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Abstract

A reaction-diffusion system exhibiting Turing’s diffusion driven instability is considered. The
equation for an activator is supplemented by unilateral terms of the type s_(x)u™, sy (x)u™ des-
cribing sources and sinks active only if the concentration decreases below and increases above,
respectively, the value of the basic spatially constant solution which is shifted to zero. We show
that the domain of diffusion parameters in which spatially non-homogeneous stationary solutions
can bifurcate from that constant solution is smaller than in the classical case without unilateral
terms. It is a dual information to previous results stating that analogous terms in the equation for
an inhibitor imply the existence of bifurcation points even in diffusion parameters for which bifur-
cation is excluded without unilateral sources. The case of mixed (Dirichlet-Neumann) boundary
conditions as well as that of pure Neumann conditions is described.

Keywords: reaction-diffusion systems, unilateral terms, Turing’s patterns, positively
homogeneous operators, maximal eigenvalue
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1. Introduction

Let’s consider a reaction-diffusion system

o _ _

S = didut f(uv) + F(uT) = frlut),

v (1)
5= doAv + g(u,v) in Q x [0, +00)

where Q C RY is a bounded domain with Lipschitz boundary, d; and ds are positive parameters

(diffusion coefficients), f,g : R x R — R are real differentiable functions, f_, fy : @ x R — R are

functions satisfying Carathéodory conditions and such that there exist

af- of
s_(x) = %g(x, E)|e=0 >0, s4(x):= aig(x,é“)\g:o >0 foraa x€Q,s: € Loo(Q). (2)
As usually, ut = max{u,0} and uv~ = max{—u,0} denotes the positive and negative, respectively,
part of u. We will always assume that
£(0,0) = g(0,0) = f_(x,0) = f4(x,0) =0 for a.a. x € Q. (3)

Our system will be supplemented by boundary conditions

u=v=0 onlp,

ou  Ov (4)
ain = 87771 =0 on FN,
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where n is the unit outward-pointing normal vector of the boundary 02 and I'y,T'p are open
disjoint subsets of 99, 9Q =T'p UTy.

Apparently the problem (1), (4) has always the trivial solution [0,0]. Our system should des-
cribe a reaction of two chemicals, e.g. morphogens, having a basic positive spatially constant ste-
ady state [z,7], that means we should assume in fact f(@,7) = ¢(7,7) = f_(x,7) = f4(x,7) =0
instead of (3), but as usually, we can shift the positive steady state to zero and we obtain our
system satisfying (3). Let us emphasize that then the functions u, v do not describe concentrations
of the reactants, but their differences from the basic constant stationary state [u,7].

We will consider assumptions under which the problem (1), (4) with f— = f+ = 0 exhibits dif-
fusion driven instability discovered in the famous Turing’s paper [11]. That means if fo=fr=0
then the trivial solution [0,0] is stable as a solution of the corresponding problem without diffu-
sion (ODE’s obtained for d; = d2 = 0), but as a solution of the whole system it is unstable for
[d1,ds] from a certain subdomain Dy of the positive quadrant Rf_ (domain of instability), and
stable only for [di,ds] € Dg = R% \ Dy (domain of stability). Spatially non-homogeneous steady
states bifurcate from the basic constant equilibrium in some points of D7, but such a bifurcation
is excluded in Dg. Let us note that spatially non-homogeneous steady states can describe spatial
patterns in some models in biology.

Our goal is to prove that if we add unilateral terms f_(x,u~), f(x,u"), then the domain of
diffusion coefficients where spatially non-homogeneous steady states can bifurcate is smaller than
Dy. In fact we will prove more, see below. An example of unilateral terms can be

~ -\ _ u 7 +\ qu
f-(x,u )*5—(X)1+77 S (x,u )*5+(X)m'

The stationary system corresponding to (1) can be written in the form

d1 A~ b1 10 + b1 2v + 1y (u, v) + f_(x7u_) — f+(x, ut) =0, 5)
doAv + bg’lu + b272’l} + TLQ(’U,7 ’U) =0,

where B := (b; ;)i j—=1,2 is the Jacobi matrix of the mappings f, g at [0, 0] and the functions n;,ny

are higher order terms, i.e.

ni,2(u,v) = o(|ul + |v]) as |u| + |v| = 0. (6)

(The nonlinear part in the first equation could be written also in the form s_(x)u™ — sy (x)u™ +
71 (x, u,v), that means a homogenization + higher order terms dependent on x).

We will always assume that the following conditions necessary for Turing’s diffusion driven
instability mentioned above are fulfilled:

b1’1 > 0, b2’2 <0, b1’2b2’1 < 07tT(B) < O,det(B) > 0. (7)

The first three conditions in (7) correspond to an activator-inhibitor system (for b1 o < 0,b21 > 0),
or to a substrate depletion system (for b1 2 > 0,b21 < 0), see e.g. [9]. The last two conditions
ensure the stability of [0,0] as a solution of the system without any diffusion.

We will work mainly with the homogenized system

diAU+ Dy ju+ b v+ s_(x)u” — sp(x)ut =0, ®)
doAv + bg,lu + bQ’QU =0.
We will show more than what is mentioned above, namely that critical points, i.e. couples [d1, da]
for which the homogenized problem (8), (4) has a non-trivial solution, can exist only in a smaller
domain than in the classical case §_ = §; = 0. Since any bifurcation point is simultaneously a
critical point, the main goal mentioned above will follow. A similar result was proved in [5] for
the case of unilateral sources on the boundary described by quasi-variational inequalities, but we
consider the description of unilateral sources and sinks by the terms f_(x,u~), fi(x,u") more



natural. We will briefly discuss also problems with unilateral terms of the type s_(z)u™, s; (z)u™
on the boundary.

Main ideas are similar to those from [5]. Considering a weak formulation, we will write our
problem as a system of operator equations in Sobolev space and we will consider an arbitrary fixed
ds. Expressing the variable v from the second equation and substituting it to the first equation, we
reduce the originally non-symmetric problem to a single equation with a positively homogeneous
operator having a potential. A variational characterization of its largest eigenvalue enables us to
compare the largest eigenvalue corresponding to the problem with and without unilateral terms,
which is simultaneously the largest d; for which [dy, ds] is a critical point of the original system
with and without unilateral terms.

Let us note that if unilateral sources of the second variable v (inhibitor) are supplemented in
the second equation then bifurcation of spatial patterns occurs even in the domain Dg, where it
is excluded for the classical case without unilateral sources. See e.g. [7] and references therein
for the case of sources described by variational inequalities, [4] for unilateral sources described
by multivalued maps and [3], [6] for the case of unilateral terms similar to the current paper.
These results motivated numerical experiments [12] showing that for a concrete model also spatial
patterns arise from small initial perturbations for diffusion parameters from Dg, where it is not the
case without unilateral sources. The sense of these results is positive because one of the problems of
Turing’s theory is that the set of diffusion parameters for which diffusion-driven instability occurs
is too small, so unilateral sources for v improve this situation. The result of the current paper is
opposite, unilateral sources for u makes larger the set of diffusion parameters for which bifurcation
of spatial patterns is exluded, i.e. for which no small spatial patterns can exist. We believe that,
at least in some cases, it is a signal that the same is true for the set of parameters for which spatial
patterns evolve from small perturbations of the basic spatially constant steady state. It agrees
with numerical experiments which will be published in a forthcoming paper. This seems to be a
negative result, but perhaps there are situations when it would be valuable to understand how to
prevent evolution of spatial patterns. For instance, patterns play a role in models of tumors, see
e.g. [1] and references therein. In spite of that the paper [1] has completely different goals, it can
be perhaps motivating from the point of view mentioned, in particular its Section 5.

