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Abstract. In the paper, we prove two theorems on |A, |, summability, 1 < k < 2, of
orthogonal series. Several known and new results are also deduced as corollaries of the main
results.
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1. INTRODUCTION

o0
Let Y a, be a given infinite series with its partial sums {s,} and let A := (an,) be
n=0
a normal matrix, i.e. a lower triangular matrix with non-zero diagonal entries. Then

A defines the sequence-to-sequence transformation, mapping the sequence s := {s,, }
to As :={A,(s)}, where

n
An(s) := Zamsv, n=20,1,2,...
v=0

In 1957, Flett [5] gave the following definition:
The infinite series Y a, is said to be absolutely |A|x-summable, k > 1, if

n=0
> A4 (s
n=0

converges, where
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If this is the case, we write
o0
> an € |Alg.
n=0

In [6], Flett considered a further extension of absolute summability in which he

o0
introduced a further parameter 6. The series Y a, is said to be |A, §|;-summable,

n=0
k>1,6>0,if
o0
Z n5k+k_1|AAn(s)|k < 0.
n=0

Let p denote the sequence {p,, }. For two given sequences p and ¢, the convolution
(p * q)n, is defined by

n n
(p * Q)n = Z Pmin—m = Z Pn—m4m.-
m=0 m=0

When (p *q),, # 0 for all n, the generalized Norlund transform of the sequence {s,}
is the sequence {t27} obtained by putting

1 n
P9 — Pr—mqmSm-
n (p % q)n mzz:o n—mYmom

oo
The infinite series Y a, is absolutely (N, p, ¢)-summable if the series
n=0

0

P9 _ 4P4
E |tn tnfl
n=0

converges, and we write

o0
Za’ﬂ 6 |N’p7q|'

n=0

The notion of | N, p, | summability was introduced by Tanaka [3].
Let {¢;} be an orthonormal system defined in the interval (a,b). We assume that
f belongs to L?(a,b) and

(1.1) F(x) ~ ) cio;(x),
7=0

where ¢; = fab f(@)pj(z)dz (5 =0,1,2,...).
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Following [4] we write
Ry, := (p* q)n, R"ZL = Z Pn—m{m
m=j

where
R'1 =0, R =R,.

n n

We recall two results from [4].

Theorem 1.1 [4]. If the series

i{Z(ﬁ—— ﬁi_i)ﬂcﬂ?}

n=0 \ j=1

converges, then the orthogonal series
o0
> (@)
j=0

is |N, p, q|-summable almost everywhere.

Theorem 1.2 [4]. Let {Q(n)} be a positive sequence such that {Q(n)/n} is a non-

oS}
increasing sequence and the series Y (nQ(n))~!

n=1

converges. Let {p,} and {g,} be

o0
non-negative. If the series > |c,|?Q(n)w ™) (n) converges, then the orthogonal series
n=1

S cjpi(z) € |N,p,q| almost everywhere, where w!)(n) is defined by wV)(j) :=
=0

i~V n?(Ri /Ry — R _,/Ru1)?.

n=j
The main purpose of the present paper is to generalize Theorems 1.1 and 1.2 for
|A, 6| summability of the orthogonal series (1.1), where 1 < k < 2. Before stating
the main results, we introduce some further notation.
With a normal matrix A := (a,,) we associate two semi lower matrices A := (G, )
and A := (i) as follows:

n
Ezm,::E Qniy, M,1=0,1,2,...
i=v

and

apo = Goo = g0, Gny :dn'u_dnfl,vv n= 1a27"'
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It may be noted that A and A are the well-known matrices of series-to-sequence and
series-to-series transformations, respectively.

Throughout this paper we denote by K a constant that depends only on k and
may be different in different relations.

2. MAIN RESULTS
We prove the following theorem.

Theorem 2.1. If the series

00 n k/2
S {0 S i e
n=0 =0

converges for 1 < k < 2, then the orthogonal series
oo
> cipi(a)
§=0

is |A, §|k-summable almost everywhere.

Proof. Let .
2) = cip;(@)
§j=0

be the partial sums of order v of the series (1.1). Then, for the matrix transform

Ap(s)(x) of the partial sums s,(x), we have

x) = Z Sy (x) = Z G Z cipji(x)
v=0 v=0 7=0
= cipi(@) Y ane = Y anjc;p;(x)
j=0 v=j j=0

Hence

n—1

AAn(s)(x):Zamcjgaj Z an—1,j¢95 ()

Jj=

I
-

n

= AunCnPn(®) + ) (an,j — n-1,5) cjip;(x)

3 .
[l
= O

— &nncnﬁpn(x) + an ]stoj Z a’n’]CJSO]

<.
I
o
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Using Holder’s inequality and orthogonality, we have that

/ Adn(s)@) dz < (b /( / A (s)<x>|2dx)k/2

- 1 " 2 \k/2
=(b- Zan,jc]gaj dx
- 1-k/2 L2112 h2
=(b—a) Z|an,j| 1

3=0

Thus, the series
0o b 0o n k/2
(2.1) Z npdktk—1 / |AAn(S)({E)|k der < K Z |:n2(5+1)2/k Z |dn,j|2|cj|2:|
n=1 a n=1 =0

converges since the last one does by the assumption. Now, the Lemma of Beppo-Lévi
implies the theorem. U

If we put
(2.2) *)(4,6:5) Q/k IZ 2By, 42

then the following theorem holds.

Theorem 2.2. Let 1 < k < 2 and let {Q(n)} be a positive sequence such

that {Q(n)/n} is a non-increasing sequence and the series > (nf2(n))~! converges.

n=1
&)
If the series Y. |c,|?Q% %=1 (n)w®) (A, d;n) converges, then the orthogonal series
n=1
3 ¢jpi(x) is |A, d|x-summable almost everywhere, where w®)(A,§;n) is defined
i=0

by (2.2).

