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A LONG CHAIN OF P-POINTS

BORISA KUZELJEVIC AND DILIP RAGHAVAN

ABSTRACT. The notion of a δ-generic sequence of P-points is introduced in this paper.
It is proved assuming the Continuum Hypothesis that for each δ < ω2, any δ-generic
sequence of P-points can be extended to an ω2-generic sequence. This shows that the
Continuum Hypothesis implies that there is a chain of P-points of length c+ with respect
to both Rudin-Keisler and Tukey reducibility. The proofs can be easily adapted to get such
a chain of length c+ under a more general hypothesis like Martin’s Axiom. These results
answer an old question of Andreas Blass.

1. INTRODUCTION

In his 1973 paper on the structure of P-points [1], Blass posed the following question:

Question 1.1 (Question 4 of [1]). What ordinals can be embedded into the class of P-
points when equipped with the ordering of Rudin-Keisler reducibility assuming Martin’s
Axiom?

Recall that an ultrafilter U on ω is called a P-point if for any {an : n < ω} ⊂ U there
is a ∈ U such that a ⊂∗ an, for every n < ω. All filters U occurring in this paper are
assumed to be proper – meaning that 0 /∈ U – and non-principal – meaning that U extends
the filter of co-finite sets. It is not hard to see that an ultrafilter U is a P-point if and only
if every f ∈ ωω becomes either constant or finite-to-one on a set in U . Recall also the
well-known Rudin-Keisler ordering on P-points.

Definition 1.2. Let U and V be ultrafilters on ω. We say that U ≤RK V , i.e. U is Rudin-
Keisler (RK) reducible to V or U is Rudin-Keisler (RK) below V , if there is f ∈ ωω such
that A ∈ U ⇔ f−1(A) ∈ V for every A ⊂ ω. We say that U ≡RK V , i.e. U is RK
equivalent to V , if U ≤RK V and V ≤RK U .

It is worth noting here that the class of P-points is downwards closed with respect to
this order. In other words, if U is a P-point, then every ultrafilter that is RK below U is
also a P-point. It should also be noted that the existence of P-points cannot be proved
in ZFC by a celebrated result of Shelah (see [11]). Hence it is natural to assume some
principle that guarantees the existence of “many” P-points when studying their properties
under the RK or other similar orderings. Common examples of such principles include the
Continuum Hypothesis (CH), Martin’s axiom (MA), and Martin’s Axiom for σ-centered
posets (MA(σ − centered)).

Blass showed in [1] that the ordinal ω1 can be embedded into the P-points with respect
to the RK ordering, if MA(σ−centered) holds. In particular under CH, the ordinal c = 2ℵ0

embeds into the P-points with respect to RK reducibility. Note that no ultrafilter V can have
more than c predecessors in the RK order. This is because for each f ∈ ωω , there can be
at most one ultrafilter U for which f witnesses the relation U ≤RK V . Therefore there can
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2 B. KUZELJEVIC AND D. RAGHAVAN

be no RK-chain of P-points of length c+ + 1. Thus the strongest possible positive answer
to Question 1.1 is that the ordinal c+ embeds into the P-points under the RK ordering.

Though there have not been many advances directly pertaining to Question 1.1 after
[1], several results have dealt with closely related issues. Rosen [9] showed assuming CH
that the ordinal ω1 occurs as an RK initial segment of the P-points. In other words, he
produced a strictly increasing RK chain of P-points of length ω1 that is downwards closed
under the relation ≤RK up to RK equivalence. Laflamme [5] further investigated well-
ordered initial segments of the P-points under the RK ordering. For each countable ordinal
α, he produced a forcing notion Pα that generically adds an RK initial segment of the P-
points of order type α. He also gave combinatorial characterizations of the generics added
by these forcing notions.

Dobrinen and Todorcevic [2] considered the Tukey ordering on P-points. Recall that for
any X ,Y ⊂ P(ω), a map φ : X → Y is said to be monotone if for every a, b ∈ X , a ⊂ b
implies φ(a) ⊂ φ(b), while φ is said to be cofinal in Y if for every b ∈ Y there is a ∈ X
so that φ(a) ⊂ b.

Definition 1.3. We say that U ≤T V , i.e. U is Tukey reducible to V or U is Tukey below
V , if there is a monotone φ : V → U which is cofinal in U . We say that U ≡T V , i.e. U is
Tukey equivalent to V , if U ≤T V and V ≤T U .

It is not hard to see that U ≤RK V implies U ≤T V , and it was proved by Raghavan and
Todorcevic in [8] that CH implies the existence of P-points U and V such that V <RK U ,
but V ≡T U . Their result showed that the orders ≤T and ≤RK can diverge in a strong
sense even within the realm of P-points, although by another result from [8], the two orders
coincide within the realm of selective ultrafilters. In [2], Dobrinen and Todorcevic showed
that every P-point has only c Tukey predecessors by establishing the following useful fact.

Theorem 1.4 (Dobrinen and Todorcevic [2]). If V is a P-point and U is any ultrafilter with
U ≤T V , then there is a continuous monotone φ : P(ω)→ P(ω) such that φ � V : V → U
is a monotone map that is cofinal in U .

They used this in [2] to embed the ordinal ω1 into the class of P-points equipped with
the ordering of Tukey reducibility assuming MA(σ − centered). Question 54 of [2] asks
whether there is a strictly increasing Tukey chain of P-points of length c+. In [3] and [4],
Dobrinen and Todorcevic proved some analogues of Laflamme’s results mentioned above
for the Tukey order. In particular, they showed that each countable ordinal occurs as a
Tukey initial segment of the class of P-points, assuming MA(σ−centered). Raghavan and
Shelah proved in [7] that MA(σ − centered) implies that the Boolean algebra P(ω)/FIN
equipped with its natural ordering embeds into the P-points with respect to both the RK
and Tukey orders. In particular, for each α < c+, the ordinal α embeds into the P-points
with respect to both of these orders.

In this paper, we give a complete answer to Question 1.1 by showing that the ordinal
c+ can be embedded into the P-points under RK reducibility. Our chain of P-points of
length c+ will also be strictly increasing with respect to Tukey reducibility, so we get a
positive answer to Question 54 of [2] as well. The construction will be presented assuming
CH for simplicity. However the same construction can be run under MA with some fairly
straightforward modifications. We will try to point out these necessary modifications at the
appropriate places in the proofs below. We will make use of Theorem 1.4 in our construc-
tion to ensure that our chain is also strictly increasing in the sense of Tukey reducibility.
However the continuity of the monotone maps will not be important for us. Rather any
other fixed collection of c many monotone maps from P(ω) to itself which is large enough
to catch all Tukey reductions from any P-point will suffice. For instance, it was proved in
[8] that the collection of monotone maps of the first Baire class suffice to catch all Tukey
reductions from any basically generated ultrafilter, which form a larger class of ultrafilters
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than the P-points. So we could equally well have used monotone maps of the first Baire
class in our construction.

A powerful machinery for constructing objects of size ℵ2 under ♦ was introduced by
Shelah, Laflamme, and Hart in [13]. This machinery can be used to build a chain of P-
points of length ω2 that is strictly increasing with respect to both RK and Tukey reducibility
assuming♦. More generally, the methods in [13] allow for the construction of certain types
of objects of size λ+ from a principle called Dlλ, which is closely related to ♦λ. Shelah’s
results in [12] imply that Dlc follows from MA when c > ℵ1 and is a successor cardinal.
Thus the methods of [13], when combined with the results of [12], can also be used to get
a chain of P-points of length c+ when c > ℵ1, c is a successor cardinal, and MA holds.
However the techniques from [13] are inadequate to treat the case when only CH holds1.

2. PRELIMINARIES

We use standard notation. “∀∞x . . . ” abbreviates the quantifier “for all but finitely
many x . . . ” and “∃∞x . . . ” stands for “there exist infinitely many x such that . . . ”. [ω]

ω

refers to the collection of all infinite subsets of ω, and [ω]
<ω is the collection of all finite

subsets of ω. The symbol ⊂∗ denotes the relation of containment modulo a finite set:
a ⊂∗ b iff a \ b is finite.

Even though the final construction uses CH, none of the preliminary lemmas rely on
it. In fact, CH will only be used in Section 5. The results in Sections 2–4 are all in ZFC,
and CH is needed later on to ensure that these results are sufficient to carry out the final
construction and that they are applicable to it. So we do not need to make any assumptions
about cardinal arithmetic at the moment.

One of the difficulties in embedding various partially ordered structures into the P-points
is that, unlike the class of all ultrafilters on ω, this class is not c-directed under ≤RK . It is
not hard to prove in ZFC that if {Ui : i < c} is an arbitrary collection of ultrafilters on ω,
then there is an ultrafilter U on ω such that ∀i < c [Ui ≤RK U ]. However it is well-known
that there are two P-points U and V with no RK upper bound that is a P-point under CH
(see [1]). Even if we restrict ourselves to chains, it is easy to construct, assuming CH, an
RK chain of P-points 〈Ui : i < ω1〉 which has no P-point upper bound. The strategy for
ensuring that our chains are always extensible is to make each ultrafilter “very generic”
(with respect to some partial order to be defined in Section 4). The same strategy was used
in [7], but with one crucial difference. Only c many ultrafilters were constructed in [7] and
so all of the ultrafilters in question could be built simultaneously in c steps. But by the time
we get to, for example, the ultrafilter Uω1

in our present construction, all of the ultrafilters
Ui, for i < ω1, will have been fully determined with no room for further improvements.
Thus the ultrafilters that were built before should have already predicted and satisfied the
requirements imposed by Uω1

, and indeed by all of the ultrafilters to come in future. This is
possible because there are only ω1 possible initial segments of ultrafilters. More precisely,
each of the ω2 many P-points is generated by a⊂∗-descending towerAα = 〈Cαi : i < ω1〉.
For each j < ω1, the collection {Aα � j : α < ω2} just has size ω1. This leads to the notion
of a δ-generic sequence, which is essentially an RK-chain of P-points of length δ where
every ultrafilter in the sequence has predicted and met certain requirements involving such
initial segments of potential future ultrafilters and potential RK maps going from such
initial segments into it. The precise definition is given in Definition 2.10. Our main result
is that such generic sequences can always be extended.

Remark 2.1. In the rest of the paper we will use the following notation:
• For A ⊂ ω, define A0 = A and A1 = ω \A.
• For A ∈ [ω]ω , A(m) is the mth element of A in its increasing enumeration.
• For A ∈ [ω]ω and k,m < ω let A[k,m) = {A(l) : k ≤ l < m}.

1Personal communication with Shelah. The second author thanks Shelah for discussing these issues with him.
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• For A ∈ [ω]ω and m < ω, let A[m] = {A(l) : l ≥ m}.
• For a sequence c=〈c(ξ) : ξ < α〉, let set(c) =

⋃
ξ<α c(ξ).

• For a sequence c=〈c(ξ) : ξ<α〉 and η<α, let set(c) JηK=
⋃
η≤ξ<α c(ξ).

• For m ∈ ω, let s(m) = m(m+ 1)/2 and t(m) =
∑
s(m)≤k<s(m+1)(k + 1).

• A function f ∈ ωω is increasing if ∀n ∈ ω [f(n) ≤ f(n+ 1)].

We also consider, for an ordinal α, triples ρ =
〈
D̄, K̄, π̄

〉
where D̄ = 〈Dn : n<α〉 is

a sequence of sets in P(ω), K̄ = 〈Km,n : m ≤ n < α〉 is a sequence in ω and π̄ =
〈πn,m : m ≤ n < α〉 is a sequence in ωω . Then, for n < α, denote:

• ∆ρ
n =

⋃
m≤nH

ρ
m,n where Hρ

m,n is the set of all k ∈ Dm[Km,n,Km,n+1) such
that π−1m′,m({k}) ∩Dm′ [Km′,n,Km′,n+1) = 0 for all m < m′ ≤ n;
• Lρ0 = 0 and for each n ∈ ω, Lρn+1 = Lρn + |∆ρ

n|.

Regarding the definition of ∆ρ
n, the reader should think of the sequence K̄ as defining

an interval partition of Dm, for each m. Then for any m ≤ n, Hρ
m,n consists of the points

in the nth interval of Dm that do not have a preimage in the nth interval of Dm′ for any
m < m′ ≤ n.

Next we recall the notion of a rapid ultrafilter. All the P-points in our construction
will be rapid. This happens because the requirement of genericity forces our ultrafilters
to contain some “very thin” sets. However they cannot be too thin, lest we end up with a
Q-point. Rapidity turns out to be a good compromise.

Definition 2.2. We say that the ultrafilter U is rapid if for every f ∈ ωω there is X ∈ U
such that X(n) ≥ f(n) for every n < ω.

Lemma 2.3. If U is a rapid ultrafilter, then for every f ∈ ωω and every X ∈ U there is
Y ∈ U such that Y ⊂ X and Y (n) ≥ f(n) for every n < ω.

Proof. Let f ∈ ωω andX ∈ U . Let Z be as in Definition 2.2, i.e. Z ∈ U and Z(n) ≥ f(n)
for n < ω. Let Y = X ∩Z and note Y ∈ U . Since Y ⊂ Z we have Y (n) ≥ Z(n) ≥ f(n)
for every n < ω. �

Claim 2.4. Let 〈Un : n < ω〉 be a sequence of distinct P-points and M a countable ele-
mentary submodel of H(2c)+ containing 〈Un : n < ω〉. For n < ω let An ∈ Un be such
that An ⊂∗ A for each A ∈ Un ∩M . Then |An ∩Am|<ω for m<n<ω.

Proof. Fix m < n < ω and pick a set Am,n so that Am,n ∈ Um and ω \ Am,n ∈ Un (this
can be done because Um 6= Un for m 6= n). By elementarity of M , since Um,Un ∈M we
can assume that Am,n ∈ M . Now we have that Am ⊂∗ Am,n and that An ⊂∗ ω \ Am,n.
So Am ∩An ⊂∗ 0 implying |Am ∩An| < ω. �

Now we introduce one of the basic partial orders used in the construction. The definition
of 〈P,≤〉 is inspired by the many examples of creature forcing in the literature, for example
see [10]. However there is no notion of norm in this case, or rather the norm is simply the
cardinality.

Definition 2.5. Define P as the set of all functions c : ω → [ω]<ω \ {0} such that ∀n ∈
ω [|c(n)| < |c(n+ 1)| ∧max(c(n)) < min(c(n + 1))]. If c, d ∈ P, then c ≤ d if there is
l < ω such that c ≤l d, where c ≤l d⇔ ∀m ≥ l ∃n ≥ m [c(m) ⊂ d(n)].

Note that if d ≤ c, then set(d) ⊂∗ set(c). Each of our ultrafilters will be generated by
a tower of the form 〈set(ci) : i < ω1〉 where 〈ci : i < ω1〉 is some decreasing sequence of
conditions in P. This guarantees that each ultrafilter is a P-point.

Remark 2.6. Note that 〈P,≤〉 is a partial order and has the following properties:

(1) For any c ∈ P we have min(c(n)) ≥ n;
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(2) If a ≤n b and b ≤m c, then a ≤l c for l = max {m,n}. To see this take any
k ≥ l. There is k′ ≥ k ≥ l such that a(k) ⊂ b(k′). There is also k′′ ≥ k′ ≥ k ≥ l
so that a(k) ⊂ b(k′) ⊂ c(k′′) as required.

(3) Let {dn : n<ω} ⊂ P be such that ∀n < ω [dn+1 ≤mn dn]. Then dn+1 ≤l d0 for
n < ω and l = max {mk : k ≤ n}. The proof is by induction on n. For n= 0,
d1 ≤m0

d0. Let n > 0 and assume the statement is true for all m ≤ n. Then
dn+2 ≤mn+1

dn+1 and dn+1 ≤l1 d0, where l1 = max {mk : k ≤ n}. So, by (2),
dn+2 ≤l d0 for l = max {mk : k ≤ n+ 1}.

Definition 2.7. A triple 〈π, ψ, c〉 is called a normal triple if π, ψ ∈ ωω , for every l ≤ l′ <
ω we have that ψ(l) ≤ ψ(l′), if ran(ψ) is infinite, and if c ∈ P is such that for l < ω we
have π′′c(l) = {ψ(l)} and for n ∈ ω \ set(c) we have π(n) = 0.

The notion of a normal triple will help us ensure that when α < β < ω2, the RK
reduction from Uβ to Uα is witnessed by a function that is increasing on a set in Uβ . Thus
our sequence of P-points will actually even be a chain with respect to the order ≤+

RB .
Recall that for ultrafilters U and V on ω, U ≤+

RB V if there is an increasing f ∈ ωω such
that A ∈ U ⇐⇒ f−1(A) ∈ V , for every A ⊂ ω. More information about the order ≤+

RB

can be found in [6]

Remark 2.8. Suppose that d ≤ c and 〈π, ψ, c〉 is a normal triple. There is N < ω such
that for every k, l ∈ set(d) \N if k ≤ l, then π(k) ≤ π(l).

Lemma 2.9. Suppose that 〈π, ψ, b〉 is a normal triple, that a ⊂ π′′ set(c) Jn0K, and that
c ≤n0

b. For n < ω denote Fn = {m < ω : π′′c(m) = {a(n)}}. Then for n < ω:
Fn \ n0 6= 0, |Fn| < ω and max(Fn) < min(Fn+1 \ n0) ≤ max(Fn+1).

Proof. Fix n < ω. By the choice of the set a there are k ≥ n0 and x ∈ c(k) so that
π(x) = a(n). Since c ≤n0

b there is m ≥ k so that c(k) ⊂ b(m) and because 〈π, ψ, b〉
is a normal triple we know π′′b(m) = {a(n)}. So k ∈ Fn is such that k ≥ n0, implying
Fn\n0 6= 0. To show that each Fn is finite take any k ∈ Fn. As above, Fn+1\n0 6= 0. Let
k′ = min (Fn+1 \ n0). We will show k < k′. If k < n0 the statement follows. If k ≥ n0
then there are m1,m2 so that c(k)⊂ b(m1) and c(k′)⊂ b(m2). Since π′′b(m1) ={a(n)},
π′′b(m2)={a(n+ 1)} and 〈π, ψ, b〉 is a normal triple we havem1<m2 and consequently
k < k′. So max(Fn) < k′ implying both |Fn| < ω and max(Fn) < min(Fn+1 \ n0) ≤
max(Fn+1). �

Now comes the central definition of the construction. We will briefly try to explain the
intuition behind each of the clauses below. Clauses (1), (2), and (4) are self explanatory
and were commented on earlier. Clause (5a) guarantees that πβ,α is an RK map from Uβ
to Uα whenever α ≤ β. This is because if U ,V are ultrafilters on ω and f ∈ ωω is such
that f ′′b ∈ U for every b ∈ V , then f witnesses that U ≤RK V . Clause (5b) says that if
α ≤ β ≤ γ, then πγ,α = πβ,α ◦ πγ,β modulo a set in Uγ . This type of commuting of RK
maps is unavoidable in a chain. Clause (5c) makes the map πβ,α increasing on a set in Uβ ;
this makes Uα ≤+

RB Uβ . The fact that πβ,α is constant on cβi (n) for almost all n is helpful
for killing unwanted Tukey maps.