We present the basic general assumptions and definitions in Section 2. Main results of this
paper are formulated and discussed in Section 3. In Section 4 we formulate our problem as a
system of operator equations in Sobolev space and we describe properties of the corresponding
operators. Section 5 concerns a reduction of our system to a single equation with a positively
homogeneous operator and a variational characterization of its largest eigenvalue. A comparison
of largest eigenvalues and consequently also critical points with and without unilateral terms by
using this variational characterization is given. The proofs of the main results are done in Section
6.

2. Basic assumptions and definitions
We will always suppose that there exists ¢ € R such that

i ()| < e+ x|+ (€771 forall x,£ €R,j =1,2, (9)
|f+(x,6)] <c(1+]¢97) forall € € R and a.a. x € Q, (10)
with some ¢ > 2if N =2o0r 2 < g < % if N > 2. In the dimension N = 1 no growth
assumptions are necessary.
Besides systems (8) and (5) we will discuss systems
dlAU + bl,lu + b1721} = 0,
doAv 4 by 1u 4 baov =0
and
dlAu + bl,lu + bLQ’U + nl(u, ”U) = 0,
doAv + b2,1u + b2’2'U + ng(u, ’U) =0.



By solutions we will always mean weak solutions in the space
HLH(Q) :={p € W"3(Q): ¢ =0on T'p in the sense of traces}. (13)

If Tp = (), then the space H}, is actually the whole Sobolev space W2 equipped with the standard
inner product

() = (e = [ (VT +up) a0 (14)

and the Sobolev norm |[lully12 = ([, (Vu)? + u? dQ)%. If I'p # 0, then we will use the inner
product

(0 9)uy, = [ Vv do (15)
Q

and the norm [[u[ 1 = (Jo(Vu)? dQ)% equivalent to the classical Sobolev norm.

Definition 2.1 (Critical point).
A parameter d = [dy, ds] € R% will be called a critical point of (11), (4) or (8), (4) if there exists a
non-trivial (weak) solution of (11), (4) or (8), (4), respectively.

Definition 2.2 (Bifurcation point).

A parameter d° = [d},d)] € R will be called a bifurcation point of (12), (4) or (5),(4) if in any
neighbourhood of [d°,0,0] € R3 x H}, x H}, there exists [d, W] = [d,u,v], |[W]| # 0 satisfying
(12), (4) or (5), (4), respectively.

Remark 2.1. Let’s consider the problem

—Au = Ku,
u=0 onTp, (16)
0
a—z =0onIy.
The eigenvalues of (16) form a non-negative non-decreasing sequence k; with j = 1,2,... (for

Ip #0) orj=0,1,2,... (for Tp = 0). The first eigenvalue is always simple. In the case
I'p # 0, the eigenfunction ey corresponding to the first eigenvalue k1 does not change the sign
on the domain Q. In the case I'p = 0, the eigenfunction eq corresponding to the first eigenvalue
ko = 0 is constant. Other eigenfunctions change the sign in both cases. We can choose an
orthonormal basis e; in H},, j =1,2,... (forTp #0) or j =0,1,2,... (for 'p = 0) composed of
the eigenfunctions of (16).

Let’s remind that the conditions (7) are always considered. The sets

1 b1 2b
C; = {[dhdﬂ ERY: dy = — <1’22’1+b1,1)}7 J=12,... (17)

Ry dglﬁj — b2,2
are hyperbolas (or more specifically their parts) in the positive quadrant R?. Let’s note that we
present, hyperbolas in the different form than usually, namely with respect to d;. It is of course
equivalent to the standard form derived from the relation

(kjd1 —b1,1)(kjd2 — ba2) —b12ba1 =0

(see e.g. [9]). If T'p =0, for j = 0 the last equality is never satisfied, because det(B) is positive
by (7). The envelope

o0

Cpi={d=[di,dy] €R} : dy = max {dy:[dy,do] € | JCj (18)

d1€R+ j=1

divides the positive quadrant R% onto two sets Dy and Dg (see Figure 1).



Figure 1: Illustration of the hyperbolas C; and the envelope C'r. The case when all eigenvalues «; are simple.

Remark 2.2. If all eigenvalues of (16) are simple, i.e. k; < k41 for all j € N, then C; # Cj11
for all 5 > 0. If an eigenvalue k; has a multiplicity k, then k;_1 < Kkj = ... = Kj1p—1 < Kj+k and
Cj_l 7& Cj =...=0Uj4k—1 # Cj+k. The sets

Dy :={d = [d1,d>] € R% : d is on the left of Cp},
Ds :={d=1d1,ds] € Ri : d is on the right of Cr}

are called the domain of instability and the domain of stability. It is known that if [d1,ds] € Dg,
then all eigenvalues A of the problem deciding about stability of the trivial solution of the evolution
system corresponding to (12), (4) have negative real parts and if [d1,ds] € Dy, then there is an
eigenvalue \ with positive real part (for a particular case see [8],[10] and for a general case [2]).
In particular, the trivial solution of (12),(4) is linearly stable for [di,ds] € Dgs and unstable for
[d1,ds] € Dy.

Remark 2.3. The following properties of the curves C; are known, see e.g. [10],[8] for a particular
case, or [2] for the general case.

o A pointd = [d1,ds] is a critical point of (11), (4) if and only if there exists j such that d € C;.
In particular, the domain of stability Ds does not contain any critical point of (11),(4) or
bifurcation point of (12),(4). Under some additional assumptions, e.g. if the eigenvalue k;
is simple or of odd multiplicity, the points on C; are simultaneously bifurcation points (see

e.g. [10]).

e IfdeC, forn=4j,...,j+k—1 (either k is the multiplicity of the eigenvalue k; or d is
in the intersection of two hyperbolas C;,Cy, and k is the sum of multiplicities of K, km, see

o jt+k—1
Remark 2.2), then span ([Wej,ej] ) is the set of the solutions of (11), (4).

ba,1 n=j

3. Main results

Let’s recall that the assumptions (9), (10) are automatically supposed. Besides the notions
introduced in Section 2 we will use the following symbols.

Notation 3.1.

Let r,R,e € Ry and r < R. We define

Cﬁ = {d: [dl,dg] e€Cg:dy € [T,R}},

Cﬁ(é‘) = {d = [d1,d2] € Cg U Dy : do € [7”, R] /\dist(d, CE) < 8}.



The following theorem is the main result of this paper.

Theorem 3.1. i) The domain of stability Ds contains neither critical points of (8),(4) nor
bifurcation points of (5), (4).

ii) Let0 <r < R. LetCj,...,Cjix—1 be all hyperbolas which have a non-empty intersection with
CR. Let any linear combination e of the eigenfunctions of (16) corresponding to rj, ..., Kjtr—1
satisfy

s_e” —spet £0. (19)

Then there exists € > 0 such that there are neither critical points of (8),(4) nor bifurcation
points of (5), (4) in CE(e).

