(s), U〉
‖Ui(s)‖2

· Ui(s).

Let us notice that in [4] and [6] a simpler definition of L was taken without a
sign term. Here we need also a proper sign in (5.11) below for the proof of the fact

that sI > s0 in Theorem 4.1. Hence, the proof of Lemma 5.1 below is slightly more
complicated but its assertion is the same as that in [6].
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����������� 5.3. (Cf. [8], Remark 4.2.) (5.9) yields that Lδ(s) ≡ 0 for s ∈ �

if I(d0) = ∅, i.e. if dimEB(d0) = 1. From (5.4), (5.6), the form of U∗ and the fact
that 〈ei, ej〉 = 0 for i 	= j we deduce that for any s ∈ (s0 − η, s0 + η) the identities
〈U (r)i (σ(s)), U

(r)
j (σ(s))〉 = 〈Ui(s), Uj(s)〉 = 〈U∗

i (s), Uj(s)〉 = 0 hold for all j 	= i,

r = 1, 2 and

(5.10)

Lδ(s)Up(s) = Lδ(s)U∗
p (s) = 0, Lδ(s)U

(r)
i (σ(s)) = 0 for i /∈ I(d0), r = 1, 2,

Lδ(s)Ui(s) = δχ(s)Ui(s) for i ∈ I(d0), if d0 lies above or in Ci ∩ T ,
Lδ(s)Ui(s) = −δχ(s)Ui(s) for i ∈ I(d0), if d0 lies below Ci ∩ T .

Moreover, we have for σ(s) lying in the neighbourhood of Cp, σ(s) /∈ T that

(5.11)
〈D(σ(s))Lδ(s)U,Up(s)〉 = 〈D(σ(s))Lδ(s)U,U∗

p (s)〉 = 0 for any U ∈ �
2,

〈D(σ(s))Lδ(s)Ui(s), U∗
i (s)〉 < 0 for i ∈ I(d0).

See Appendix for the proof of the last assertion. Note that if d0 ∈ Cp ∩Cq, Cp 	= Cq

and p < q, then d0 /∈ T and d0 lies below Cp ∩ T and above Cq ∩ T .

Lemma 5.1. (Cf. [6], Lemma 4.1.) There exists δ0 > 0 such that for all δ ∈ (0, δ0)
there is η > 0 such that the following assertions hold.
(a) Let d0 ∈ Cp\T . Then for all s ∈ (s0−η, s0+η), the eigenvalue µp(s) from (5.5)

is simultaneously an algebraically simple eigenvalue of the operator D−1(σ(s))BA−
Lδ(s)− I with the corresponding eigenvector Up(s). It changes the sign as s crosses
s0. The other eigenvalues have constant signs and constant multiplicities on (s0 −
η, s0 + η).
(b) Let d0 ∈ Cp ∩ T . Then for s ∈ (s0 − η, s0], µp(s) is an eigenvalue of

D−1(σ(s))BA − Lδ(s) − I with the only normed eigenvectors ± Up(s)
‖Up(s)‖ . For s ∈

(s0− η, s0), µp(s) is positive and algebraically simple, µp(s0) = 0 is not algebraically

simple. The sum of algebraic multiplicities of the other positive eigenvalues of

D−1(σ(s))BA − Lδ(s) − I is even for all s ∈ (s0 − η, s0). For s ∈ (s0, s0 + η),

all eigenvalues of this operator are complex.

In both cases (a), (b), Ker(D−1(σ(s0))BA − Lδ(s0) − I) = Lin{Up(s0)} and the
number Θ(s0−ε)−Θ(s0+ε) is odd for all ε ∈ (0, η) whereΘ(s) is the sum of algebraic
multiplicities of all positive eigenvalues of the operator D−1(σ(s))BA − Lδ(s)− I.

The proof, similar to that of [6], Lemma 4.1, is given in Appendix.
Let the parameter δ > 0 be admissible for Lemma 5.1. For η > 0 as in Lemma 5.1

and such that

(5.12) s0 + η < s̃
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where s̃ is from the assumption (4.15), we arrive at the following inclusions:

D(σ(s))U −BAU −N(U) +D(σ(s))Lδ(s)U ∈ −M δ(U),(5.13)

D(σ(s))U −BAU +D(σ(s))Lδ(s)U ∈ −M δ
0 (U)(5.14)

and the corresponding linear equation

(5.15) D(σ(s))U −BAU +D(σ(s))Lδ(s)U = 0,

which is the aim of this section.

6. Properties of solutions to the penalty equation

We will consider the system of penalty equations

(6.1) D(σ(s))U −BAU − τ

1 + τ
N(U) +D(σ(s))Lδ(s)U + P δ

τ (U) = 0

with the norm condition

(6.2) ‖U‖2 = �τ

1 + τ
.

Throughout this section δ > 0 is a fixed parameter admissible for Lemma 5.1, hence

we can use intKδ 	= ∅. Moreover, � > 0 is fixed and τ ∈ [0,+∞) is a penalty
parameter. The penalty equation (6.1) is a linear equation (5.15) for τ = 0 while for

τ → +∞ we get the inclusion (5.13) (for the proof see Lemma 6.2).

Lemma 6.1. If [sn, Un, τn] ∈ � ×�2 ×�+ , sn → s, Un ⇀ U , τn → τ ∈ [0,+∞],

(6.3) D(σ(sn))Un −BAUn − τn
1 + τn

N(Un) +D(σ(sn))Lδ(sn)Un + P δ
τn
(Un) = 0

then Un → U . If, moreover, ‖U‖ = 0, Wn = Un

‖Un‖ ⇀W then Wn →W .

Since the operator Lδ(s) is completely continuous, the proof is identical to that of
[16], Remark 3.1.

Lemma 6.2. (Cf. [16], Lemma 3.2.) Let [sn, Un, τn] ∈ � × �2 × �+ , sn → s,

Un → U , τn → +∞ and let (6.3) hold. Then

D(σ(s))U −BAU −N(U) +D(σ(s))Lδ(s)U ∈ −M δ(U).

�����. From the continuity of Lδ, Proposition 4.3 and (6.3) it follows that

−Zn := −P δ
τn
(Un) = D(σ(sn))Un −BAUn − τn

1 + τn
N(Un) +D(σ(sn))Lδ(sn)Un

→ D(σ(s))U −BAU −N(U) +D(σ(s))Lδ(s)U = −Z ∈ −M δ(U).

