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NEWS AND NOTICES

IN MEMORY OF JOSEF KRÁL

Jaroslav Lukeš, Ivan Netuka, Jiří Veselý, Praha

On May 24, 2006 a farewell ceremony for our teacher, colleague and friend Josef

Král was held in the Church of St.Wenceslas in Pečky. He died on May 13, 2006,

before his seventy-fifth birthday. Josef Král was an outstanding mathematician, ex-

ceptional teacher, model husband and father, and above all, a man of extraordinary

human qualities. The results of his research place him among the most important

Czech mathematicians of the second half of the twentieth century. His name is asso-

ciated with original results in mathematical analysis and, in particular, in potential

theory.

In 1967 Josef Král founded a seminar in Prague on mathematical analysis, with

a particular emphasis on potential theory. He supervised a number of students and

created a research group, which has been called The Prague Harmonic Group by

friends and colleagues. At first lectures were organised, somewhat irregularly, at

the Mathematical Institute of the Czechoslovak Academy of Sciences, Krakovská 10.

The name Seminar on Mathematical Analysis was chosen and the meeting time was

fixed for Monday afternoons. From the beginning it was agreed to devote the seminar

mainly to potential theory, but this did not exclude other parts of Analysis which

would be of interest to members. Before long the venue changed to the Faculty

of Mathematics and Physics of Charles University, at the building on Malostran-

ské nám. 25. The activities of the Seminar continue until the present and, for about

thirty years now, have been based at the Faculty building at Karlín, Sokolovská 83.

The results of the group soon attracted international interest, and contacts were

established with many world-famous specialists in potential theory. Among those

who came to Prague were leading figures such as M.Brelot, H. Bauer, A. Cornea,

This text is an expanded version of the article Seventy years of Josef Král which appeared
in the publication Seminar on Mathematical Analysis, Potential Theory and Related
Topics, Faculty of Mathematics and Physics, Charles University, Praha 2001. This, in
turn, was based on the article Sixty years of Josef Král, Czech. Math. J. 41 (1991),
751–765 and also (in Czech) on an article in Math. Bohem. 116 (1991), 425–438.
The article has appeared also in Czech. Math. J. with the approval of the authors.
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G.Choquet and B. Fuglede. Many others came to Prague in 1987 and to Kouty

in 1994 when international conferences devoted specially to potential theory were

held in our country. On the occasion of the thirtieth anniversary of the Seminar on

Mathematical Analysis an international Workshop on Potential Theory was orga-

nized in Prague in 1996. Another international conference was organized in Hejnice

in 2004.

The oldest writings about potential theory in Bohemia of which we are aware can

be found in a three volume book Foundations of Theoretical Physics written in Czech

(Základové theoretické fysiky) by August Seydler (1849–1891), a professor of Mathe-

matical Physics and Theoretical Astronomy in the Czech part of Charles-Ferdinand

University (nowadays Charles University). In the second volume, published in Prague

in 1885 and called Potential Theory. Theory of gravitational, magnetic and electric

phenomena (Theorie potenciálu. Theorie úkaz̊u gravitačních, magnetických a elek-

trických) potential theory is treated from the point of view of physics. It was the first

Czech book devoted to the field. He also wrote an article on logarithmic potentials.

Some years later František Graf published the article On some properties of New-

ton and logarithmic potential and its first derivatives at simple singularities of mass

surfaces and curves (O vlastnostech Newtonova logarithmického potenciálu i jeho

prvních derivací v některých jednoduchých singularitách hmotných ploch a křivek),

in Cas. Pest. Mat. Fyz. 34 (1905), 5–19 and 130–147. Also, Karel Petr (1868–1950),

a professor of Charles University during the period 1903–1938, wrote a note on po-

tential theory: the article Poisson integral as a direct consequence of Cauchy integral

written in Czech (Poisson̊uv integrál jako přímý d̊usledek integrálu Cauchyova) ap-

peared in Cas. Pest. Mat. Fyz. 42 (1913), 556–558.

In 1911, under K.Petr, Viktor Trkal (1888–1956) wrote his thesis On the Dirichlet

and Neumann problems from the integral equations viewpoint (O problému Dirichle-

tově a Neumannově s hlediska rovnic integrálních). V. Trkal later became a professor

of theoretical physics at Charles University. George Pick (1859–1942) got his Habil-

itation from the Prague German University in 1882 and, from 1888, was a professor

of this university. His main fields were Analysis and Geometry. Among his pa-

pers, which numbered more than 50, were at least two dealing with potential theory:

Ein Abschätzungssatz für positive Newtonsche Potentiale, Jahresber. Dtsch. Math.-

Ver. 24 (1915), 329–332, and Über positive harmonische Funktionen, Math. Z. 1

(1918), 44–51.