We emphasize that if the condition (19) is not satisfied for some linear combination e mentioned,
then there are critical points of (8),(4) directly on C* due to Remark 2.3. Let’s note that
if all hyperbolas Cj,...,Cj1r—1 do not coincide, i.e. it is not k; = Kj41 = ... = Kjpr—1,
then the eigenfunctions e;, ..., ej;r—1 do not correspond to the same eigenvalue and their linear
combination need not be an eigenfunction. We discuss possible situations in the following two
examples:

e First let’s assume that CF has a non-empty intersection with exactly two non-coinciding
hyperbolas Cy and Cyy1. If both e = e and e = ep41 satisfy (19), then there are no
critical points of (8), (4) on CE\ (C, N Cyy1). However, it can happen that there is a linear
combination e of e, exy1 such that s_e™ —s,e™ = 0, and in this case the intersection point
Ck N Ci41 is a critical point of (8), (4) (see also Remark 2.3).

e In an other scenario we take CZ which consists of a part of two coinciding hyperbolas
Ck = Cky1,1.e. K = Kgy1. In this case the assumption of Theorem 3.1 ii) means that every
eigenfunction corresponding to ki = K41 must satisfy (19). Otherwise the critical points of
(8), (4) are on the whole C, in particular on C? (see Remark 2.3).

The result is illustrated on Figure 2.

d>

R el ¢ ek ¢ — e ¢ — — f— s — — — — — — — — —
Ds
B O A _
stable

Figure 2: Illustration of the result of Theorem 3.1. The critical points are no longer in the region between Cg (red
curve) and blue curve. Assuming the case when all eigenvalues x; are simple, i.e. C; # C, for all k # j, and any
linear combination of eigenfunctions e1, e2 corresponding to k1, k2 satisfy (19).

Corollary 3.1. i) For any compact part M of Dg there exists 6 > 0 such that for any [d1,ds] €
M there are no non-trivial solutions of (5), (4) with 0 < |[ullgy + [[v[| g1, < 9.



ii) Under the assumption from Theorem 3.1 i), for any compact part M of Dg U CE(e) there
exists § > 0 such that for any [d1,d2] € M there are no non-trivial solutions of (5), (4) with
0 <lullgy, + llvllzy <0

Proof.
Indeed, it is easy to see that if this were not true, then a bifurcation point of (5), (4) would exist
in M, which would contradict Theorem 3.1. O

There are two important particular cases for I'p # () and I'p = 0:

Theorem 3.2. Let I'p # (0. Let one of the functions s, ,s_ be identically zero and the other
positive a.e. on §). Let db be the second coordinate of the intersection point of Cy and Cs.

i) Any d € Cy, in particular any d € CF with di <r < R, is a critical point of (8),(4).
ii) If0 <7 < R < d&, then there exists € > 0 such that there are neither critical points of (8),(4)
nor bifurcation points of (5),(4) in CE(e).

Theorem 3.3. Let I'p = (. Let one of the functions s.,s_ be identically zero and the other
positive a.e. on Q). Then for any 0 < r < R there exists € > 0 such that there are neither critical
points of (8),(4) nor bifurcation points of (5), (4) in CE(e).

Remark 3.1. The size of € in Theorems 3.1-3.3 depends on r and R. Actually ¢ — 0 as R — d},
orr — 0 in Theorem 3.2 and € — 0 as r — 0 in Theorem 3.3. The following theorem states that
if the source and sink are in some sense small enough, then there exists at least one critical point
[dy,ds] € Dy UCg with a given do. A question if sometimes (for a strong source or sink) no
critical point with a given do exists remains an open problem. Cf. Remark 5.5 in Section 5.

Theorem 3.4. Let ds > 0 be arbitrary fized. Let jo be such that {% (% + by 1) ,d2:| € Cg

Jo 2Kjg—b2,2 >
(see (17),(18)). If max {||s—||oo, [|S+]lcc} < b1,1 + dbl’& then there exists at least one di such

2Kjq—b2,27

that [dy,ds] € Dy U Cg is a critical point of the problem (8), (4).

The last theorem of this section is a modification of Theorem 3.1 for the case of unilateral
terms in boundary conditions, namely for systems (11) and (12) with boundary conditions

u=v=0 on Ip,

Ju _
o s_(x)u” —sp(x)ut on Ty, (20)
0

Let us note that we consider only positively homogeneous boundary conditions because introducing
more general boundary terms as f4 in the case of sources and sinks in the interior of the domain
would mean additional technical complications.

Theorem 3.5. i) The domain of stability Ds contains neither critical points of (11),(20) nor
bifurcation points of (12), (20).

ii) Let0 <r < R. Let Cj,...,Cjyr—1 be all hyperbolas which have a non-empty intersection with
CZE. Let any linear combination e of the eigenfunctions of (16) corresponding to Kj, ..., Kjtk—1
satisfy

s_e” —spet £0  onTy. (21)

Then there exists € > 0 such that there are neither critical points of (11), (20) nor bifurcation
points of (12), (20) in CE(e).

Analogous consequence as in Corollary 3.1 can be formulated for Theorems 3.2, 3.3 and 3.5.



4. Abstract formulation

We define the operator A : H}, — H}, as
(Au, p) = / up dQ for all u, o € HH(Q). (22)
Q

Remark 4.1. The operator A defined by (22) is linear, bounded, symmetric and compact due to
compact embedding W2 —— L2. Simple calculation gives that the eigenvalues of the operator
A are p; = n%’j =1,2,... forTp # 0 and p; = ﬁ,j =0,1,2,... for Tp = 0, and the
corresponding eigenvectors of A coincide with the eigenfunctions e; of (16). In particular, the

mazimal eigenvalue of A is always one and therefore (Au,u) < Hu||%[1 , where the equality holds
D

only for all multiples u of ey or eq if T'p # 0 or T'p = 0, respectively, see also Remark 2.1. Hence,
(I = A)u,u) > 0 for all u ¢ span{ei} in the case I'p # O and for all u ¢ span{eo} in the case
I'p=0.

We define two non-linear operators N1, Ny : H}, x H}, — H}, as
(N;(u,v), ) = / ni(u,v)p dQ  for all u,v,p € H},, i =1,2. (23)
Q
These two operators are well-defined and continuous due to the theorem about Nemytskii operators
and the assumptions (9).
Remark 4.2. It is known that under the assumptions (6),(9) we have

N;(u,v)

lim —no =0, i=1,2. (24)
lell g, +lvll g, 0 ull g, + vl

For details see e.g. Appendiz A.1 of [5].

