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Abstract. We study a discrete model of the SU(2) Yang-Mills equations on a combina-
torial analog of R4. Self-dual and anti-self-dual solutions of discrete Yang-Mills equations
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1. Introduction

We study an intrinsically defined discrete model of the SU(2) Yang-Mills equations

on a combinatorial analog of R4. It is known (see, for example, [5]) that a gauge

potential can be defined as a certain su(2)-valued 1-form A (the connection 1-form).

Then the gauge field F (the curvature 2-form) is given by

(1.1) F = dA + A ∧ A,

where ∧ denotes the exterior multiplication. The Yang-Mills equations can be ex-

pressed in terms of the 2-forms F and ∗F as

(1.2) dF + A ∧ F − F ∧ A = 0, d∗F + A ∧ ∗F − ∗F ∧ A = 0,

where ∗ is the Hodge star operator.

We consider the self-dual and anti-self-dual equations

(1.3) F = ∗F, F = − ∗ F.
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Equations (1.3) are nonlinear matrix first order partial differential equations. In the

4-dimensional Yang-Mills theories the self-dual (instanton) and anti-self-dual (anti-

instanton) solutions of (1.3) are the absolute minima of the Yang-Mills action and

satisfy the second-order Yang-Mills equations (1.2) (see [4]).

The purpose of this paper is to construct the self-dual and anti-self-dual solutions

of discrete SU(2) Yang-Mills equations which imitate the corresponding solutions of

the continual theory. The ideas presented here are strongly influenced by the book

of Dezin [2]. We develop discrete models of some objects in differential geometry,

including the Hodge star operator, the differential and the exterior multiplication,

in such a way that they preserve the geometric structure of their continual analogs.

We continue the investigations which were originated in [3], [6]–[8]. The geometrical

discretisation techniques used here extend those introduced in [2] and [6]. A combi-

natorial model of R4 based on the use of the double complex construction is taken

from [8].

2. Quaternions and the SU(2)-connection

We begin with a brief review of some preliminaries about quaternions. The quater-

nions are formed from real numbers by adjoining three symbols i, j,k, and an arbi-

trary quaternion x can be written as

(2.1) x = x1 + x2i + x3j + x4k,

where x1, x2, x3, x4 ∈ R. The symbols i, j,k satisfy the identities

i2 = j2 = k2 = −1,(2.2)

ij = −ji = k, jk = −kj = i, ki = −ik = j.

It is clear that the space of quaternions is isomorphic to R
4. By analogy with the

complex numbers, x1 is called the real part of x and x2i + x3j + x4k is called the

imaginary part. In the sequel we will write

Im x = x2i + x3j + x4k.

The conjugate quaternion of x is defined by

x̄ = x1 − x2i − x3j− x4k.

Then the norm |x| of a quaternion can be introduced as

(2.3) |x|2 = xx̄ = x2
1 + x2

2 + x2
3 + x2

4.
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The algebra of quaternions can be represented as a sub-algebra of the 2× 2 complex

matrices M(2,C). We identify the quaternion (2.1) with a matrix f(x) ∈ M(2,C)

by setting

(2.4) f(x) =

(
x1 + x2i x3 + x4i

−x3 + x4i x1 − x2i

)
.

Here i is the imaginary unit.

It is well known that the unit quaternions, i.e., those that have the norm |x| = 1,

form a group and this group is isomorphic to SU(2). The 2 × 2 complex matrices

(2.5) i =

(
i 0

0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i

i 0

)

realize a representation of the Lie algebra su(2) of the group SU(2). Note that mul-

tiplying by −i these tree matrices we obtain the standard Pauli matrices. Matrices

(2.5) correspond to the units i, j,k given by (2.2). Thus the Lie algebra su(2) can

be viewed as the pure imaginary quaternions with the basis i, j,k.

Let the SU(2)-connection A be given by

(2.6) A =
∑

µ

Aµ(x) dxµ,

where Aµ(x) ∈ su(2) and x = (x1, . . . , x4) is a point of R
4. On the other hand, A

can be defined also as taking values in the space of pure imaginary quaternions. Let

f(x) be a function of the quaternion variable (2.1) with quaternion values. Then we

can write A as

(2.7) A = Im(f(x) dx),

where f(x) = f1(x) + f2(x)i + f3(x)j + f4(x)k and dx = dx1 + dx2i + dx3j + dx4k.