Karl Löwner (1893–1968) studied at the Prague German University where he also

became a professor in 1930. Before his emigration in 1939, he was an adviser of

Lipman Bers’ (1914–1993) thesis Über das harmonische Mass in Raume.

Wolfgang Sternberg (1887–1953) belonged to the faculty at Prague German Uni-

versity during the period 1935–1939. He is known as the author of a two volume
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book on potential theory Potentialtheorie I, II published by Walter de Gruyter in

the series Sammlung Göschen as well as of the book The Theory of Potential and

Spherical Harmonics, later published in the U.S. His well-known work on the Perron

method for the heat equation, Über die Gleichung der Wärmeleitung, Math. Ann. 101

(1929), 394–398, is often quoted in treatises on modern potential theory.

In the fifties, several papers on potential theory were published by Czech math-

ematicians who were interested in PDE’s. Ivo Babuška (∗1926) wrote several ar-

ticles on the Dirichlet problem for domains with non-smooth boundaries and also

papers on biharmonic problems. Rudolf Výborný (∗1928) contributed to the study

of maximum principles in several articles, especially for the heat equation. These

mathematicians also wrote two papers jointly (Die Existenz und Eindeutigkeit der

Dirichletschen Aufgabe auf allgemeinen Gebieten, Czech. Math. J. 9 (1959), 130–153,

and Reguläre und stabile Randpunkte für das Problem der Wärmeleitungsgleichung,

Ann. Polon. Math. 12 (1962), 91–104.)

An elementary approach to the Perron method for the Dirichlet problem was

published in Czech by Jan Mařík (1920–1994) in the article The Dirichlet problem

(Dirichletova úloha), Cas. Pest. Mat. 82 (1957), 257–282.

Following this a substantial period of development of potential theory in Czecho-

slovakia and later in Czech Republic is associated with Josef Král. He was born

on December 23, 1931 in a village Dolní Bučice near Čáslav and graduated from

the Faculty of Mathematics and Physics of Charles University in 1954. He became

an Assistant in its Department of Mathematics and soon also a research student

(aspirant). Under the supervision of J.Mařík he completed his thesis On Lebesgue

area of closed surfaces and was granted (the equivalent of) a Ph.D. in 1960. In 1965

he joined the Mathematical Institute of the Czechoslovak Academy of Sciences as

a researcher in the Department of Partial Differential Equations, and in the period

1980–1990 he served as the Head of the Department of Mathematical Physics. Mean-

while, in 1967, he defended his thesis Fredholm method in potential theory to obtain

a DrSc., the highest scientific degree available in Czechoslovakia. Around the same

time he also submitted his habilitation thesis Heat flows and the Fourier problem. In

view of the extraordinarily high quality of the thesis, as well as the prominence both

of his other research work and his teaching activities at the Faculty, the Scientific

Board of the Faculty proposed to appoint J.Král professor in 1969. However, it took

twenty years (sic!) before the changes in the country made it possible for J.Král to

be actually appointed professor of mathematical analysis in 1990.

Although J.Král was affiliated to the Mathematical Institute for more than

30 years, he never broke his links with the Faculty. His teaching activities were

remarkable in their extent. He continued to lecture courses—both elementary and

advanced—in the theory of integral and differential equations, measure theory and
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potential theory. He supervised a number of diploma theses as well as Ph.D. theses,

and was author and co-author of a four-volume lecture notes on potential theory

([72], [80], [88], [90]). He was frequently invited to give talks at conferences and

universities abroad, and spent longer periods as visiting professor at Brown Uni-

versity in Providence, U.S.A. (1965–66), University Paris VI, France (1974), and

University in Campinas, Brazil (1978). After retirement Josef Král lived in Pečky,

a town about fifty kilometers east of Prague. Even though he was no longer able to

participate in the seminar he founded, he maintained contact with its members and

former students. He passed away in the hospital at Kolín.

Let us now review in more detail the research activities and scientific results of

Josef Král. They principally relate to mathematical analysis, in particular to measure

theory and integration, and to potential theory. The early papers of Josef Král appear

in the scientific context of the late fifties, being strongly influenced by prominent

mathematicians of the time, especially J.Mařík, V. Jarník and E.Čech. These papers

primarily concern geometric measure theory, see [120].

