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Abstract

We study a dynamic contact problem for a thermoelastic von Kármán
plate vibrating against a rigid obstacle. The plate is subjected to a per-
pendicular force and to a heat source. The dynamics is described by a
hyperbolic variational inequality for deflections. The parabolic equation
for a thermal strain resultant contains the time derivative of the deflec-
tion. We formulate a weak solution of the system and verify its existence
using the penalization method. A detailed analysis of the velocity, accel-
eration, and reaction force of the solution is given. The singular nature
of the dynamic contact makes it necessary to treat the acceleration and
contact force as time–dependent measures with nonzero singular parts in
the zones of contact. Accordingly, the velocity field over the plate suf-
fers (global) jumps at a countable number of times with natural physical
interpretations of the signs of the jumps.

Keywords Thermoelastic plate, unilateral dynamic contact, rigid ob-
stacle, penalization, measure valued accelerations and forces
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1 Introduction

The dynamic contact problems are not frequently solved in the framework of
variational inequalities if we disregard results obtained for rather rough approx-
imate contact models (as e.g. the normal compliance one allowing an unrealistic
unlimited interpenetration between the body and the obstacle or so called bi-
lateral contact replacing the real contact condition by a homogeneous Dirichlet
one). For the elastic problems only a very limited amount of results is available
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1



(cf. [8] and the literature cited there). We have solved these problems for geo-
metrically nonlinear plates and shells in [2] and [3] respectively. We concentrate
here not only on purely mechanical impact to the plate being under some load
and possibly contacting a rigid obstacle, we also take into account its thermal
deformation. However, we shall not consider the heat exchange between the
plate and the obstacle. This can be guaranteed [14] if the lower and upper faces
of the plate are thermally isolated. Our model is similar to that of [17], [12,
Chapter 8], where the thermoelastic boundary contact for the radially symmet-
ric body is considered and also no heat exchange between the body and the
rigid foundation appeared.

We shall use the model derived in [15] under the assumption of a small varia-
tion of temperature compared with its reference temperature. The assumptions
of thermally isolated faces of the plate enable us to consider the similar system
as in [15] but with the unknown contact force in the equation for the deflection
of its middle surface. In its variational form the originally hyperbolic equation
for the deflections is substituted here by the variational inequality, involving
also the geometrical nonlinearities in deflections.

After the formulation of the original problem in Section 2 we give the problem
the variational formulation in Section 3 and analyze the properties of solutions.
In Section 4 the existence theorem 3.5 is proved. First in Subsection 4.1 we
formulate and solve the penalized initial-boundary value problem. Then with
the help of a uniform estimate of the penalty term we achieve a (sub)sequence
converging to a weak solution of the original problem in Subsection 4.2. Section
5 describes the spaces of vector valued measures M (I;V ) and M (I;L2(Ω)) and
the associated space M0(Q) occurring in our proofs. Section 6 proves Theorem
3.6, which analyses the measures representing the contact force and acceleration.
Appendix A in Section 7 fixes our notation of the function spaces. Appendix
B in Section 8 reviews basic notions of vector valued measures. Appendix C in
Section 9 deals with some aspects of our evolution spaces.

2 The model

For convenience of the reader we describe the genesis of the applied model. We
assume a thin isotropic elastic plate occupying the domain

G = {(x1, x2, x3) ∈ R3 : x = (x1, x2) ∈ Ω, |x3| < h/2}.

Its middle plane Ω ⊂ R2 is a bounded star–shaped domain with a piecewise
C2 boundary or the domain with a C3,1 boundary ∂Ω. Further, we work on a
bounded time interval I ≡ (0, T ) and we let Q = I × Ω and S = I × ∂Ω. The
unit outer normal vector is denoted by n = (n1, n2).

The isotropic material of the plate is characterized by the following material
constants:

ρ > 0 the density of the material,
E > 0 the Young modulus,
ν ∈

(
−1, 1

2

)
the Poisson ratio,

c > 0 the specific heat,
λ > 0 the thermal conductivity,
α the thermal expansion coefficient.
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The processes in the plate are described by the displacement u ≡ (u1, u2, u3)
and the deviation τ of temperature from a given constant reference tempera-
ture τ◦. Changes in the displacement and temperature produce stresses σ =
(σi, j)3i, j=1, fluxes of heat q = (q1, q2, q3) and changes in energy, expressed be-
low equivalently by the changes of entropy S. The strain tensor is defined as