Clauses (3) and (6) deal with the prediction of requirements imposed by future ultra-
filters. To understand (3), suppose for simplicity that 〈Un : n < ω〉 has already been
built and that Uω is being built. At a certain stage you have decided to put set(d) ∈ Uω ,
for some d ∈ P, and you have also decided the sequence of RK maps 〈πω,i : i ≤ n〉,
for some n ∈ ω. In particular π′′ω,n set(d) ∈ Un. Now you wish to decide πω,n+1 and
you are permitted to extend d to some d∗ ≤ d in the process. But you must ensure
that π′′ω,n+1 set(d∗) ∈ Un+1 and that πω,n commutes through πω,n+1. Clause (3) says
that Un+1 anticipated this requirement and that there is a b ∈ Un+1 (in fact cofinally
many b) that allows this requirement to be fulfilled. Next to understand (6), suppose that
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〈Uα : α < ω1〉 has been built and that you are building Uω1
. At some stage you have

determined that 〈set(dn) : n < ω〉 ⊂ Uω1
, for some decreasing sequence of conditions

〈dn : n < ω〉 ⊂ P. You have also determined the sequence 〈πω1,n : n < ω〉. In particular
∀n,m < ω

[
π′′ω1,n set(dm) ∈ Un

]
, and each πω1,n has the right form on some dm. Now

you would like to find a d∗ ∈ P that is below all of the dn. You would also like to determine
πω1,ω . But you must ensure that π′′ω1,ω set(d∗) ∈ Uω , that πω1,ω has the appropriate form
on d∗, and that all of the πω1,n commute through πω1,ω . Clause (6) says that Uω anticipated
this requirement and that there is a b ∈ Uω (in fact cofinally many b) enabling you to find
such a d∗ and πω1,ω .

Definition 2.10. Let δ ≤ ω2 . We call 〈〈cαi : i < c ∧ α < δ〉 , 〈πβ,α : α ≤ β < δ〉〉 δ-
generic if and only if:

(1) for every α < δ, 〈cαi : i < c〉 is a decreasing sequence in P;
(2) for every α < δ, Uα = {a ∈ P(ω) : ∃i < c [set(cαi ) ⊂∗ a]} is an ultrafilter on ω

and it is a rapid P-point (we say that Uα is generated by 〈cαi : i < c〉);
(3) for every α < β < δ, every normal triple 〈π1, ψ1, b1〉 and every d ≤ b1 if

π′′1 set(d) ∈ Uα, then for every a ∈ Uβ there is b ∈ Uβ such that b ⊂∗ a
and that there are π, ψ ∈ ωω and d∗ ≤0 d so that 〈π, ψ, d∗〉 is a normal triple,
π′′ set(d∗) = b and ∀k ∈ set(d∗) [π1(k) = πβ,α(π(k))].

(4) if α < β < δ, then Uβ �T Uα.
(5) for every α < δ, πα,α = id and:

(a) ∀α ≤ β < δ ∀i < c [π′′β,α set(cβi ) ∈ Uα];
(b) ∀α ≤ β ≤ γ < δ ∃i < c ∀∞k ∈ set(cγi ) [πγ,α(k) = πβ,α(πγ,β(k))];
(c) for α < β < δ there are i < c, bβ,α ∈ P and ψβ,α ∈ ωω such that
〈πβ,α, ψβ,α, bβ,α〉 is a normal triple and cβi ≤ bβ,α;

(6) if µ < δ is a limit ordinal such that cof(µ) = ω, X ⊂ µ is such that sup(X) =
µ, 〈dj : j < ω〉 is a decreasing sequence of conditions in P, 〈πα : α ∈ X〉 is a
sequence of maps in ωω such that:
(a) ∀α ∈ X ∀j < ω [π′′α set(dj) ∈ Uα];
(b) ∀α, β ∈ X [α ≤ β ⇒ ∃j < ω ∀∞k∈set(dj) [πα(k)=πβ,α(πβ(k))]];
(c) for all α ∈ X there are j < ω, bα ∈ P and ψα ∈ ωω such that 〈πα, ψα, bα〉 is

a normal triple and dj ≤ bα;
then the set of all i∗ < c such that there are d∗ ∈ P and π ∈ ωω satisfying:
(d) ∀j < ω [d∗ ≤ dj ] and set(cµi∗) = π′′ set(d∗);
(e) ∀α ∈ X ∀∞k ∈ set(d∗) [πα(k) = πµ,α(π(k))];
(f) there is ψ for which 〈π, ψ, d∗〉 is a normal triple;

is cofinal in c;

When CH is replaced with MA, the notion of a δ-generic sequence would be defined
for every δ ≤ c. Clause (6) would need to be strengthened by allowing µ to be any limit
ordinal such that cof(µ) < c and by allowing the decreasing sequence of conditions in P
to be of length cof(µ).

Remark 2.11. Suppose S = 〈〈cαi : i < c ∧ α < δ〉 , 〈πβ,α : α ≤ β < δ〉〉 is a δ-generic
sequence for some limit ordinal δ ≤ ω2. For every ordinal ξ < δ let S � ξ denote
〈〈cαi : i < c ∧ α < ξ〉 , 〈πβ,α : α ≤ β < ξ〉〉. We point out that if S � ξ is ξ-generic for
every ξ < δ, then S is δ-generic. To see this we check conditions (1-6) of Definition 2.10.
Conditions (1) and (2) are true because for a fixed α < δ we can pick ξ so that α < ξ < δ.
Then S � ξ witnesses that Uα and 〈cαi : i < c〉 are as needed. For (3), (4) and (5c) take
α < β < δ. There is ξ such that β < ξ < δ and S � ξ witnesses (3), (4) and (5c). For (5a)
and (5b) take α ≤ β ≤ γ < δ. Again there is ξ so that γ < ξ < δ and S � ξ witnesses
both (5a) and (5b). We still have to prove condition (6), so assume that all the objects are
given as in (6). In this case we also pick ξ such that µ < ξ < δ. Then S � ξ already has all
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the information about the assumed objects. So S � ξ knows that the set of i∗ < c such that
cµi∗ has the required properties is cofinal in c which implies that (6) is also satisfied in S.

3. MAIN LEMMAS

In this section we prove several crucial lemmas that will be used in Section 4 for proving
things about the partial order Qδ to be defined there.

Definition 3.1. Let 〈L,≺〉 be a finite linear order. For each i < |L| let L(i,≺) denote
the ith element of 〈L,≺〉. More formally, if 〈L,≺〉 is a finite linear order, then there is a
unique order isomorphism o : |L| → L and L(i,≺) = o(i) (i < |L|).

Lemma 3.2 will be used to prove Lemmas 3.4 and 3.8. It essentially says that the sets
Dm can be broken into intervals of the form Dm[Km,n,Km,n+1), for m ≤ n < ω, in
such a way that whenever m < m′ ≤ n, the image of Dm′ [Km′,n,Km′,n+1) under πm′,m
comes after everything in the intervalDm[Km,n−1,Km,n). The use of the elementary sub-
model M is only for convenience. We just need a way of saying that each Dn diagonalizes
a “large enough” collection of sets from Un. M ∩ Un is a convenient way to specify this
collection. The use of Lemma 3.2 simplifies the presentation of the proofs of Lemmas 3.4
and 3.8. There is no direct analogue of Lemma 3.2 when CH is replaced by MA. So the
proofs of the analogues of Lemmas 3.4 and 3.8 under MA will be less elementary.

Lemma 3.2. Let 〈Un : n < ω〉 be a sequence of distinct rapid P-points. Assume that
π̄ = 〈πm,n : n ≤ m < ω〉 is a sequence of maps in ωω such that πn,n = id (n < ω) and:

(1) ∀n ≤ m < ω ∀a ∈ Um [π′′m,na ∈ Un];
(2) ∀n ≤ m ≤ k < ω ∃a ∈ Uk ∀l ∈ a [πk,n(l) = πm,n(πk,m(l))];
(3) ∀n ≤ m < ω ∃a ∈ Um ∀x, y ∈ a [x ≤ y ⇒ πm,n(x) ≤ πm,n(y)].

Let 〈En : n < ω〉 be a sequence such that En ∈ Un (n < ω). Suppose also that f ∈
ωω is increasing and that M is a countable elementary submodel of H(2c)+ containing
〈Un : n < ω〉, 〈En : n < ω〉, π̄ and the map f . If D̄ = 〈Dn : n < ω〉 is a sequence such
that Dn ∈ Un (n < ω) and Dn ⊂∗ A, for every A ∈ Un ∩M , then there are sequences
〈Cn : n < ω〉 ∈ M , 〈Fn : n < ω〉 ∈ M , K̄ = 〈Km,n : m ≤ n < ω〉 ⊂ ω and g′ ∈ ωω
such that for every n < ω we have ∀m ≤ n [Km,n > 0], Cn, Fn ∈ Un, Cn ⊂ En,
Fn = Cn ∩ π′′n+1,nCn+1, ∀m ≤ m′ ≤ n ∀v ∈ Cn [πn,m(v) = πm′,m(πn,m′(v))],
∀m ≤ n ∀v, v′ ∈ Cn [v ≤ v′ ⇒ πn,m(v) ≤ πn,m(v′)], and letting ρ =

〈
D̄, K̄, π̄

〉
(see

Remark 2.1):
(4) ∀m ≤ n ∃z ∈ Fn ∩ Fn(g′(n)) [πn,m(z) = Dm(Km,n − 1)] and if n > 0 then
∀m < n [Km,n > Km,n−1];

(5) ∀m ≤ n [Dm[Km,n] ⊂ π′′n,m (Fn \ Fn(g′(n)))];
(6) ∀m ≤ n ∀v ∈ Cn \ Fn(g′(n)) [πn,m(v) > Dm(Km,n − 1)];
(7) ∀m < n [Dn[Kn,n] ∩Dm = 0] and if n > 0, then for every x ∈ ∆ρ

n−1, there is a
unique m < n such that x ∈ Dm[Km,n−1,Km,n);

(8) if n > 0, then define ≺n−1 to be the collection of all 〈x, y〉 such that x, y ∈ ∆ρ
n−1

and max {z ∈ Fn−1 : πn−1,m(z) = x} < max {z ∈ Fn−1 : πn−1,m′(z) = y} –
where m,m′ < n are unique with the property that x ∈ Dm[Km,n−1,Km,n) and
y ∈ Dm′ [Km′,n−1,Km′,n); then ≺n−1 is a linear order on ∆ρ

n−1;
(9) 2g′(n) ≥ Lρn;

(10) if n > 0, then define the following notation: let Rn−1 =
∣∣∆ρ

n−1
∣∣ and for each

j < Rn−1, let xn−1j be ∆ρ
n−1(j,≺n−1), let m(n − 1, j) be the unique m < n

such that xn−1j ∈ Dm[Km,n−1,Km,n), and let

zn−1j = max
{
z ∈ Fn−1 : πn−1,m(n−1,j)(z) = xn−1j

}
;

then there exists l ≥ f
(
Lρn−1 + j

)
such that zn−1j = En−1(l).
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Proof. First pick a sequence Ā = 〈An,m,k : n ≤ m ≤ k < ω〉 ∈ M such that An,m,k ∈
Uk for each n ≤ m ≤ k < ω and πk,n(v) = πm,n(πk,m(v)) for every v ∈ An,m,k.
Similarly, pick a sequence B̄ = 〈Bn,m : n ≤ m < ω〉 ∈M so that Bn,m ∈ Um, for every
n ≤ m < ω and ∀x, y ∈ Bn,m [x ≤ y ⇒ πm,n(x) ≤ πm,n(y)]. Let us now define

sequence 〈C ′k : k < ω〉 so that for every k < ω we have C ′k = Ek ∩
(⋂

n≤m≤k An,m,k

)
∩(⋂

m≤k Bm,k

)
. Note that C ′k ∈ Uk and that C ′k ⊂ Ek for every k < ω. Moreover,

〈C ′k : k < ω〉 ∈ M . Next, choose C̄ = 〈Ck : k < ω〉 ∈ M so that for k < ω: Ck ∈ Uk,
Ck ⊂ C ′k and Ck(n) ≥ Ek(f(2n)) for every n < ω. Let Fn be the set Cn ∩ π′′n+1,nCn+1

(n < ω). Note that 〈Fn : n < ω〉 belongs toM . Note also that for eachm ≤ m′ ≤ n < ω,
Cn ⊂ Am,m′,n. So ∀v ∈ Cn [πn,m(v) = πm′,m(πn,m′(v))] as required in the statement
of the lemma. Moreover if m ≤ n, then Cn ⊂ Bm,n, implying that ∀v, v′ ∈ Cn [v ≤
v′ ⇒ πn,m(v) ≤ πn,m(v′)] as needed. Then by the definition of sets Dn (n < ω) we
have Dn ⊂∗ π′′m,nFm for m ≥ n. Also, for n < ω, let Yn be minimal so that ∀m <
n [Dn[Yn] ∩Dm = 0].

Now that we have chosen sets Cn and Fn (n < ω) we construct, by induction on
n, numbers Km,n and g′(n) (m ≤ n < ω). First let l′ be the least number such that
D0[l′] ⊂ F0 and let K0,0 = l′ + 1. Then define g′(0) to be the least l so that F0(l) ≥
D0(K0,0). Note that properties (4-10) hold for n = 0. Now assume that for every m ≤
m′ ≤ n we have defined numbers Km,m′ and g′(m′). We will define Km,n+1 (m ≤
n + 1) and g′(n + 1). So for every m ≤ n let Xm,n+1 be the least number such that
Xm,n+1 ≥ Km,n and Dm[Xm,n+1] ⊂ π′′n+1,mFn+1, while Xn+1,n+1 is defined to be
minimal such that Dn+1[Xn+1,n+1] ⊂ Fn+1 = π′′n+1,n+1Fn+1 and Xn+1,n+1 ≥ Yn+1.
Put x∗ = Lρn +

∑
m≤n(Xm,n+1 −Km,n). Now define K0,n+1 to be the minimal l such

that l > X0,n+1 + x∗ and that D0(l − 1) ∈
⋂
m≤n+1 π

′′
m,0 (Dm[Xm,n+1]). Next define

g′(n + 1) to be the minimal l ∈ ω with πn+1,0(Fn+1(l)) ≥ D0(K0,n+1). Observe that if
v ∈ Fn+1∩Fn+1(g′(n+1)), then πn+1,0(v) < D0(K0,n+1). Also if v ∈ Fn+1[g′(n+1)],
then πn+1,0(v) ≥ πn+1,0(Fn+1(g′(n + 1))) ≥ D0(K0,n+1). Put G = Fn+1 [g′(n+ 1)]
for convenience. Now for 0 < m ≤ n + 1 define Km,n+1 as the minimal l ∈ ω so that
Dm[l] ⊂ π′′n+1,mG. We remark that K0,n+1 is also minimal such that D0[K0,n+1] ⊂
π′′n+1,0G. To see this, take any w ∈ D0[K0,n+1]. Since K0,n+1 ≥ X0,n+1, there exists
v ∈ Fn+1 with πn+1,0(v) = w. By the first observation above, v /∈ Fn+1(g′(n + 1)).
Hence v ∈ G showing that D0[K0,n+1] ⊂ π′′n+1,0G. By the second observation above,
there is no v ∈ G with πn+1,0(v) = D0(K0,n+1 − 1). Hence there is no l < K0,n+1

satisfying D0[l] ⊂ π′′n+1,0G.
Now we prove that (4-10) are fulfilled for n + 1. We begin with the second part of

(4). Fix m ≤ n + 1. By the definition of K0,n+1, there exists u ∈ Dm[Xm,n+1] such
that πm,0(u) = D0(K0,n+1 − 1). We claim u < Dm(Km,n+1). Suppose not. Then
u ∈ Dm[Km,n+1], and so u = πn+1,m(v), for some v ∈ G. However πn+1,0(v) =
πm,0(πn+1,m(v)) = πm,0(u) = D0(K0,n+1 − 1), contradicting an observation of the
previous paragraph. Thus u < Dm(Km,n+1), showing that Xm,n+1 < Km,n+1, for all
m ≤ n+ 1.

Before proving the rest of (4), (5), and (6) we make some useful observations. Put
ym = Dm(Km,n+1−1), for eachm ≤ n+1. Letm ≤ n+1 be fixed. First sinceKm,n+1

is minimal so that Dm[Km,n+1] ⊂ π′′n+1,mG, there is no v ∈ G with πn+1,m(v) = ym.
Next let u ∈ Dm[Km,n+1]. Then there exists v ∈ G with u = πn+1,m(v), and πm,0(u) =
πm,0(πn+1,m(v)) = πn+1,0(v) ≥ D0(K0,n+1). Thus πm,0(u) ≥ D0(K0,n+1), for every
u ∈ Dm[Km,n+1]. For the final observation, consider some v ∈ Fn+1 ∩Fn+1(g′(n+ 1)).
As pointed out before, πn+1,0(v) < D0(K0,n+1). Now let u = πn+1,m(v). Then
πm,0(u) = πn+1,0(v) < D0(K0,n+1). Applying the previous observation to u, we con-
clude that πn+1,m(v) /∈ Dm[Km,n+1], for every v ∈ Fn+1 ∩ Fn+1(g′(n+ 1)).
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Now the rest of (4), (5), and (6) easily follow from the three observations in the previous
paragraph. For the first part of (4), ym ∈ Dm[Xm,n+1], and so there is vm ∈ Fn+1 with
ym = πn+1,m(vm). By the first observation, vm /∈ G. Hence vm ∈ Fn+1 ∩ Fn+1(g′(n+
1)), as needed. For (5), let u ∈ Dm[Km,n+1]. Then u ∈ Dm[Xm,n+1] and so there is v ∈
Fn+1 with πn+1,m(v) = u. By the third observation, v /∈ Fn+1(g′(n + 1)), as required.
For (6), first note that since vm, Fn+1(g′(n+ 1)) ∈ Bm,n+1, πn+1,m(Fn+1(g′(n+ 1))) ≥
ym, and by the first observation, πn+1,m(Fn+1(g′(n + 1))) > ym. Now let v ∈ Cn+1.
Then v ∈ Bm,n+1 and if v ≥ Fn+1(g′(n+ 1)), then πn+1,m(v) > ym, implying (6).

For (7) we have Yn+1 ≤ Xn+1,n+1 < Kn+1,n+1, and so Dn+1[Kn+1,n+1] ∩Dm = 0,
for all m < n + 1. The second part of (7) easily follows from the definition of ∆ρ

n and
from the induction hypotheses.