�
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Lemma 6.3. (Cf. [17], Lemma 1.1.) Any bifurcation point s ∈ � of (5.13) is

simultaneously a critical point of (5.14).

�����. If s is a bifurcation point of (5.13) then there exist sn → s and a
sequence {Un} such that ‖Un‖ → 0, ‖Un‖ 	= 0, Wn = Un

‖Un‖ ⇀W and

(6.4) D(σ(sn))Wn −BAWn − N(Un)
‖Un‖

+D(σ(sn))Lδ(sn)Wn ∈ −M
δ(Un)
‖Un‖

.

Using the compactness of A and Lδ, the assumption (2.5) and Proposition 4.1 we
obtain Wn →W and

(6.5) D(σ(s))W −BAW +D(σ(s))Lδ(s)W ∈ −M δ
0 (W ).

�

Lemma 6.4. If Ker(D(σ(s0)) − B∗A + Lδ(s0)) ∩ intKδ 	= ∅ then {U ∈ �2 ;

D(σ(s0))U −BAU + Lδ(s0)U ∈ −M δ
0 (U)} = Ker(D(σ(s0))−BA+ Lδ(s0)) ∩Kδ.

The proof is identical to the proof of [16], Lemma 3.3, if we put U0 = −Up(s0).

Lemma 6.5. If σ1(s) > b11
κ1
(i.e. σ(s) ∈ Z0 in the notation of [7]) then the only

solution of (5.14) is trivial. (The line d1 = b11
κ1
is the asymptote to C1—see Fig. 1.)

Proof is done in a similar way as in [7], proof of Theorem 2.1. Note that the

condition (M0) in the notation of [7] holds for any δ > 0 small enough due to the
assumption (4.5). Moreover, it follows from (5.12) that Lδ(s) ≡ 0 for s > s̃.

Lemma 6.6. If d = [d1, d2] ∈ �
2
+ , d1 >

b11
κ1
and τ ∈ [0,+∞) then the equation

D(d)U −BAU + P δ
0,τ (U) = 0

has only the trivial solution.

The proof is identical to that of Lemma 3.4 in [7].

Lemma 6.7. Let ζ0 be from the assumption (4.15). For any ζ ∈ (0, ζ0) there
exists �0 > 0 such that there is no nontrivial solution U of (6.1) with s = s̃ + ζ,

τ ∈ [0,+∞) and ‖U‖2 < �0.

Proof follows from Lemmas 6.5 and 6.6 and can be done in the same way as that
of [8], Lemma 3.9.
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Lemma 6.8. If [sn, Un, τn]→ [s0, 0, 0], Wn = Un

‖Un‖ → Up

‖Up‖ and (6.3) holds then

lim inf
n→+∞

sn − s0
τn

> 0.

Proof is done in the same way as that of [16], Lemma 3.6 if we put U0 = − Up(s0)
‖Up(s0)‖ .

����������� 6.1. (Cf. [16], Remark 3.8.) The assumption (4.9) implies: If

[Un, τn] ∈ �2 × �+ and
P δ

τn
(Un)

‖Un‖ ⇀ F then

(6.6) 〈F,W 〉 = lim
n→+∞

〈P δ
τn
(Un),W 〉
‖Un‖

� 0 for any W ∈ Kδ.

Moreover, let F 	= 0 and V ∈ �
2, W ∈ intKδ be such that 〈F, V 〉 > 0, 〈F,W 〉 = 0.

Then 〈F,W + tV 〉 > 0 for t > 0 and simultaneously W + tV ∈ Kδ for t > 0 small

enough. Therefore 〈F,W 〉 < 0 for all W ∈ intKδ and any F 	= 0 satisfying (6.6).

Lemma 6.9. There exists �0 > 0 such that if � ∈ (0, �0), sn, Un, τn satisfy (6.1),
(6.2), Un /∈ Kδ, [sn, Un, τn]→ [s0, U, τ ], Wn = Un

‖Un‖ → W , sn � s0 and τ ∈ [0,+∞]
then W /∈ Kδ.

Proof is similar to that of Lemma 3.7 in [16]. For the sake of completeness, it can
be found in Appendix.

Lemma 6.10. There exists �0 > 0 such that if s, U , τ satisfy (6.1), U /∈ Kδ,

‖U‖ < �0 then s 	= s0.

Proof can be done in the same way as the proof of [16], Lemma 3.9 where we
take U0 = − Up(s0)

‖Up(s0)‖ again, which is the only normed solution to (5.15) for s = s0

belonging to Kδ.

Lemma 6.11. There exists �0 > 0 such that if s, U , τ satisfy (6.1), s > s0,

0 	= ‖U‖ < �0 then U /∈ ∂Kδ.

The proof is identical to that of [16], Lemma 3.10. Again, we take U0 = − Up(s0)
‖Up(s0)‖

and use the fact that it is the only normed solution to (5.15) for s = s0 belonging to
Kδ.
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7. Proof of the main result

Let δ > 0 be fixed and such that Lemma 5.1 is satisfied. We rewrite the system

(6.1) into the form

(7.1) U − T (s)U +Hτ (s, U) = 0,

where

(7.2)
T (s)U = D−1(σ(s))BAU − δLδ(s)U,

Hτ (s, U) = D−1(σ(s))
[
− τ

1 + τ
N(U) + P δ

τ (U)
]
.

If we define P δ
τ (U) = P

δ
−τ (U) for τ < 0 then

(7.3)



for any s ∈ �, T (s) : �2 → �2 is linear completely continuous,

the mapping s �→ T (s) of � into the space of linear continuous

mappings in �2 (equipped with the operator norm) is continuous,

the mapping Q : � × �2 × � → �2 defined by

Q(s, U, τ) = T (s)U −Hτ (s, U) is completely continuous;

(7.4)

{
lim

‖U‖+|τ |→0
‖Hτ (s,U)‖
‖U‖+|τ | = 0

uniformly with respect to s ∈ [s0 − γ, s0 + γ], γ ∈ (0,+∞)

are satisfied under the assumptions from Sections 1 and 4.