εi j =
1
2
(ui,j + uj,i + u3,iu3,j)− x3 u3,ij , i, j = 1, 2; εi 3 ≡ 0, i = 1, 2, 3,

where the comma followed by one or more indices i, j = 1, 2, 3, denotes the
partial derivatives with respect to the components of x = (x1, x2, x3). In the
sequel we shall use the Einstein summation convention. The quantities σ, q,
and S are given by

σi j =
E

1− ν2

(
(1− ν)εi j + νεk kδi j − (1 + ν)ατδi j

)
, i, j = 1, 2,

σi 3 = 0, i = 1, 2, 3,

qi = −λτ, i, q3 = 0, i = 1, 2,

S =
Eα

1− 2ν
εk k +

ρc

τ◦
τ,

see, e.g., [16, Chapter 1]. The evolution of u and τ is governed by the equations
of balance of linear momentum and energy

ρü− div σ = b,

τ◦Ṡ + div q = q

}
on I ×G,

where b is the density of the external force (load), q is the heat source, the
superimposed dot denotes the time derivative, and div is the three dimensional
divergence. To eliminate the x3 variable from these equations, we introduce the
averaged displacement u and the thermal strain resultant function θ by

u(t, x) =
1
h

∫ h/2

−h/2
u3 dx3, θ(t, x) =

1 2α
h3

∫ h/2

−h/2
x3 τ dx3.

Integrating the balance equations and making some approximations [15] we
obtain the simplified form of balance equations

ü− a∆ ü+ b∆2 u+ χ∆ θ − [u, v] = p,

∆2 v + E[u, u] = 0,

θ̇ − κ∆ θ + dθ − e∆ u̇ = q

 on Q,

in which p is the perpendicular force on the plate, q is the appropriately modified
heat source, v is the Airy stress function and ∆ is now the two dimensional
laplacean,

[u, v] ≡ u,11v,22 + u,22v,11 − 2u,12v,12,

where the constants a, b, κ, d, and χ are as follows:

a =
h2

12
, b =

Eh2

12ρ(1− ν2)
, κ =

λ

ρc
, d =

12κ
h2

, e =
κα2τ◦E

λ(1− 2ν)
, χ =

b(1 + ν)
2

.

3



The presence of an obstacle imposes the condition u ≥ 0; further, we write
p = f + g where f is the external force and g the reaction force arising from the
contact with the obstacle, acting only if u = 0, thus imposing the conditions

u ≥ 0, g ≥ 0, ug = 0.

To summarize, we deal with a simply supported plate with zero lateral forces
and zero thermal strain resultant on the boundary, acted upon by the perpen-
dicular load f and the heat source q. The quadruple {u, v, g, θ} represents the
unknown deflection of the middle plane, Airy stress function, contact force be-
tween the plate and the rigid obstacle and the rescaled thermal strain resultant.
The evolution is governed by the following system of equations:

ü− a∆ ü+ b∆2 u+ χ∆ θ − [u, v] = f + g,

u ≥ 0, g ≥ 0, ug = 0,

∆2 v + E[u, u] = 0,

θ̇ − κ∆ θ + dθ − e∆ u̇ = q


on Q, (1)

with the boundary conditions:

u = w, M(u) = 0, v = 0, ∂nv = 0, θ = 0 on S, (2)

M(u) ≡ b∆u+ b(1− ν)(2n1n2u,12 − n2
1u,22 − n2

2u,11), ∂n ≡ ∂/∂n

and the initial data:

u(0, ·) = u0, u̇(0, ·) = v0, θ(0, ·) = θ0 on Ω. (3)

2.1 Remarks
(i) The boundary conditions (2) for simply supported plate and zero bound-

ary thermal stress resultant enable us to derive the a priori estimates in Sec-
tions 4.1 and 4.2, below. It is possible to consider also other types of boundary
conditions with a slightly more complicated way of deriving a priori estimates
unavoidable for the convergence process.

(ii) The assumption of the thermally isolated upper face of the plate may
seem a bit artificial, but the symmetry of assumptions with respect to x3 axis is
inevitable in order to derive the mathematical model with an unknown thermal
strain resultant.