Proof. Applying Holder’s inequality to the inequality (2.1) we get that
S b S n k/2
Znék-i-k—l/ 1A An(s)(@)F do < K S ntHeot {Z |&n’j|2|cj|2]
n=1 a n=1 j=0
oo 1 n k/2
=K - |:n26+192/k1(n) |dn,'|2|c'|2:|
2 Gl 2 lanafl
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o 1 1-k/2 oo n k/2
< K<Z m) [ZTL%HQQMl(n)2|dn,j|2|0j|2]
n=1 n=1 7=0
k/2
<K - 2 - 206+1)2/k—1 2 /
S Z|CJ| Zn (1)|Gn, ]
j=1 n=j
o Q(j 2/k—1 k/2
< K{Z|CJ|Q(T) Zn2(6+1/k)| |2}
j=1
[eS) k/2
= 5 { X a0 "“’(Aé.y)} ,

which is finite by virtue of the hypothesis of the theorem, and this completes the

proof. O

The next section is devoted to applications of our main results.

3. APPLICATIONS OF THE MAIN RESULTS

We can specialize the matrix A = (an,) so that |A,d|; summability reduces to

some known notions of absolute summability. This means that sufficient condi-

tions obtained in the main results, under which the orthogonal series (1.1) is | A, 0|~

summable almost everywhere (1 < k < 2), include sufficient conditions under which

the orthogonal series (1.1) is absolute summable almost everywhere with different

kinds of absolute summability notions. The most important particular cases of the

|A, §| summability notions are:

1.

22

n
For a,,, = (n+1)~! we obtain the Cesaro means A,(s) = (n+1)"! } s,, and
v=0
|A, d|r = |C, 1, 6| summability.

For an, = ((n — v + 1)logn)~! we obtain the harmonic means A,(s) =

(logn)~t > s,/(n —v+1), and |A, 6|y = |H, 1, 5|, summability.

v=0
For a,, = ("T;j‘i‘“)/("za), 0 < a < 1, we obtain the Cesaro means (of or-

der o) A, (s) = ("Za)_l > (U sy, and |4, 6]k = |C, «, 8, summability.

n
For ay .y = pn—v/P, we obtain the Noérlund means A, (s) = P, ' > pu_yse,
v=0
and |4, S|k = | N, pn, 0| summability.
n
For an, = qu/Qn we obtain the Riesz means A,(s) = Q' ¢y, and
v=0

|A, 8|k = |N, qn, 0|, summability.



6. For a,» = pn—vquv/Rn, where R, = 3 pygn—v, we obtain the generalized Nor-
n v=0
lund means A, (s) = R, > pn_vqusy, and |A, 8|k = |N, pn, gn, §|x summabil-
v=0
ity.
7. For a,, = (n +1)” 1P 1 Epv k, we obtain the tS means (see [7]) A,(s) =
=0
(n+1)7t Z Pt Z Po— ksk, and |4, §|x = |C' - N, 6| summability.

Now we shall dlscuss only some of the above cases for § = 0 (the other cases can
be discussed in a similar way). For this purpose, first let us clarify that the results
of [4] follow from the main results of this paper. Indeed, for ay ., = pp—vqv/Rn we
have that

an'u—anv_an lv—g Anj — g Gn—1,5

Jj=v

1 & 1 Ri R,
=) Prjlj— 55— D DPn-1-j0j = 55~ — ,
Rn ;} ey Rnfl ; " 7 Rn Rnfl

whence

oo = (B B’
" Rn Rn—l

Therefore, if we insert this equality, and take § = 0 and & = 1 in Theorems 2.1
and 2.2, then Theorems 1.1 and 1.2 follow immediately.

Also, some other known results are included in Theorem 2.1. Namely, for a,, =
Pn—v/Pn we get

Un,j = Gnj — Gn-1,j

1 n 1 n—1
Pn; e Pnfl —

1
= m (Pn—lpn—j - PnPn—l—j)
1
“ PP (Pn = pn)Pa—j — Pu(Pp—j — Pn—j))

P (&_Pn_j)p ,
P-Pn 1 Pn—j e

Hence, using Theorem 2.1 for § = 0 and k = 1, the following result holds.
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Corollary 3.1 [1]. If the series
S n 1/2
p P P \2
5 e { S (e - 2}
n—o v n-1 Ui Pn Pn—j

&)

converges, then the orthogonal series ) cjp;(x) is |N,p|-summable almost every-
3=0

where.

Also, for ay,., = ¢»/Qy one can find that

N - _ QnQ] 1
An,j = Qn,j — An—1,5 = Q Q 1
nldn—

Therefore, using again Theorem 2.1 for 6 = 0 and k = 1, we obtain

Corollary 3.2 [2]. If the series

n

ZQnQn 1{j§_jlc2§1|cj|2}

converges, then the orthogonal series Z cjpj(z) is |N, q|-summable almost every-
)
where.

Some other interesting consequences are the corollaries formulated below.

Corollary 3.3. If the series

/2= 1/k)/k k P \2 k/2
S (S ){an (- 2=}

&)
converges for 1 < k < 2, then the orthogonal series ) cjp;(x) is |N, p|p-summable
almost everywhere. =0

Remark 3.1. We note here that:

1. If p,, = 1 for all values of n then |N, p|; summability reduces to |C, 1|, summa-
bility

2. If k = 1 and p, = 1/(n+1) then | N, p|i is equivalent to |R, logn, 1| summability.
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Corollary 3.4. If the series

S (e S g e
ey A PIE

n=0

o) J—

converges for 1 < k < 2, then the orthogonal series Y cjp;(x) is |N, ¢|x-summable
§=0

almost everywhere.
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