For (8), first consider any x ∈ ∆ρ
n. By (7) applied to n + 1, let m < n + 1 be unique

so that x ∈ Dm[Km,n,Km,n+1). By (5) applied to n, there is z ∈ Fn with πn,m(z) = x.
AlsoFn ⊂ Cn and so πn,m is finite-to-one onFn. Therefore max {z ∈ Fn : πn,m(z) = x}
is well-defined. Next it is clear that ≺n is transitive and irreflexive. We check that it is to-
tal. Let x, y ∈ ∆ρ

n and let m,m′ < n + 1 be unique so that x ∈ Dm[Km,n,Km,n+1)
and y ∈ Dm′ [Km′,n,Km′,n+1). We may assume m ≤ m′. If x and y are incomparable
under ≺n, then there exists z ∈ Fn so that πn,m(z) = x and πn,m′(z) = y. As Fn ⊂ Cn,
πm′,m(y) = πm′,m(πn,m′(z)) = πn,m(z) = x. If m < m′, then this contradicts the fact
that x ∈ Hρ

m,n. Thereforem = m′, and since πm′,m = id, x = y, implying comparability.
Now we check (9). For each m<n + 1 define Hρ

m,n,0 =Hρ
m,n ∩Dm[Km,n, Xm,n+1)

and Hρ
m,n,1 = Hρ

m,n ∩ Dm[Xm,n+1,Km,n+1). Define x0 =
∣∣∣⋃m≤nHρ

m,n,0

∣∣∣ and x1 =∣∣∣⋃m≤nHρ
m,n,1

∣∣∣. It is clear that Hρ
m,n = Hρ

m,n,0∪H
ρ
m,n,1 and that Lρn+1 ≤ Lρn+x0 +x1.

Also Lρn + x0 ≤ x∗. So to prove (9) it is enough to show both x∗ ≤ g′(n + 1) and
x1 ≤ g′(n + 1). For the first inequality, note that |D0[X0,n+1,K0,n+1)| ≥ x∗. For each
u ∈ D0[X0,n+1,K0,n+1), there exists v ∈ Fn+1 with πn+1,0(v) = u. By (6) applied to
n + 1, v ∈ Fn+1(g′(n + 1)). It follows that g′(n + 1) ≥ x∗. For the second inequality,
note first that for each m ≤ n and u ∈ Hρ

m,n,1 we get a v ∈ Fn+1 ∩ Fn+1(g′(n + 1))

with πn+1,m(v) = u by applying the same argument. Now suppose u 6= u′, m,m′ ≤ n,
u ∈ Hρ

m,n,1, u′ ∈ Hρ
m′,n,1, v, v′ ∈ Fn+1 ∩ Fn+1(g′(n + 1)), πn+1,m(v) = u, and

πn+1,m′(v
′) = u′. We would like to see that v 6= v′. Suppose not. We may assume

m ≤ m′. Since v ∈ Cn+1, u = πn+1,m(v) = πm′,m(πn+1,m′(v)) = πm′,m(u′). If
m < m′, then this contradicts the fact that u ∈ Hρ

m,n. Hence m = m′, whence u = u′.
This is a contradiction which shows that v 6= v′. It follows that g′(n+ 1) ≥ x1 as needed.

Finally we come to (10). Fix j < Rn. By (5) applied to n, znj = Fn(tnj ) for some
tnj ≥ g′(n). Since≺n is a linear order tnj ≥ g′(n)+j. By (9) applied to n, 2tnj ≥ 2g′(n)+
2j ≥ Lρn + j. Now Fn ⊂ Cn ⊂ C ′n ⊂ En and Fn(tnj ) ≥ Cn(tnj ) ≥ En(f(2tnj )) ≥
En(f(Lρn + j)) because f is an increasing function. It follows that znj = En(lnj ) for some
lnj ≥ f(Lρn + j), as needed. �

Remark 3.3. Note that for each n < ω, Hρ
n,n = Dn[Kn,n,Kn,n+1); so ∆ρ

n 6= 0, and so
Lρn+1 > Lρn. Note also that znj ≥ Fn(g′(n)), for each n < ω and j < Rn.

Lemma 3.4 will play an important role throughout the next section. It is essential to the
proof that Qδ , which will be defined in Definition 4.1, is countably closed. It is also used
in ensuring that Uδ is a rapid ultrafilter and that Uδ satisfies (3) and (6) of Definition 2.10.

Lemma 3.4. Assume that δ < ω2, cof(δ) = ω, f ∈ ωω is increasing, X ⊂ δ is such that
sup(X) = δ and:

(1) the sequence S=〈〈cαi : i < c ∧ α < δ〉 , 〈πβ,α : α ≤ β < δ〉〉 is δ-generic;
(2) there are e ∈ P and mappings 〈πδ,α : α ∈ X〉 such that:

(a) ∀α ∈ X [π′′δ,α set(e) ∈ Uα];
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(b) ∀α, β ∈ X [α ≤ β ⇒ ∀∞k ∈ set(e) [πδ,α(k) = πβ,α(πδ,β(k))]];
(c) for all α ∈ X there are bδ,α and ψδ,α such that 〈πδ,α, ψδ,α, bδ,α〉 is a normal

triple and e ≤ bδ,α;
(3) there is a decreasing sequence 〈dj : j < ω〉 of elements of P and a sequence of

mappings 〈πα : α ∈ X〉 such that:
(a) ∀α ∈ X ∀j < ω [π′′α set(dj) ∈ Uα];
(b) ∀α, β ∈ X [α ≤ β ⇒ ∃j < ω ∀∞k∈set(dj) [πα(k)=πβ,α(πβ(k))]];
(c) for all α ∈ X there are j < ω, ψα and bα such that 〈πα, ψα, bα〉 is a normal

triple and dj ≤ bα.
Then there are d∗, e∗ ∈ P and π : ω → ω such that:

(4) ∀n < ω ∃m ≥ f(n) [e∗(n) ⊂ e(m)];
(5) ∀j < ω [d∗ ≤ dj ] and set(e∗) = π′′ set(d∗);
(6) ∀α ∈ X ∀∞k ∈ set(d∗) [πα(k) = πδ,α(π(k))];
(7) ∀α ∈ X [π′′δ,α set(e∗) ∈ Uα];
(8) there is ψ ∈ ωω for which 〈π, ψ, d∗〉 is a normal triple.

Proof. Let 〈δn : n < ω〉 ⊂ X be an increasing and cofinal sequence in δ. For m ≤
n < ω choose jm,n and Ld(m,n) so that ∀k ∈ set(djm,n)

q
Ld(m,n)

y
[πδm(k) =

πδn,δm(πδn(k))]. For every n < ω pick j(n), bδn and ψδn such that 〈πδn , ψδn , bδn〉
is a normal triple and dj(n) ≤ bδn holds by using (3c). Let Kd(n) be minimal such
that dj(n) ≤Kd(n) bδn . Define a strictly increasing sequence 〈jN : N < ω〉 by setting
jN = max({j(N)} ∪ {jk + 1 : k<N} ∪ {jm,N : m≤N}). Let Qd(N) be minimal such
that djN ≤Qd(N) dj(N), ∀k < N [djN ≤Qd(N) djk ] and ∀m ≤ N [djN ≤Qd(N) djm,N ].
Define Md

N =max
( {
Kd(N), Qd(N)

}
∪
{
Ld(m,N) : m ≤ N

}
∪
{
Md
k : k < N

} )
.

For each n < ω let Ke(n) be minimal such that e ≤Ke(n) bδ,δn . For m ≤ n < ω let
Le(m,n) be minimal such that ∀k ∈ set(e) JLe(m,n)K [πδ,δm(k) = πδn,δm(πδ,δn(k))].
For N<ω let Me

N =max({Ke(N)} ∪ {Le(m,N) : m ≤ N} ∪ {Me
k : k < N}).

The proof of the following claim is simple so we leave it to the reader.

Claim 3.5. Let N < ω. The following hold:
(1) ∀m ≤ n ≤ N ∀k ∈ set(e) JMe

N K [πδ,δm(k) = πδn,δm(πδ,δn(k))];
(2) ∀m ≤ n ≤ N ∀k ∈ set(djN )

q
Md
N

y
[πδm(k) = πδn,δm(πδn(k))];

(3) ∀n ≤ N ∀k, l ∈ set(e) JMe
N K [k ≤ l⇒ πδ,δn(k) ≤ πδ,δn(l)];

(4) ∀n ≤ N ∀k, l ∈ set(djN )
q
Md
N

y
[k ≤ l⇒ πδn(k) ≤ πδn(l)].

For every n < ω let En = π′′δ,δn set(e) JMe
nK ∩ π′′δn set(djn)

q
Md
n

y
∈ Uδn . Let M be a

countable elementary submodel ofH(2c)+ containing S, δ, f , and sequences 〈En : n < ω〉
and 〈δn : n < ω〉. For n < ω choose sets Dn ∈ Uδn as follows: Dn ⊂∗ A for every
A ∈ Uδn ∩ M . Note that these sets exist because Uδn is a P-point and M is count-
able. Define g ∈ ωω by g(n) = max {f(n), t(n), s(n+ 1)}, for each n ∈ ω. Note
g ∈ M and that g is increasing. Now Lemma 3.2 applies to the sequences 〈Uδn : n < ω〉,
π̄ = 〈πδn,δm : m ≤ n < ω〉, 〈En : n < ω〉, D̄ = 〈Dn : n < ω〉 and the function g. Let
〈Cn : n < ω〉, 〈Fn : n < ω〉, K̄ = 〈Km,n : m ≤ n < ω〉 and 〈g′(n) : n < ω〉 be as in the
conclusion of Lemma 3.2. We denote ρ =

〈
D̄, K̄, π̄

〉
, numbers m(n, j), numbers Rn and

numbers znj as in the conclusion of Lemma 3.2.
At this point, for every n < ω, we define set In =

{
m < ω : Lρn ≤ m < Lρn+1

}
.

Clearly, {In : n < ω} is a partition of ω. We also have In = {Lρn + j : j < Rn}. So
every k < ω is of the form Lρn + j for some n < ω and j < Rn. For each n < ω and
j < Rn, (10) of Lemma 3.2 implies that znj = En(lnj ) for some lnj ≥ g(Lρn + j). Now for
a fixed n < ω, 〈πδ,δn , ψδ,δn , bδ,δn〉 and 〈πδn , ψδn , bδn〉 are normal triples, e ≤Me

n
bδ,δn ,

djn ≤Md
n
bδn , En ⊂ π′′δ,δn set(e) JMe

nK, and En ⊂ π′′δn set(djn)
q
Md
n

y
. So Lemma 2.9

applies and implies that for each l < ω, ζl = max
{
m<ω :π′′δ,δne(m)={En(l)}

}
and
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zl = max
{
m<ω :π′′δndjn(m)={En(l)}

}
are well-defined, that ζl < ζl+1, zl < zl+1, and

that ζl ≥ Me
n, zl ≥ Md

n . Now for each j < Rn, define ζnj = ζlnj and znj = zlnj . It
follows that ζnj , z

n
j ≥ g(Lρn + j). Also if j < j + 1 < Rn, then znj < znj+1, and so

ζnj < ζnj+1 and znj < znj+1. Hence for j < Rn,
∣∣e(ζnj )

∣∣ ≥ g(Lρn + j) ≥ Lρn + j + 1

and
∣∣djn(znj )

∣∣ ≥ g(Lρn + j) ≥ t(Lρn + j). Now unfix n. For k < ω write k = Lρn + j

and pick arbitrary e∗(k) ∈ [e(ζnj )]k+1. Note that this choice of e∗(k) (k < ω) ensures
that e∗(k) ⊂ e(m) for m ≥ f(k) as required in the statement of the lemma. Similarly
for l < ω find the unique m such that s(m) ≤ l < s(m + 1) and write m = Lρn + j.
Pick d∗(l) ∈ [djn(znj )]l+1 in such a way that for s(m) ≤ l < l + 1 < s(m + 1) we have
max(d∗(l))<min(d∗(l + 1)). This is possible by already proved

∣∣djn(znj )
∣∣≥ t(m).

Claim 3.6. For every k < ω we have

max(e∗(k)) < min(e∗(k + 1)) and max(d∗(k)) < min(d∗(k + 1)).

Proof. For a fixed n < ω, if j < j + 1 < Rn, then ζnj < ζnj+1 and znj < znj+1 and
so max(e(ζnj )) < min(e(ζnj+1)) and max(djn(znj )) < min(djn(znj+1)). Moreover, for a
fixed n < ω and j < Rn, if s(Lρn + j) ≤ l < l + 1 < s(Lρn + j + 1), then max(d∗(l)) <
min(d∗(l + 1)) by definition. Therefore it suffices to show that for n < ω, j < Rn, and
j′ < Rn+1, max(e(ζnj )) < min(e(ζn+1

j′ )) and max(djn(znj )) < min(djn+1
(zn+1
j′ )).

To see the first inequality, we argue by contradiction. Suppose y ∈ e(ζnj ), y′ ∈ e(ζn+1
j′ ),

and y′ ≤ y. As noted above, ζn+1
j′ ≥ Me

n+1. Thus y, y′ ∈ set(e)
q
Me
n+1

y
, and so by (1)

and (3) of Claim 3.5,

πδn+1,δm(n,j)
(zn+1
j′ ) = πδn+1,δm(n,j)

(πδ,δn+1
(y′)) = πδ,δm(n,j)

(y′) ≤ πδ,δm(n,j)
(y) =

πδn,δm(n,j)
(πδ,δn(y)) = πδn,δm(n,j)

(znj ) = xnj ≤ Dm(n,j)(Km(n,j),n+1 − 1).

However zn+1
j′ ∈ Cn+1 \ Fn+1(g′(n + 1)). But then by (6) of Lemma 3.2 applied to

n + 1 and m = m(n, j), πδn+1,δm(n,j)
(zn+1
j′ ) > Dm(n,j)(Km(n,j),n+1 − 1). This is a

contradiction which proves the first inequality.
The second inequality is also proved by contradiction. So suppose y ∈ djn(znj ), y′ ∈

djn+1(zn+1
j′ ), and y′ ≤ y. As noted above, znj ≥ Md

n and zn+1
j′ ≥ Md

n+1. Moreover
djn+1

≤Qd(n+1) djn , Md
n+1 ≥ Qd(n + 1), and Md

n+1 ≥ Md
n . So there exists l ≥ Md

n

with djn+1
(zn+1
j′ ) ⊂ djn(l). Thus y′ ∈ set(djn+1

)
q
Md
n+1

y
and y, y′ ∈ set(djn)

q
Md
n

y
.

Therefore by (2) and (4) of Claim 3.5,

πδn+1,δm(n,j)
(zn+1
j′ )= πδn+1,δm(n,j)

(πδn+1
(y′)) = πδm(n,j)

(y′) ≤ πδm(n,j)
(y) =

πδn,δm(n,j)
(πδn(y)) = πδn,δm(n,j)

(znj ) = xnj ≤ Dm(n,j)(Km(n,j),n+1 − 1).

However πδn+1,δm(n,j)
(zn+1
j′ ) > Dm(n,j)(Km(n,j),n+1 − 1) as pointed out in the previous

paragraph. This is a contradiction which completes the proof. �

So for now we have settled that e∗ ≤0 e and that for every n < ω there is m ≥ f(n)
such that e∗(n) ⊂ e(m). Define π : ω → ω as follows: for every k ∈ ω \ set(d∗) let
π(k) = 0, while for every k ∈ set(d∗) let m be unique such that k ∈ d∗(m) and define
π(k) = set(e∗)(m).

Claim 3.7. The sequences 〈e∗(n) : n < ω〉 and 〈d∗(n) : n < ω〉 belong to P and satisfy
the following conditions:

(1) ∀j < ω [d∗ ≤ dj ] and set(e∗) = π′′ set(d∗);
(2) ∀α ∈ X ∀∞k ∈ set(d∗) [πα(k) = πδ,α(π(k))];
(3) ∀α ∈ X [π′′δ,α set(e∗) ∈ Uα];
(4) There is ψ such that 〈π, ψ, d∗〉 is a normal triple.
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Proof. First note that e∗ and d∗ belong to P. Next, we prove (1). It suffices to prove
that d∗ ≤ djn , for all n < ω. Fix n < ω. Take any l ≥ s(Lρn). Let m be such that
s(m) ≤ l < s(m + 1) and n′ and j′ < Rn′ such that m = Lρn′ + j′. Note m ≥ Lρn and
n′ ≥ n. Then d∗(l) ⊂ djn′ (z

n′

j′ ) and zn
′

j′ ≥ Md
n′ . As noted earlier zn

′

j′ ≥ g(Lρn′ + j′) =

g(m) ≥ s(m + 1) ≥ l. So since djn′ ≤Md
n′
djn , there is l′ ≥ zn

′

j′ ≥ l so that d∗(l) ⊂
djn′ (z

n′

j′ ) ⊂ djn(l′), showing d∗ ≤s(Lρn) djn . To see that set(e∗) = π′′ set(d∗) note that
by the definition of π we have that for every n < ω holds π′′d∗(n) = {set(e∗)(n)}. So (1)
is proved.

Now we prove (2). First we prove ∀∞k ∈ set(d∗) [πδn(k) = πδ,δn(π(k))], for every
n < ω. Fix n < ω and consider any n′ ≥ n and j′ < Rn′ . It suffices to show that
for any s(Lρn′ + j′) ≤ l < s(Lρn′ + j′ + 1) and k ∈ d∗(l), πδn(k) = πδ,δn(π(k)). By
definition d∗(l) ⊂ djn′ (z

n′

j′ ) and π(k) ∈ e∗(Lρn′ + j′) ⊂ e(ζn
′

j′ ). Therefore πδn′ (k) =

zn
′

j′ = πδ,δn′ (π(k)). Also k ∈ set(djn′ )
q
Md
n′

y
and π(k) ∈ set(e) JMe

n′K because ζn
′

j′ ≥
Me
n′ and zn

′

j′ ≥ Md
n′ . Thus by (1) and (2) of Claim 3.5, πδn(k) = πδn′ ,δn(πδn′ (k)) =

πδn′ ,δn(πδ,δn′ (π(k))) = πδ,δn(π(k)), as needed. For the more general claim fix α ∈ X
and find n < ω so that α ≤ δn. By (3b) of Lemma 3.4, there exist i < ω and L0 so
that ∀k ∈ set(di) JL0K [πα(k) = πδn,α(πδn(k))]. Let L1 be minimal with d∗ ≤L1

di.
By (2b) of Lemma 3.4 and by the fact that set(e∗) ⊂ set(e), there is L2 so that ∀k ∈
set(e∗)[L2][πδ,α(k) = πδn,α(πδ,δn(k))]. Let L3 be so that ∀k ∈ set(d∗) JL3K [πδn(k) =
πδ,δn(π(k))]. Let L = max {L0, L1, L2, L3}. If k ∈ set(d∗) JLK, then k ∈ set(di) JL0K
and π(k) ∈ set(e∗)[L2]. So πα(k) = πδn,α(πδn(k)) = πδn,α(πδ,δn(π(k))) = πδ,α(π(k)).
Thus ∀k ∈ set(d∗) JLK [πα(k) = πδ,α(π(k))], proving (2).