The proof of Theorem 4.1 is based on the following theorem (where by a critical

point of T we mean the parameter s ∈ � such that there exists a nontrivial solution
of U − T (s)U = 0 and by ΘT (s) we denote the sum of algebraic multiplicities of all

positive eigenvalues of the operator T (s)− I):

Theorem 7.1. Let K 	= �
2 be a closed convex cone in �2 with its vertex at

the origin and let the mappings T, H satisfy (7.3) and (7.4). Assume that s0 is the
greatest critical point of T , s0 is an isolated critical point of T , Ker(I − T (s0)) =
Lin{U0}, −U0 ∈ intK and

(7.5) ΘT (s0 + ξ)−ΘT (s0 − ξ) is odd for any ξ ∈ (0, ξ0)

406



with some ξ0 > 0. Let the following assumptions hold for any � ∈ (0, �0), �0 > 0
small, [s, U, τ ] and [sn, Un, τn] satisfying (7.1), (6.2), τ ∈ [0,+∞):

there exists C = C(�0) > 0 such that s � C;(7.6) (
Un /∈ K, τn > 0, [sn, Un, τn]→ [s0, 0, 0],

Un

‖Un‖
→ U0

)
(7.7)

=⇒ ∃
n0

∀
n�n0

sn > s0;(
Un /∈ K, τn > 0, [sn, Un, τn]→ [s0, U, τ ],

Un

‖Un‖
→W ∈ K

)
(7.8)

=⇒ ∃
n0

∀
n�n0

sn < s0;

if U /∈ K then s 	= s0;(7.9)

if s > s0, ‖U‖ 	= 0 then U /∈ ∂K.(7.10)

Then for any � ∈ (0, �0) there exists a closed connected set C� in �×�2×� containing
[s0, 0, 0] such that

(i) if [s, U, τ ] ∈ C� is such that [s0, 0, 0] 	= [s, U, τ ] then (7.1), (6.2) are fulfilled,
s > s0, U /∈ K;

(ii) for any τ > 0 there exists at least one couple [s, U ] such that [s, U, τ ] ∈ C�.

Proof of this theorem is based on Dancer’s global bifurcation theorem ([1], Theo-

rem 2) and on a general continuation theorem proved by Kučera in [14]. The main
ideas of the proof are given in [16], proof of Theorem 4.2. Note that the role of the

sets C+� and C
−
� is reversed here in comparison with [16].

����� �� ������� 4.1. We will prove Theorem 4.1 in several steps: In Step 1

we will show for fixed δ > 0 and � > 0 small the existence of a solution
[
sδ

�, U
δ
�

]
of

(5.13). In Step 2 we obtain by a limiting process � → 0+ (still with δ > 0 fixed)
a bifurcation point sδ

I ∈ [s0, s̃ + ζ0] of (5.13). Finally, we will show in Step 3 the
existence of a bifurcation point sI ∈ [s0, s̃] of (4.17) by a limiting process δ → 0+.

���
 �. For a fixed δ > 0 we show that the assumptions of Theorem 7.1 are

fulfilled with the operators from (7.2), U0 =
Up

‖Up‖ and with K = Kδ from No-
tation 4.1: It follows from Remark 4.1 and the assumption (4.15) that s0 from

the assumptions of Theorem 4.1 is the greatest critical point of T and Lemma 5.1
gives Ker(I − T (s0)) = Lin{Up}, −Up ∈ intKδ. The assumption (7.5) follows from

Lemma 5.1, the assumptions (7.6)–(7.10) follow from Lemmas 6.7–6.11. Hence it fol-
lows from Theorem 7.1 that for any � ∈ (0, �0) fixed there are [sn, Un, τn] satisfying

(7.1) and (6.2) (i.e. (6.1) and (6.2)), Un /∈ Kδ, sn → sδ
� � s0, τn → +∞. We can

assume Un ⇀ U δ
� and Lemmas 6.1, 6.2 imply that Un → U δ

� and U
δ
� satisfies

D(σ(sδ
�))U −BAU −N(U) +D(σ(sδ

�))Lδ(sδ
�)U ∈ −M δ(U).(7.11)
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Moreover, U δ
� /∈ intKδ and the limiting process in (6.2) implies ‖U δ

�‖2 = �. Further,
Lemma 6.7 gives sδ

� ∈ [s0, s̃+ ζ0].

���
 �. We can construct sδ
�, U

δ
� for any � ∈ (0, �0) and obtain by a limiting

process �→ 0+ a bifurcation point sδ
I ∈ [s0, s̃+ ζ0] of (5.13). Lemma 6.3 yields that

sδ
I is a critical point of (5.14). If s

δ
I = s0 for some δ > 0 then Lemma 6.4 would

imply U δ
I ∈ Kδ and

D(σ(s0))U δ
I −BAU δ

I +D(σ(s0))Lδ(s0)U δ
I = 0.

Therefore U δ
I = − Up

‖Up‖ ∈ intKδ would hold. On the other hand we had U δ
�n

/∈ Kδ

by Theorem 7.1 and the limiting process
Uδ

�n

‖Uδ
�n

‖ → U δ
I gives a contradiction. This

implies sδ
I > s0 for any δ > 0 small.

If intK 	= ∅ and dimEB(σ(s0)) = 1 then the assertion of Theorem 4.1 is proved,
because we can take Φδ(v) = v for any δ and we have sI = sδ

I ∈ (s0, s̃].

���
 3. By the limiting process in (7.11) with δn → 0+, sδn
� → s�, U

δn
� ⇀ U�

(after choosing subsequences) we obtain by using (4.11) that U δn
� → U�, ‖U�‖2 = �

and [s�, U�] satisfies (4.17). This process can be done for any � ∈ (0, �0). Using the
fact that ζ0 can be chosen arbitrarily small we obtain by this procedure a bifurcation

point sI ∈ [s0, s̃] of (4.17).

������ 7.1. Let us notice that Steps 1 and 2 can be done in the same way as
in [16]. Step 3, where δ is not fixed, is new in comparison to [16]. The fact sI > s0

can be proved under the additional assumptions from Remark 4.2—see the end of
Appendix.

8. Appendix

����� �� ���
������� 5.1. If σ′
1(s0) = 0 then σ

′
2(s0) < 0 due to the orien-

tation of the curve σ(s) and there is nothing to prove. If σ′
1(s0) 	= 0 then we can

consider a curve σ(s) = [σ1(s), σ2(s)] as σ2(s) = σ̃(σ1(s)) on (s0 − η, s0 + η) with

some η > 0 small and the hyperbola Cp as a curve

d2 = hp(d1) =
b12b21/κ

2
p

d1 − b11/κp
+
b22
κp
.