Furthermore we define operators 3=, 37 : H, +— H} by
(BT (u), @) = :F/ szuTp dQ for all u,p € H}, (25)
Q
and 8: H} — H} as

B:=pB"+p5". (26)

Due to the theorem about Nemytskii operators and (10) we can also define operators F_,F+ :
HY — H} by

(Fx(u),9) = F / fr(x,uF)p dQ  for all u,p € H}, (27)
Q

and F: H}, v H}, as S

F:=F,+F_. (28)

Lemma 4.1. The operator 3 is positively homogeneous (i.e. B(tu) =tB(u) for allt > 0,u € H},)
and

i) FeeR:|B)]ay < clls-lloollu™lay +cllstlloollut |y Vue Hp, (29)

i) up, =~ u = B(un) = Bu), (30)

i) (B(u),u) >0 Yue Hp, (31)

i0) w0, gy 0 g (32)
HunHH}3 ||Un||H}J



Proof.
The positive homogeneity is apparent.

i) Using the continuous embedding H}, < L? and Holder’s inequality we get

/sgﬁg@dﬂ—/su‘g@dﬁ‘ <
Q Q

<llselloe sup  {llubllze - llollze} +lls-lle  sup  {llu"[lz2 - ollz2} <

<1 <1
Il < Il <

[Bu)| = sup |(B(u),¢)| = sup
ol gy <1 el <1

<clisilloo sup Il - Nelliy f+ells—lloo sup {ullmy - el } <

el <1 el <1
< cllstlloollu™ iy, + clls—lloollu™ Iy, -
ii) Let’s have a sequence (u,) C Hj, such that u, — u € Hj,. Then by the compact em-

bedding W12 << L2 we get u, — u in L?. It is easy to see that |u;, —u~| < |u, —
u| holds almost everywhere on 2. Hence,

18~ () = B~ (@)l = sup (B~ (un) — 5~ (u), @) < sup /\n— ol d9 <

llell ) <1 el <1
< Clluyp, — u||zz — 0.
The same can be shown for 37 and the assertion follows.

iii) Let u € H}, be arbitrary and Q,Q_ subsets of the domain 2 such that @ = Q, UQ_, u >0
a.e. on Q4 and u < 0 a.e. on 2_. Hence

(ﬂ(u),u)z/s#ﬁu dQ—/s_ufu sz/ s+u2dQ++/ s_u?dQ_
Q Q Q,

and our assertion follows.
iv) Now we will define a new auxiliary operator F' : H}, — H} by

(F(u),p) = —/Q(f_(x,u) —s_u)p dQ for all u,p € H},.

We have ~
lim f* (X, é-) — 8*5
£—0 13

by assumption (2). The growth conditions (10) and Proposition 3.2 of [4] give

=0 foraa xe€9

im ——— =0. (33)
u=0 |y,

If w,, — 0, then u,; — 0 (see [13]) and using (33) we get

F_ Up) — B (Uy 1 F(u, 1 F(u, 1
i (| F-(un) (n)llay, - 1E ()l 1, < lim | (_ e, o
n—oo l[wnll e, notoo upllgy T ot lun gy
If up, — 0, —2%— — w then
Tunllpy

F_(up, _
Fo(un) g ()
l[tn [ 12,

due to positive homogeneity of 5~ and (30).
The same can be shown for F'; and 3% and the assertion is proved.



O

In order to give an operator formulation of the problem (11) or (12) with unilateral sources
and sinks on the boundary (20), we define operators ,Bjjf, : H}, — H} as

(B (u), @) = :F/ szuTp dl'y  for all u,¢ € H}, (34)
I'n

and By : Hy, — H} as
By = B + By- (35)

Remark 4.3. The operator By possess the same properties as the operator B (see Lemma 4.1).

Let’s emphasize that for cases I'p = () and I'p # @) we have two different inner products and
therefore operators defined above are in these two cases also different. In the case I'p # () we
consider the function space H}, equipped with the inner product (u,p) = Jo VuVe dQ. A weak
solution of the problem (8),(4) or (5),(4) is then a pair of functions u,v € H}, satisfying

dlu — bLlAu - bl,QA'U + ﬂ(u) = 0,

36
d2’U — bg)lAU, — b272A1} =0 ( )
or ~
diu — by 1 Au — by 2 Av — Ny (u,v) + F(u) =0, (37)
dg’U — bg,1Au - bQ’QAU — Ng(u, U) = 0,
respectively.

If T'p = 0, the function space H}, is identical with W2 and is equipped with the inner product
(u, ) = f? (VuVe 4+ up) dQ. A weak solution of (8),(4) or (5),(4) is then a pair of functions
1,

u,v € WH* satisfying
di(I — A)u—by1Au — by 2Av + B(u) = 0, (38)
do(I — A)v — b1 Au — by gAv =0
or .
di(I — A)u — by 1 Au — by 2Av — N1 (u,v) + F(u) = 0, (39)
dg([ — A)’U — bg,lA’u, — bQ’QA/U — NQ(U, ’U) = 0,
respectively.

For the problem (11), (20) or (12), (20) we will get analogous systems, we just replace operators
B and F with Sy.

5. Critical points for fixed d-

In this Section we will assume that do > 0 is fixed and we will use the notation from Sections
2 and 4. As usually, by an eigenvalue of a positively homogeneous operator P we mean a number
A such that the equation P(u) = Au has a non-trivial solution. More generally, by an eigenvalue
of a problem with a positively homogeneous operator we mean a parameter for which the problem
under consideration has a non-trivial solution.

5.1. Reduction to one operator equation for the case I'p # ()

Let’s suppose I'p # 0. Since the operator A is positive by Remark 4.1 and by3 < 0 by
the assumption (7), the number b% is not its eigenvalue. Therefore the operator dol — by 2A is

invertible and surjective. Hence, we can express v from the second equation in (36), substitute it
into the first one and get

diu — by 1 Au — by 9 A(da — by o A) by 1 Au+ B(u) = 0.

10



Introducing the operator Sy, : H}, — H}, as

Say 1= b1,1 A+ b1 2A(do] — by 2 A) by 1 A, (40)
we can write the system (36) as
dyu — Sg,u + B(u) =0, (41a)
v = (dol — bg o A) by 1 Au. (41b)
In particular, the system of the operator equations
diu — Sg,u =0, (42a)
v = (do — by o A) by 1 Au (42b)

is equivalent with the system
dl’LL — bl’lAU - bl,gA’U = 0,

43
dg’l} — ngAU - b272A’U =0. ( )

Remark 5.1. The operator Sq, : H}, — H}, defined by (40) is linear, bounded, symmetric and
compact. It follows from simple calculations and Remark 4.1 that the eigenvalues of the operator
Sa, are

1 b1 2021 ‘

d=—— 1) =12,... 44

L= () 12 (44)
and since kj — 00 as j — 00, we get d{ — 0 as j — 00. The eigenvectors of Sq, corresponding to
d} coincide with those of the operator A corresponding to pj, i.e. with the eigenfunctions of (16)
corresponding to k;.

5.2. Reduction to one operator equation for the case T'p = ()

Let’s consider the case I'p = 0. It follows from Remark 4.1 that the number d, is not an
eigenvalue of the operator dyA + by 2 A. Indeed, we have dy # dfﬁj?f, because dok; # bao (b22
is negative by (7)). Hence, the operator dol — da A — by 2 A (in (38)) is surjective and invertible.
Similarly as in Section 5.1 we can transform the system (38) to the system

di(I — A)u— Sg,u+ B(u) =0, (45a)
v = (dol — doA — by o A) by 1 Au, (45b)
with the new operator
Say = b1 1 A+ b1 oA(do] — doA — by A) 1hy  A. (46)
In particular, the system of the operator equations
diy(I — A)u— Sg,u =0, (47a)
v = (dol — doA — by o A) by 1 Au (47b)

is equivalent with the system
dl(I - A)u - bLlAU - bl,QA'U = 0,

48
dg(l — A)U — b271A’U, — bQ)QAU =0. ( )

Remark 5.2. The operator Sq, defined by (46) is linear, continuous, symmetric and compact.
Simple calculations and Remark 4.1 imply that the eigenvalues of the operator Sq, are

j 1 b1 2021 ‘
M= == b =0,1,2,... 49
/f_j + 1 (dgl‘ij — b272 + 1,1 ) ] ) 4y ( )
and the eigenvectors of Sa, corresponding to N coincide with those of A corresponding to yu;, i.e.

with the eigenfunctions of (16) corresponding to r;. However, the eigenvalues d| of the problem
(47a) are the same as those of the operator Sy, defined by (40) in the case Tp # 0, i.e. they are
given by (44). (There is no eigenvalue with j = 0.)
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5.3. Mazimal eigenvalues and critical points

Notation 5.1. We will denote by d}4X the maximal eigenvalue of the operator Sy, or of the
problem (47a) in the case I'p # 0 or I'p = 0, respectively. We will also denote by diWAX’B the
maximal eigenvalue of the operator Sy, — 8 or of the problem (45a) in the case T'p # O or I'p = 0,

respectively, if it exists.