Measure and integral

In papers [1], [2] [5], [7], [66], [13], and [87], J.Král studied curvilinear and sur-

face integrals. As an illustration let us present a result following from [2], which

was included in the lecture notes [72]: Let f : [a, b] →
�

2 be a continuous closed

parametric curve of finite length, let f([a, b]) = K, and let indf z denote the index

of a point z ∈
�

2 \ K with respect to the curve. For any positive integer p set

Gp := {z ∈
�

2 \K ; indf z = p}, G :=
⋃

p6=0

Gp. Let ω : G →
�
be a locally integrable

function and v = (v1, v2) : K ∪ G →
�

2 a continuous vector function. If

∫

∂R

(v1 dx + v2 dy) =

∫

R

ω dx dy

for every closed square R ⊂ G with positively oriented boundary ∂R, then for every

p 6= 0 there is an appropriately defined improper integral
∫∫

Gp
ω dx dy, and the series

∞
∑

p=1

p

(
∫∫

Gp

ω dx dy −

∫∫

G
−p

ω dx dy

)

(which need not converge) is summable by Cesàro’s method of arithmetic means to

the sum
∫

f
(v1 dx + v2 dy).

Transformation of integrals was studied in [64], [3] and [70]. The last paper deals

with the transformation of the integral with respect of the k-dimensional Hausdorff
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measure on a smooth k-dimensional surface in
� m to the Lebesgue integral in

� k

(in particular, it implies the Change of Variables Theorem for Lebesgue integration

in
� m ). A Change of Variables Theorem for one-dimensional Lebesgue-Stieltjes in-

tegrals is proved in [3]. As a special case one obtains a Banach-type theorem on

the variation of a composed function which, as S.Marcus pointed out [Zentralblatt

Math. 80 (1959), p. 271, Zbl 080.27101], implies a negative answer to a problem of

H. Steinhaus from The New Scottish Book. To this category also belongs [6], where

Král constructed an example of a mapping T : D →
�

2 , absolutely continuous in the

Banach sense on a plane domain D ⊂
�

2 , for which the Banach indicatrix N(·, T )

on
�

2 has an integral strictly greater than the integral over D of the absolute value

of Schauder’s generalized Jacobian Js(·, T ). In this way Král solved the problem

posed by T.Radó in his monograph Length and Area [Amer. Math. Soc. 1948,

(i) on p. 419]. The papers [65], [9], [10], [11], [12], [15] deal with surface measures;

[9] and [10] are in fact parts of the above mentioned Ph.D. dissertation, in which

Král (independently of W. Fleming) solved the problem on the relation between the

Lebesgue area and perimeter in three-dimensional space, proposed by H. Federer

[Proc. Amer. Math. Soc. 9 (1958), 447–451 ]. In [11] a question of E.Čech from

The New Scottish Book, concerning the area of a convex surface in the sense of

A.D.Alexandrov, was answered.

Papers [14] and [43] are from the theory of integration. The former yields a cer-

tain generalization of Fatou’s lemma: If {fn} is a sequence of integrable functions

on a space X with a σ-finite measure µ such that, for each measurable set M ⊂ X,

the sequence {
∫

M
fn dµ} is bounded from above, then the function lim inf f+

n is

µ-integrable (although the sequence {
∫

X f+
n dµ} need not be bounded). In the latter

paper Král proved a theorem on dominated convergence for nonabsolutely conver-

gent GP-integrals, answering a question of J.Mawhin [Czech. Math. J. 106 (1981),

614–632].

In [16] J.Král studied the relation between the length of a generally discontin-

uous mapping f : [a, b] → P , with values in a metric space P , and the integral of

the Banach indicatrix with respect to the linear measure on f([a, b]). For continu-

ous mappings f the result gives an affirmative answer to a question formulated by

G.Nöbeling in 1949.

In [27] it is proved that functions satisfying the integral Lipschitz condition coin-

cide with functions of bounded variation in the sense of Tonelli-Cesari. The paper [87]

presents a counterexample to the converse of the Green theorem. Finally, [52] pro-

vides an elementary characterization of harmonic functions in a disc representable

by the Poisson integral of a Riemann-integrable function.

Still another paper from measure and integration theory is [33], in which Král

gives an interesting solution of the mathematical problem on hair (formulated by
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L. Zajíček): For every open set G ⊂
�

2 there is a set H ⊂ G of full measure and a

mapping assigning to each point x ∈ H an arc A(x) ⊂ G with the end point x such

that A(x) ∩ A(y) = ∅ provided x 6= y.

The method of integral equations in potential theory

In [67] Král began to study the method of integral equations and its application

to the solution of the boundary-value problems of potential theory. The roots of

the method reach back into the 19th century and are connected with, among others,

the names of C.Neumann, H. Poincaré, A.M. Lyapunov, I. Fredholm and J.Plemelj.

The generally accepted view, expressed, for example, in the monographs of F.Riesz

and B. Sz.-Nagy, R.Courant and D.Hilbert, and B.Epstein, restrictive assumptions

on the smoothness of the boundary were essential for this approach. This led to

the belief that, for the planar case, this method had reached the natural limits of

its applicability in the results of J. Radon, and was unsuitable for domains with

nonsmooth boundaries. Let us note that, nonetheless, the method itself offers some

advantages: when used, it beautifully exhibits the duality of the Dirichlet and the

Neumann problem, provides an integral representation of the solution and—as was

shown recently—is suitable also for numerical calculations.