Now we come to (3). We first show that for each m < ω, Dm ⊂∗ π′′δ,δm set(e∗).
Fix m < ω. As 〈Km,n : m ≤ n < ω〉 is strictly increasing with n, it suffices to show
that for each n ≥ m, Dm[Km,n,Km,n+1) ⊂ π′′δ,δm set(e∗). Let n ≥ m and u ∈
Dm[Km,n,Km,n+1) be given. Put m′ =

max{m′′ ≤ n : m ≤ m′′ and ∃u′′ ∈ Dm′′ [Km′′,n,Km′′,n+1) [πδm′′ ,δm(u′′) = u]},

and choose u′ ∈ Dm′ [Km′,n,Km′,n+1) with πδm′ ,δm(u′) = u. We claim that u′ ∈
Hρ
m′,n. Suppose not. Then there exist m′ < m′′ ≤ n and u′′ ∈ Dm′′ [Km′′,n,Km′′,n+1)

with πδm′′ ,δm′ (u
′′) = u′. Now u′′ ∈ Dm′′ [Km′′,m′′ ] because Km′′,m′′ ≤ Km′′,n. So

by (5) of Lemma 3.2 applied to m′′, u′′ ∈ Fm′′ ⊂ Cm′′ . By one of the properties of
Cm′′ listed in Lemma 3.2, πδm′′ ,δm(u′′) = πδm′ ,δm(πδm′′ ,δm′ (u

′′)) = πδm′ ,δm(u′) = u.
However this contradicts the choice of m′. Thus u′ ∈ Hρ

m′,n ⊂ ∆ρ
n. So let j < Rn be

so that u′ = xnj . Note that m(n, j) = m′. Also znj ∈ Fn ⊂ Cn, and so πδn,δm(znj ) =
πδm′ ,δm(πδn,δm′ (z

n
j )) = πδm′ ,δm(u′) = u. Now if k ∈ e∗(Lρn + j) ⊂ e(ζnj ), then k ∈

set(e) JMe
nK because ζnj ≥ Me

n. So by (1) of Claim 3.5, πδ,δm(k) = πδn,δm(πδ,δn(k)) =
πδn,δm(znj ) = u, showing that u ∈ π′′δ,δm set(e∗). This concludes the proof that Dm ⊂∗
π′′δ,δm set(e∗). As Dm ∈ Uδm , this shows that π′′δ,δm set(e∗) ∈ Uδm , for all m ∈ ω. Now
for the more general statement, fix α ∈ X . Find m ∈ ω with δm ≥ α. By (2b) of Lemma
3.4, there is L so that ∀k ∈ set(e∗)[L] [πδ,α(k) = πδm,α(πδ,δm(k))]. Put A = set(e∗)[L].
Since π′′δ,δmA ∈ Uδm , π′′δm,απ

′′
δ,δm

A ∈ Uα. Hence π′′δm,απ
′′
δ,δm

A ⊂ π′′δ,αA ⊂ π′′δ,α set(e∗),
implying π′′δ,α set(e∗) ∈ Uα, which proves (3).

For the proof of (4), consider function ψ : ω → ω defined in the following way: for
k < ω let ψ(k) = set(e∗)(k). It is clear that 〈π, ψ, d∗〉 is a normal triple. �

The last claim proves the lemma. �

When CH is replaced by MA, the statement of Lemma 3.4 needs to be generalized
as follows. δ is allowed to be any ordinal with cof(δ) < c, and the decreasing sequence
〈dj : j < ω〉 is replaced by the decreasing sequence 〈dj : j < cof(δ)〉. This version
can be proved under MA by taking a suitably generic filter over a poset consisting of
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finite approximations to d∗, e∗, and π together with some finite side conditions. The exact
definition of this poset can be formulated by examining the proofs of Lemmas 3.2 and 3.4.

Lemma 3.8 will be used in the proof that the posetQδ is countably closed. The require-
ment in Lemma 3.2 that Fn = Cn ∩ π′′n+1,nCn+1 will be used crucially in this proof.

Lemma 3.8. Let 〈Un : n < ω〉 be a sequence of distinct rapid P-points. Assume that
〈πn,m : m ≤ n < ω〉 ⊂ ωω is a sequence so that πn,n = id (n < ω) and:

(1) ∀m ≤ n < ω ∀a ∈ Un [π′′n,ma ∈ Um];
(2) ∀m ≤ n ≤ k < ω ∃a ∈ Uk ∀l ∈ a [πk,m(l) = πn,m(πk,n(l))];
(3) ∀m ≤ n < ω ∃a ∈ Un ∀x, y ∈ a [x ≤ y ⇒ πn,m(x) ≤ πn,m(y)].

Then for every e ∈ P there is a sequence of maps in ωω , 〈πn : n < ω〉, satisfying:
(4) ∀n < ω [π′′n set(e) ∈ Un];
(5) ∀m ≤ n < ω ∀∞k ∈ set(e) [πm(k) = πn,m(πn(k))];
(6) for every n < ω there are ψn ∈ ωω and bn ∈ P such that e ≤ bn and that
〈πn, ψn, bn〉 is a normal triple.

Proof. Define Ek = ω, for every k < ω. Let M be a countable elementary submodel
of H(2c)+ containing π̄ = 〈πn,m : m ≤ n < ω〉, 〈Un : n < ω〉. For m < ω, let Dm ∈
Um be such that Dm ⊂∗ A for every A ∈ Um ∩ M . Now Lemma 3.2 applies to M ,
function f = id, sequences π̄, D̄ = 〈Dm : m < ω〉, 〈Un : n < ω〉 and 〈En : n < ω〉. Let
sequences 〈Fn : n < ω〉, 〈Cn : n < ω〉, 〈g′(n) : n < ω〉 and K̄ = 〈Km,n : m ≤ n < ω〉
be as in Lemma 3.2. Denote ρ =

〈
D̄, K̄, π̄

〉
, Rn, znj , xnj and m(n, j) (j < Rn) as in the

conclusion of Lemma 3.2.
For each n < ω, define In = {Lρn + j : j < Rn}. Recall from the proof of Lemma

3.4 that 〈In : n ∈ ω〉 is an interval partition of ω. Fix m < ω. For n < m and j <
Rn, define ψm(Lρn + j) = 0, while for m ≤ n and j < Rn, define ψm(Lρn + j) =
πn,m(znj ). Thus ψm ∈ ωω and we claim that it is increasing. It suffices to consider the
following two cases. Case 1 is when n < ω, j ≤ j′ < Rn and we wish to compare
ψm(Lρn + j) and ψm(Lρn + j′). If n < m, then both these values are 0. If m ≤ n, then
ψm(Lρn + j) = πn,m(znj ) ≤ πn,m(znj′) = ψm(Lρn + j′) because znj ≤ znj′ and because
znj , z

n
j′ ∈ Cn. Now we come to case 2, which is when we wish to compare ψm(Lρn+j) and

ψm(Lρn+1 + j′), for some n < ω, j < Rn, and j′ < Rn+1. First, if n < m, then ψm(Lρn+
j) = 0 ≤ ψm(Lρn+1 + j′). So assume that m ≤ n. Since znj ∈ Fn, there exists z ∈
Cn+1 with πn+1,n(z) = znj . By a property of Cn+1 from Lemma 3.2, πn+1,m(n,j)(z) =

πn,m(n,j)(πn+1,n(z)) = πn,m(n,j)(z
n
j ) = xnj ≤ Dm(n,j)

(
Km(n,j),n+1 − 1

)
. It follows

from (6) of Lemma 3.2 applied to n+ 1 that z < Fn+1(g′(n+ 1)) ≤ zn+1
j′ . Since zn+1

j′ ∈
Cn+1, πn,m(znj ) = πn,m(πn+1,n(z)) = πn+1,m(z) ≤ πn+1,m(zn+1

j′ ). So ψm(Lρn +

j) = πn,m(znj ) ≤ πn+1,m(zn+1
j′ ) = ψm(Lρn+1 + j′). Thus we have proved that ψm is

increasing.
Now for each m < ω, define πm ∈ ωω as follows. Let k ∈ ω. If k /∈ set(e), then

set πm(k) = 0; else let l ∈ ω be unique such that k ∈ e(l), and set πm(k) = ψm(l).
We check that (4)–(6) are satisfied. We begin with (5). Fix m ≤ l < ω. Consider
any k ∈ set(e) JLρl K. Then k ∈ e(Lρn + j), for some l ≤ n < ω and j < Rn. So
πm(k) = ψm(Lρn + j) = πn,m(znj ) and πl(k) = ψl(L

ρ
n + j) = πn,l(z

n
j ). Since znj ∈

Cn, πn,m(znj ) = πl,m(πn,l(z
n
j )). Therefore, πm(k) = πn,m(znj ) = πl,m(πn,l(z

n
j )) =

πl,m(πl(k)), as needed for (5).
Next we prove (4). Fix m < ω. We will show Dm ⊂∗ π′′m set(e). As the sequence

〈Km,n : m ≤ n < ω〉 is strictly increasing with n, it suffices to show that for each n ≥ m,
Dm[Km,n,Km,n+1) ⊂ π′′m set(e). Let n ≥ m and u ∈ Dm[Km,n,Km,n+1) be given.
Apply the same argument as in the proof of (3) of Claim 3.7 to find m′ and u′ so that
m ≤ m′ ≤ n, u′ ∈ Dm′ [Km′,n,Km′,n+1), πm′,m(u′) = u, and u′ ∈ Hρ

m′,n ⊂ ∆ρ
n. Let

j < Rn be such that xnj = u′. Note that m(n, j) = m′. Also znj ∈ Fn ⊂ Cn. So by
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a property of Cn from Lemma 3.2, πn,m(znj ) = πm′,m(πn,m′(z
n
j )) = πm′,m(u′) = u.

Now if k ∈ e(Lρn + j), then since m ≤ n, by definition, πm(k) = πn,m(znj ) = u. Thus
u ∈ π′′m set(e). This proves Dm ⊂∗ π′′m set(e), which proves (4) because Dm ∈ Um.

We still have to prove (6). Fix m < ω. We have already defined ψm and proved that it
is increasing. Let bm = e. By definition of πm, π′′mbm(l) = {ψm(l)}, for each l < ω, and
πm(k) = 0, for all k ∈ ω \ set(bm). Also ran(ψm) is infinite because π′′m set(e) ∈ Um
and π′′m set(e) ⊂ ran(ψm). Therefore 〈πm, ψm, bm〉 is a normal triple and e ≤ bm, as
needed. �

In the context of MA, the statement of Lemma 3.8 will be modified as follows. The
sequence 〈Un : n < ω〉 will be replaced with the sequence 〈Uα : α < λ〉, where λ is a
cardinal < c. Moreover each Uα will be assumed to be a rapid Pc-point. And, of course,
there will be a map πβ,α, for each α ≤ β < λ. The sequence 〈πn : n < ω〉 in the
conclusion of Lemma 3.8 will be replaced by the sequence 〈πα : α < λ〉. This version
can be proved under MA by taking a suitably generic filter over a poset consisting of finite
approximations to the sequence 〈πα : α < λ〉 together with some finite side conditions.
Its exact definition can be gotten by looking at the proofs of Lemmas 3.2 and 3.8.

The next lemma will also be used in the proof that the poset Qδ is countably closed. It
is like a simple special case of Lemma 3.4 in spirit, but does not directly follow from the
statement of Lemma 3.4.

Lemma 3.9. Let U be a rapid P-point, π a mapping in ωω and 〈dm : m < ω〉 a decreasing
sequence of conditions in P such that π′′ set(dn) ∈ U for every n < ω. Suppose that there
are b ∈ P and ψ ∈ ωω so that 〈π, ψ, b〉 is a normal triple and d0 ≤ b. Then there is d ∈ P
such that π′′ set(d) ∈ U and d ≤ dn for every n < ω.

Proof. First we define sequence of numbers nk (k < ω) as follows: n0 is minimal such
that d0 ≤n0 b, while nk+1 = max {l, nk} for l minimal such that dk+1 ≤l dk. By Remark
2.6(2) we have dk ≤nk b, dk ≤nk dl for l ≤ k and consequently set(dk+1) Jnk+1K ⊂
set(dk) JnkK for k < ω. Let Ck = π′′ set(dk) JnkK for k < ω and notice that Ck+1 ⊂ Ck
and Ck ∈ U for k < ω. So since U is a rapid ultrafilter, by Lemma 2.3, for every k < ω
there is Dk ∈ U such that for every n < ω there is m ≥ 2(n + 1) such that Dk(n) =
Ck(m). Because U is a P-point there is D ∈ U such that D ⊂∗ Dk for every k < ω
and D ⊂ D0. For every k, l < ω define set F kl = {m < ω : π′′dk(m) = {D(l)}}. By
Lemma 2.9, if D(l) ∈ Ck, then dkl = max(F kl ) and bkl = min(F kl \ nk) are well defined.
For a fixed k and l1 < l2 such that D(l1), D(l2) ∈ Ck, again by Lemma 2.9, we have
dkl1 < bkl2 ≤ dkl2 . Also, if l1<l2<ω, k1<k2<ω, D(l1)∈Dk1 and D(l2)∈Dk2 , then it is
easy to see that max(dk1(dk1l1 )) < min(dk2(dk2l2 )). Now, by induction on k, we construct
numbers g(k) and sets d(m) for m < g(k) so that for k < ω:

(1) dkg(k) ≥ g(k);
(2) D[g(k)] ⊂ Dk;
(3) if k > 0 then ∀l ∈ [g(k − 1), g(k)) [d(l) ∈ [dk−1(dk−1l )]l+1].
(4) if k>0 then g(k)>g(k − 1) and ∀l<g(k)− 1 [max(d(l))<min(d(l + 1))].

Let g(0) = 0 and note that (1-4) are satisfied. So fix k ∈ ω and assume that for every
m ≤ k numbers g(m) are defined, and that for every l < g(k) sets d(l) are defined.
Let Xk be the minimal number such that Xk > g(k) and D[Xk] ⊂ Dk+1 and define
g(k + 1) = 2Xk. First note that since Xk > g(k) we have that g(k + 1) = 2Xk > g(k).
Since by inductive hypothesis D[g(k)] ⊂ Dk and dkg(k) ≥ g(k), Lemma 2.9 implies that
for g(k) ≤ l < l′ < g(k + 1) we have dkl < dkl′ . So we can pick d(l) ∈ [dk(dkl )]l+1

for g(k) ≤ l < g(k + 1). Now we prove that (1-4) hold. To prove (1) note that by the
choice of Xk we know that D[Xk, g(k + 1)) ⊂ Dk+1. So D(g(k + 1)) = Dk+1(m) for
some m ≥ g(k + 1) −Xk = Xk. This implies that D(g(k + 1)) = Ck+1(m′) for some
m′ ≥ 2m ≥ 2Xk ≥ g(k+1). Now by Lemma 2.9 applied to Ck+1, dk+1 and 〈π, ψ, b〉 we
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have dk+1
g(k+1) ≥ g(k + 1). Condition (2) follows from the fact that g(k + 1) = 2Xk ≥ Xk

and D[Xk] ⊂ Dk+1. Condition (3) holds by construction. To see that (4) is true we
distinguish three cases: either l > g(k)−1 or l < g(k)−1 or l = g(k)−1. If l < g(k)−1
then it follows from the inductive hypothesis and the fact that g(0) = 0. If l = g(k) − 1
then because g(k − 1) < g(k) we have g(k) − 1 ≥ g(k − 1) so k > 0. By (2) applied to
k − 1 and k we know D(g(k) − 1) ∈ Dk−1 and D(g(k)) ∈ Dk so the statement follows
from the observation in the first paragraph that max(dk−1(dk−1g(k)−1)) < min(dk(dkg(k))).
If l > g(k)− 1 then it follows from the facts that dkl < dkl+1. �

4. ADDING AN ULTRAFILTER ON TOP

In this section, for a given δ < ω2, we introduce the poset for adding a rapid P-point Uδ
together with a sequence of maps 〈πδ,α : α ≤ δ〉 on top of an already constructed δ-generic
sequence of P-points 〈Uα : α < δ〉 and Rudin-Keisler maps 〈πβ,α : α ≤ β < δ〉. So fix a
δ < ω2 and a δ-generic sequence S = 〈〈cαi : α < δ ∧ i < δ〉 , 〈πβ,α : α ≤ β < δ〉〉 for the
rest of this section.

We briefly explain the idea behind the definition of Qδ given below. We would like a
generic filter for Qδ to produce two sequences C̄ = 〈cδi : i < c〉 and π̄ = 〈πδ,α : α ≤ δ〉
which, when added to S, will result in a δ + 1-generic sequence. Conditions in Qδ are
essentially countable approximations to such objects. The first coordinate of the condition
q will be an element of C̄, and the fourth coordinate fixes π̄ on a countable subset of δ.
Clauses (4a), (4b), and (4c) below say that the maps that have already been determined by
q work in accordance with clauses (5a), (5b), and (5c) of Definition 2.10. Clause 3 below
says that Xq , which is the countable set on which π̄ has been fixed, always has a maximal
element unless Xq is cofinal in δ. This assumption will simplify some arguments.

Definition 4.1. Let Qδ be the set of all q = 〈cq, γq, Xq, 〈πq,α : α ∈ Xq〉〉 such that:
(1) cq ∈ P;
(2) γq ≤ δ;
(3) Xq ∈ [δ]≤ω is such that γq = sup(Xq) and γq ∈ Xq iff γq < δ;
(4) πq,α (α ∈ Xq) are mappings in ωω such that:

(a) π′′q,α set(cq) ∈ Uα;
(b) ∀α, β ∈ Xq [α ≤ β ⇒ ∀∞k ∈ set(cq) [πq,α(k) = πβ,α(πq,β(k))]] ;
(c) there is ψq,α ∈ ωω and bq,α ≥ cq such that 〈πq,α, ψq,α, bq,α〉 is a normal

triple;
Let the ordering on Qδ be given by: q1 ≤ q0 if and only if

cq1 ≤ cq0 and Xq1 ⊃ Xq0 and for every α ∈ Xq0 , πq1,α = πq0,α.

In the situation where CH is replaced by MA, Qδ would consist of approximations of
size < c instead of countable ones. Thus Xq would be a set of size less than c.