Observation 5.1. We can see from the form (44) of the eigenvalues d{ (see Remarks 5.1, 5.2)
and from (17), that a point [di,ds] lies on a hyperbola C; for some j € N if and only if d; is
an eigenvalue of Sq, in the case T'p # O or an eigenvalue of (47a) in the case T'p = 0. For the
mazimal eigenvalue dMAX of Sy, in the case Tp # 0 and of (47a) in the case T'p = () we have
[d{WAX7 do] € Cg. It follows from (44) and Remark 5.2 that the operator Sq, in the case I'p # )
and the problem (47a) in the case T'p = 0 have infinitely many positive eigenvalues and maximally
finite number of negative eigenvalues. See also Figure 1.

Lemma 5.1. IfT'p # 0, then a point [d1,ds] € R2 is a critical point of the system (11),(4) or
(8), (4) if and only if di is an eigenvalue of the operator Sy, or Sa, — 3, respectively.

IfTp =0, then a point [d1,ds) € R is a critical point of the system (11), (4) or (8), (4) if and
only if di is an eigenvalue of the problem (47a) or (45a), respectively.

Proof. Let Tp # 0. A point [dy,ds] € R2 is a critical point of the system (11), (4) or (8), (4) if
and only if there exists a non-trivial solution [u,v] of (43) or (36), respectively. This is true if
and only if there exists a non-trivial solution u € H}, of (42a) or (41a), i.e. d; is an eigenvalue
of the operator Sy, or Sy, — 3, respectively (see Section 5.1). The proof for the case I'p = 0 is
analogous, we only use (48), (38), (47a), (45a) and the result of Section 5.2. O

We will use a variational characterization of the largest eigenvalue of an eigenvalue problem
with a positively homogeneous operator to a study of critical points of the problem (8), (4). The
following abstract theorem is a slight modification of the result proved for the particular case
L = 0 in [6] and for the general case in a forthcoming paper of J. Navratil. Let’s remind that
Ker(I — L) is the kernel of the operator I — L.

Theorem 5.1. Let H be a Hilbert space, P : H — H a positively homogeneous, continuous
operator such that
up, = u = P(u,) = P(u)

and L : H — H a linear, continuous, symmetric and compact operator. In the case L Z 0 we
suppose that the mazimal eigenvalue of L is in the interval (0,1]. Let there exist ug € H,ug ¢
Ker(I — L) such that

(P(u),u) (P(uo), uo)
Ao =  max = >0 (50)
0 kSl (I = L)u,u) (I = L)uo,uo)
and 1
lim ;(P(Uo +th) — P(uo), uo) = (P(uo), h) Vh € H. (51)

Then \g is the mazimal eigenvalue of the problem
MI—L)u—P(u) =0 (52)

and ug is a corresponding eigenvector. If uy ¢ Ker(I — L) is an arbitrary eigenvector of (52)
corresponding to Ao then it satisfies (50) with ug replaced by uq.

Let us note that the problem (52) has an eigenvector in Ker(I — L) only if there is u € Ker(I—
L) such that P(u) = 0. In this case any A is an eigenvalue.
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Proof.
We will assume that L # 0, the case L = 0 is simpler. Let us denote by uﬁ/[AX the maximal
eigenvalue of L. Since 4% € (0,1], we have m;z(})( (Lu,u) = pdAX < 1. If pAX < 1, then

el g =1
(Lu,u) < 1 and therefore ((I — L)u,u) > 0 for all u. If uM4X =1, then max (Lu,u) = 1, but
Jull 7y =1

the maximum is attained only in the elements of Ker(l — A). Hence, ((I — L)u,u) > 0 for all
u ¢ Ker(I — L) and the expression in (50) makes sense.

Let ug ¢ Ker(I — L) be arbitrary such that (50) and (51) are fulfilled, and let h € H}, be
arbitrary fixed. Then for ¢t € R small such that (ug + th) ¢ Ker(I — L) we have

(P(uo),uo)
((I = L)uo, uo)

(P(ug + th),ug + th)
((I — L) (UO + th), Ug + th)

S = )\0.

We can rewrite this inequality as

(P(ug),uo)

(P(ug + th),uo) + H(P(uo +th). h) < (=75 m s

[((I = L)uo,uo) + 2t((I — L)ug, h) + t*((I — L)h, )]

and eventually as
(P(ug + th),ug) — (P(uo), uo) + t(P(ug +th),h) < Ao [Qt((I — L)ug, h) +t*((I — L)h, h)] .

We divide it by 2t and get

1 [(P(up + th),up) — (P(ug),ug)] +

o7 (P(uo +th), h) < Xo {((I — L)ug, h) +

((I - L)h, h)] . t>0,

N — N
O+ N+

L (P + th), ue) — (Pluo), uo)] +

o1 (P(ug +th),h) > Xo {((I — L)ug, h) +

(I — L)h, h)] . t<O.

Let t — 0. We use the condition (51) and continuity of P to get

(P(uo), h) < Ao((I — L)uo, h),
(P(uo), h) > Xo((I — L)uo, h).

Since h was arbitrary, we have
(P(ug),h) = Xo((I — L)ug,h) for all h € H},
that means
P(Uo) = )\0([ - L)Uo.

Hence, the number )\ is an eigenvalue of the problem (52) and ug is a corresponding eigenvector.
Let A1 be another eigenvalue of the problem (52) and let u; ¢ Ker(I — L) be a corresponding
eigenvector. Then we have
P(ul) = )\1([ — L)u1

and if we multiply it by w; and divide by ((I — L)uy, u1), we get

(Pur),w) . (P(uo),uo)
((I — L)ul,ul) - ((I — L)UO,UQ)
Hence, Ag is the maximal eigenvalue. If A\; = A\g, then we have equality in the last estimate, that

means v is a maximizer of the expression (50). That means an arbitrary eigenvector corresponding
to Ap not lying in Ker(I — L) satisfies (50) with ug replaced by wu;. O

A = =)o

If the condition (51) is fulfilled for any wg, then it actually means that P has a potential & =
L(Pu,u).
2 )
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Remark 5.3. In the particular case L =0, \o := max L4
uer NMullF
uFo

Theorem 5.2. Let T'p # 0 and let Sy, be the operator from (40). If there exists a function

¢ € H}, such that

is the mazximal eigenvalue of P.