In order to describe Král’s results it is suitable to define an extremely useful

quantity introduced by him, the so called cyclic variation. If G ⊂
� m is an arbitrary

open set with a compact boundary and z ∈
� m , let us denote by p(z; θ) the halfline

with initial point z having direction θ ∈ Γ := {θ ∈
� m ; |θ| = 1}. For every p(z; θ) we

calculate the number of points that are hits of p(z; θ) at ∂G; these are the points from

p(z; θ) ∩ ∂G in each neighborhood U of which, on this halfline, there are sufficiently

many (in the sense of one-dimensional Hausdorff measure H1) points from both G

and
� m \ G, that is

H1

(

U ∩ p(z; θ) ∩ G
)

> 0, H1

(

U ∩ p(z; θ) ∩ (
� m \G)

)

> 0.

Let us denote by nr(z, θ) the number of the hits of p(z; θ) at ∂G whose distance

from z is at most r > 0, and define vG
r (z) to be the average number of hits nr(z, θ)

with respect to all possible halflines originating from z, that is

vG
r (z) :=

∫

Γ

nr(z, θ) dσ(θ),

the integral being taken with respect to the (normalized) surface measure σ on Γ.

For r = +∞ we write briefly vG(z) := vG
∞(z). From the viewpoint of application of

the method of integral equations it is appropriate to consider the following questions:
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(1) how general are the sets for which it is possible to introduce in a reasonable way

the double-layer potential (the kernel is derived from the fundamental solution

of the Laplace equation) or, as the case may be, the normal derivative of the

single-layer potential defined by a mass distribution on the boundary ∂G;

(2) under what conditions is it possible to extend this potential (continuously) from

the domain onto its boundary;

(3) when is it possible to solve operator equations defined by this extension?

The answers to the first two questions are in the form of necessary and sufficient

conditions formulated in terms of the function vG. In [67] Král definitively solved

problem (2) using also the so-called radial variation; both quantities have their in-

spiration in the Banach indicatrix. We note here that the Dirichlet problem is easily

formulated even for domains with nonsmooth boundaries, while attempts to formu-

late the Neumann problem for such sets encounter major obstacles from the very

beginning, regardless of the method used. Therefore it was necessary to pass, in

the formulation, from the description in terms of a point function in the boundary

condition to a description using the potential flow induced by the signed measure on

the boundary.

By the method of integral equations, the Dirichlet and Neumann problems

are solved indirectly: the solution is sought in the form of a double-layer and a

single-layer potential, respectively. These problems are reduced to the solution of

the dual operator equations

T Gf = g and NGUµ = ν

where f, g are respectively the sought and the given functions, and µ and ν are respec-

tively the sought and given signed measures on the boundary ∂G. Here the operator

T G is connected with the jump formula for the double layer potential whereas NG

is the operator of the generalized normal derivative. Let us consider three quantities

of the same nature which are connected with the solvability of problems (1)–(3) and

which are all derived from the cyclic variation introduced above:

(a) vG(x),

(b) V G := sup
{

vG(y) ; y ∈ ∂G
}

,

(c) vG
0 := lim

r→0+
sup

{

vG
r (y) ; y ∈ ∂G

}

.

While, in [67], the starting point is the set G ⊂
�

2 bounded by a curve K of finite

length, the subsequent papers [22], [73] consider, from the outset, an arbitrary open

set G with compact boundary ∂G. In [67] Král solved problem (2), which opened

the way to a generalization of Radon’s results established for curves of bounded

rotation. The radial variation of a curve is also introduced here, and both variations

are used in [69], [19] for studying angular limits of the double-layer potential. The
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results explicitly determine the value of the limit and give geometrically visualiz-

able criteria which are necessary and sufficient conditions for the existence of these

limits. The mutual relation of the two quantities and their relation to the length

and boundary rotation of curves is studied in [68] and [17]. For the plane case the

results are collected in [18], [20], and [21], where the interrelations of the results are

explained and conditions of solvability of the resulting operator equations are given.

For the case of
� m , m > 2, angular limits of the double layer potentials are studied

in [56].

Let us present these conditions explicitly for the dimension m > 3. If G ⊂
� m is

a set with a smooth boundary ∂G, then the double-layer potential Wf with a con-

tinuous moment f on ∂G is defined by the formula

Wf(x) :=

∫

∂G

f(y)
(y − x) · n(y)

|x − y|m
dσ(y), x ∈

� m \ ∂G,

where n(y) is the vector of the (outer) normal to G at the point y ∈ ∂G and σ is the

surface measure on ∂G. For x /∈ ∂G the valueWϕ(x) can be defined distributively for

an arbitrary open G with compact boundary and for every smooth function ϕ; this

value is the integral with respect to a certain measure (dependent on x) if and only

if the quantity (a) is finite. Then Wf(x) can naturally be defined for a sufficiently

general f by the integral of f with respect to this measure.