3 Variational formulation of the problem

The singular nature of the set of instants of collision of the plate with the obsta-
cle causes the velocity field u̇ to exhibit jump discontinuities at these instances.
Consequently the acceleration ü is a measure, not absolutely continuous with re-
spect to the Lebesgue measure, at least as the dependence on time is concerned.
For such measures, the values of integrands on sets of Lebesgue measure do mat-
ter. We therefore carefully distinguish between functions defined everywhere on
their domains and the Lebesgue classes of equivalence in the treatment below.
The reader is referred to Appendix 7 for the notation of function spaces.
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3.1 Kinematics We assume that the function w occurring in the boundary
condition (2)1 belongs to H2(Ω). The set of instantaneous values of deflections
u(t, ·) : Ω → R is the set of all nonnegative elements of the set w + V, where

V = H2(Ω) ∩ H̊1(Ω);

the space of instantaneous values of velocity is H̊1(Ω) and of the instantaneous
values of acceleration is L2(Ω). The character of the dependence of these quan-
tities on time is embodied in the definitions of the evolution spaces (5), below.
We introduce the following spaces to facilitate these definitions.

We denote by V ∗ the dual of V , and we let 〈·, ·〉 be the duality pairing
between V and V ∗. Identifying the dual of L2(Ω) with itself, we have the usual
inclusions

V ⊂ L2(Ω) ⊂ V ∗

with compact dense embeddings.

3.1.1 Evolution of deflections

Let Cw(Ī;V ) denote the space of weakly continuous maps from the closure Ī
of I to V, i.e., the set of all u : Ī → V such that the real valued function
t 7→ 〈ξ, u(t)〉 is continuous on Ī for any ξ ∈ V. The evolutions of deflections will
be the nonnegative elements of w + Cw(Ī;V ).

3.1.2 Evolution of velocities

Extending the well known terminology, we say that a map v : Ī → H̊1(Ω)
is weakly regulated if the weak left and right weak limits v(t−) and v(t+)
exist at every point of Ī (with one sided limits only at the endpoints of Ī),
i.e., for each t ∈ Ī there exist elements v(t±) ∈ H̊(Ω) such that 〈F, v(t±)〉 =
lims→t± 〈F, v(s)〉 for every F ∈ H−1(Ω). By Remark 9.2, below, one has v(t+) =
v(t−) everywhere on Ī except at at most countable set of points of Ī . (This
will be proved as a general assertion about regulated maps; however, in the
present case this follows from the fact that v is the velocity whose derivative
[the acceleration] is a measure of a special form.) To remove the ambiguity in
the value v(t) if v(t−) 6= v(t+), we put v(t) := v(t+), obtaining thus a weakly
right continuous weakly regulated map. We denote by Rw(Ī; H̊1(Ω)) the set of
all weakly right continuous weakly regulated maps from Ī to H̊1(Ω).

3.1.3 Evolution of accelerations

Finally, time evolutions of accelerations will be modeled as signed measures on
Q from the space M0(Q) consisting of all measures M ∈ M (Q) such that

∣∣∣∫
Q
ϕdM

∣∣∣ ≤ c|ϕ|C0(I;L2(Ω)) (4)

for some c and all ϕ ∈ C0(Q). By Proposition 5.4 (below) this space can be
identified with the space M0(I;L2(Ω)) of all countably additive L2(Ω) valued
measures of finite variation on I. Corollary 5.5 to Proposition 5.4 explains that
the integral with respect to ü ∈ M0(Q) on the left hand side of (10)1, below, is
meaningful.
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3.1.4 Final forms of evolution spaces

Accordingly, the evolution spaces occurring in the definition of solutions are
defined as follows.

W =
{
p ∈ Cw(Ī;V ) : ṗ ∈ Rw(Ī; H̊1(Ω)), p̈ ∈ M0(Q)

}
,

X =
{
θ ∈ C(Ī;L2(Ω)) ∩ L2(I; H̊1(Ω)) : θ̇ ∈ L2(I;H−1(Ω))

}
,

K =
{
y ∈ w + Cw(Ī;V : y ≥ 0 on Q

}
,

Y =
{
u ∈ w + W : u ≥ 0

}
.


(5)

The superimposed dots now denote the time derivatives in the sense of distri-
butions. Y is the space of deflections, defined as a shifted cone in terms of W .
K is the space of test–deflections occurring in the variational inequality. With
some license, we can define W by

W =
{
p ∈ L∞(I;V ) : ṗ ∈ L∞(I; H̊1(Ω)), p̈ ∈ M0(Q)

}
(6)

where now p and ṗ are Lebesgue classes of equivalence. It will be shown in
Remark 9.6, below, that it is possible to choose unique representatives p and ṗ
as in (5)1. Similarly, the space of temperatures X consists of preferred repre-
sentations of the space

X =
{
θ ∈ L2(I; H̊1(Ω)) : θ̇ ∈ L2(I;H−1(Ω))

}
(7)

as is well known, e.g., [10, Chapter IV, Theorem 1.17], [9, Theorem 3, Chapter
5].