Differenting hp with respect to d1, we obtain at the point d01 that

dhp(d01)
dd1

= −
b12b21/κ

2
p

(d01 − b11/κp)2
= − b12b21
(d01κp − b11)2

.
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It follows that
dhp(d01)
dd1

= − (d
0
2κp − b22)2

b12b21

by using (3.4) for d01, d
0
2. Differenting σ̃ with respect to σ1, we obtain

dσ̃(σ1(s))
dσ1

= σ′
2(s)

σ′
1(s)

for any s ∈ (s0 − η, s0 + η). If the curve σ(s) intersects Cp at the point d0 = σ(s0)

transversally then either σ′
2(s0)

σ′
1(s0)

= dσ̃(d01)
dd1

< − (σ2(s0)κp−b22)
2

b12b21
in the case σ′

1(s0) > 0 or
σ′
2(s0)

σ′
1(s0)

= dσ̃(d01)
dd1

> − (σ2(s0)κp−b22)
2

b12b21
in the case σ′

1(s0) < 0. In both cases we obtain

σ′
2(s0) < − (σ2(s0)κp − b22)2

b12b21
σ′
1(s0).

Our assertion follows.

�����	�� ������� �� ����������� 5.1. (Cf. Section 2, [6], Section 4, [4],
Section 2.) We can write (5.1) as a system

u− b11
d1
Au− b12

d1
Av = −µu,

v − b21
d2
Au− b22

d2
Av = −µv

and the elements U = [u, v] ∈ �2 in the form

(8.1) u =
∞∑

j=1

〈u, ej〉ej , v =
∞∑

j=1

〈v, ej〉ej .

Using these expansions and the fact that κi is a characteristic value of A, multiplying
the first equation by d1κiei and the second by d2κiei, we obtain

〈u, ei〉(d1κi − b11 + µd1κi)− 〈v, ei〉b12 = 0,
〈u, ei〉b21 − 〈v, ei〉(d2κi − b22 + µd2κi) = 0

for i = 1, 2, . . .. A couple 〈u, ei〉, 〈v, ei〉 can be nontrivial for some i if and only if

(8.2) (d1κi − b11 + µd1κi)(d2κi − b22 + µd2κi)− b12b21 = 0.

Hence, µ is an eigenvalue of (5.1) if and only if µ is a root of

µ2d1d2κ
2
i − βi(d)κiµ+ γi(d) = 0

with βi(d) = d1b22 + d2b11 − 2d1d2κi,(8.3)

γi(d) = (d1κi − b11)(d2κi − b22)− b12b21
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for at least one i. Now, the coefficient βi(d) can be positive, negative or zero. (Note

that the corresponding coefficient in (3.3) in Section 3 was negative by (SIGN) for
any d in a neighbourhood of Ci.) The term γi(d) is negative or positive for d lying
to the left or to the right, respectively, from Ci. It is easy to simplify the term

ωi(d) := β2i (d) − 4d1d2γi(d) = d21b
2
22 + d

2
2b
2
11 − 2d1d2b11b22 + 4d1d2b12b21

and see that it does not depend on i. Therefore we will write only ω(d) instead of
ωi(d). The set {d ∈ �

2
+ ; ω(d) = 0} is the set of all d satisfying

d21b
2
22 + d

2
2b
2
11 − 2d1d2b11b22 + 4d1d2b12b21 = 0.

Solving this equation for d2 with d1 as a parameter we obtain

d
(r)
2 =

d1
b211

[
−b12b21 + detB ± 2

√
−b12b21

√
detB

]
, r = 1, 2.

Thus the set {d ∈ �2+ ; ω(d) = 0} is a couple of half-lines, one of them is a common
tangent T to all hyperbolas Cj , j = 1, 2, . . . (see also [20] and Figures 1 and 2).
Further, the set C̃i = {d ∈ �2+ ; βi(d) = 0} is a hyperbola with the property C̃i∩Ci =

T ∩ Ci.

The roots µ of (8.3) are

µ
(r)
i (d) :=

βi(d)±
√
ω(d)

2d1d2κi
, r = 1, 2.

If γi(d) < 0 then ω(d) > 0 and |βi(d)| <
√
ω(d). Therefore there are two different real

roots µ(1)i (d), µ
(2)
i (d), one is negative and the other one is positive. If γi(d) > 0 then

ω(d) can be either negative (and we have a couple of complex roots) or nonnegative

but |βi(d)| >
√
ω(d) (and we have two real roots, both having the same sign). The

possibilities for the signs of µ(1)i (d), µ
(2)
i (d) are the following—see Fig. 2:
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domain: βi(d) γi(d)ω(d) relation between eigenvalues:

d ∈ D1 + − + |βi(d)| <
√

ω(d) µ
(1)
i > 0, µ

(2)
i < 0, µ

(1)
i �= µ

(2)
i

d ∈ C̃i 0 − + |βi(d)| <
√

ω(d) µ
(1)
i > 0, µ

(2)
i < 0, µ

(1)
i = −µ

(2)
i

d ∈ D2 − − + |βi(d)| <
√

ω(d) µ
(1)
i > 0, µ

(2)
i < 0, µ

(1)
i �= µ

(2)
i

d ∈ Ci − 0 + |βi(d)| =
√

ω(d) µ
(1)
i = 0, µ

(2)
i < 0, µ

(1)
i �= µ

(2)
i

d ∈ D3 − + + |βi(d)| >
√

ω(d) µ
(1)
i < 0, µ

(2)
i < 0, µ

(1)
i �= µ

(2)
i

d ∈ T − + 0 |βi(d)| >
√

ω(d) µ
(1)
i = µ

(2)
i < 0

d ∈ D4 − + − µ
(1)
i �= µ

(2)
i , µ

(r)
i ∈ � \ �, Reµ(r)i < 0

d ∈ C̃i 0 + − µ
(1)
i = −µ

(2)
i ∈ i�, Reµ(r)i = 0

d ∈ D5 + + − µ
(1)
i �= µ

(2)
i , µ

(r)
i ∈ � \ �, Reµ(r)i > 0

d ∈ T + + 0 |βi(d)| >
√

ω(d) µ
(1)
i = µ

(2)
i > 0

d ∈ D6 + + + |βi(d)| >
√

ω(d) µ
(1)
i > 0, µ

(2)
i > 0, µ

(1)
i �= µ

(2)
i

d ∈ Ci + 0 + |βi(d)| =
√

ω(d) µ
(1)
i > 0, µ

(2)
i = 0, µ

(1)
i �= µ

(2)
i

d ∈ Ci ∩ C̃i ∩ T 0 0 0 |βi(d)| =
√

ω(d) µ
(1)
i = µ

(2)
i = 0.