Consequently, if we wish to define a generalized double-layer potential on G, the

value of (a) must be finite for all x ∈ G. In fact, it suffices that vG(x) be finite on

a finite set of points x from G which, however, must not lie in a single hyperplane;

then the set G already has a finite perimeter. On its essential boundary, a certain

essential part of boundary, the (Federer) normal can be defined in an approximative

sense. This fact proves useful: the formula for calculation of Wf remains valid if the

classical normal occurring in it is replaced by the Federer normal. If the quantity V G

from (b) is finite, then vG is finite everywhere in G, and Wf can be continuously

extended from G to G for every f continuous on ∂G. This is again a necessary and

sufficient condition; hence the solution of the Dirichlet problem can be obtained by

solving the first of the above mentioned operator equations. A similar situation which

we will not describe in detail occurs for the dual equation with the operator NG.

These results (generalizing the previous ones to the multidimensional case) can

be found in [22], [73], where, in addition, the solvability of the equations in ques-

tion is studied; see also [49]. Here Král deduced a sufficient condition of solvability

depending on the magnitude of the quantity in (c), by means of which he explicitly

expressed the so called essential norm of certain operators related to those appear-

ing in the equations considered. It is worth mentioning that the mere smoothness
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of the boundary does not guarantee the finiteness of the quantities in (b) or (a);

see [23].

Considering numerous similar properties of the Laplace equation and the heat

equation it is natural to ask whether Král’s approach (fulfilling the plan traced out

by Plemelj) can be used also for the latter. Replacing in the definition of vG the pencil

of halflines filling the whole space
� m by a pencil of parabolic arcs filling the halfspace

of
� m+1 that is in time “under” the considered point (x, t) of the timespace, we can

arrive at analogous results also for the heat equation. Only a deeper insight into

the relation and distinction of the equations enables us to realise that the procedure

had to be essentially modified in order to obtain comparable results; see [74], [24]. It

should be mentioned that the cyclic variation introduced by Král has proved to be a

useful tool for the study of further problems, for instance those connected with the

Cauchy integral; see [25], [28] and [59]. Angular limits of the integral with densities

satisfying a Hölder-type condition were studied in [56]. We note that the cyclic

variation was also used to solve mixed boundary value problems concerning analytic

function by means of a reflection mapping; see [58].

In addition to the lecture notes mentioned above, Král later, in the monograph [38],

presented a selfcontained survey of the results described above. This book provides

the most accessible way for a reader to get acquainted with the results for the Laplace

equation. It also includes some new results; for example, if the quantity in (c) is

sufficiently small, then G has only a finite number of components—this is one of

the consequences of the Fredholm method, cf. [82], [38]. Part of the publication

is devoted to results of [35] concerning the contractivity of the Neumann operator,

which is connected with the numerical solution of boundary value problems, a subject

more than 100 years old. The solution is again definitive and depends on convexity

properties of G. Related results in a more general context were obtained in [53], [60],

[61], and [62].

The subject of the papers [85], [89], [95], [47] belongs to the field of application of

the method of integral equations; they originated in connection with some invitations

to deliver lectures at conferences and symposia. Král further developed the above

methods and, for instance, in [95] indicated the applicability of the methods also to

the “infinite-dimensional” Laplace equation.

The last period is characterized by Král’s return to the original problems from

a rather different viewpoint. The quantity in (c) may be relatively small for really

complicated sets G, but can be unpleasantly large for some even very simple sets

arising for example in
� m as finite unions of parallelepipeds. Even for this particular

case the solution is already known. It turned out that an appropriate re-norming

leads to a desirable reduction of the essential norm (the tool used here is a “weighted”

cyclic variation); see [44], [48], and also [61], [122].
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A characteristic feature of Král’s results concerning the boundary value problems is

that the analytical properties of the operators considered are expressed in visualizable

geometrical terms. For the planar case see, in particular, [46].

The topics described above have also been investigated by V.G.Maz’ya whose

results together with relevant references may be found in his treatise Bound-

ary Integral Equations, Encyclopaedia of Mathematical Sciences 27, Analysis IV,

Springer, 1991.

Removable singularities

Let us now pass to Král’s contribution to the study of removable singularities of

solutions of partial differential equations.

Let P (D) be a partial differential operator with smooth coefficients defined in

an open set U ⊂
� m and let L(U) be a set of locally integrable functions on U .

