MATHEMATICA BOHEMICA, Vol. 127, No. 2, pp. 343-352, 2002

$N$-widths for singularly perturbed problems

Martin Stynes, R. Bruce Kellogg

M. Stynes, Mathematics Department, National University of Ireland, Cork, Ireland, e-mail: m.stynes@ucc.ie; R. B. Kellogg, P. O. Box 698, Landrum, SC 29356, USA, e-mail: kellogg@ipst.umd.edu

Abstract: Kolmogorov $N$-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the $N$-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.

Keywords: $N$-width, singularly perturbed, differential equation, boundary value problem, convection-diffusion, reaction-diffusion

Classification (MSC 2000): 41A46, 34E15, 35B25, 65L10, 65N15


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at DML-CZ]