These calculations lead to the conclusion that for d lying to the left there is one

positive root of (8.3) and for d lying to the right from Ci, either none or both roots
of (8.3) are positive.

����� �� ��� ������ 
��� �� (5.11). Using (5.9), (5.6), (8.2), (SIGN) and
(5.3) we obtain

〈D(σ(s))Lδ(s)Ui(s), U∗
i (s)〉 = δχ(s) ·

∑
j∈I(d0)

νj(d0) · 〈D(σ(s))Uj(s), U∗
i (s)〉

= δχ(s)νi(d0)
[σ1(s)(σ2(s)κi − b22 + µi(s)σ2(s)κi)2

b12b21
+ σ2(s)

]
= −δχ(s)νi(d0)

σ2(s)κi − b22 + µi(s)σ2(s)κi

b12b21

× [σ2(s)b11 + σ1(s)b22 − 2σ1(s)σ2(s)κi − 2σ1(s)σ2(s)κiµi(s)]

= δχ(s) · [σ2(s)κi − b22 + µi(s)σ2(s)κi]
√
ω(σ(s))

b12b21
< 0 for i ∈ I(d0).

����� �� ����� 5.1. Analogously as in Observation 5.1 we obtain that µ is
an eigenvalue of the problem

D−1(σ(s))BAU − Lδ(s)U − U = µU
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if and only if µ is a root of the quadratic equation

(8.4) µ2 − βδ
i (s)µ+ γ

δ
i (s) = 0

with coefficients βδ
i (s), γ

δ
i (s) depending continuously on s and δ. For the sake of

efficiency, the structure of the proof differs from the structure of the lemma. We

shall distinguish the following cases:

A1. Let i /∈ I(d0). It follows from (5.10) that µ(r)i (σ(s)) and U
(r)
i (σ(s)), r = 1, 2,

from Observation 5.1 and Notation 5.1 are simultaneously eigenvalues and eigenvec-
tors of D−1(σ(s))BA − Lδ(s) − I and (8.4) is equivalent to (5.2) for any s ∈ �. In

particular, this means by the definitions of µp(s), Up(s) that µp(s) and Up(s) is an
eigenvalue and an eigenvector of D−1(σ(s))BA−Lδ(s)−I for any s ∈ (s0−η, s0+η)
or s ∈ (s0 − η, s0] in the case d0 ∈ Cp \ T or d0 ∈ Cp ∩ T , respectively.
A2. If i /∈ I(d0) ∪ {p} then d0 and also σ(s) for any s ∈ (s0 − η, s0 + η) lie

to the right from Ci. (Recall that d0 ∈ C.) It follows from Observation 5.1 that
if d0 ∈ Cp \ T , i /∈ I(d0) ∪ {p} then the sign of both µ(1)i (σ(s)) 	= µ

(2)
i (σ(s)) is

constant on (s0−η, s0+η) (more precisely, µ(1)i (σ(s)) 	= µ
(2)
i (σ(s)) are both negative

or positive on (s0 − η, s0 + η) for Ci ∩ T � d0 or d0 � Ci ∩ T , respectively). If
d0 ∈ Cp ∩ T , i /∈ I(d0) ∪ {p} then µ(1)i (σ(s)) 	= µ

(2)
i (σ(s)) are both negative or

positive on (s0 − η, s0) for Ci ∩T � d0 or d0 � Ci ∩ T , respectively, and complex on
(s0, s0 + η).
A3. For i = p, µp(s) changes its sign at s0 and the sign of the other root is

constant on (s0 − η, s0 + η) in the case d0 ∈ Cp \ T . More precisely, if Ci ∩ T � d0

then µp(s) = µ
(1)
p (σ(s)) > 0 on (s0 − η, s0), µp(s) = µ

(1)
p (σ(s)) < 0 on (s0, s0 + η),

µ
(2)
p (σ(s)) < 0 on (s0 − η, s0 + η), and if d0 � Ci ∩ T then µp(s) = µ

(2)
p (σ(s)) < 0 on

(s0−η, s0), µp(s) = µ
(2)
p (σ(s)) > 0 on (s0, s0+η), µ

(1)
p (σ(s)) > 0 on (s0−η, s0+η). In

the case d0 ∈ Cp ∩T we have µp(s) > 0 and the other root is negative on (s0−η, s0),
both the roots being complex on (s0, s0 + η).
B1. Let i ∈ I(d0). Let d0 ∈ Cp, d0 /∈ Cq for Cq 	= Cp. Then i ∈ Ip(d0),

µi(s) = µp(s) and Iq(d0) = ∅. Let Ci ∩ T � d0. Notation 5.1, 5.2 and (5.10) yield
that µi(s)− δχ(s) is an eigenvalue of D−1(σ(s))BA−Lδ(s)− I and one of the roots

of (8.4). It follows from Notation 5.1 and Observation 5.1 that we can choose δ0 > 0
and η > 0 such that µi(s) − δχ(s) < 0 on (s0 − η, s0 + η) for any δ ∈ (0, δ0). The
roots of (8.4) depend continuously on s ∈ �, δ � 0 and therefore the choice of δ0 > 0
and η > 0 can be such that the other root is negative on (s0 − η, s0 + η) for any

δ ∈ (0, δ0). Let d0 � Ci ∩ T . Similarly as above, Notation 5.1, 5.2 and (5.10) yield
that µi(s) + δχ(s) is an eigenvalue of D−1(σ(s))BA−Lδ(s)− I and one of the roots

of (8.4). It follows from Notation 5.1 and Observation 5.1 that we can choose δ0 > 0
and η > 0 such that µi(s) + δχ(s) > 0 on (s0− η, s0+ η) for any δ ∈ (0, δ0) and that
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the other root is also positive on (s0 − η, s0 + η). Let d0 ∈ Ci ∩ T . Notation 5.1,
5.2 and (5.10) yield that µi(s)− δχ(s) is an eigenvalue of D−1(σ(s))BA−Lδ(s)− I

and one of the roots of (8.4) again. It follows from Notation 5.1 and Observation 5.1
that we can choose δ0 > 0 and η > 0 such that both µi(s)− δχ(s) and the other root
of (8.4) are negative on (s0 − η, s0] and complex on (s0, s0 + η) for any δ ∈ (0, δ0).
(See Observation 5.1.)