A relatively closed set F ⊂ U is said to be removable for L(U) with respect to P (D)

if the following condition holds: for any h ∈ L(U) such that P (D)h = 0 on U \F (in

the sense of distributions), P (D)h = 0 on the whole set U .

As an example let us consider the case where P (D) is the Laplace operator in
� m ,

m > 2, and L(U) is one of the following two sets of functions: (1) continuous functions

on U ; (2) functions satisfying the Hölder condition with an exponent γ ∈ (0, 1). It is

known from classical potential theory that in the case (1) a set is removable for L(U)

if and only if it has zero Newtonian capacity. For the case (2) L. Carleson (1963)

proved that a set is removable for L(U) if and only if its Hausdorff measure of

dimension γ + m − 2 is zero.

In [76] Král obtained a result of Carleson-type for solutions of the heat equation.

Unlike the Laplace operator, the heat operator fails to be isotropic. Anisotropy

enters Král’s result in two ways: firstly, the Hölder condition is considered with the

exponents γ and 1

2
γ with respect to the spatial and the time variables, respectively,

and secondly, anisotropic Hausdorff measure is used. Roughly speaking, the intervals

used for covering have a length of edge s in the direction of the space coordinates,

and s2 along the time axis. The paper was the start of an extensive project, the aim

of which was to master removable singularities for more general differential operators

and wider scales of function spaces.

Let M be a finite set of multi-indices and suppose that the operator

P (D) :=
∑

α∈M

aαDα
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has infinitely differentiable complex-valued coefficients on an open set U ⊂
� m . Let

us choose a fixed m-tuple n = (n1, n2, . . . , nm) of positive integers such that

|α : n| :=
m

∑

k=1

αk

nk
6 1

for every multiindex α = (α1, α2, . . . , αm) ∈ M .

We recall that an operator P (D) with constant coefficients aα is called semielliptic

if the only real-valued solution of the equation

∑

|α:n|=1

aαξα = 0

is ξ = (ξ1, ξ2, . . . , ξm) = 0. (Of course, for α = (α1, α2, . . . , αm) we define here

ξα = ξα1

1 ξα2

2 . . . ξαm
m .) The class of semielliptic operators includes, among others, the

elliptic operators, the parabolic operators in the sense of Petrovskij (in particular,

the heat operator), as well as the Cauchy-Riemann operator.

For n fixed and n := max{nk ; 1 6 k 6 m} the operator P (D) is assigned the

metric

%(x, y) := max
{

|xk − yk|
nk/n ; 1 6 k 6 m

}

, x, y ∈
� m .

To each measure function f , a Hausdorff measure on the metric space (
� m , %) is

associated in the usual way. Roughly speaking, this measure reflects the possibly

different behaviour of P (D) with respect to the individual coordinates, and it was

by measures of this type that J.Král succeeded in characterizing the removable

singularities for a number of important and very general situations.

Removable singularities are studied in [30] (see also [81]) for anisotropic Hölder

classes, and in [84] for classes with a certain anisotropic modulus of continuity; in the

latter case the measure function for the corresponding Hausdorff measure is derived

from the modulus of continuity. In [86] Hölder conditions of integral type (covering

Morrey’s and Campanato’s spaces as well as the BMO) are studied.

The papers [39] and [42] go still further: spaces of functions are investigated whose

prescribed derivatives satisfy conditions of the above mentioned types.

For general operators Král proved that the vanishing (or, as the case may be,

the σ-finiteness) of an appropriate Hausdorff measure is a sufficient condition of re-

movability for a given set of functions. (Let us point out that, when constructing

the appropriate Hausdorff measure, the metric % reflects the properties of the op-

erator P (D), while the measure function reflects the properties of the class of the

functions considered.)
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It is remarkable that, for semielliptic operators with constant coefficients, Král

proved that the above sufficient conditions are also necessary. An additional re-

striction for the operators is used to determine precise growth conditions for the

fundamental solution and its derivatives. The potential theoretic method (combined

with a Frostman-type result on the distribution of measure), which is applied in the

proof of necessary conditions, is very well explained in [109] and also in [55]. In

the same work also the results on removable singularities for the wave operator are

presented; see [54] and [50] dealing with related topics.

In the conclusion of this section let us demonstrate the completeness of Král’s re-

search by the following result for elliptic operators with constant coefficients, which

is a consequence of the assertions proved in [42]: the removable singularities for

functions that, together with certain of their derivatives, belong to a suitable Cam-

panato space, are characterized by the vanishing of the classical Hausdorff measures,

whose dimension (in dependence on the function space) fills in the whole interval

between 0 and m. We note that J.Král lectured on removable singularities during

the Spring school on abstract analysis (Small and exceptional sets in analysis and

potential theory) organized at Paseky in 1992.