Remark 4.2. It is easy to check that
〈
Qδ,≤

〉
defined in this way is a partial order. Note

also that Qδ 6= 0. Namely, if δ = 0, then we can take q = 〈c, 0, 0, 0〉 for any c ∈ P.
If δ 6= 0, then let q = 〈cq, γq, Xq, 〈πq,α : α ∈ Xq〉〉 be such that: cq is arbitrary in P;
γq = 0; Xq = {0}; πq,0 ∈ ωω is given by: for k ∈ set(cq) let πq,0(k) = n for k ∈ cq(n),
while πq,0(k) = 0 otherwise. First note that conditions (1-3) of Definition 4.1 are satisfied.
Because π′′q,0 set(cq) = ω we know that (4a) holds. It is also easy to see that 〈πq,0, id, cq〉
is a normal triple by definition of πq,0 so condition (4c) is true. To see that condition (4b)
is also true note that π0,0 = id by Definition 2.10(5). So q ∈ Qδ .

Remark 4.3. Let q = 〈cq, γq, Xq, 〈πq,α : α ∈ Xq〉〉 ∈ Qδ . Let cq′ ∈ P be such that
cq′ ≤ cq . Then q′ = 〈cq′ , γq, Xq, 〈πq,α : α ∈ Xq〉〉 satisfies conditions (1), (2), (3), (4b)
and (4c) of Definition 4.1. Moreover, if q′ also satisfies Definition 4.1(4a), then q′ ∈ Qδ
and q′ ≤ q.
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Instead of forcing with the poset Qδ , we would like to build a sufficiently generic filter
over it in the ground model itself. Qδ needs to be countably closed for this to be feasible.
We prove this fact next. The next lemma is the crux of the whole construction. We briefly
sketch the idea of its proof. So suppose that 〈qn : n ∈ ω〉 is a decreasing sequence of
conditions in Qδ . We want to find a lower bound. There are four natural cases to consider.
We start with the simpler ones. The most trivial case is when δ = 0. Then we just have
a decreasing sequence in P and bounding them is easy. Next, it could be the case that for
all n ∈ ω, γqn = γ, for some fixed γ < δ. Then we essentially have a fixed ultrafilter
Uγ , a descending sequence in P, and a fixed map taking each element of this sequence into
Uγ . We wish to find a bound for this sequence in P whose image is still in Uγ . Lemma 3.9
is set up precisely to handle this situation, so we apply it. The third case is when the γqn
form an increasing sequence converging to δ. Then we have a decreasing sequence in P,
some countable cofinal Y ⊂ δ, and a sequence of maps taking members of the decreasing
sequence in P to various ultrafilters indexed by Y . We would like to find a lower bound
for this decreasing sequence in P whose images under each of the given maps are in the
corresponding ultrafilters. This is almost like the situation in Lemma 3.4, expect that e and
its associated maps are missing. So we first apply Lemma 3.8 to find these things, and then
apply Lemma 3.4 to them. The final and trickiest case is when the γqn form an increasing
sequence converging to some µ < δ. Then the ultrafilter Uµ must have been constructed
to anticipate this situation. This is where clause (6) of Definition 2.10 enters. We have a
decreasing sequence in P, a countable cofinal Y ⊂ µ, and a sequence of maps as before.
We would like to find a lower bound for this decreasing sequence in P as well as a new
map associated with Uµ in such a way that the images of this lower bound under all of the
maps, both old and new, are in the corresponding ultrafilters. Clause (6) of Definition 2.10
says precisely that this is possible.

Lemma 4.4. For any decreasing sequence of conditions 〈qn : n<ω〉 in Qδ there is q∈Qδ
so that ∀n<ω[q≤qn]. Moreover, if ∀n < ω[Xqn+1

=Xqn ], then Xq=Xq0 .

Proof. Assume that we are given a decreasing sequence of conditions 〈qn : n < ω〉 in Qδ ,
i.e. qn+1 ≤ qn for n < ω. Define Y =

⋃
n<ωXqn and γ = sup(Y ). Note that Y ∈ [δ]≤ω .

Also, if ∀n < ω [Xqn+1 = Xqn ], then Y = Xq0 . So the moreover part of the lemma holds
as long as we find q such that Xq = Y . We will consider two cases: either γ ∈ Y or
γ /∈ Y .

Case I: γ ∈ Y . Then there is n0 < ω such that γ ∈ Xqn0
. So γ = γqn0

and note that
γ < δ because Xqn0

⊂ δ. Notice that γqn+1 ≥ γqn for every n < ω, so γqn = γqn0
for

every n ≥ n0. Also, by Definition 4.1 we know that γ ∈ Xqn for n ≥ n0. We apply
Lemma 3.9 in such a way that: dn in Lemma 3.9 is cqn+n0

(n < ω); U is Uγ ; π is πqn0
,γ ;

ψ is ψqn0 ,γ
and b is bqn0 ,γ

. It is easy to see that the hypotheses of Lemma 3.9 are satisfied.
So there is d ∈ P such that π′′ set(d) ∈ Uγ and d ≤ dn for every n < ω. Now we
will prove that the condition q = 〈d, γ, Y, 〈πq,α : α ∈ Y 〉〉 is as required, where πq,α is
πqn+n0 ,α

for any n < ω such that α ∈ Xqn+n0
. To show that q ∈ Qδ note that conditions

(1-3) of Definition 4.1 are clearly satisfied. To prove Definition 4.1(4b), fix α, β ∈ Y such
that α ≤ β. There is n < ω such that α, β ∈ Xqn0+n . Since set(d) ⊂∗ set(cqn0+n)
and πq,α = πqn0+n,α and πq,β = πqn0+n,β , by Definition 4.1(4b) for qn0+n we have
∀∞k ∈ set(d) [πq,α(k) = πβ,α(πq,β(k))] as required. To see that Definition 4.1(4a) is true
take arbitrary β ∈ Y . First notice that π′′qn0

,γ set(d) ∈ Uγ . So (4a) is true in case β = γ.
If β < γ consider the set Z = π′′γ,β(π′′q,γ set(d)). It belongs to Uβ by already proved (4a)
for γ and Definition 2.10(5a). However, by already proved (4b) we have Z ⊂∗ π′′q,β set(d)

which implies that π′′q,β set(d) ∈ Uβ . We still have to prove (4c). Take arbitrary α ∈ Y
and let n < ω be such that α ∈ Xqn0+n

. We know that
〈
πqn0+n,α, ψqn0+n,α, bqn0+n,α

〉
is a

normal triple, that d ≤ cqn0+n
≤ bqn0+n,α and that πq,α = πqn0+n,α. So d ≤ bqn0+n,α and〈

πq,α, ψqn0+n,α, bqn0+n,α

〉
is as required.
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Case II: γ /∈ Y . Therefore Y ⊂ γ. In this case either γ = 0 or γ is a limit ordinal such that
cof(γ) = ω. So there are three subcases: either γ = 0 or γ < δ and cof(γ) = ω or γ = δ
and cof(γ) = ω.
Subcase IIa: γ = 0. Since Y ⊂ γ we have Y = 0, so Xq0 = 0 and γq0 = 0 and
γq0 /∈ Xq0 . So δ = γq0 = 0. In this case all the conditions qn (n < ω) are of the form
qn = 〈cqn , 0, 0, 0〉. So it is enough to construct condition cq ≤ cqn (n < ω) because in
that case q = 〈cq, 0, 0, 0〉 will satisfy q ≤ qn for every n < ω, and also the moreover
part of the lemma. For n < ω let kn be such that cqn+1

≤kn cqn . Define m0 = 0 and
mn+1 = max {kn,max(cqn(mn)) + 2} for n < ω. Let cq(n) = cqn(mn) for n < ω. It is
obvious that cq ∈ P and cq ≤ cqn for every n < ω.
Subcase IIb: cof(γ) = ω and γ < δ. We apply Definition 2.10(6) as follows: µ is γ, X
is Y and dn is cqn (n < ω). For α ∈ Y let n < ω be minimal such that α ∈ Xqn . Then
we consider πα to be πqn,α, ψα to be ψqn,α and bα to be bqn,α - note that if m ≤ n then
set(cqn) ⊂∗ set(cqm), so π′′qn,α set(cqm) ∈ Uα, while if m > n, then πqn,α = πqm,α
and Definition 4.1(4a) implies π′′qn,α set(cqm) ∈ Uα, and so Definition 2.10(6a) holds;
Definition 2.10(6c) is true because 〈πα, ψα, bα〉 is a normal triple and dn = cqn ≤ bqn,α =
bα; to show that Definition 2.10(6b) is satisfied, pick α, β ∈ Y such that α ≤ β, let n < ω
be minimal such that α ∈ Xqn , let m < ω minimal such that β ∈ Xqm and assume n ≤ m
(case m ≤ n is symmetric). Then α, β ∈ Xqm so according to Definition 4.1(4b) for qm
we have ∀∞k ∈ set(dm) [πqm,α(k) = πβ,α(πqm,β(k))].

Hypothesis of Definition 2.10(6) is satisfied as explained above. So there are i∗ < c,
d∗ ∈ P and π, ψ ∈ ωω which satisfy the conclusion of Definition 2.10(6). Now define
condition q = 〈d∗, γ, Y ∪ {γ} , 〈πq,α : α ∈ Y ∪ {γ}〉〉, where for α ∈ Y , πq,α is πqn,α
for the minimal n < ω such that α ∈ Xqn , while πq,γ is π. When we prove q ∈ Qδ it will
follow easily that q ≤ qn for n < ω. So we check conditions (1-4) of Definition 4.1. The
only non-trivial condition is (4). First we show (4b). Take any α, β ∈ Y such that α ≤ β.
There are two cases, either β = γ or β 6= γ. If β = γ, then by Definition 2.10(6e) we have
∀∞ ∈ set(d∗) [πq,α(k) = πγ,α(πq,γ(k))] as required. If β < γ, then pick n < ω such that
α, β ∈ Xqn . Then since set(d∗) ⊂ set(cqn), by Definition 4.1(4b) applied to qn we have
∀∞k ∈ set(d∗) [πq,α(k) = πβ,α(πq,β(k))] as required. Next we prove (4a). Let α ∈ Y .
If α = γ, then by Definition 2.10(6d) we have π′′q,γ set(d∗) = set(cγi∗) ∈ Uγ . If α < γ,
then by already proved (4b) we have π′′γ,α

(
π′′q,γ set(d∗)

)
⊂∗ π′′q,α set(d∗). This together

with Definition 2.10(5a) gives π′′q,α set(d∗) ∈ Uα as required. We still have to prove (4c).
Take arbitrary α ∈ Y . If α = γ, then 〈πq,γ , ψ, d∗〉 is itself a normal triple. If α < γ let
n < ω be minimal such that α ∈ Xqn . Then 〈πq,α, ψqn,α, bqn,α〉 is a normal triple and
d∗ ≤ cqn ≤ bqn,α as required.

The situation from the moreover part of the lemma does not occur in this subcase. To
see this, suppose otherwise. Then Y = Xq0 and γ = γq0 . Since γ < δ, by Definition
4.1(3) γ = γq0 ∈ Xq0 ⊂ Y , a contradiction to Case II.
Subcase IIc: cof(γ) = ω and γ = δ. Choose 〈γn : n < ω〉 such that sup {γn : n < ω} =
δ, and γn < γn+1 and γn ∈ Y , for every n < ω. Now we apply Lemma 3.8 as follows:
Un is Uγn (n < ω) - note that the Uγn ’s are distinct rapid P-points; πm,n is πγm,γn (n ≤
m < ω) - note that by Definition 2.10(5) conditions (1-3) of Lemma 3.8 are satisfied.

As we have explained above, hypothesis of Lemma 3.8 is satisfied, so there are e ∈ P
and maps πδ,γn (n < ω) such that

(1) ∀n < ω [π′′δ,γn set(e) ∈ Uγn ];
(2) ∀n ≤ m < ω ∀∞k ∈ set(e) [(πδ,γn(k) = πγm,γn(πδ,γm(k))];
(3) for every n < ω there are ψδ,γn and bδ,γn such that 〈πδ,γn , ψδ,γn , bδ,γn〉 is a normal

triple and e ≤ bδ,γn .

We will apply Lemma 3.4 as follows: dn is cqn for n < ω, e is e, δ is δ and f = id -
note that cof(δ) = ω; X is {γn : n < ω} - note that δ = sup(X) as required in Lemma
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3.4; the πδ,α are πδ,α, for α ∈ X - note that Lemma 3.4(2) is true by (1-3); for n < ω,
πγn is πqm,γn , bγn is bqm,γn , ψγn is ψqm,γn for the minimal m < ω such that γn ∈ Xqm .
We have to show that Lemma 3.4(3a-3c) are satisfied. First we prove (3a). Fix n < ω and
let m < ω be minimal such that γn ∈ Xqm . We will show that ∀j < ω[π′′γn set(cqj ) =
π′′qm,γn set(cqj ) ∈ Uγn ]. There are two cases: either j ≤ m or j > m. If j ≤ m, then
set(cqm) ⊂∗ set(cqj ) and by Definition 4.1(4a) applied to qm, π′′qm,γn set(cqj ) ∈ Uγn . If
j > m, then γn ∈ Xqj and πqj ,γn = πqm,γn ; so we have that π′′qm,γn set

(
cqj
)
∈ Uγn .

Next, we prove (3b). Fix n ≤ m < ω. Let k < ω be minimal such that γn ∈ Xqk

and l < ω minimal such that γm ∈ Xql . Define j = max {k, l}. Then γn, γm ∈ Xqj ,
and πqk,γn = πqj ,γn and πql,γm = πqj ,γm . By Definition 4.1(4b) applied to qj we have
that ∀∞k ∈ set(cqj ) [πqj ,γn(k) = πγm,γn(πqj ,γm(k))]. Hence j witnesses (3b). Finally
for (3c), fix n < ω and let m < ω be minimal such that γn ∈ Xqm . Since qm satisfies
Definition 4.1(4c) we know that cqm ≤ bqm,γn and 〈πqm,γn , ψqm,γn , bqm,γn〉 is a normal
triple. So (3c) is witnessed by j = m.

As explained above, the assumptions of Lemma 3.4 are satisfied, so there are e∗, d∗ ∈ P
and π, ψ ∈ ωω which satisfy conditions (4-8) in the conclusion of Lemma 3.4. Consider
q = 〈d∗, δ, Y, 〈πq,α : α ∈ Y 〉〉, where for α ∈ Y , πq,α = πqm,α for the minimal m < ω
such that α ∈ Xqm . Note that for each n < ω, πγn = πq,γn . If we prove that q ∈ Qδ it will
follow easily that q ≤ qn for n < ω and that q satisfies the moreover part of the lemma. So
we check the properties (1-4) of Definition 4.1. Conditions (1-3) are clearly satisfied. We
prove (4a-4c). First we show that (4b) is true. Let α, β ∈ Y be such that α ≤ β. Letm < ω
and k < ω be minimal with α ∈ Xqm and β ∈ Xqk respectively. Put l = max{m, k},
and note that πq,α = πql,α and πq,β = πql,β . So by definition 4.1(4b) applied to ql and
by the fact that set(d∗) ⊂∗ set(cql), ∀∞k∗ ∈ set(d∗) [πq,α(k∗) = πβ,α(πq,β(k∗))], as
required. Now we prove (4a). Fix α ∈ Y , and let n < ω be such that γn ≥ α. Note that
π′′δ,γn set(e∗) ∈ Uγn and that π′′δ,γn set(e∗) ⊂∗ π′′γn set(d∗). Thus π′′q,γn set(d∗) ∈ Uγn ,
and so π′′γn,απ

′′
q,γn set(d∗) ∈ Uα. By (4b), π′′γn,απ

′′
q,γn set(d∗) ⊂∗ π′′q,α set(d∗), whence

π′′q,α set(d∗) ∈ Uα as needed. Finally for (4c), fix α ∈ Y and let m < ω be minimal such
that α ∈ Xqm . Then setting bq,α = bqm,α and ψq,α = ψqm,α fulfills (4c). �

Qδ is required to be < c closed when carrying out the constructing under MA. This can
be proved in the same way as Theorem 4.4 by using the appropriate generalizations of the
lemmas from Section 3 and the regularity of c, which follows from MA.

We next turn towards showing that various sets are dense in Qδ . These are the dense
sets we will want to meet when building our “sufficiently generic” filter for Qδ . Meeting
these dense sets will ensure that the sequences 〈cδi : i < c〉 and 〈πδ,α : α ≤ δ〉, which
we intend to read off from the generic filter, will satisfy the conditions of Definition 2.10
when they are added to S. The first density condition states that for each q ∈ Qδ , there is a
q′ ≤ q such that cq′ is a “fast” subsequence of cq . This is needed to ensure that Uδ is rapid,
and it will also play a role in ensuring that it is an ultrafilter.

Lemma 4.5. For q ∈ Qδ and strictly increasing f ∈ ωω there is q′ ≤ q such that Xq =
Xq′ and that for every n < ω there is m ≥ f(n) so that cq′(n) = cq(m). Moreover, there
is q′′ ≤ q′ such that for every n < ω we have cq′′(n) ∈ [cq′(n)]n+1.

Proof. We first show how to get q′. We will distinguish two cases: when γq = δ and when
γq < δ.

Case I: γq = δ. We know that Xq ⊂ δ, sup(Xq) = γq = δ and |Xq| ≤ ω, so either δ = 0
or δ is a limit ordinal with cof(δ) = ω.
Subcase Ia: γq = δ and δ = 0. In this case q is of the form 〈cq, 0, 0, 0〉. For every n < ω,
let cq′(n) = cq(f(n)). Then cq′ ∈ P because f is strictly increasing. Also it is clear that
cq′ ≤ cq . Consequently q′ = 〈cq′ , 0, 0, 0〉 ≤ q is as required.



A LONG CHAIN OF P-POINTS 19

Subcase 1b: γq = δ and cof(δ) = ω. We apply Lemma 3.4 in such a way that: e is cq and
δ is δ; dn is cq for n < ω; f is f ; X is Xq; maps πα are maps πq,α (α ∈ Xq); maps πδ,α
are maps πq,α (α ∈ Xq). The conditions of Lemma 3.4 are clearly satisfied. Hence, there
is e∗ ≤0 cq such that for every n < ω there is m ≥ f(n) so that e∗(n) ⊂ cq(m). We will
construct numbers kn by induction on n so that for every n < ω there is m ≥ n so that
e∗(m) ⊂ cq(kn) and that set(e∗) ⊂

⋃
n<ω cq(kn). Let k0 be such that e∗(0) ⊂ cq(k0).