Using the rules of multiplication (2.2) we have

A1(x) = f2(x)i + f3(x)j + f4(x)k, A2(x) = f1(x)i + f4(x)j − f3(x)k,

A3(x) = −f4(x)i + f1(x)j + f2(x)k, A4(x) = f3(x)i − f2(x)j + f1(x)k.

Using (2.7) we can rewrite (1.1) as

(2.8) F = Im(df(x) ∧ dx + f(x) dx ∧ f(x) dx).

In the quaternion notation the instanton and anti-instanton solutions can be found

in Atiyah [1]. In Section 4 we will construct discrete analogs of these solutions.
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3. Discrete model

We will use the double complex construction described in [8]. Let the tensor

product C(4) = C ⊗ C ⊗ C ⊗ C of a 1-dimensional complex C be a combinatorial

model of the Euclidean space R4 (for details see also [2]). The 1-dimensional complex

C is defined in the following way. Let C0 denote the real linear space of 0-dimensional

chains generated by basis elements xj (points), j ∈ Z. It is convenient to introduce

the shift operators τ, σ in the set of indices by

(3.1) τj = j + 1, σj = j − 1.

We denote the open interval (xj , xτj) by ej . We will regard the set {ej} as a

set of basis elements of the real linear space C1 of 1-dimensional chains. Then

the 1-dimensional complex (combinatorial real line) is the direct sum of the spaces

introduced above: C = C0 ⊕ C1. Together with the complex C(4) we consider its

double, namely, the complex C̃(4) of exactly the same structure (for details see [8]).

We need the double to define a discrete analog of the Hodge star operator.

Let K(4) be a cochain complex with gl(2,C)-valued coefficients, where gl(2,C) is

the Lie algebra of the group GL(2,C). Recall that gl(2,C) consists of all complex

2×2 matricesM(2,C) with bracket operation [·, ·]. The complex K(4) is a conjugate

of C(4) and we have K(4) = K ⊗ K ⊗ K ⊗ K, where K is a conjugate of the 1-

dimensional complex C. Basis elements of K can be written as xj , ej. Then an

arbitrary p-dimensional basis element of K(4) is given by sk
(p) = sk1 ⊗ sk2 ⊗ sk3 ⊗

sk4 , where ski is either xki or eki , ki ∈ Z. Note that sk
(p) contains exactly p of

1-dimensional elements eki . For a p-dimensional cochain ϕ ∈ K(4) we have

(3.2) ϕ =
∑

k

∑

p

ϕ
(p)
k sk

(p),

where ϕ
(p)
k ∈ gl(2,C). We will call cochains forms, emphasizing their relationship

with the corresponding continual objects, differential forms. Denote by K̃(4) the

complex of cochains over the double complex C̃(4). It is clear that K̃(4) has the same

structure as K(4). Let us introduce the operation ι̃ : K(4) → K̃(4), ι̃ : K̃(4) → K(4)

by setting

(3.3) ι̃sk
(p) = s̃k

(p), ι̃s̃k
(p) = sk

(p),

where sk
(p) and s̃k

(p) are basis elements ofK(4) and K̃(4). Hence for a p-form ϕ ∈ K(4)

we have ι̃ϕ = ϕ̃.
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For the definitions of dc, ∪ and ∗ on K(4), which are discrete analogs of the

differential d, exterior multiplication ∧ and the Hodge star operator respectively, we

refer the reader to [8].

Let us consider a discrete 0-form with coefficients belonging to M(2,C). We put

(3.4) f =
∑

k

fkxk,

where xk = xk1 ⊗xk2 ⊗xk3 ⊗xk4 is the 0-dimensional basis element of K(4). Suppose

that the matrices fk ∈ M(2,C) look like (2.4). Then fk in quaternionic form can be

expressed as

(3.5) fk = f1
k + f2

k i + f3
k j + f4

kk.

Hence the form (3.4) can be viewed as a discrete form with quaternionic coefficients.

We will call it simply the quaternionic form when no confusion can arise.