Potential theory

The theory of harmonic spaces started to develop in the sixties. Its aim was

to build up an abstract potential theory that would include not only the classical

potential theory but would also make it possible to study wide classes of partial

differential equations of elliptic and parabolic types. Further development showed

that the theory of harmonic spaces represents an appropriate link between partial

differential equations and stochastic processes.

In the abstract theory the role of the Euclidean space is played by a locally compact

topological space (this makes it possible to cover manifolds and Riemann surfaces

and simultaneously to exploit the theory of Radon measures), while the solutions of a

differential equation are replaced by a sheaf of vector spaces of continuous functions

satisfying certain natural axioms. One of them, for example, is the axiom of basis,

which guarantees the existence of basis of the topology consisting of sets regular for

the Dirichlet problem, or the convergence axiom, which is a suitable analogue of the

classical Harnack theorem.

While Král probably did not plan to work systematically on the theory of har-

monic spaces, he realized that this modern and developing branch of potential theory

must not be neglected. In his seminar he gave a thorough report on Bauer’s mono-

graph Harmonische Räume und ihre Potentialtheorie, and later on the monograph

of C.Constantinescu and A.Cornea Potential Theory on Harmonic Spaces.
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In Král’s list of publications there are four papers dealing with harmonic spaces.

In [32] an affirmative answer is given to the problem of J. Lukeš concerning the ex-

istence of a nondegenerate harmonic sheaf with Brelot’s convergence property on a

connected space which is not locally connected. The paper [26] provides a complete

characterization of sets of ellipticity and absorbing sets on one-dimensional harmonic

spaces. All noncompact connected one-dimensional Brelot harmonic spaces are de-

scribed in [31]. In [29], harmonic spaces with the following continuation property

are investigated: Each point is contained in a domain D such that every harmonic

function defined on an arbitrary subdomain of D can be harmonically continued to

the whole D. It is shown that a Brelot space X enjoys this property if and only if

it has the following simple topological structure: for every x ∈ X there exist arcs

C1, C2, . . . , Cn such that
⋃

{Cj ; 1 6 j 6 n} is a neighborhood of x and Cj∩Ck = {x}

for 1 6 j < k 6 n.

The papers [41] and [37] are devoted to potentials of measures. In [41] it is shown

that, for kernels K satisfying the domination principle, the following continuity prin-

ciple is valid: If ν is a signed measure whose potential Kν is finite, and if the restric-

tion of Kν to the support of ν is continuous, then the potential Kν is necessarily

continuous on the whole space. In the case of a measure this is the classical Evans-

Vasilesco theorem. However, this theorem does not yield (by passing to the positive

and negative parts) the above assertion, since “cancellation of discontinuities” may

occur.

In [37] a proof is given of a necessary and sufficient condition for measures ν on
� m

to have the property that there exists a nontrivial measure % on
�
such that the heat

potential of the measure ν ⊗ % locally satisfies an anisotropic Hölder condition.

In [45] the size of the set of fine strict maxima of functions defined on
� m is

studied. We recall that the fine topology in the space
� m , m > 2, is defined as the

coarsest topology for which all potentials are continuous. For f :
� m →

�
let us

denote by M(f) the set of all points x ∈
� m which have a fine neighborhood V such

that f < f(x) on V \ {x}. It is shown in [45] that the set M(f) has zero Newtonian

capacity provided f is a Borel function.

In [40] Král proved the following theorem of Radó’s type for harmonic functions

(and in this way verified Greenfield’s conjecture): If h is a continuously differentiable

function on an open set G ⊂
� m and h is harmonic on the set Gh := {x ∈ G ;

h(x) 6= 0}, then h is harmonic on the whole set G. In this case the set Gh on

which h is harmonic, satisfies h(G \ Gh) ⊂ {0}. For various function spaces, Král

characterized in [40], in terms of suitable Hausdorff measures, the sets E ⊂
�
for

which the condition h(G\Gh) ⊂ E guarantees that h is harmonic on the whole set G.

An analogue of Radó’s theorem for differential forms and for solutions of elliptic

differential equations is proved in [51].
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The papers [91], [36] do not directly belong to potential theory, being only loosely

connected with it. They are devoted to the estimation of the analytic capacity by

means of the linear measure. For a compact set Q ⊂ � and for z ∈ � let us denote
by vQ(z) the average number of points of intersection of the halflines originating at

z with Q and set V (Q) := sup{vQ(z) ; z ∈ Q}. The main result of [36] is as follows:

If Q ⊂ � is a continuum and K ⊂ Q is compact, then the following inequality holds

for the analytic capacity γ(K) and the linear measure m(K):

γ(K) >
1

2π

1

2V (Q) + 1
m(K).

Josef Král liked to solve problems; he published solutions of some problems which

he found interesting; see, for example, [8], [77]. A search of MathSciNet reveals that

he wrote more than 180 reviews for Mathematical Reviews.