(Sd2@7 90) - (6(90)’ 90) > 07 (53)
then the maximal eigenvalue of the operator Sq, — 3 is
S _
dMAXE — max (Sa; . u) 2(6(u),u) = max (Seu,u)— (B(u),u) > 0. (54)
7 T e
u#o u HlD:I

Mazimizers of the expression in (54) are exactly all eigenvectors of Sy, — B corresponding to
dyAr,

Proof.
Let’s prove that the maximum in (54) exists. Let

M:= sup (Sgu,u)— (B(u),u).
u€Hp
el gy =1

The existence of ¢ satisfying (53) implies M > 0. We can choose a sequence (u,) C Hj, with
[unl gy, = 1 such that

Hm (Sg,n, un) — (B(un), un) = M. (55)

n— 00

We can assume u,, — ug € HL. Since Sy, is linear and compact and 3 satisfies (30), we get

(Saytin; tn) = (B(un), un) = (Sayu0,u0) = (B(uo), uo) = M. (56)
Now we will show that [luo|[z;, = 1. We know that |lugllzy < 1. If 0 < [lugl[zz < 1, then
(Sdz,”%fH}; |“°|po) - (5 (||“0|0Hb> ; |“0|0H}3> = Tlzy > M due to positive homogeneity of

B (see Lemma 4.1), which contradicts the fact that M is supremum. If wy = 0, then M = 0,
which is not the case. Therefore the last maximum in (54) exists and it is attained at uo with
[uoll 2, = 1. The equality between two maxima in (54) follows from the positive homogeneity of

It is known that P = /8 and therefore also P = Sy, — 3 satisfies (51) for any wug (see Lemma
A.3 in Appendix). The operator P = S, — (3 satisfies also the other assumptions of Theorem 5.1
(see Remark 5.1 and Lemma 4.1). Hence, the assertions of Theorem 5.2 follow from Theorem 5.1,
where we choose L = 0, that means we have Ker(I — L) = {0}. O

Remark 5.4. Let’s consider the case I'p = (). The definition of the inner product and of the
operator A (Section 4) give (I—A)u, ) = [(Vu, V) dQ for allu,¢. It follows that (I—A)u =0
is equivalent to ((I — A)u,u) = 0, and this holds if and only if u is a constant function. In other
words, Ker(I — A) = span{eo}, ey being the eigenfunction of (16) corresponding to kg. Due to
Remark 5.2, any non-trivial ug € Ker(I — A) is simultaneously an eigenvector of Sa, from (46)
corresponding to \°. Hence, by using (7) we get

—det(B)
—bo o

)

b1,2b
(Stwto, 1) = (W) = (1 + 2220 ) oy Juolffyes < 0. (57)

)

Theorem 5.3. Let I'p = () and let Sq, be the operator from (46). If there ewists a function
© € W2 satisfying (53), then the maximal eigenvalue of the problem (45a) is

MAX.,B ,_ (Sazu,u) — (B(u),u)
R N (= T R o
u¢Ker(I—A)
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Maximizers of the expression in (58) are exactly all eigenvectors of the problem (45a) corresponding
to diVIAX’B.

Proof.
Let’s denote

ey () = (B.u)

uewh? ((I_ A)U,U)
ugKer(I—A)

Since ((I — A)u,u) = [, (Vu)? d2 > 0 for every u and we assume that there exists a function ¢
satisfying (53), we have M > 0.
We can choose a sequence u,, ¢ Ker(I — A) with ||uy, |12 =1 such that

lim (Sdguruun) - (5(””)7”774)

=M.

We can assume that u,, — ug. If ug = 0, then we have
(I — Aup,up) =1 — (Aup,u,) = 1 — (Aug,ug) =1
due to the compactness of A, and

(Sd2unaun) - (ﬂ(un)aun) - (Sd’zuoauO) - (B(UO),U()) =0

by the compactness of Sy, and (30). This means that M = 0, which contradicts the positivity of
M.

Further, let’s show that ug ¢ Ker(I — A) \ {0}, i.e. ug is not a constant function. Let ug be
a non-zero constant function. Then (Sq,u0, ug) < 0 by Remark 5.4. Since we have —(8(u),u) <0
for every u by (31), we get (Sg,uo0,u0) — (B(uo), ug) < 0 and consequently

lim (Sdgunvun) - (B(un)vun)

< 0.
n—so0 (I = A)up, up) <0

That contradicts the fact that w, is a maximizing sequence and the supremum M is positive.
Hence, we have ug ¢ Ker(I — L).

We need to show that ||ugllrz = 1. We already know that 0 < |Jug|lwr2 < 1. Now let
0 < |lugllwi2 < 1. We have 1 — (Aug,up) > 0 (see Remark 4.1) and

(Sdzumun) — (ﬁ(un)’ un) s (SdzuO’ UO) — (5(’“0)’”0)
(([ - A)Unyun) 1-— (AUO, UQ)

=M
by the compactness of Sg,, A and the condition (30). Simultaneously ||uol|312 — (Aug,ug) > 0

because of ug ¢ Ker(I — A) (see Remarks 4.1 and 5.4). It follows that

(Sa,u0,u0) — (B(uo), uo) S (Sa,u0,u0) — (B(uo), uo)
||U0H%/V1.2 — (Aug, uo) 1 — (Aug,up)

=M >0,

which contradicts that fact that M is a supremum. Hence, we have ||ug|yy1.2 = 1.
We use compactness of Sg,, A, the property (30) of 8 and the fact that |ju,|wrz = 1 =
[[uollwr.2 to get

(Saytn, un) — (B(un), un) . (Sa,u0,u0) — (B(uo), uo)
(I = A)un,un) (I = A)ug, uo) .

Hence, the maximum exists and it is attained at the function ug ¢ Ker(I — A) with [Jug||w1.2 = 1.

It is know that P = S,, — (3 satisfies (51) for any ug (see Lemma A.3 in Appendix). The ope-
rators P = Sy, — 8 and L = A also satisfy the other assumptions of Theorem 5.1 (see Remark 4.1,
Remark 5.2 and Lemma 4.1). Hence, diw AX.8 is the maximal eigenvalue and wg is a corresponding
eigenvector of the problem (45a) by Theorem 5.1.

(59)
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Let’s show that if u; is an arbitrary eigenvector of (45a) corresponding to d2! AXP then

up ¢ Ker(I —A). If uy € Ker(I — A)\ {0}, then we have —(Sg,u1,u1) + (B(u1),u1) > 0

(see (57) and Lemma 4.1) and diVIAX’ﬂ((I — A)ug,uy) = 0, which contradicts the equation (45a)

with v = u; multiplied by w;. Hence, u; ¢ Ker(I — A), and the last assertion of Theorem 5.3
follows also from Theorem 5.1.

O

Remark 5.5. The assumption (53) is clearly satisfied if there exists ¢ such that (8(¢),p) = 0
and (Sa, 0, ©) > 0, which is easier to verify. If there is no ¢ satisfying (53) then the supremum in
proofs of Theorems 5.2 and 5.3 is not positive. It follows that there is no positive eigenvalue of
the operator Sq, — 3 in the case T'p # () or of the problem (45a) in the case I'p = (). Indeed:

e in the case U'p # 0, if di > 0 were an eigenvalue, then we would have (Sq,u,u) — (8(u),u) =
dy1(u,u) > 0 for the corresponding eigenvector u, which would contradict the non-positivity
of the supremum.

o in the case T'p = 0, an eigenvector u cannot be constant (see the end of the proof of Theorem
5.3), and if u were non-constant, then we would have (Sg,u, u)—(B(u),u) = di(I—A)u,u) >
0 by the last assertion of Remark 4.1, which would be a contradiction again.