B2. Let i ∈ I(d0). Let d0 ∈ Cp ∩ Cq, Cq 	= Cp. Let p > q. Then Ci ∩ T � d0 �
Cj ∩ T for i ∈ Ip(d0) ∪ {p}, j ∈ Iq(d0). Similarly as above, Notation 5.1, 5.2 and

(5.10) yield that µi(s) − δχ(s) = µp(s)− δχ(s) or µi(s) + δχ(s) = µq(s) + δχ(s) for
i ∈ Ip(d0) or i ∈ Iq(d0), respectively, is an eigenvalue ofD−1(σ(s))BA−Lδ(s)−I and
one of the roots of (8.4). (Let us note that µi(s0) = 0 for any i ∈ I(d0).) It follows
from Notation 5.1 and Observation 5.1 that we can choose δ0 > 0 and η > 0 such

that µi(s)− δχ(s) < 0 or µi(s) + δχ(s) > 0 for i ∈ Ip(d0) or i ∈ Iq(d0), respectively,
on (s0 − η, s0 + η), δ ∈ (0, δ0). The roots of (8.4) depend continuously on s ∈ �,

δ � 0 and therefore the choice of δ0 > 0 and η > 0 can be such that the other root
is negative or positive for i ∈ Ip(d0) or i ∈ Iq(d0), respectively, on (s0 − η, s0 + η),

δ ∈ (0, δ0).
B3. Let i ∈ I(d0). Let d0 ∈ Cp ∩ Cq, Cq 	= Cp. Let p < q. Then Ci ∩ T � d0 �

Cj ∩ T for j ∈ Ip(d0) ∪ {p}, i ∈ Iq(d0). Similarly as above, Notation 5.1, 5.2 and

(5.10) yield that µi(s) + δχ(s) = µp(s) + δχ(s) or µi(s)− δχ(s) = µq(s)− δχ(s) for
i ∈ Ip(d0) or i ∈ Iq(d0), respectively, is an eigenvalue of D−1(σ(s))BA − Lδ(s) − I

and one of the roots of (8.4). It follows from Notation 5.1 and Observation 5.1 that
we can choose δ0 > 0 and η > 0 such that µi(s) + δχ(s) > 0 or µi(s)− δχ(s) < 0 for

i ∈ Ip(d0) or i ∈ Iq(d0), respectively, on (s0−η, s0+η), δ ∈ (0, δ0). The roots of (8.4)
depend continuously on s ∈ �, δ � 0 and therefore the choice of δ0 > 0 and η > 0
can be such that the other root is positive or negative for i ∈ Ip(d0) or i ∈ Iq(d0),
respectively, on (s0 − η, s0 + η), δ ∈ (0, δ0).
Now, it follows from the relation of the eigenvalues of the operatorD−1(σ(s))BA−

Lδ(s)−I and the roots of (8.4) mentioned above that there are no further eigenvalues
and eigenvectors besides those discussed in A1–B3.

Let us show that for s ∈ (s0−η, s0+η) or s ∈ (s0−η, s0) in the case d0 ∈ Cp \T or
d0 ∈ Cp ∩ T , respectively, the algebraic and geometric multiplicities of any positive
eigenvalue of the operator D−1(σ(s))BA−Lδ(s)−I coincide. First, we will show the
coincidence of the algebraic and geometric multiplicities of any positive eigenvalue

µ
(r)
i (d), r = 1, 2, of the operator D

−1(σ(s))BA − I.

The adjoint equation to (5.1) is

B∗D−1(d)AU − U = µU
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and similar considerations as in Observation 5.1 imply that the eigenvectors of this

equation corresponding to µ(r)i (d) are

Ũ
(r)
i (d) =

[d1
d2

d2κi − b22 + µ
(r)
i (d)d2κi

b12
ei, ei

]
=

[d1
d2

b21
b12

α
(r)
i (d)ei, ei

]
, r = 1, 2.

(Recall that U (r)i (d) = [α
(r)
i (d)ei, ei], r = 1, 2—see Observation 5.2.) An elementary

calculation using (5.3) gives for µ(r)i (d) > 0 that

|〈U (r)i (d), Ũ
(r)
i (d)〉| =

∣∣∣d1
d2

(d2κi − b22 + µ
(r)
i (d)d2κi)2

b12b21
+ 1

∣∣∣
= −d2κi − b22 + µ

(r)
i (d)d2κi

d2b12b21

[
d2b11 + d1b22 − 2d1d2κi − 2d1d2κiµ

(r)
i (d)

]
(8.5)

= − [d2κi − b22 + µ
(r)
i (d)d2κi]

√
ω(d)

d2b12b21
	= 0 for i = 1, 2, . . . , r = 1, 2, d /∈ T ,

〈U (r)i (d), Ũ
(r)
j (d)〉 = 0 for any i 	= j, r = 1, 2,

cf. (5.11). Hence,

(8.6) det(〈Ũ (r)i (d), U
(r)
j (d)〉)i,j∈J 	= 0 for any J ⊂ �, r = 1, 2, d /∈ T .

This yields that the algebraic and geometric multiplicities of µ(r)i (d) coincide for

i ∈ �, r = 1, 2, d /∈ T (see e.g. [24]). In particular, this holds for d = σ(s) with
s ∈ Uη(s0), where Uη(s0) := (s0 − η, s0 + η) for d0 ∈ Cp \ T , Uη(s0) := (s0 − η, s0)

for d0 ∈ Cp ∩ T (let us note that σ(s) /∈ T for s ∈ Uη(s0)).

By a standard treatment of the adjoint operator we obtain

L∗
δ(s)Ũ

(r)
i (σ(s)) = 0 for all i /∈ I(d0), r = 1, 2, s ∈ Uη(s0).