Now assume that numbers km have been chosen for every m ≤ n, and define kn+1 as
follows: let l be maximal such that e∗(l) ⊂ cq(kn) and define kn+1 as the unique number
such that e∗(l + 1) ⊂ cq(kn+1). Now for every n < ω define cq′(n) = cq(kn). We will
prove that the condition q′ = 〈cq′ , δ,Xq, 〈πq,a : α ∈ Xq〉〉 is as required. Since for every
n, e∗(n) ⊂ cq(m) for m ≥ f(n) we have that kn ≥ f(n), so ∀n < ω ∃l ≥ f(n) cq′(n) =
cq(l), as required in the statement of the lemma. By Remark 4.3, in order to prove q′ ∈ Qδ
and q′ ≤ q it is enough to prove that q′ satisfies Definition 4.1(4a). So pick α ∈ Xq . Since
set(e∗) ⊂

⋃
n<ω cq(kn) = set(cq′) we know that π′′q,α set(e∗) ⊂∗ π′′q,α set(cq′), but since

π′′q,α set(e∗) ∈ Uα we have π′′q′,α set(cq′) ∈ Uα as required.

Case II: γq < δ. Note that by Definition 4.1(3) γq ∈ Xq . Let n0 be such that cq ≤n0
bq,γq .

Then a = π′′q,γq set(cq) Jn0K ∈ Uγq . Now by Lemma 2.9, for each n < ω, mn =

max{m < ω : π′′q,γqcq(m) = {a(n)}} is well-defined and mn < mn+1. As Uγq is
rapid, there is Y ∈ Uγq such that Y ⊂ a and for each n ∈ ω, there is ln ≥ f(n) such
that Y (n) = a(ln). Now it is clear that for each n ∈ ω, mln ≥ ln ≥ f(n). Define
cq′(n) = cq(mln). It is clear that cq′ ∈ P and that π′′q,γq set(cq′) = Y . So by Remark 4.3,
we will finish the proof by showing that q′ = 〈cq′ , γq, Xq, 〈πq,α : α ∈ Xq〉〉 satisfies Defi-
nition 4.1(4a). So let α ∈ Xq . We know that π′′q,γq set(cq′) = Y ∈ Uγq so π′′γq,αY ∈ Uα.
Now we have that π′′q,α set(cq′) =∗ π′′γq,α(π′′q,γq set(cq′)) = π′′γq,αY ∈ Uα as required.

To get q′′, define cq′′ as follows: for every n < ω pick an arbitrary cq′′(n) ∈ [cq′(n)]n+1.
This is possible because |cq′(n)| ≥ n+1. Let q′′ = 〈cq′′ , γq, Xq, 〈πq,α : α ∈ Xq〉〉. To see
that q′′ ∈ Qδ note that conditions (1-3), (4b), and (4c) of Definition 4.1 are clearly satisfied.
Condition (4a) holds because for every α ∈ Xq , π′′q,α set(cq′′) =∗ π′′q,α set(cq′). �

The next lemma ensures that for any given X ∈ P(ω), every condition in Qδ has an
extension that “decides” X . This will make Uδ into an ultrafilter.

Lemma 4.6. For every q ∈ Qδ and for every X ∈ P(ω) there is q′ ≤ q such that
Xq′ = Xq and that set(cq′) ⊂ X or set(cq′) ⊂ ω \X .

Proof. In the same way as in the proof of Lemma 4.5 we distinguish the following cases:
either γq = δ = 0 or γq = δ and cof(δ) = ω or γq < δ.

Case I: γq = δ. As already mentioned this case has two subcases.
Subcase Ia: γq = δ = 0. In this case q is of the form q = 〈cq, 0, 0, 0〉. For i = 0, 1
consider the sets Xi =

{
n < ω :

∣∣cq(n) ∩Xi
∣∣ ≥ (n+ 1)/2

}
. Note X0 ∪ X1 = ω so

either X0 or X1 infinite. Assume without loss of generality that X0 is infinite. Then
|cq(X0(2n+ 1)) ∩X| ≥ n + 1 for every n < ω. Define cq′ ∈ P as follows: for n < ω
let cq′(n) = [cq(X0(2n + 1)) ∩ X]n+1. It easy to see that cq′ ∈ P and cq′ ≤ cq . So for
q′ = 〈cq′ , 0, 0, 0〉 we have q′ ≤ q and set(cq′) ⊂ X . If we assumed X1 is infinite, then we
would obtain set(cq′) ⊂ ω \X .
Subcase Ib: γq = δ and cof(δ) = ω. First according to Lemma 4.5 there is q′ ≤ q such
that Xq′ = Xq and that for every n < ω there is m ≥ 2n+1 such that cq′(n) = cq(m).
Note that this implies that for every n < ω we have |cq′(n)| ≥ 2n+1. Let us consider two
sets Ai =

{
n < ω :

∣∣cq′(n) ∩Xi
∣∣ ≥ 2n

}
(i = 0, 1). Fix α ∈ Xq′ . Because q′ ∈ Qδ we

have π′′q′,α set(cq′) ∈ Uα. So since A0 ∪A1 = ω we have that

π′′q′,α
(⋃

n∈A0
cq′(n)

)
∪ π′′q′,α

(⋃
n∈A1

cq′(n)
)
∈ Uα.
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Since Uα is an ultrafilter, there is iα ∈ 2 such that π′′q′,α
(⋃

n∈Aiα
cq′(n)

)
∈ Uα. Now

that we have defined iα for every α ∈ Xq′ , pick ordinals βn ∈ Xq′ so that the se-
quence 〈βn : n < ω〉 is strictly increasing and cofinal in δ. There is K ∈ [ω]ω and
i ∈ {0, 1} so that iβn = i for every n ∈ K. Now pick any β ∈ Xq′ . Because K
is infinite and 〈βn : n < ω〉 is cofinal in δ, there is n ∈ K so that βn > β. We know
that π′′q′,βn

(⋃
n∈Ai cq′(n)

)
∈ Uβn . But according to Definition 2.10(5a) and Definition

4.1(4b)we have

π′′q′,β
(⋃

n∈Ai cq′(n)
)
⊃∗ π′′βn,β

(
π′′q′,βn

(⋃
n∈Ai cq′(n)

))
∈ Uβ

which shows that for every β ∈ Xq′ we have that π′′q′,β
(⋃

n∈Ai cq′(n)
)
∈ Uβ . Now de-

fine d ∈ P as follows: for every n < ω pick arbitrary d(n) ∈ [cq′(Ai(n)) ∩ Xi]n+1.
The sequence d = 〈d(n) : n < ω〉 belongs to P because Ai was chosen in such a way
that for n < ω we have

∣∣cq′(Ai(n)) ∩Xi
∣∣ ≥ 2n ≥ n + 1. Finally, we will show

that q′′ = 〈d, γq′ , Xq, 〈πq′,α : α ∈ Xq′〉〉 is as required (note Xq′′ = Xq′ = Xq). It is
enough to prove that q′′ ∈ Qδ , because then q′′ ≤ q and set(cq′′) = set(d) ⊂ Xi eas-
ily follows. By Remark 4.3 it is enough to show that Definition 4.1(4a) is satisfied. We
show that π′′q′′,β set(d) ⊃∗ π′′q′,β

(⋃
n∈Ai cq′(n)

)
∈ Uβ holds for β ∈ Xq′ . Consider the

set C = π′′q′,β
(⋃

n∈Ai cq′(n)
)
\ π′′q′′,β set(d). Let m < ω be such that cq′ ≤m bq′,β .

Note that for any n ≥ m we have π′′q′′,βd(n) = π′′q′,βcq′(Ai(n)). This implies that

C ⊂ π′′q′,β
(⋃

n<Ai(m) cq′(n)
)

which shows that |C| < ω as required.

Case II: γq < δ. Let q′ ≤ q be such that Xq′ = Xq and that for each n ∈ ω, cq′(n) =
cq(m) for somem ≥ 2n+1. Note that γq = γq′ ∈ Xq′ and that for each n ∈ ω, |cq′(n)| ≥
2n + 2. For i ∈ 2, let Xi =

{
n ∈ ω :

∣∣Xi ∩ cq′(n)
∣∣ ≥ n+ 1

}
. Note that ω = X0 ∪X1.

Therefore
(
π′′q′,γq

⋃
n∈X0

cq′(n)
)
∪
(
π′′q′,γq

⋃
n∈X1

cq′(n)
)

= π′′q′,γq set(cq′) ∈ Uγq . Fix

i ∈ 2 such that π′′q′,γq
⋃
n∈Xicq′(n) ∈ Uγq . Then Xi is infinite and

∣∣cq′(Xi(k)) ∩Xi
∣∣ ≥

Xi(k) + 1 ≥ k+ 1, for each k ∈ ω. Choose cq′′(k) ∈
[
cq′(Xi(k)) ∩Xi

]k+1
. Then cq′′ =

〈cq′′(k) : k ∈ ω〉 ∈ P and cq′′ ≤ cq′ . Moreover, π′′q′,γq
⋃
n∈Xicq′(n) ⊂∗ π′′q′,γq set(cq′′).

Thus π′′q′,γq set(cq′′) ∈ Uγq . Furthermore, π′′γq,απ
′′
q′,γq

set(cq′′) ⊂∗ π′′q′,α set(cq′′), for each
α ∈ Xq′ . So we also have that π′′q′,α set(cq′′) ∈ Uα, for each α ∈ Xq′ . Therefore by
Remark 4.3 q′′ = 〈cq′′ , γq, Xq′ , 〈πq′,α : α ∈ Xq′〉〉 is as required. �

We would like it to be the case that for each β < δ, there is a q in our “sufficiently
generic” filter over Qδ with β ∈ Xq because we would like to read the map πδ,β from
the filter. So we next prove that for each β < δ, every q ∈ Qδ has an extension q′ with
β ∈ Xq′ . But let us first interject two technical lemmas that are easy to prove.

Lemma 4.7. For q ∈ Qδ , α ∈ Xq and a ∈ Uα there is q′ ≤ q such that Xq′ = Xq and
π′′q′,α set(cq′) ⊂ a.

Proof. Consider the set b = π′′q,α set(cq). By Definition 4.1(4a) b ∈ Uα, which implies
that a ∩ b ∈ Uα. Denote V = π−1q,α(a ∩ b). By Lemma 4.6 there is q′ ≤ q such that
set(cq′) ⊂ V or set(cq′) ⊂ ω \ V . Assume that set(cq′) ⊂ ω \ V . By Definition 4.1(4a)
we have π′′q′,α set(cq′) ∈ Uα and πq′,α = πq,α. So (π′′q′,α set(cq′)) ∩ (a ∩ b) = 0 which is
impossible. Hence set(cq′) ⊂ V implying π′′q′,α set(cq′) ⊂ a ∩ b as required. �

Lemma 4.8. Let q ∈ Qδ , β ∈ δ, and Y = Xq ∪ {β}. There is q′ ≤ q such that Xq′ = Xq

and that for every ζ, ξ, µ satisfying µ ∈ Xq′ , ζ, ξ ∈ Y , and ζ ≤ ξ ≤ µ, there isN < ω such
that for every k, l ∈ set(cq′) if N ≤ k ≤ l, then πµ,ζ(πq′,µ(k)) = πξ,ζ(πµ,ξ(πq′,µ(k)))
and πµ,ξ(πq′,µ(k)) ≤ πµ,ξ(πq′,µ(l)).
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Proof. Let V = {〈ζ, ξ, µ〉 : µ ∈ Xq ∧ ζ, ξ ∈ Y ∧ ζ ≤ ξ ≤ µ}. V is countable, so
let {〈ζn, ξn, µn〉 : n < ω} enumerate it, possibly with repetitions. Build by induction
on n a decreasing sequence 〈qn : n ∈ ω〉 ⊂ Qδ such that ∀n ∈ ω

[
Xqn+1 = Xqn

]
. Let

q0 = q. Fix n ∈ ω, and suppose that qn ≤ q is given. By the definition of a δ-generic
sequence, there exists an ∈ Uµn such that ∀k∗ ∈ an [πµn,ζn(k∗) = πξn,ζn(πµn,ξn(k∗))]
and ∀k∗, l∗ ∈ an [k∗ ≤ l∗ =⇒ πµn,ξn(k∗) ≤ πµn,ξn(l∗)]. Apply Lemma 4.7 to qn ∈
Qδ , µn ∈ Xqn , and an ∈ Uµn , to find qn+1 ≤ qn such that π′′qn+1,µn set(cqn+1

) ⊂ an
and Xqn+1

= Xqn . This concludes the construction of 〈qn : n ∈ ω〉. Find q′ ∈ Qδ
such that ∀n ∈ ω [q′ ≤ qn] and Xq′ = Xq0 = Xq . We check that q′ is as needed. Fix
n < ω. As µn ∈ Xq′ and q′ ≤ qn+1, there is N such that for all k, l ∈ set(cq′), if
N ≤ k ≤ l, then k, l ∈ set(cqn+1) and πq′,µn(k) ≤ πq′,µn(l). Fixing any such k and
l, let k∗ = πq′,µn(k) and l∗ = πq′,µn(l). Then k∗, l∗ ∈ an and k∗ ≤ l∗. Therefore,
πµn,ζn(k∗) = πξn,ζn(πµn,ξn(k∗)) and πµn,ξn(k∗) ≤ πµn,ξn(l∗), as needed. �

Lemma 4.9. For q ∈ Qδ and β < δ there is q′ ∈ Qδ such that q′ ≤ q and β ∈ Xq′ .

Proof. Assume β /∈ Xq . According to Lemma 4.8 applied to q and β there is q∗ ≤ q
such that Xq∗ = Xq and that for every ζ, ξ, µ satisfying µ ∈ Xq∗ , ζ, ξ ∈ Xq∗ ∪ {β}
and ζ ≤ ξ ≤ µ there is N < ω such that for every k, l ∈ set(cq∗) if N ≤ k ≤ l, then
πµ,ζ(πq∗,µ(k)) = πξ,ζ(πµ,ξ(πq∗,µ(k))) and πµ,ξ(πq∗,µ(k)) ≤ πµ,ξ(πq∗,µ(l)). In the same
way as in the proof of Lemma 4.5 we have the following cases: either γq∗ = δ = 0 or
γq∗ = δ and cof(δ) = ω or γq∗ < δ.

Case I: γq∗ = δ. As we mentioned above there are two subcases.
Subcase Ia: γq∗ = δ = 0. Note that in this case the statement is vacuous because there is
no β < δ.
Subcase Ib: γq∗ = δ and cof(δ) = ω. Since sup(Xq∗) = γq∗ = δ and β < δ, let γ∗ ∈ Xq∗

be minimal such that β ≤ γ∗. Let m < ω be minimal such that cq∗ ≤m bq∗,γ∗ and for all
k, l ∈ set(cq∗) JmK, if k ≤ l, then πγ∗,β(πq∗,γ∗(k)) ≤ πγ∗,β(πq∗,γ∗(l)). Define

q′ = 〈cq∗ , δ,Xq∗ ∪ {β} , 〈πq∗,α : α ∈ Xq∗ ∪ {β}〉〉 ,

where πq∗,β is as follows: for k ∈ set(cq∗) JmK let πq∗,β(k) = πγ∗,β(πq∗,γ∗(k)), while
πq∗,β(k) = 0 otherwise. It suffices to prove that q′ ∈ Qδ because it is then easy to see
that q′ ≤ q∗ and β ∈ Xq′ hold. Properties (1-3) are clearly satisfied. So we check (4).
First it is clear that (4a) holds by the definition of πq∗,β and by the fact that cq′ = cq∗ .
Next, we check (4b). Pick arbitrary α, γ ∈ Xq′ such that α ≤ γ. We will distinguish
four cases: either (α 6= β and γ 6= β), or (α = β = γ), or (γ = β and α 6= β), or
(α = β and γ 6= β). First, if α 6= β and γ 6= β, then (4b) holds because q∗ ∈ Qδ and
α, γ ∈ Xq∗ . Next, if α = β = γ, then (4b) trivially holds. Now assume that γ = β and
α 6= β. Then α ∈ Xq∗ . There exists k1 such that for each k ∈ set(cq∗) Jk1K the fol-
lowing hold: πq∗,γ(k) = πγ∗,γ(πq∗,γ∗(k)), πγ∗,α(πq∗,γ∗(k)) = πγ,α(πγ∗,γ(πq∗,γ∗(k))),
and πq∗,α(k) = πγ∗,α(πq∗,γ∗(k)). Thus for every k ∈ set(cq∗) Jk1K we have πq∗,α(k) =
πγ∗,α(πq∗,γ∗(k)) = πγ,α(πγ∗,γ(πq∗,γ∗(k))) = πγ,α(πq∗,γ(k)) as required. Finally as-
sume that α = β and γ 6= β. Then γ ∈ Xq∗ and β ≤ γ. By minimality of γ∗,
γ∗ ≤ γ. As before, there exists k0 ∈ ω such that for each k ∈ set(cq∗) Jk0K the fol-
lowing hold: πq∗,α(k) = πγ∗,α(πq∗,γ∗(k)), πγ,α(πq∗,γ(k)) = πγ∗,α(πγ,γ∗(πq∗,γ(k))),
and πq∗,γ∗(k) = πγ,γ∗(πq∗,γ(k)). Thus for every k ∈ set(cq∗) Jk0K we have πq∗,α(k) =
πγ∗,α(πq∗,γ∗(k)) = πγ∗,α(πγ,γ∗(πq∗,γ(k))) = πγ,α(πq∗,γ(k)) as required. So (4b) holds.
Finally, we check (4c). If α ∈ Xq∗ then (4c) is true because q∗ ∈ Qδ . Let us now define
bq∗,β andψq∗,β . Put bq∗,β = cq∗ . For eachm∗ ≥ m, πq∗,γ∗ is constant on cq∗(m∗) because
cq∗ ≤m bq∗,γ∗ . So for each m∗ ≥ m, πq∗,β is constant on cq∗(m∗). Also πγ∗,β ◦ πq∗,γ∗ is
increasing on set(cq∗) JmK. So for eachm∗ ≥ m define ψq∗,β(m∗) = πγ∗,β(πq∗,γ∗(k)) =
πq∗,β(k), for an arbitrary k ∈ cq∗(m∗). When m∗ < m, πq∗,β is constantly equal to 0 on
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cq∗(m
∗). So set ψq∗,β(m∗) = 0, for m∗ < m. It is clear that 〈πq∗,β , ψq∗,β , bq∗,β〉 is a

normal triple with cq∗ ≤ bq∗,β .