It follows that in the situation of Theorem 3.4 there exists ¢ satisfying (53) because that theorem
guarantees the existence of a critical point in Dy UCE and consequently also existence of a positive
eigenvalue of the operator Sq, — B in the case T'p # 0 or of the problem (45a) in the case T'p =0
(see Sections 5.1, 5.2).

The following theorem is formulated for both cases I'p # 0 and I'p = ().

Theorem 5.4. If [dy, dy] is a critical point of (8), (4), then always dy < dMAX. If [d)AX dy] € C;
exactly fori = j,...,j+k—1, all linear combinations e of ej, ..., e;y,—1 satisfy (19) and [d1,d>]
is a critical point of (8),(4), then di < dMAX. Moreover, if the assumption (53) is satisfied, then
dy < AP < gMAXx,

The assumption concerning a position of [d}AX dy] is fulfilled either if [d}AX dy] lies in
fact only on one hyperbola C; = ...Cj ;1 (the eigenvalue «; has the multiplicity k) or in the
intersection of two different hyperbolas C; = ...Cj ;-1 # Cjyi = ...Cj4k—1 (k; has the multiplicity
I, k;j4; has the multiplicity &k — ). See also Remark 2.2. Cf. also comments after Theorem 3.1,
where the assumptions are related to a set C¥, while in Theorem 5.4 they concern only one point
[dMAX dy] with a given fixed do.

Proof.

First let’s consider the case I'p # 0.

Let’s show that if (53) were fulfilled with no ¢ then no critical point of (8),(4) with dz under
consideration would exist. If [dy,ds] were a critical point with d; > 0, then d; would be an
eigenvalue of Sq, — 3 (see Lemma 5.1). Hence, we would have u with [[u|[1 = 1 satisfying (41a).
It would follow that (Sg,u,u) — (B(w),u) = dilul[ 1, > 0 and the condition (53) would be satisfied
with ¢ = u, which is a contradiction.

Hence, in the following we can assume that (53) is fulfilled with some . Due to Theorem 5.2 and
Lemma 4.1 we get

AP (SdguﬂT) NQ(B(U)’U) < max (5|'d2“1;7“) — gMAX,
uE;IOD ullz, UE;IOD ullfry

As above, if [dy, do] is a critical point (8), (4), then d; is an eigenvalue of Sy, — 8 (see Lemma 5.1).
Hence, the first assertion of Theorem 5.4 is true.
There exists up € HJ, such that

JMAX B _ (Sa,u0,u0) — (B(uo), uo)
! [[uoll7
D
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Due to Lemma 4.1 we have

JMAX.B < (Sdzuoé uo) dMAX (60)
ol

Let (B(up), up) = 0. Let us show that then the last inequality is strict. Indeed, if we had equality
n (60), then uy would be an eigenvector of Sy, corresponding to d}4X, that means a linear
combination of e;,...,ej;x—1 (see Remark 5.1). Hence, (19) with e replaced by u would be
fulfilled by our assumptions and we would get (5(ug), uo) > 0. This contradiction implies that the
inequality in (60) must be strict and we get dMAX’ﬂ < dMAX,
If (B(ug),ug) > 0, then the first inequality in (60) is strict and consequently di/ %7 < gMAX
again.

If [dy,d2] is a critical point of the problem (8),(4), then d; is an eigenvalue of Sy, — 8 by

Lemma 5.1 and therefore
dy < dYANP < gMAx,

The proof for I'p = @) is analogous, but we must use Remark 5.2 and Theorem 5.3, in particular
formula (58) instead of (54). O

6. Proofs of main results

We will use notation from the previous sections.

Proof of Theorem 3.1

i) Since dy > 0 was arbitrary in Section 5 and [d}M4X dy] € Cgr (see Observation 5.1), it
follows from Theorem 5.4 that there are no critical points of (8),(4) in Dg (see also Figure 1).
Consequently there are also no bifurcation points of (5), (4) in Dg (see Lemma A.2 in Appendix).

ii) Let’s consider the case I'p # (. Let’s suppose the opposite, i.e. the assumptions of the
second part of Theorem 3.1 are satisfied and there are critical points of (8), (4) in C[(¢) for every
£ > 0. We can choose a sequence d" = [d},d3] € Dy and W,, = [uy,, v,] such that d* — d° € CE,
[Wall = llullzy, + vl 1, # 0 and d™, W), satisfy (36). We can assume that HVVIZTH -~ W = [w,z].
Let’s divide (36) by ||W,|| to get

U U
A" by Al by +B( ) 0,
T ngf AN 1)

A by A by A =
2w ALy e IIWnII

By the compactness of A and (30), we get AH;‘V—"” — Aw and 8 (II‘;LVT;H) — B(w), analogously for

v, and z. Hence, it follows easily from (61) that — z and

Un
HW T W W

d(l)w — bl,lAw — bl’QAZ — ,B(w) = 0,
ng — b271Aw — bQ’ZAZ =
Therefore the point d° = [d{,d] € CI is a critical point of the system (8), (4), which contradicts
Theorem 5.4 for dy = d9. Hence, there exists € > 0 such that there are no critical points of (8), (4)

and consequently no bifurcation points of (5), (4) in CE(e) (see Lemma A.2 in Appendix).
The proof for I'p = ) is analogous, we only use the system (38) instead of the system (36).
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Proof of Theorem 3.2

i) Under the assumptions about sy, either ¢ = e; or e = —e; satisfies s_e™ — s, et = 0.
Since any point d € C is a critical point of the problem (11), (4) with a non-trivial solution
[%el, el] due to Remark 2.3, it is also a critical point of the problem (8), (4).

ii) Due to the definition of d, for dy < di we have [d}4X dy] € C; for a finite number of indices
j > 1 (see Section 2 and also Observation 5.1). Any linear combination e of the eigenfunctions
ej,j > 1 changes the sign (see Lemma A.1 in Appendix). Hence, under the assumptions of
Theorem 3.2 we have s_e~ — sy et # 0. Therefore any critical point [dy, da] with da < d& of
the problem (8), (4) satisfies d; < d}*4*X by Theorem 5.4. Now, it is possible to repeat the
part ii) of the proof of Theorem 3.1.

O

Proof of Theorem 3.3

For any dy > 0 we have [d}4%X d,] € C; for a finite number of indices j > 0 (see Section 2 and
also Observation 5.1). Any linear combination e of the eigenfunctions e;, j > 0 changes the sign
(see Lemma A.1 for details), therefore the relation s_e™ — sy e™ # 0 is always satisfied. Hence,
any critical point [dy,ds] of the problem (8), (4) satisfies d; < d}*4X by Theorem 5.4. Now, it is
possible to repeat the part ii) of the proof of Theorem 3.1.