This implies that Ũ (r)i (σ(s)) for i /∈ I(d0), r = 1, 2, s ∈ Uη(s0), is simultaneously

an eigenvector of the adjoint operator (D−1(σ(s))BA)∗ − L∗
δ(s) − I corresponding

to µ(r)i (σ(s)). The above considerations imply the coincidence of the algebraic and

geometric multiplicities of any µ(r)i (d) > 0 with i /∈ I(d0), r = 1, 2, s ∈ Uη(s0), as
the eigenvalue of the operator D−1(σ(s))BA − Lδ(s)− I.

If d0 ∈ Cp ∩ T then all eigenvalues of D−1(σ(s))BA− Lδ(s)− I corresponding to
i ∈ I(d0) are negative on (s0 − η, s0) and complex on (s0, s0 + η)—see the first part
of this proof.

If d0 ∈ Cp \ T then, due to the continuous dependence on s ∈ �, δ � 0, we can
choose δ0 > 0 such that for any δ ∈ (0, δ0) there is η > 0 for which the determinant
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corresponding to (8.6) with the scalar products of the corresponding eigenvectors of

the operatorsD−1(σ(s))BA−Lδ(s)−I and (D−1(σ(s))BA)∗−L∗
δ(s)−I, respectively,

with i, j ∈ J ⊂ I(d0), remains nonzero on (s0 − η, s0 + η). Therefore, the algebraic
and geometric multiplicities of any positive eigenvalue corresponding to i ∈ I(d0)

coincide again.

Our considerations lead to the following conclusion. If d0 ∈ Cp \ T then µp(s)

is the only eigenvalue of the operator D−1(σ(s))BA − Lδ(s) − I changing its sign
at s0 and it is algebraically simple. The other eigenvalues have constant signs and

multiplicities on (s0 − η, s0 + η). If d0 ∈ Cp ∩ T then µp(s) is a real positive alge-
braically simple eigenvalue on (s0 − η, s0). The other possible positive eigenvalues

(which can correspond only to i /∈ I(d0)) form pairs µ(1)i (σ(s)) 	= µ
(2)
i (σ(s)) where

µ
(1)
i (σ(s)), µ

(2)
i (σ(s)) have the same algebraic multiplicity, i.e. the sum of algebraic

multiplicities for any such pair is even. All eigenvalues are complex for (s0, s0 + η).
The assertion of Lemma 5.1 follows.

����� �� ����� 6.9. Assume that there are �m → 0+ such that for any m
fixed there exist sm

n , U
m
n , τ

m
n (n = 1, 2, . . .) satisfying

D(σ(sm
n ))U

m
n −BAUm

n(8.7)

− τm
n

1 + τm
n

N(Um
n ) +D(σ(s

m
n ))Lδ(s

m
n )U

m
n + Pτm

n
(Um

n ) = 0,

‖Um
n ‖2 = �mτm

n

1 + τm
n

(8.8)

with Um
n /∈ Kδ, [sm

n , U
m
n , τ

m
n ] → [s0, Um, τm], Um

n

‖Um
n ‖ → Wm ∈ Kδ if n → +∞. We

have ‖Um
n ‖2 = �mτm

n

1+τm
n

� �m → 0 by (8.8). We can choose a subsequence {Uk}+∞
k=1

from {Um
n }+∞

n,m=1 such that Zk =
Uk

‖Uk‖ /∈ Kδ, Zk ⇀ Z ∈ Kδ and τk → τ ∈ [0,+∞].
Lemma 6.1 gives Zk → Z.

First let τ = 0. Dividing (8.7) by ‖Uk‖, the limiting process gives

(8.9) D(σ(s0))Z −BAZ +D(σ(s0))Lδ(s0)Z = 0

with help of (2.5) and Proposition 4.3. It means Z = − Up

‖Up‖ ∈ intKδ because of

Wm ∈ Kδ and the fact that ± Up

‖Up‖ are the only normed solutions of (8.9). For

τ ∈ (0,+∞] the equation (8.7) gives that P δ
τk
(Uk)

‖Uk‖ are bounded and therefore we can

assume
P δ

τk
(Uk)

‖Uk‖ ⇀ F ,

(8.10) D(σ(s0))Z −BAZ +D(σ(s0))Lδ(s0)Z + F = 0,
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where we have employed (2.5) again. Multiplying (8.10) by −U∗
p , the equation

D(σ(s0))U∗
p −B∗AU∗

p = 0

by Z and adding them we obtain 〈F,−U∗
p 〉 = 0 due to (5.10). Observation 6.1 implies

F = 0, i.e. we have (8.9) and Z = − Up

‖Up‖ again. In both cases, this is a contradiction

because Zk /∈ Kδ and Zk → Z = − Up

‖Up‖ ∈ intKδ and our assertion is proved.

������ 8.1. The other possibility to avoid the condition intK 	= ∅ is to define
a pseudointerior

K− :=
{
U ∈ K ; ∀

V /∈K
τ>0

〈PτV, U〉 < 0 & ∀
F∈�2
F �=0

∃
W∈�2

〈F,W 〉 > 0, U ±W ∈ K
}

(cf. [26], [6]) and assume −Up,−U∗
p ∈ K− instead of the assumption −Up,−U∗

p ∈
intKδ for any δ ∈ (0, δ0) in (4.14). In order to prove Lemmas in Section 5, one has
to add a special assumption about the nonlinearity term N or about the sign of a

scalar product of a certain type, respectively:

(8.11)

if Un → 0, Wn =
Un

‖Un‖
⇀

Up

‖Up‖

then
〈N(Un)

‖Un‖
, U∗

p

〉
� 0 for n large enough.

The meaning of this condition for (2.6) is the following: Let sn, Un satisfy (2.6).
Let sn → s0, Un → 0, Wn = Un

‖Un‖ ⇀
Up

‖Up‖ . After some calculation (similar to that
in the proof of [16], Lemma 3.6), condition (8.11) leads us to the conclusion that
sn � s0. This corresponds to the fact that a branch of bifurcating spatial patterns of

(2.6) goes to the left from C, i.e. to the domain of instability of the trivial solution.

����� �� ��� �������	���� ������ �� ������� !"� under the ad-
ditional assumption from Remark 4.2.

We will show that there exists ε > 0 such that

(8.12) sδ
I > s0 + ε for all δ > 0 small enough.