Let us denote by e the quaternionic 1-form

(3.6) e =
∑

k

ek =
∑

k

(ek
1 + ek

2i + ek
3j + ek

4k),

where ek
i are the 1-dimensional basis elements of K(4). Let A ∈ K(4) be a discrete

1-form. We define the discrete SU(2)-connection A (discrete analog of (2.6)) to be

(3.7) A =
∑

k

4∑

i=1

Ai
kek

i ,

where Ai
k ∈ su(2). Using (3.4) and (3.6), we write (3.7) in the quaternionic form as

(3.8) A = Im(f ∪ e) = Im

( ∑

k

fkek

)
.

Then the Ai
k are given by

A1
k = f2

k i + f3
k j + f4

kk, A2
k = f1

k i + f4
k j− f3

kk,(3.9)

A3
k = −f4

k i + f1
k j + f2

kk, A4
k = f3

k i − f2
k j + f1

kk.

An arbitrary discrete 2-form F ∈ K(4) can be written as

(3.10) F =
∑

k

∑

i<j

F
ij
k εk

ij ,
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where F
ij
k ∈ gl(2,C), 1 6 i, j 6 4, and εk

ij is the 2-dimensional basis element of K(4).

Let F be given by

(3.11) F = dcA + A ∪ A.

For convenience we also introduce the shift operator τi which acts in the set of indices

as τik = (k1, . . . τki, . . . k4), where τ is given by (3.1).

By the definitions of dc and ∪, combining (3.7) and (3.11), we obtain

(3.12) F
ij
k = ∆iA

j
k − ∆jA

i
k + Ai

kA
j
τik

− A
j
kAi

τjk,

where ∆iA
j
k = A

j
τik

− A
j
k.

It should be noted that in the continual case the curvature form F (1.1) takes

values in the algebra su(2) for any su(2)-valued connection form A. Unfortunately,

this is not true in the discrete case because, generally speaking, the components

Ai
kA

j
τik

− A
j
kAi

τjk of the form A ∪ A (see (3.12)) do not belong to su(2).

To define an su(2)-valued discrete analog of the curvature 2-form we use the

quaternionic form of A (3.8) and put it in (3.11). Then the discrete curvature form

F is given by

(3.13) F = Im{dcf ∪ e + (f ∪ e) ∪ (f ∪ e)}.