We do hope that we have succeeded in, at least, indicating the depth and elegance

of Král’s mathematical results. Many of them are of definitive character and thus

provide final and elegant solution of important problems. The way in which Král

presented his results shows his conception of mathematical exactness, perfection and

beauty.

His results, and their international impact, together with his extraordinarily suc-

cessful activities in mathematical education, have placed Josef Král among the most

prominent Czechoslovak mathematicians of the post-war period. His modesty, devo-

tion and humble respect in the face of the immensity of Mathematics made him an

exceptional person.
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Personal recollections

The idea of including a course of potential theory in the curriculum of students

specializing in mathematics in the Faculty of Mathematics and Physics of the Charles

University is due to Professor Jan Mařík, who was concerned with teaching surface

integration in the mid fifties; he believed that potential theory would offer many

opportunities of illustrating importance of integral formulae such as the divergence

theorem and the Green identities.

One of the tasks which I received from him during my postgraduate studies

(1956–1959) was to prepare such a course which I started about 1960 as of 4 hours

of lectures and 2 hours of exercises per week during one semester. The extent of

the course was consecutively changing. In the academic year 1965/66, when I was

abroad, the course was taken over by Professor Mařík for approximately 3 years as

4 hours of lectures during one semester. During the period 1970/71–1975/76 the

time devoted to this course was reduced to 3 hours per week for one semester and

later the obligatory course of potential theory was abolished altogether.

Starting from 1976/77 up to now a non-obligatory course of potential theory was

regularly offered (with isolated exceptions, e.g. in 1987 or 1992) as 2 hours of lectures

per week in both semesters. Also the content of the lecture was continuously chang-

ing. The time available was not sufficient to allow for the teaching of potential theory

itself as well as the original intention of using the course as a rigorous introduction of

surface integrals and for training in the techniques of surface integration. I have also

soon abandoned the exposition of special properties of planar logarithmic potentials

(for which only knowledge of curvilinear integrals was sufficient) with their applica-

tions to boundary value problems. Mostly the necessary integral formulae were only

formulated with reference to courses of integral calculus and analysis on manifolds

which were later offered in mathematical curricula, and proper lecture on potential

theory was regularly devoted to basic properties of harmonic functions and the Per-

ron method of the generalized Dirichlet problem in Euclidean spaces. Sometimes also

potentials derived from Riesz’s kernels and their generalizations were treated and no-

tions of energy and capacity together with their applications were discussed. On the

whole the exposition was oriented towards classical potential theory on Euclidean

spaces.

I was aware of the gap between the content of the course and the research articles

in potential theory (represented e.g. by recent issues of the Paris seminar “Séminaire

Brelot-Choquet-Deny” which I could buy during my first stay abroad) appearing

This text was written by J.Král in 1996 and was taken from the publication Seminar
on Mathematical Analysis, Potential Theory and Related Topics, Faculty of Mathematics
and Physics, Charles University, Praha 1996.
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in the contemporary literature. In an attempt to bridge this gap I invited several

friends and my former students to establish a seminar on mathematical analysis

which would pay attention to the development of potential theory. We studied

consecutively several texts which were accessible to us such as Brelot’s “Lectures

on Potential Theory” (Tata Institute of Fundamental Research, 1960) and Bauer’s

treatise “Harmonische Räume und ihre Potentialtheorie” (Springer, 1966).

The atmosphere towards the end of the sixties was to a certain extent relatively

convenient for establishing international contacts. When I learned about prepara-

tion of a summer school devoted to potential theory in Italy, I encouraged younger

participants of our seminar to attempt to participate. The result of their attempt

was unexpectedly favourable: a whole group of young Czech mathematicians was

able to travel to Stresa in 1969. They returned full of enthusiasm—they were able to

meet many of distinguished specialists and their students and to establish their first

international scientific contacts. Thanks to these contacts many important studies

in the field of potential theory (including e.g. the monograph “Potential Theory on

Harmonic Spaces” prepared by C.Constantinescu and A. Cornea and published by

Springer in 1972) became accessible to our seminar even before their publication.

In spite of problems caused by political development in the seventies and the

eighties the scientific contacts were not interrupted and continued to develop. Many

outstanding experts visited Bohemia and many participants of our seminar had op-

portunity to get acquainted with activities of centers of potential-theoretic research

abroad; it was significant that some members of the seminar were able to participate

in long-term stays in renowned institutions abroad.

Nowadays the possibilities of studying potential theory in Bohemia are good.

During the past 30 years a number of gifted mathematicians have grown up who

were able to achieve a number of remarkable results; I hope that they will continue

in activities of the seminar. I believe that prospects of the future development

of research and teaching in the field of potential theory in this country are very

promising.
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