To proceed to the variational formulation of the problem, we eliminate the
Airy stress function v, introduce an abbreviation Λ(u, θ) for an integral which
occurs frequently in the treatment below, and summarize useful properties of
the elliptic operator 1− a∆.

3.2 Lemma
(i) ([13, Lemma 1]) There exists a bilinear map Φ : H2(Ω)2 → H̊2(Ω) such

that for each u, v ∈ H2(Ω) the value Φ(u, v) is the unique solution of the
variational equation∫

Ω
∆ Φ(u, v) ∆ϕdx =

∫
Ω
[u, v]ϕdx for all ϕ ∈ H̊2(Ω).

The map Φ is compact and symmetric. One has Φ : H2(Ω)2 → W 2
p (Ω),

2 < p <∞, and

|Φ(u, v)|W 2
p (Ω) ≤ c|u|H2(Ω)|v|W 1

p (Ω) for all u ∈ H2(Ω), v ∈W 1
p (Ω). (8)

(ii) If f ∈ L2(Q) then for each (u, θ) ∈ W ×X there exists an element

Λ(u, θ) ∈ L2(I;V ∗) (9)

such that

〈Λ(u, θ)(t), λ〉 = −
∫
Ω

(
A(u, λ)− χ∇θ · ∇λ+ E [u,Φ(u, u)]λ− fλ

)
dx

6



for a.e. t ∈ I and every λ ∈ V, where

A(u, λ) = b
(
u,11λ,22 +u,22λ,22

+ν(u11λ22 + u22λ11) + 2(1− ν)u12λ12

)
and we abbreviate u = u(t), θ = θ(t), f = f(t).

(iii) Let 1 be the identity map on V . Then
(a) the operator 1−a∆ maps continuously and bijectively the space V onto

L2(Ω);
(b) its inverse (1−a∆)−1 : L2(Ω) → V , its adjoint (1−a∆)∗ : L2(Ω) → V ∗

and the inverse of the adjoint (1−a∆)−∗ : V ∗ → L2(Ω) are continuous
and bijective also;

(c) (1 − a∆)−1 maps nonnegative functions from L2(Ω) into nonnegative
functions from V ;

(d) defining nonnegative elements γ ∈ V ∗ as those satisfying 〈γ, λ〉 ≥ 0
for every nonnegative function λ ∈ V, we have that (1− a∆)−∗ maps
nonnegative elements of V ∗ into nonnegative functions from L2(Ω).

The symmetry of 1− a∆ and of its inverse reads

(1− a∆)∗|V = 1− a∆, (1− a∆)−∗|L2(Ω) = (1− a∆)−1;

therefore, it is customary to use the same expression for a symmetric differential
operator and its adjoint; however, we do not follow this since the domains of
the two operators are different.

Proof (ii): Using the definitions of K , W , and X and straightforward
Hölder estimates, it is easily seen that for a.e. t ∈ I the right hand side defines a
continuous linear functional on V , i.e., an element of V ∗, and the same estimates
show that we have the relation (9).

(iii) (a): This is just the existence and uniqueness of the solution of the
Dirichlet problem for the elliptic equation (1− a∆)u = f with f ∈ L2(Ω), see,
e.g., [11, Theorem 9.15], under the assumption that ∂Ω is of class C1,1, which
is covered by our assumptions.

(b): The assertions are consequences of (a). For example, the continuity of
(1− a∆)−1 follows from Banach’s inverse mapping theorem and the rest of (ii)
is just the continuity of adjoints.

(c): & (d) follow from the weak maximum principle for elliptic operators
[11, Theorem 8.1], which gives (c), and by a dualization of (c), which is (d). �

Lemma 3.2 enables us to reformulate the variational formulation of the sys-
tem (1)–(3) in the following form:

3.3 Problem P Find (u, θ) ∈ Y ×X such that∫
Q

(1− a∆)(y − u) dü−
∫
I
〈Λ(u, θ), y − u〉 dt ≥ 0,∫

I

〈
θ̇, z

〉
dt+

∫
Q

( dθz + κ∇θ · ∇z + e∇u̇ · ∇z)dt dx =
∫
Q
qz dt dx

 (10)

for every (y, z) ∈ K × L2(I; H̊1(Ω)) and

u(0) = u0, u̇(0) = v0, θ(0) = θ0.
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In view of Definitions (5), the initial values of the deflection and velocity u(0)
and u̇(0) are well defined. The data of the problem are assumed to satisfy the
following

3.4 Hypothesis Let

w ∈ H2(Ω), w(x) ≥ wmin > 0 for all x ∈ Ω; w|∂Ω = u0|∂Ω,

u0 ∈ H2(Ω), u0 ≥ 0 on Ω; v0 ∈ H̊1(Ω), θ0 ∈ L2(Ω),

f, q ∈ L2(Q).