Putting (3.9) in (3.12) we find that

F 12
k = (∆1f

1
k − ∆2f

2
k − f3

kf3
τ1k − f4

kf4
τ1k − f3

kf3
τ2k − f4

kf4
τ2k)i

+ (∆1f
4
k − ∆2f

3
k + f2

kf3
τ1k + f4

kf1
τ1k + f1

kf4
τ2k + f3

kf2
τ2k)j

+ (−∆1f
3
k − ∆2f

4
k + f2

kf4
τ1k − f3

kf1
τ1k − f1

kf3
τ2k + f4

kf2
τ2k)k

− f2
kf1

τ1k − f3
kf4

τ1k + f4
kf3

τ1k + f1
kf2

τ2k + f4
kf3

τ2k − f3
kf4

τ2k,

F 13
k = (−∆1f

4
k − ∆3f

2
k + f3

kf2
τ1k − f4

kf1
τ1k − f1

kf4
τ3k + f2

kf3
τ3k)i

+ (∆1f
1
k − ∆3f

3
k − f2

kf2
τ1k − f4

kf4
τ1k − f4

kf4
τ3k − f2

kf2
τ3k)j

+ (∆1f
2
k − ∆3f

4
k + f2

kf1
τ1k + f3

kf4
τ1k + f4

kf3
τ3k + f1

kf2
τ3k)k

+ f2
kf4

τ1k − f3
kf1

τ1k − f4
kf2

τ1k − f4
kf2

τ3k + f1
kf3

τ3k + f2
kf4

τ3k,

F 14
k = (∆1f

3
k − ∆4f

2
k + f3

kf1
τ1k + f4

kf2
τ1k + f2

kf4
τ4k + f1

kf3
τ4k)i

+ (−∆1f
2
k − ∆4f

3
k − f2

kf1
τ1k + f4

kf3
τ1k + f3

kf4
τ4k − f1

kf2
τ4k)j

+ (∆1f
1
k − ∆4f

4
k − f2

kf2
τ1k − f3

kf3
τ1k − f3

kf3
τ4k − f2

kf2
τ4k)k

− f2
kf3

τ1k + f3
kf2

τ1k − f4
kf1

τ1k + f3
kf2

τ4k − f2
kf3

τ4k + f1
kf4

τ4k,
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F 23
k = (−∆2f

4
k − ∆3f

1
k + f4

kf2
τ2k + f3

kf1
τ2k + f1

kf3
τ3k + f2

kf4
τ3k)i

+ (∆2f
1
k − ∆3f

4
k − f1

kf2
τ2k + f3

kf4
τ2k + f4

kf3
τ3k − f2

kf1
τ3k)j

+ (∆2f
2
k + ∆3f

3
k + f1

kf1
τ2k + f4

kf4
τ2k + f4

kf4
τ3k + f1

kf1
τ3k)k

+ f1
kf4

τ2k − f4
kf1

τ2k + f3
kf2

τ2k − f4
kf1

τ3k + f1
kf4

τ3k − f2
kf3

τ3k,

F 24
k = (∆2f

3
k − ∆4f

1
k + f4

kf1
τ2k − f3

kf2
τ2k − f2

kf3
τ4k + f1

kf4
τ4k)i

+ (−∆2f
2
k − ∆4f

4
k − f1

kf1
τ2k − f3

kf3
τ2k − f3

kf3
τ4k − f1

kf1
τ4k)j

+ (∆2f
1
k + ∆4f

3
k − f1

kf2
τ2k − f4

kf3
τ2k − f3

kf4
τ4k − f2

kf1
τ4k)k

− f1
kf3

τ2k + f4
kf2

τ2k + f3
kf1

τ2k + f3
kf1

τ4k − f2
kf4

τ4k − f1
kf3

τ4k,

F 34
k = (∆3f

3
k + ∆4f

4
k + f1

kf1
τ3k + f2

kf2
τ3k + f2

kf2
τ4k + f1

kf1
τ4k)i

+ (−∆3f
2
k − ∆4f

1
k + f4

kf1
τ3k + f2

kf3
τ3k + f3

kf2
τ4k + f1

kf4
τ4k)j

+ (∆3f
1
k − ∆4f

2
k + f4

kf2
τ3k − f1

kf3
τ3k − f3

kf1
τ4k + f2

kf4
τ4k)k

+ f4
kf3

τ3k + f1
kf2

τ3k − f2
kf1

τ3k − f3
kf4

τ4k − f2
kf1

τ4k + f1
kf2

τ4k.

To obtain (3.13) we must take the imaginary part of these equations.

Theorem 3.1. The discrete curvature F in (3.11) is su(2)-valued if and only if

−f2
kf1

τ1k − f3
kf4

τ1k + f4
kf3

τ1k + f1
kf2

τ2k + f4
kf3

τ2k − f3
kf4

τ2k = 0,

f2
kf4

τ1k − f3
kf1

τ1k − f4
kf2

τ1k − f4
kf2

τ3k + f1
kf3

τ3k + f2
kf4

τ3k = 0,

−f2
kf3

τ1k + f3
kf2

τ1k − f4
kf1

τ1k + f3
kf2

τ4k − f2
kf3

τ4k + f1
kf4

τ4k = 0,

f1
kf4

τ2k − f4
kf1

τ2k + f3
kf2

τ2k − f4
kf1

τ3k + f1
kf4

τ3k − f2
kf3

τ3k = 0,

−f1
kf3

τ2k + f4
kf2

τ2k + f3
kf1

τ2k + f3
kf1

τ4k − f2
kf4

τ4k − f1
kf3

τ4k = 0,

f4
kf3

τ3k + f1
kf2

τ3k − f2
kf1

τ3k − f3
kf4

τ4k − f2
kf1

τ4k + f1
kf2

τ4k = 0.

P r o o f. From the above, the assertion follows immediately. �

Theorem 3.2. Let e be given by (3.6) and let ē be the conjugate quaternion of e.

Then the 2-form e ∪ ē is self-dual, i.e.,

(3.14) e ∪ ē = ∗ι̃(e ∪ ē),

and ē ∪ e is anti-self-dual, i.e.,

(3.15) ē ∪ e = − ∗ ι̃(ē ∪ e).

P r o o f. Denote

ei =
∑

k

ek
i , εij =

∑

k

εk
ij .
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This implies ei ∪ ej = εij and ej ∪ ei = −εij for all i < j. Then we have

e ∪ ē = (e1 + e2i + e3j + e4k) ∪ (e1 − e2i − e3j − e4k)

= −2{(e1 ∪ e2 + e3 ∪ e4)i + (e1 ∪ e3 − e2 ∪ e4)j + (e1 ∪ e4 + e2 ∪ e3)k}

= −2{(ε12 + ε34)i + (ε13 − ε24)j + (ε14 + ε23)k}.

