MATHEMATICA BOHEMICA, Vol. 136, No. 2, pp. 145-154, 2011

On solvability sets of boundary value problems for linear functional differential equations

Eugene Bravyi

Eugene Bravyi, Perm State Technical University, Komsomolsky pr. 29a, Perm, Russia, e-mail: bravyi@perm.ru

Abstract: Consider boundary value problems for a functional differential equation
\begin{cases} x^{(n)}(t) =(T^+x)(t)-(T^-x)(t)+f(t),&t\in[a,b],
l x=c, \end{cases}
where $T^+,T^-\colon\bold C[a,b]\to\bold L[a,b]$ are positive linear operators; $l\colon\bold{AC}^{n-1}[a,b]\to\mathbb{R}^n$ is a linear bounded vector-functional, $f\in\bold L[a,b]$, $c\in\mathbb{R}^n$, $n\ge2$. Let the solvability set be the set of all points $({\mathcal T}^+,{\mathcal T}^-)\in\mathbb{R}_2^+$ such that for all operators $T^+$, $T^-$ with $\|T^{\pm}\|_{\bold C\to\bold L}={\mathcal T}^{\pm}$ the problems have a unique solution for every $f$ and $c$. A method of finding the solvability sets are proposed. Some new properties of these sets are obtained in various cases. We continue the investigations of the solvability sets started in R. Hakl, A. Lomtatidze, J. Sremr: Some boundary value problems for first order scalar functional differential equations. Folia Mathematica 10, Brno, 2002.

Keywords: functional differential equation, boundary value problem, periodic problem

Classification (MSC 2010): 34K06, 34K10, 34K13


Full text available as PDF.

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at DML-CZ]