Case II: γq∗ < δ. Note that γq∗ ∈ Xq∗ There are two subcases: when β < γq∗ and
when γq∗ < β. If β < γq∗ , then define πq∗,β as follows. Let m1 be such that the
following two things hold: cq∗≤m1

bq∗,γq∗ ; and for any k, l ∈ set(cq∗) Jm1K, if k ≤ l,
then πγq∗ ,β(πq∗,γq∗ (k)) ≤ πγq∗ ,β(πq∗,γq∗ (l)). For k ∈ set(cq∗) Jm1K, define πq∗,β(k) =
πγq∗ ,β(πq∗,γq∗ (k)), while for k /∈ set(cq∗) Jm1K, define πq∗,β(k) = 0. We will prove
that q′ = 〈cq∗ , γq∗ , Xq∗ ∪ {β} , 〈πq∗,α : α ∈ Xq∗ ∪ {β}〉〉 is as required. It is enough to
show that q′ ∈ Qδ , because then we will have that q′ ≤ q∗ and β ∈ Xq′ . Clearly,
conditions (1-3) are satisfied. To see that (4) is true, note that (4a) is clear from the
definition of πq∗,β and from that fact that cq′ = cq∗ . Next, we check (4b) for q′. Fix
α, γ ∈ Xq′ such that α ≤ γ. There are again four cases: either (β 6= α and β 6= γ),
or (α = β = γ), or (γ = β and α 6= β), or (γ 6= β and α = β). If β 6= α and
β 6= γ, then the statement follows directly from Definition 4.1(4b) applied to q∗. The
case when α = β = γ is trivial. Next, consider the case when γ = β and α 6= β.
Then α ∈ Xq∗ . There exists k2 such that for each k ∈ set(cq∗) Jk2K the following
hold: πq∗,γ(k) = πγq∗ ,γ(πq∗,γq∗ (k)), πγq∗ ,α(πq∗,γq∗ (k)) = πγ,α(πγq∗ ,γ(πq∗,γq∗ (k))),
and πq∗,α(k) = πγq∗ ,α(πq∗,γq∗ (k)). Thus for any k ∈ set(cq∗) Jk2K, πγ,α(πq∗,γ(k)) =
πγ,α(πγq∗ ,γ(πq∗,γq∗ (k))) = πγq∗ ,α(πq∗,γq∗ (k)) = πq∗,α(k), as needed. Finally suppose
that γ 6= β and α = β. Then γ ∈ Xq∗ . As before, there exists k3 such that for each k ∈
set(cq∗) Jk3K the following hold: πq∗,α(k) = πγq∗ ,α(πq∗,γq∗ (k)), πγq∗ ,α(πq∗,γq∗ (k)) =
πγ,α(πγq∗ ,γ(πq∗,γq∗ (k))), and πq∗,γ(k) = πγq∗ ,γ(πq∗,γq∗ (k)). Thus for k ∈ set(cq∗) Jk3K,
πq∗,α(k) = πγq∗ ,α(πq∗,γq∗ (k)) = πγ,α(πγq∗ ,γ(πq∗,γq∗ (k))) = πγ,α(πq∗,γ(k)), as re-
quired. So (4b) is checked, and we now check (4c) for q′. If α ∈ Xq∗ , then (4c) is satisfied
for q′ because it was satisfied for q∗. It remains to define bq∗,β and ψq∗,β . Put bq∗,β = cq∗ .
Note that for each m∗ ≥ m1, πq∗,γq∗ is constant on cq∗(m∗) because cq∗ ≤m1

bq∗,γq∗ . So
for each m∗ ≥ m1, πq∗,β is constant on cq∗(m∗). Also πγq∗ ,β ◦ πq∗,γq∗ is increasing on
set(cq∗) Jm1K. So for m∗ ≥ m1, define ψq∗,β(m∗) = πγq∗ ,β(πq∗,γq∗ (k)) = πq∗,β(k), for
an arbitrary k ∈ cq∗(m∗). When m∗ < m1, πq∗,β is constantly equal to 0 on cq∗(m∗). So
define ψq∗,β(m∗) = 0, for m∗ < m1. It is clear that 〈πq∗,β , ψq∗,β , bq∗,β〉 is a normal triple
and that cq∗ ≤ bq∗,β . Hence q′ is as required.

Now consider the case when β > γq∗ . For each α ∈ Xq∗ , since α ≤ γq∗ < β,
by Definition 2.10(5b) pick aα ∈ Uβ so that ∀k ∈ aα [πβ,α(k) = πγq∗ ,α(πβ,γq∗ (k))].
Since Xq∗ is countable and Uβ is a P-point there is a ∈ Uβ such that a ⊂∗ aα for ev-
ery α ∈ Xq∗ . Then we apply Definition 2.10(3) with β, α being γq∗ , cq∗ being d, π1
being πq∗,γq∗ , b1 being bq∗,γq∗ and ψ1 being ψq∗,γq∗ and a. Note that hypothesis of Def-
inition 2.10(3) are satisfied. By Definition 2.10(3) there are b ∈ Uβ , π, ψ ∈ ωω and
d∗ ≤0 cq∗ so that b ⊂∗ a, 〈π, ψ, d∗〉 is a normal triple, π′′ set(d∗) = b and ∀k ∈
set(d∗) [πq∗,γq∗ (k) = πβ,γq∗ (π(k))]. Denote πq∗,β = π and ψq∗,β = ψ. Now define
q′ = 〈d∗, β,Xq∗ ∪ {β} , 〈πq∗,α : α ∈ Xq∗ ∪ {β}〉〉. It is easy to see that if we prove
that q′ ∈ Qδ , then q′ ≤ q∗ and β ∈ Xq′ follow. So we check conditions of Defini-
tion 4.1. Note that conditions (1-3) are clearly true. We still have to check Definition
4.1(4). First note that (4c) is satisfied for α ∈ Xq∗ because d∗ ≤ cq∗ , while it is true
for β because 〈π, ψ, d∗〉 is a normal triple. To see that (4b) is true let α, γ ∈ Xq∗ ∪ {β}
be such that α ≤ γ. There are three cases: either α 6= β and γ 6= β or α = β or
γ = β. First note that if α = β, then it must also be γ = β and the statement holds.
If α 6= β and γ 6= β then by Definition 4.1 and because set(d∗) ⊂∗ set(cq∗) we have
∀∞k ∈ set(d∗) [πq∗,α(k) = πγ,α(πq∗,γ(k))]. If γ = β then because b ⊂∗ a ⊂∗ aα and
π′′ set(d∗) = b we have that there is k0 < ω such that for every k ∈ set(d∗) Jk0K we have
πq∗,α(k) = πγq∗ ,α(πq∗,γq∗ (k)) = πγq∗ ,α(πβ,γq∗ (π(k))) = πβ,α(π(k)) = πβ,α(πq∗,β(k))
as required. To see that (4a) is true note that π′′q∗,β set(d∗) = b ∈ Uβ and consequently
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π′′β,α

(
π′′q∗,β set(d∗)

)
∈ Uβ for any α ∈ Xq∗ . Together with already proved (4b), this

implies π′′β,α
(
π′′q∗,β set(d∗)

)
⊂∗ π′′q∗,α set(d∗) ∈ Uβ for α ∈ Xq∗ . �

The next lemma ensures that we can “kill” unwanted Tukey maps. That is, if β < δ and
φ : P(ω) → P(ω) is a monotone map that is a potential witness for the unwanted Tukey
reduction Uδ ≤T Uβ , then we would like every condition in Qδ to have an extension
forcing that φ is not such a witness.

Lemma 4.10. For any q ∈ Qδ , any β < δ and any monotone φ : P(ω) → P(ω), if for
every A ∈ Uβ , φ(A) 6= ∅ then there is q′ ≤ q such that β ∈ Xq′ and that for every A ∈ Uβ
we have φ(A) 6⊂ set(cq′).

Proof. By Lemma 4.9 there is q′ ≤ q such that β ∈ Xq′ and by Lemma 4.5 there is
q′′ ≤ q′ ≤ q such that for every n < ω there is m ≥ 2n + 1 such that cq′′(n) = cq′(m).
For every n < ω choose sets d1(n) and d2(n) which are elements of [cq′′(n)]n+1 and are
such that d1(n) ∩ d2(n) = 0. This can be done because |cq′′(n)| ≥ 2n + 2. Note that
both q1 = 〈d1, γq′′ , Xq′′ , 〈πq′′,α : α ∈ Xq′′〉〉 and q2 = 〈d2, γq′′ , Xq′′ , 〈πq′′,α : α ∈ Xq′′〉〉
belong to Qδ and that q1, q2 ≤ q′′ ≤ q. Now we consider two cases: either for every
A ∈ Uβ , φ(A) 6⊂ set(d1), or there is some A ∈ Uβ such that φ(A) ⊂ set(d1). If for every
A ∈ Uβ , φ(A) 6⊂ set(d1), then q1 is as required. Otherwise, q2 is as required because
set(d1) ∩ set(d2) = 0 and φ is monotone. �

Note that q′ forces what we want because it forces set(cq′) ∈ Uδ . Hence it forces that
the image of Uβ under φ is not cofinal in Uδ . It is also worth noting that the descriptive
complexity of φ plays no role in the proof of Lemma 4.10. So Theorem 1.4 is only needed
for bounding the number of relevant maps.

The next lemma is needed for ensuring clause (6) of Definition 2.10, and hence it is
only relevant when cof(δ) = ω. It follows by a direct application of Lemma 3.4.

Lemma 4.11. Suppose that cof(δ) = ω, q ∈ Qδ is such that γq = δ, 〈dj : j < ω〉 is a
decreasing sequence in P, X ⊂ Xq is such that sup(X) = δ and that 〈πα : α ∈ X〉 is a
sequence of maps in ωω satisfying:

(1) ∀α ∈ X ∀j < ω [π′′α set(dj) ∈ Uα];
(2) ∀α, β ∈ X [α ≤ β ⇒ ∃j < ω ∀∞k ∈ set(dj) [πα(k) = πβ,α(πβ(k))]];
(3) for all α ∈ X there are j < ω and ψα ∈ ωω and bα ∈ P such that 〈πα, ψα, bα〉 is

a normal triple and dj ≤ bα.
Then there are q′ ≤ q, d∗ ∈ P and π : ω → ω such that:

(4) ∀j < ω [d∗ ≤ dj ] and set(cq′) = π′′ set(d∗);
(5) ∀α ∈ X ∀∞k ∈ set(d∗) [πα(k) = πq′,α(π(k))];
(6) there is ψ for which 〈π, ψ, d∗〉 is a normal triple.

Proof. We will use Lemma 3.4 where: δ, X , 〈dj : j < ω〉 and πα (α ∈ X) are as in the
statement of this lemma, f = id; e is cq; for α ∈ X map πδ,α is πq,α (α ∈ X). So
there are e∗, d∗ and π satisfying properties (4-8) of the conclusion of Lemma 3.4. We will
show that q′ = 〈e∗, δ,Xq, 〈πq,α : α ∈ Xq〉〉, d∗ and π are as required. The conditions (4-
6) will be witnessed by conditions (5-8) in the conclusion of the Lemma 3.4. By Remark
4.3, in order to finish the proof we only have to show that Definition 4.1(4a) holds for
q′. First assume that α ∈ X . Then by Lemma 3.4(7), π′′q,α set(e∗) ∈ Uα. Now assume
that α ∈ Xq \ X . Let α′ ∈ X be such that α′ > α. Then π′′α′,α

(
π′′q,α′ set(e∗)

)
∈ Uα.

Also we have π′′α′,α
(
π′′q,α′ set(e∗)

)
⊂∗ π′′q,α set(e∗). These observations together give us

π′′q,α set(e∗) ∈ Uα as required. �

Next we show how to make sure that Uδ is rapid. This lemma follows from a direct
application of Lemma 4.5.
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Lemma 4.12. Suppose that δ < ω2, that q ∈ Qδ and that f ∈ ωω is a strictly increasing
function. There is q′ ≤ q such that for every n < ω we have set(cq′)(n) ≥ f(n).

Proof. According to Lemma 4.5 there is q′ ≤ q so that for every n < ω there is m ≥
f(s(n + 1)) such that cq′(n) ∈ [cq(m)]n+1. We will prove that q′ is as required. So fix
n < ω, and let k < ω be such that set(cq′)(n) ∈ cq′(k). Equivalently s(k) ≤ n < s(k+1)
which implies set(cq′)(n) ≥ set(cq′)(s(k)). Since for some m ≥ f(s(k + 1)) we have
cq′(k) ⊂ cq(m) and set(cq′)(n) ∈ cq′(k), then by Remark 2.6(1), set(cq′)(n) ≥ m ≥
f(s(k + 1)) > f(n), the last inequality being true because f is an increasing function. So
we showed that set(cq′)(n) ≥ f(n) as required. �

We now come to the final density lemma. This lemma ensures that clause (3) of Defini-
tion 2.10 can be satisfied during the construction of Uδ . One of the cases in its proof makes
use of Lemma 3.4.

Lemma 4.13. Let q ∈ Qδ , π1, ψ1 ∈ ωω , b1, d ∈ P, and α < δ be such that 〈π1, ψ1, b1〉
is a normal triple, d ≤ b1, and π′′1 set(d) ∈ Uα. Then there are q∗ ≤ q, d∗ ≤ d, π, ψ ∈
ωω such that 〈π, ψ, d∗〉 is a normal triple, α ∈ Xq∗ , π′′ set(d∗) = set(cq∗) and ∀k ∈
set(d∗) [π1(k) = πq∗,α(π(k))].

Proof. By Lemma 4.9 there is q0 ≤ q such that α ∈ Xq0 . In the same way as in the proof
of Lemma 4.5 we have the following cases: either γq0 = δ = 0 or γq0 = δ and cof(δ) = ω
or γq0 < δ.

Case I: γq0 = δ. As we mentioned above there are two subcases.
Subcase Ia: γq0 = δ = 0. Then the statement is vacuous because there is no α < δ.
Subcase Ib: γq0 = δ and cof(δ) = ω. In particular δ is limit ordinal. There is q1 ≤ q0
such that Xq1 = Xq0 and that q1 satisfies conclusion of Lemma 4.8. Note sup(Xq1) = δ.
So pick an increasing sequence 〈αn : n < ω〉 such that α0 = α, sup {αn : n < ω} = δ
and αn ∈ Xq1 for n < ω. Build by induction sequences 〈dn : n < ω〉 and 〈παn : n < ω〉
satisfying the following for each n < ω:

(1) d0 = d, πα0
= π1, and ∀m ≤ n [dn ≤ dm];

(2) π′′αn set(dn) ∈ Uαn and ∀m ≤ n ∀∞k ∈ set(dn) [παm(k) = παn,αm(παn(k))];
(3) if n > 0, then there is ψαn ∈ ωω such that 〈παn , ψαn , dn〉 is a normal triple.

Put d0 = d and πα0 = π1. Fix n ∈ ω and assume that dn and παn are given sat-
isfying (1)–(3). To get dn+1 we apply Definition 2.10(3) with α = αn, β = αn+1,
π1 = παn , d = dn, and if n = 0, then ψ1 = ψ1 and b1 = b1, while if n > 0, then
ψ1 = ψαn and b1 = dn. Note that in all cases the hypothesis of Definition 2.10(3) is sat-
isfied. Let a in Definition 2.10(3) be π′′q1,αn+1

set(cq1). Then there are b ∈ Uαn+1
, ψαn+1

,
παn+1 ∈ ωω and dn+1 ≤ dn such that b ⊂∗ π′′q1,αn+1

set(cq1), π′′αn+1
set(dn+1) = b,

∀k ∈ set(dn+1) [παn(k) = παn+1,αn(παn+1(k))] and that
〈
παn+1 , ψαn+1 , dn+1

〉
is a nor-

mal triple. We will prove that dn+1 and παn+1
satisfy (1)–(3). (1) is clear. Second, we

have π′′αn+1
set(dn+1) = b ∈ Uαn+1

. Next, we check that for every m ≤ n + 1, ∀∞k ∈
set(dn+1) [παm(k) = παn+1,αm(παn+1

(k))]. We distinguish two cases: either m = n+ 1
or m ≤ n. If m = n + 1, then since παn+1,αn+1

= id, for every k ∈ set(dn+1) we have
παn+1

(k) = παn+1,αn+1
(παn+1

(k)). If m ≤ n, then it is easy to find a k0 ∈ ω so that for
every k ∈ set(dn+1) Jk0K the following hold: παn(k) = παn+1,αn(παn+1

(k)), παm(k) =
παn,αm(παn(k)), and παn+1,αm(παn+1(k)) = παn,αm(παn+1,αn(παn+1(k))). Hence for
each k ∈ set(dn+1) Jk0K, παm(k) = παn,αm(παn(k)) = παn,αm(παn+1,αn(παn+1(k))) =

παn+1,αm(παn+1
(k)), as required. Fourth,

〈
παn+1

, ψαn+1
, dn+1

〉
is a normal triple. So the

sequences 〈dn : n < ω〉 and 〈παn : n < ω〉 are as required.
Next we apply Lemma 3.4 in such a way that δ is δ, f is id, X = {αn : n < ω}, e is

cq1 , πδ,αn is πq1,αn for n < ω, dn is dn for n < ω, παn is παn for n < ω, bδ,αn and ψδ,αn
are bq1,αn and ψq1,αn for n < ω. Note that cof(δ) = ω, sup(X) = δ, X ⊂ δ and that
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Lemma 3.4(2) is satisfied because q1 satisfies Definition 4.1(4). So we still have to prove
that condition (3) of Lemma 3.4 is satisfied. First we prove (3b). Fix m ≤ n < ω. By
the construction of παn we know that ∀∞k ∈ set(dn) [παm(k) = παn,αm(παn(k))] as
required. To see (3c) take n < ω and note that 〈παn , ψαn , dn〉 is a normal triple. Next we
prove (3a). We have to prove that for every m,n < ω, π′′αn set(dm) ∈ Uαn . We consider
two cases: either m ≤ n or m > n. If m ≤ n note set(dn) ⊂∗ set(dm) so since by con-
struction π′′αn set(dn) ∈ Uαn we have π′′αn set(dm) ∈ Uαn . If m > n then by construction
π′′αm set(dm) ∈ Uαm . By already proved (3b) π′′αm,αn(π′′αm set(dm)) =∗ π′′αn set(dm).
By Definition 2.10(5a), π′′αm,αn(π′′αm set(dm)) ∈ Uαn so we have π′′αn set(dm) ∈ Uαn as
required.