By the definition of ∗ and using (3.3), we get

∗ι̃(e ∪ ē) = −2ι̃{(ε̃34 + ε̃12)i + (−ε̃24 + ε̃13)j + (ε̃23 + ε̃14)k} = e ∪ ē.

In the same way we obtain (3.15). �

Corollary 3.3. For any quaternionic 0-form f , the form f ∪ e∪ ē is self-dual and

f ∪ ē ∪ e is anti-self-dual.

Discrete self-dual and anti-self-dual equations (discrete analogs of equations (1.3))

are defined by

(3.16) F = ι̃ ∗ F, F = −ι̃ ∗ F.

Using (3.10), by the definitions of ι̃ and ∗, the first equation (self-dual) of (3.16) can

be rewritten as

(3.17) F 12
k = F 34

k , F 13
k = −F 24

k , F 14
k = F 23

k .

By analogy with the continual case the solutions of (3.16) are called instantons and

anti-instantons respectively.

4. Discrete instanton and anti-instanton

Again in analogy with the continual case consider (3.8), where the components of

f are given by

(4.1) fk =
k

1 + |k|2
.

Here k = k1 + k2i + k3j + k4k, ki ∈ Z, and the norm |k| is defined by (2.3). Putting

this in (3.9) we obtain

A1
k =

−k2i − k3j − k4k

1 + |k|2
, A2

k =
k1i − k4j + k3k

1 + |k|2
,(4.2)

A3
k =

k4i + k1j− k2k

1 + |k|2
, A4

k =
−k3i + k2j + k1k

1 + |k|2
.
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It is convenient to denote

(4.3) M i
k =

1

(1 + |k|2)(1 + |τik|2)
, i = 1, 2, 3, 4.

Substituting (4.2) in (3.12) and using (4.3) we find the components F
ij
k , for example,

F 12
k = {M1

k (1 + k2
2 − k2

1 − k1) + M2
k (1 + k2

1 − k2
2 − k2)}i

+ {M1
k (k4k1 + k2k3) − M2

k (k3k2 + k4k1)}j

+ {M1
k (k2k4 − k1k3) + M2

k (k1k3 − k2k4)}k

+ M1
k (k1k2 + k2) − M2

k (k1k2 + k1).

Note that the last term in F
ij
k has the form M i

k(kikj + kj) − M
j
k(kikj + ki). Hence,

by Theorem 3.1, the curvature F defined by (4.2) is su(2)-valued if and only if

(4.4) M i
k(kikj + kj) − M

j
k(kikj + ki) = 0

for any ki ∈ Z, i, j = 1, 2, 3, 4 and i < j. An easy computation shows that equation

(4.4) has only the solutions

(4.5) µ = k1 = k2 = k3 = k4, ki ∈ Z.

Thus, the su(2)-valued discrete curvature 2-form F can be written in quaternionic

form as

(4.6) F =
∑

k,ki=µ

Mµ(2 − 2µ){(εk
12 − εk

34)i + (εk
13 + εk

24)j + (εk
14 − εk

23)k},

where Mµ = M1
k = M2

k = M3
k = M4

k . From (4.3) we have Mµ = 1
2(1+4µ2)(1+µ+2µ2) .

Since ki = µ, in (4.6) we can write ε
µ
ij instead of ε

k
ij . If we consider the 0-form

(4.7) ω =
∑

µ

Mµ(1 − µ)xµ, µ ∈ Z,

and use the relation (see the proof of Theorem 3.2)

ē ∪ e = 2{(ε12 − ε34)i + (ε13 + ε24)j + (ε14 − ε23)k},

then F can be written as

F = ω ∪ ē ∪ e.
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In view of Corollary 3.3, F is anti-self-dual, i.e., F = −ι̃ ∗ F . Thus under the

condition (4.5), A with components (4.1) describes an anti-instanton.

In the same manner we can see that the quaternionic 1-form

A = Im(f ∪ ē),

where f has the components

fk =
k

1 + |k|2
,

leads to an instanton solution of (3.17). Indeed, in this case the discrete curvature

(3.13) has the form F = ω ∪ e ∪ ē. Consequently, F is self-dual.
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