Assume that for δn → 0 we have sδn

I → s0, Un = U
δn

I ⇀ U satisfying

(8.13) D(σ(sδn

I ))Un −BAUn +D(σ(s
δn

I ))Lδn(s
δn

I )Un ∈ −M δn
0 (Un),

where U δn

I are from Step 2 of the proof of Theorem 4.1. With help of (4.12) the
limiting process in (8.13) gives Un → U and

D(σ(s0))U −BAU ∈ −M0(U),
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i.e.U ∈ EI(d0). Under the assumption of the equivalence of relations (2.11) and

(2.13) we can use Lemma 7 together with Remark 5 from [26] to obtain U ∈ K and
U ∈ EB(d0). Hence

(8.14) U =
∑

i∈I(d0)∪{p}
aiUi(s0)

with some ai ∈ � (see (5.7) or (5.8), respectively). Setting

(8.15) Fn := D(σ(s
δn

I ))Un −BAUn +D(σ(s
δn

I ))Lδn(s
δn

I )Un

we rewrite (8.13) into the form Fn ∈ −M0(Un). Then the assumptions (4.19) and

(4.20) imply

(8.16) 〈Fn, U
∗〉 � 0.

To get a contradiction we prove that

(8.17)

〈Fn, U
∗〉 = 〈D(σ(sδn

I ))Un −BAUn +D(σ(s
δn

I ))Lδn(s
δn

I )Un, U
∗〉

= 〈[D(σ(sδn

I ))−D(σ(s0))]Un, U
∗〉+ 〈D(σ(s0))Un −BAUn, U

∗〉
+ 〈D(σ(sδn

I ))Lδn(s
δn

I )Un, U
∗〉 < 0.

Indeed, the first scalar product is negative for sδn

I > s0 because we have

〈[D(σ(sδn

I ))−D(σ(s0))]Un, U
∗〉 = (sδn

I − s0)Rn

where Rn := σ′
1(sn)〈un, u

∗〉+ σ′
2(s̃n)〈zn, v

∗〉 with some sn, s̃n lying between s
δn

I and
s0. It follows from (8.14) and Proposition 5.1 that

(8.18) lim
n→+∞Rn =

∑
i∈I(d0)∪{p}

a2i

[ (κiσ2(s0)− b22)2

b12b21
σ′
1(s0) + σ

′
2(s0)

]
< 0.

Note that (4.16) implies that the term in brackets in (8.18) is negative for all i ∈
Ip(d0) ∪ {p} and nonpositive for i ∈ Iq(d0) in the case d0 ∈ Cp ∩ Cq, Cp 	= Cq—see

Notation 5.2. The second scalar product in (8.17) vanishes because

〈D(σ(s0))Un −BAUn, U
∗〉 = 〈Un, D(σ(s0))U∗ −B∗AU∗〉 = 0.
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If U = ± Up

‖Up‖ then the last term in (8.17) is zero by (5.11). Further, we have

(8.19)

1
δn

〈D(σ(sδn

I ))Lδn(s
δn

I )Un, U
∗〉

= χ(sδn

I )
∑

i∈I(d0)

νi(d0)
〈Ui(s

δn

I ), Un〉
‖Ui(s

δn

I )‖2
〈D(σ(sδn

I ))Ui(s
δn

I ), U
∗〉

= χ(sδn

I )
∑

i∈I(d0)

νi(d0)
〈Ui(s

δn

I ), Un〉
‖Ui(s

δn

I )‖2
〈D(σ(sδn

I ))Ui(s
δn

I ), aiU
∗
i (s0)〉

→
∑

i∈I(d0)

a2i [d
0
2κi − b22]

√
ω(d0)

b12b21
for n→ +∞

(see the proof of the second part of (5.11) with s = s0). If d0 /∈ T then the limit in
(8.19) is negative and therefore the last term in (8.17) is negative for large n.

If d0 ∈ T then ω(d0) = 0 and therefore the limit in (8.19) is zero. But
I(d0) = {p + 1, . . . , p + k − 1} (k is the multiplicity of κp), νi(d0) = 1 and

〈D(σ(s0))Ui(s0), U∗
i (s0)〉 =

a2i [d
0
2κi−b22]

√
ω(d0)

b12b21
= 0 for any i ∈ I(d0). Therefore,

by the definition of Lδ and by (5.11) we have

(8.20)

1
δn

〈D(σ(sδn

I ))Lδn(s
δn

I )Un, U
∗〉

=
1
δn

〈D(σ(sδn

I ))Lδn(s
δn

I )Un, U
∗〉

− χ(sδn

I )
∑

i∈I(d0)

〈Ui(s
δn

I ), Un〉
‖Ui(s

δn

I )‖2
〈D(σ(s0))Ui(s0), aiU

∗
i (s0)〉

= χ(sδn

I )
∑

i∈I(d0)

〈Ui(s
δn

I ), Un〉
‖Ui(s

δn

I )‖2

× 〈[D(σ(sδn

I ))Ui(s
δn

I )−D(σ(s0))Ui(s0)], aiU
∗
i (s0)〉

= χ(sδn

I )
∑

i∈I(d0)

〈Ui(s
δn

I ), Un〉
‖Ui(s

δn

I )‖2
(sδn

I − s0)aiR
i
n

with Ri
n := σ

′
1(s

i
n)〈un, u

∗
i 〉+ σ′

2(s̃
i
n)〈zn, v

∗
i 〉 for suitable si

n, s̃
i
n ∈ (s0, sδn

I ). Hence the

last expression in (8.20) is negative for large n by the same argument used for the
first term in the last part of (8.17)

(
cf. (8.18)

)
. The assertion (8.17) follows and we

have a contradiction with sδn

I → s0. Therefore, s
δn

I > s0+ ε with some ε > 0 for any
n and thus sI � s0 + ε.
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It remains to show that [s�, U�] do not satisfy (4.21): Assume by contradiction

that there are �n → 0, s�n → sI , U�n → 0 satisfying

(8.21) D(σ(s�n))U�n −BAU�n −N(U�n) = 0.

Dividing this equation by ‖U�n‖ we obtain after the limiting process

D(σ(sI))UI −BAUI = 0

where UI is an accumulating point of
U�n

‖U�n‖ . This is impossible because s0 < sI is
the greatest critical point of (4.18).

#����$	�� �����. I would like to thank Dr.M.Kučera for a rough basic
idea, Dr.D.Medková for her ideas concerning the definition of the mapping Φδ and

the limiting process for δ → 0 and Dr. J. Jarušek for his valuable comments and
suggestions which helped to solve many technical problems with mollification.
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