So all conditions of Lemma 3.4 are satisfied. Hence, there are e′, d′, π′ and ψ′ sat-
isfying conditions (4-8) of the conclusion of Lemma 3.4. In particular, by (6) we know
that there is k1 such that ∀k ∈ set(d′) Jk1K [πα0

(k) = πq1,α0
(π′(k))]. Let n < ω be

such that (π′)′′d′(k1) ⊂ e′(n), and k2 such that set(e′) Jn+ 1K = (π′)′′ set(d′) Jk2K.
Since 〈π′, ψ′, d′〉 is a normal triple, k2 is well defined and k2 ≥ k1. Now let d∗ be de-
fined by d∗(k) = d′(k2 + k) (k < ω), let e∗ be defined by e∗(k) = e′(n + k + 1)
(k < ω). Note that e∗ ≤0 e′ ≤0 cq1 , set(e∗) =∗ set(e′) and d∗ ≤ d′. Define also
π ∈ ωω as follows: for k ∈ set(d∗) let π(k) = π′(k) and π(k) = 0 otherwise. Let
ψ ∈ ωω be defined by ψ(k) = ψ′(k2 + k) for k < ω. Note that 〈π, ψ, d∗〉 is a nor-
mal triple and that π′′ set(d∗) = set(e∗). Define q∗ = 〈e∗, δ,Xq1 , 〈πq1,α : α ∈ Xq1〉〉.
Since e∗ ≤ cq1 , by Remark 4.3, in order to show q∗ ≤ q1 we only have to prove that
q∗ satisfies Definition 4.1(4a). First we show that it holds for all αn (n < ω). Take
n < ω. By (7) of the conclusion of Lemma 3.4 and because set(e∗) =∗ set(e′) we have
π′′q1,αn set(e∗) ∈ Uαn . Now we prove (4a). Let α ∈ Xq1 . Pick αn ≥ α. By Remark
4.3, q∗ satisfies (4b) so π′′αn,α(π′′q1,αn set(e∗)) =∗ πq1,α set(e∗). By Definition 2.10(5a)
we know π′′αn,α(π′′q1,αn set(e∗)) ∈ Uα. Hence π′′q1,α set(e∗) ∈ Uα as required. We will
show that q∗, d∗, π and ψ satisfy conclusion of this lemma. First, 〈π, ψ, d∗〉 is a normal
triple. Second, α ∈ Xq0 = Xq1 = Xq∗ . Third, π′′ set(d∗) = set(e∗). Fourth, for every
k ∈ set(d∗) we know that k ∈ set(d′) Jk2K, so π1(k) = πα(k) = πq1,α(π(k)). Note that
π1 = πα by definition of πα0

. So q∗ is as required.

Case II: γq0 < δ. Let n0 be such that cq0 ≤n0
bq0,γq0 and that for every k ∈ set(cq0) Jn0K

we have πq0,α(k) = πγq0 ,α(πq0,γq0 (k))

Claim 4.14. There are d′ ≤ d, b ⊂ π′′q0,γq0 set(cq0) Jn0K and π2, ψ2 ∈ ωω such that
π′′2 set(d′) = b, ∀k ∈ set(d′) [π1(k) = πγq0 ,α(π2(k))] and that 〈π2, ψ2, d

′〉 is a normal
triple.

Proof. We will consider two cases: either α = γq0 or α < γq0 . If α < γq0 then we
apply Definition 2.10(3) with α = α, β = γq0 , π1 = π1, ψ1 = ψ1, b1 = b1, d = d
and a = π′′q0,γq0 set(cq0) Jn0K. Note that hypothesis of Definition 2.10(3) are satisfied.
Hence there are b ∈ Uγq0 , π, ψ ∈ ωω and d′ ≤0 d so that 〈π, ψ, d′〉 is a normal triple,
π′′ set(d′) = b and ∀k ∈ set(d′) [π1(k) = πγq0 ,α(π(k))] as required.

If α = γq0 , first let l be such that d ≤l b1. Put b = π′′1 set(d) JlK ∩ π′′q0,γq0 set(cq0) Jn0K
and note b ∈ Uγq0 and b ⊂ π′′q0,γq0 set(cq0) Jn0K. Put Fn = {m < ω : π′′1d(m) = {b(n)}}.
By Lemma 2.9, Ln = max(Fn) is well defined and Ln < Ln+1 is true for n < ω.
Define d′ as follows: for n < ω let d′(n) = d(Ln). Since Ln < Ln+1 (n < ω) we
know that d′ ∈ P. Define π2 as follows: for k /∈ set(d′) let π2(k) = π1(k) while
π2(k) = 0 otherwise. Since Ln ≥ l for every n < ω, we can define L′n such that
d(Ln) ⊂ b1(L′n). Then π′′1 b1(L′n) = {ψ1(L′n)}. Define ψ2(n) = ψ1(L′n). Then it is easy
to see that 〈π2, ψ2, d

′〉 is a normal triple. We know that π′′2 set(d′) = b because for every
n < ω, π′′2d

′(n) = π′′1d(Ln) = π′′1 b1(L′n) = {b(n)}. To see that ∀k ∈ set(d′) [π1(k) =
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πγq0 ,α(π2(k))] note that γq0 = α and πα,α = id so for every k ∈ set(d′) we have that
π1(k) = πα,α(π2(k)) is true. �

Now that we have b with the required properties, since Uγq0 is rapid, there is c ∈ Uγq0
so that for every n < ω there is m ≥ t(n + 1) so that c(n) = b(m). We will build
e∗, d∗, ψ, and π so that the following hold: e∗ ≤0 cq0 , d∗ ≤0 d′, π′′ set(d∗) = e∗,
π′′q0,γq0 set(e∗) = c, ∀k ∈ set(d∗) [π2(k) = πq0,γq0 (π(k))], and 〈π, ψ, d∗〉 is a normal

triple. For each n < ω define Mn = max
{
m < ω : π′′q0,γq0 cq0(m) = {c(n)}

}
and

Kn = max {m < ω : π′′2d
′(m) = {c(n)}}. By Lemma 2.9, Mn ≥ n0, Mn+1 > Mn

and Kn+1 > Kn (n < ω). We show that Kn ≥ t(n + 1) for every n < ω. Define
ln = max {m < ω : π′′2d

′(m) = b(n)} (n < ω), and note that by Lemma 2.9 numbers ln
are well defined and that ln+1 > ln (n < ω). Hence ln+1 ≥ n + 1 (n < ω). Fix n < ω.
Then there is vn ≥ t(n+ 1) such that c(n) = b(vn). So Kn = lvn ≥ lt(n+1) ≥ t(n+ 1).
Define e∗ as follows: for n < ω let e∗(n) ∈ [cq0(Mn)]n+1. Define d∗ as follows. For
each n′ < ω choose a sequence 〈d∗(n) : s(n′) ≤ n < s(n′ + 1)〉 in such a way
that for all s(n′) ≤ n < s(n′ + 1), d∗(n) ∈ [d′(Kn′)]

n+1 and for all s(n′) ≤ n <
n + 1 < s(n′ + 1), max(d∗(n)) < min(d∗(n + 1)). Next, define π ∈ ωω as follows:
for k /∈ set(d∗) let π(k) = 0, while for k ∈ set(d∗) let π(k) = set(e∗)(n) where n is
such that k ∈ d∗(n). Let ψ ∈ ωω be defined as ψ(n) = set(e∗)(n) for every n < ω.
Note that 〈π, ψ, d∗〉 is a normal triple because π′′d∗(n) = {ψ(n)} = {set(e∗)(n)} for
n < ω. To show that e∗, d∗, π and ψ are as required, we still have to show that for every
k ∈ set(d∗) [π2(k) = πq0,γq0 (π(k))]. Fix k ∈ set(d∗). Let n be such that k ∈ d∗(n)

and let m be such that s(m) ≤ n < s(m + 1). Then k ∈ d′(Km) so π2(k) = c(m).
Also π(k) = set(e∗)(n) ∈ e∗(m) ⊂ cq0(Mm) so πq0,γq0 (π(k)) = c(m) = π2(k) as
required. Define q∗ = 〈e∗, γq0 , Xq0 , 〈πq0,α : α ∈ Xq0〉〉. Since e∗ ≤0 cq0 , by Remark
4.3, in order to prove q∗ ∈ Qδ and q∗ ≤ q0 it is enough to show that q∗ satisfies prop-
erty (4a) of Definition 4.1. So let β ∈ Xq0 . There are two cases: either β = γq0 or
β < γq0 . If β = γq0 then π′′q0,γq0 set(e∗) = c ∈ Uβ . If β < γq0 then by Remark 4.3
property (4b) of Definition 4.1 holds for q∗ so π′′γq0 ,β(π′′q0,γq0 set(e∗)) =∗ π′′q0,β set(e∗).
Also, by Definition 2.10(5a), π′′γq0 ,β(π′′q0,γq0 set(e∗)) ∈ Uβ so π′′q0,β set(e∗) ∈ Uβ . Hence
q∗ ∈ Qδ and q∗ ≤ q0. Finally, we prove that q∗ satisfies conclusion of this lemma. By
the choice of q0 we have α ∈ Xq0 . By the choice of d∗ and e∗ we have π′′ set(d∗) =
set(e∗). We already explained why 〈π, ψ, d∗〉 is a normal triple. So we still have to
prove that ∀k ∈ set(d∗) [π1(k) = πq∗,α(π(k))]. By Claim 4.14 and since d∗ ≤0 d′

we have ∀k ∈ set(d∗) [π1(k) = πγq0 ,α(π2(k))]. We also proved ∀k ∈ set(d∗) [π2(k) =

πq0,γq0 (π(k))]. Since Mn ≥ n0 for every n < ω and π′′ set(d∗) = set(e∗), we also have
that ∀k ∈ set(d∗) [πq0,α(π(k)) = πγq0 ,α(πq0,γq0 (π(k)))]. From these three equations we
get π1(k) = πγq0 ,α(π2(k)) = πγq0 ,α(πq0,γq0 (π(k))) = πq0,α(π(k)) as required. Hence
q∗ satisfies conclusion of this lemma. �

The proofs of Lemmas 4.5–4.13 go through with no essential modifications under MA.
Of course the proofs would depend on the fact that Qδ would be < c closed and the
generalized form of Lemma 3.4 would hold in this context. The inductive construction
occurring in Subcase Ib of the proof of Lemma 4.13 would need to be of length ξ, for some
ξ < c. The limit stages of this inductive construction can be passed by appealing to the
generalized forms of Lemma 3.4 and Clause (6) of Definition 2.10.

5. A LONG CHAIN

We now have all the tools necessary for constructing the desired chain of P-points. As
our construction requires CH, we assume 2ℵ0 = ℵ1 in this section. The chain of length ω2

will be obtained from an ω2-generic sequence.
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Theorem 5.1 (CH). There is an ω2-generic sequence.

Proof. We build by induction sequence 〈Sδ′ : δ′ ≤ ω2〉 such that for each δ′ ≤ ω2:
(1) Sδ′ is δ′-generic;
(2) ∀γ < δ′ [Sγ = Sδ′ � γ].

For δ′ = 0, let S0 = 〈0, 0〉. Next assume that δ′ is a limit ordinal and that for every γ < δ′,
we are given Sγ as required. Define

Sδ′ =

〈 ⋃
γ<δ′

〈cαi : α < γ ∧ i < c〉 ,
⋃
γ<δ′

〈πβ,α : α ≤ β < γ〉

〉
.

Remark 2.11 ensures that Sδ′ satisfies (1) and (2)2. Finally assume that δ′ = δ+ 1 and that
Sδ satisfies (1) and (2). Note δ < ω2. In the next paragraph we build Sδ+1.

First partition ω1 = T0∪T1∪T2∪T3∪T4 into five disjoint sets so that |Ti| = ω1 (i ∈ 5).
Next we enumerate certain sets. Let P(ω) = {Xi : i ∈ T0}. Let V = {fi : i ∈ T1}, where
V is the set of all increasing functions in ωω . Let T = ωω×ωω×P×P×δ = {ti : i ∈ T2}
be enumeration of T in such a way that every element occurs ω1 many times on the list.
Let Φ × δ = {〈φi, αi〉 : i ∈ T3}, where Φ is the set of all continuous monotone maps
φ : P(ω) → P(ω), and note that this enumeration is possible because |Φ| = c. Let
Γ = {si : i ∈ T4} be enumeration of Γ such that every element of Γ appears ω1 many
times, where Γ is the set of all

〈
X, d̄, π̄, b̄, ψ̄

〉
such that X ∈ [δ]≤ω, d̄ ∈ Pω , π̄ ∈ (ωω)X ,

b̄ ∈ PX , ψ̄ ∈ (ωω)X . Now we build a decreasing sequence 〈qi : i < ω1〉 in Qδ . Since
Qδ 6= 0 pick arbitrary q0 ∈ Qδ . Assume that for i < ω1 we already built 〈qj : j < i〉.
If i is limit then by Lemma 4.4 we choose qi such that qi ≤ qj (j < i). If i = i0 + 1
then we distinguish five cases. Suppose that i0 ∈ T0. Then Xi0 ∈ P(ω). By Lemma
4.6 we pick qi ≤ qi0 such that set(cqi) ⊂ Xi0 or set(cqi) ⊂ ω \ Xi0 . Suppose that
i0 ∈ T1. Then fi0 ∈ ωω is a strictly increasing so by Lemma 4.12 there is qi ≤ qi0 such
that ∀n < ω [set(cqi)(n) ≥ fi0(n)]. Suppose that i0 ∈ T2. If 〈πi0 , ψi0 , bi0〉 is a normal
triple, di0 ≤ bi0 and π′′i0 set(di0) ∈ Uαi0 then by Lemma 4.13 pick qi ≤ qi0 , d∗i ≤ di0 ,
π∗i , ψ

∗
i ∈ ωω so that 〈π∗i , ψ∗i , d∗i 〉 is a normal triple, αi0 ∈ Xqi , (π∗i )′′ set(d∗i ) =∗ set(cqi)

and ∀k ∈ set(d∗i )[πi0(k) = πqi,αi0 (π∗i (k))]. Otherwise let qi = qi0 . Suppose that i0 ∈ T3.
Then φi0 : P(ω)→ P(ω) is monotone and continuous. If φi0(A) 6= 0 for every A ∈ Uαi0
then by Lemma 4.10 pick qi ≤ qi0 such that αi0 ∈ Xqi and φ(A) * set(cqi) for every
A ∈ Uαi0 . Otherwise let qi = qi0 . Suppose that i0 ∈ T4. Then Xi0 ∈ [δ]≤ω , d̄i0 and
b̄i0 are decreasing sequences in P and π̄i0 , ψ̄i0 ∈ (ωω)Xi0 . If cof(δ) = ω, γqi0 = δ,
Xi0 ⊂ Xqi0

, sup(X) = δ and d̄i0 , π̄i0 , ψ̄i0 and b̄i0 satisfy Lemma 4.11(1-3), then by
Lemma 4.11 pick qi ≤ qi0 , d∗i and π∗i satisfying Lemma 4.11(4-6). Otherwise let qi = qi0 .
Now define Sδ′ as follows: πδ,δ = id, for α ≤ β < δ and i < ω1, cαi and πβ,α are as in
Sδ , while for α < δ and i < ω1, cδi is cqi and πδ,α is πqj ,α where j is minimal such that
α ∈ Xqj .

Claim 5.2. For every α < δ there is i < ω1 such that α ∈ Xqi .

Proof. Take α < δ. Consider the function φ : P(ω) → P(ω) given by φ(A) = ω for
A ⊂ ω. Clearly, φ(A) 6= 0 for A ∈ Uα. So there is i0 ∈ T3 so that 〈φ, α〉 = 〈φi0 , αi0〉.
Then for i = i0 + 1, by choice of qi we have αi0 ∈ Xqi . �

Note that by Claim 5.2 πδ,α is defined for every α < δ. Namely, if i < ω1 is such that
α ∈ Xqi , then πδ,α = πqi,α. We still have to prove that Sδ′ is δ + 1-generic sequence.
Only conditions (3) and (6) of Definition 2.10 need checking.

To see that (3) holds, take any α < β ≤ δ. If β < δ the statement follows because Sδ is
δ-generic and Sδ = Sδ+1 � δ. If β = δ let π1, ψ1, d1, b1, α be as in the statement of (3) and

2We consider the sequence
〈
cαi : α < γ ∧ i < c

〉
as the function from γ × c into P while the sequence〈

πβ,α : α ≤ β < γ
〉

is considered as the function from {〈α, β〉 : α ≤ β < γ} into ωω .
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let a ∈ Uδ . Since a ∈ Uδ there is j < c such that cδj = cqj ⊂∗ a. Then 〈π1, ψ1, d1, b1, α〉 =
ti for some i ∈ T2 such that i ≥ j. Note that this is true because every element of
T appears ω1 many times in its enumeration. So by the choice of qi+1 we know that
cqi+1 ⊂∗ cqj ⊂∗ a and that d∗i+1, π∗i+1, ψ∗i+1 and b∗i+1 are such that

〈
π∗i+1, ψ

∗
i+1, b

∗
i+1

〉
is a

normal triple, α ∈ Xqi+1 , (π∗i+1)′′ set(d∗i+1) =∗ set(cqi+1) and ∀k ∈ set(d∗i+1) [π1(k) =
πqi+1,α(π∗i+1(k))]. Denote b = (π∗i+1)′′ set(d∗i+1) and note that b ⊂∗ a. Now b, d∗i+1,
π∗i+1, ψ∗i+1 and b∗i+1 witness that Definition 2.10(3) is true in this case also.

Next we show that Sδ′ satisfies condition (6) of Definition 2.10. Let µ, X , d̄, and π̄ be
as in Definition 2.10(6). Since we require i∗ satisfying Definition 2.10(6) to be cofinal in c
let i0 < c be fixed. If µ < δ, the condition is satisfied because Sd′ = Sδ � δ and Sδ is δ-
generic. If µ = δ then, by Claim 5.2 and because every element of Γ appears c many times
in its enumeration, there is i ∈ T4 such that i ≥ i0 and

〈
X, d̄, π̄, b̄, ψ̄

〉
= si and X ⊂ Xqi .

By the choice of qi+1 we know that d∗i+1, π∗i+1 and cδi+1 = cqi+1 satisfy conditions (4-6)
of Lemma 4.11 which implies that they also satisfy condition (6) of Definition 2.10. Since
πδ,α = πqi+1,α for α ∈ X this shows that i + 1 ≥ i0 witnesses that Definition 2.10(6) is
satisfied. �

For each α < ω2, let Uα = {a ∈ P(ω) : ∃i < c[set(cαi ) ⊂∗ a]}. As we have noted
in Section 2, 〈Uα : α < ω2〉 is a sequence of P-points that is strictly increasing with
respect to both ≤RK and ≤T . Thus the ordinal ω2 embeds into the P-points under both
orderings. In fact, the proof of Theorem 5.1 shows something slightly more general. We
could have started the construction with a fixed δ-generic sequence for some δ < ω2, and
then extended it to an ω2-generic sequence in the same way. So we have the following
corollary to the proof.

Corollary 5.3 (CH). Suppose that δ < ω2 and that Sδ is a δ-generic sequence. Then there
is an ω2-generic sequence S such that S � δ = Sδ .

When CH is replaced with MA and the lemmas from Section 4 have been appropriately
generalized, the proof of the natural generalization of Theorem 5.1 presents little difficulty.
In the crucial successor step of the construction, ω1 can be replaced everywhere with c; all
of the sets that need to be enumerated have size c because c<c = c under MA. The gener-
alizations of the lemmas from Section 4 imply that each condition in Qδ has an extension
that meets some given requirement, and the fact that Qδ is < c closed allows us to find
lower bounds at the limit steps. Therefore a c+-generic sequence exists under MA.
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