O

Proof of Theorem 3.4

The assumption on jp directly implies that the jo-th eigenvalue of the operator Sg, in the
case I'p # 0 or of the problem (47a) in the case I'p = 0 is positive (see Remarks 5.1, 5.2 and
(17),(18)). Hence, we have (Sq,e,,€j,) > 0, where e, is the corresponding eigenvector. Let’s
denote 7 := max {||s_||co, || 5+ |0 }- We get

(Sd2€j076j0) - (B(ejo)’ejo) = (Sdzejmejo) - /Q S+ej0€;; dQ — \/Q _5—€joej_o sy >

> (Sayesoreso) — Hs+||oo/Q<ej0>2 a0 - ||s_uoo/9<ej;>2 a0

> Sueioei) 7 ([ () a0+ [ (e a0) >
Q Q
> (Sd2€j07 ejo) - T(Aejoﬂ ejo)'

Since ej, is non-trivial, we have (Aej,,e;,) > 0. Hence, if 7 < W
(6(610)7610) > 0.

If I'p # () then we get

, then (Sq,ej,,€j,) —

1 b1,2b2.1 2
(Sdzejo’ejo) _ a(d2ﬁjo_b2»2 +b1’1)”e]0”H117 _ b172b2’1 +b (62)
= = 1,1
(Aejoﬂ ejo) %”ejo ”?{]13 d2"$j0 - b2,2
see Remarks 5.1 and 4.1) and if I'p = () we get
g
1 b1,2b2, 2
SaCior €io) _ a1 gtz T 0L llEry by obyy
2-Jo’ ~Jo — 0 0 D _ > ) —|—b11. (63)
(Aejo, €5o) ﬁ”%\\ig dakj, — b2 ’

(see Remarks 5.2 and 4.1). Hence, if 7 < LK L KU b1,1, then the assumption (53) of Theorems

dgl{jofbgyg
5.2,5.3 is satisfied with ¢ = e;, and therefore df/IAX"B > 0 exists. A point [di\/mx’ﬂ, ds] is a critical
point of (8), (4) by Lemma 5.1 and it lies in Dy UCE by Theorem 5.4 and because [d}/4X dy] € Cg
(see Observation 5.1).

O
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Proof of Theorem 3.5

If unilateral terms in boundary conditions are considered, we replace the operators F and B in
(36),(37),(38),(39) by the operator Sy, which has the same properties as 5. Then it is necessary
to repeat whole Section 5 for this operator. The actual proof of Theorem 3.5 is then the same as
the proof of Theorem 3.1.

A. Appendix

For a completeness we give here proofs of two standard assertions used in the text (Lemmas
A1, A.2), and a slightly simplified proof of a result given already in [6] (Lemma A.3).

Lemma A.l1. Any linear combination Zk ., aker,n € N of eigenfunctions of (16), where jo = 2
forTp # 0 and jo =1 for T'p = 0, changes the sign on the domain .

Proof.
Case I'p = 0:
Since ey, is an orthonormal basis (see Remark 4.1) and e is constant, we have

/ €o Z ager d = Z ak/ eper d) = Z ak/ VeoVey + egex) dQ = Z ax(eo, ex)wrz = 0.

k=jo k=jo k=jo0

Hence, the function ey >, _ jo @ker changes the sign on the domain (2. Since eg is constant, also

the function >} _ —_j, arer changes the sign on €.
Case I'p # 0:
We will use the eigenfunction e; instead of eg. Again since ey is the orthonormal basis, we have

1 1 1
/ erer dQ) = / ——Aeje dQ) = —/ Ve Ve dQ = —(e1,ex)gr =0  for any k& > 1.
Q Q ki1 k1 Ja K1 p

The rest is the same as in the case I'p = 0. O
Lemma A.2. Every bifurcation point [dy1,dz] of (5),(4) is also a critical point of (8), (4).

Proof.
We will show the proof for I'p # 0. The proof for I'p = ) is the same, we only use the system
(39) instead of the system (37).

Let d° = [d1,ds] € R? be a bifurcation point of (5),(4). Then there exists a sequence d" =
[d7, d3] such that d" — d° and W,, = [u,,,v,] — 0 with ||W,|| = [ullzy, + [lvll 1, # 0 and d", W,
satisfy (5), (4), i.e. (37). We can assume ”va—;‘l — W = [w, z]. Let’s divide the system (37) by
[Wall. We get

Up ~ Ni(un,vn) F(uy)
d b1 1A b1 2A = 07
Wl ||W I ”Wn” IIW I Wl (64)
Up, ~ Na(up,vn)
dy — by — by oA = 0
2 Wl ||W | ||W I Wl
due to linearity of A. Due to (24) we have W — 0asn — +oofor j =1,2. Since yry — w

and 7\|;}VZH HW T Aw and Eln) Bw),
analogously for v, and z. We have dy,d2 > 0, therefore it follows from (64) that HWQLH —

— z, ||[W] =1 and

— 2, using compactness of A and (32) we get A s

HW I
d?w — bMAw - bLQAZ + 6(’(1)) = O,
dgz - 6271Aw — b272AZ = 0.
Therefore the point d° is a critical point of the system (8), (4). O
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Lemma A.3 (see [6]). For any dy > 0 and ug € H}, the operators P = 3 and P = Sq, — 3 satisfy
the condition (51).

Proof.

We will prove (51) for P = 8~. The proof for 37 is analogous and for P = S, — 3 it will follow
by using the definition of 5 and linearity of Sg,.

Let ug, h € H}). We will introduce two sets €0y and €);;, such that

up(x) < 0 a.e. on Qy, up(x) >0 a.e. on O\ Q,
ug(x) +th(x) < 0 a.e. on Qup, up(x) +th(x) >0 ae. on Q\ Q.

Then

S5 g+ ) — 5 (o) ) — (5™ () h) =

/ —(uo —l—th)_uo + upug dQ:| —/ —uy hdQ =
L/ Q2 Q

1
t

1 / (u0+th)u0thh—/ u%dﬂo} —/ ugh dQy =
t LS Qsn Qo Qo

1

t

/ u%dﬂth—/ ul dﬂo] +/ uothth—/ uoh dQ.
LS Qsn Qo Qin Qo

We can afford to work with the definition of S~ without s_, because it is non-negative, i.e. it
does not affect the sign of terms under integration.
Let x:x and xo be the characteristic function of €2, and g, respectively. We have

lim ’u,othth = hm/ UOhXth dQ) = / UOhXO dS) :/ uoh dQO
Qin =0 Jo Q

t—0 Q0
by Dominated Convergence theorem. Let’s introduce sets Qp1, Qip2, Qi3 such that

up(x) < —th(x) and up(x) < 0 almost everywhere on Qp1,
up(x) < —th(x) and up(x) > 0 almost everywhere on €2,

up(x) > —th(x) and up(x) < 0 almost everywhere on Qyp3,

with Q¢n = Qin1 U Qeno and Qo = Qip1 U Q4p3. This way we get

/ ug dQyp, — / ug dQy = / ug dQyn1 —|—/ ug dQypo — / ug dQip1 — / u% dQps =
Qin Qo Qi1 Qino Qi1 Qins

= / U(Q) thhQ — / U(Q) thhg.
Qipo Qips

Since 0 < ug < —th a.e. on Qo and 0 > ug > —th a.e. on 3, we get

1 1
lim = 2 A0 no — 240 < lim = / th)? dQ 7/ th)?dQ =0.
tl—%t (/ch2 Ug th2 /ch3 Ug th3) =~ t1—r>I(l)t < th( ) th2 chs( ) th3

Hence, it follows from the discussion above that

Jim %(6’(% +th) — B~ (ug), uo) — (B~ (ug), h) = 0

t—0

which proves (51) for 5. O
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