 (11)

In the subsequent treatment we shall prove the following two theorems, the
main results of the paper.

3.5 Theorem Under Hypotheses (11) there exists a solution of Problem P.

The following proposition introduces the reaction force G between the plate
and the rigid obstacle for any solution of the contact problem Let M +

1 (Q) be
the set of all nonnegative Radon measures M on Q (not necessarily finite) such
that∫

Q
|q| dM ≤ c|q|C0(I;V ) for some c and each q ∈ C0(I;V ) ⊂ C0(I;C0(Ω))

(12)
where the last inclusion, which makes the integral in (12) unambiguous, follows
from the imbedding V ⊂ C0(Ω), well known from the theory of Sobolev spaces.
Condition (12) is automatically satisfied if M is finite.

3.6 Theorem For every solution (u, θ) ∈ Y ×X of P we have the following
statements.
(i) There exists a unique nonnegative measure G ∈ M +

1 (Q) such that
∫
Q

(1− a∆)p dü−
∫
I
〈Λ(u, θ), p〉 dt =

∫
Q
p dG (13)

for every p ∈ C0(I;V ).
(ii) The Lebesgue decomposition

ü = ür + üs (14)

into the absolutely continuous part ür (with respect to L 3) and the singular
part üs (with respect to L 3) has the form

ür = hL 3 Q, üs = π φ⊗L 2 Ω (15)

where h ∈ L1(I;L2(Ω)) and φ is a finite nonnegative measure on I sup-
ported by a L 1 null set J ⊂ I and π ∈ L1(φ;L2(Ω)), π ≥ 0. Here
denotes the restriction of a measure, see (55), below. Thus üs is supported
by a L 3 null set whose projection onto the time axis I has a null L 1

measure.
(iii) If G1 is the restriction of G to J × Ω then

üs = (1− a∆)−∗G1 (16)
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in the sense of distributions, i.e.,∫
Q
ϕdüs =

∫
Q

(1− a∆)ϕdG1

for each ϕ ∈ D(Q).
(iv) The supports of üs and G are contained in the contact zone

C =
{
(t, x) ∈ Q : u(t, x) = 0

}
.

The countable set of times t of jump discontinuities of u̇ coincides with the set
of atoms of φ (where φ(

{
t
}
) > 0). Thus

u̇(t, ·)− u̇(t−, ·) = π(t, ·)φ(
{
t
}
) ≥ 0.

The sign corresponds to the intuitive idea that the plate is bounced off the
obstacle. The compatibility of the picture requires u̇(t, ·) − u̇(t−, ·) ∈ H̊1(Ω)
despite the fact that the measure üs generally ranges only in L2(Ω).

4 Proof of Theorem 3.5

4.1 Penalized problem

For any η > 0 we formulate the penalized problem

ü− a∆ ü+ b∆2 u+ χ∆ θ − [u, v] = f + η−1u−,

∆2 v + E[u, u] = 0,

θ̇ − κ∆ θ + dθ − e∆ u̇ = q

 on Q,

and the initial conditions (3) hold. The problem has the following variational
formulation after applying the bilinear operator Φ in the same way as above:

4.1 Problem Pη Find (u, θ) ∈ (w + L∞(I;V ))×X with u̇ ∈ L∞(I; H̊1(Ω))
and ü ∈ L2(Q) such that

∫
Q
ü(1− a∆)y dt dx−

∫
I
〈Λ(u, θ), y〉 dt− η−1

∫
Q
u−y dt dx = 0,∫

Ī

〈
θ̇, z

〉
dt+

∫
Q

( dθz + κ∇θ · ∇z + e∇u̇ · ∇z)dt dx =
∫
Q
qz dt dx

 (17)

for every (y, z) ∈ L2(I;V )× L2(I; H̊1(Ω)) and the initial conditions (3) hold.

We shall verify the existence of a solution to the penalized problem.

4.2 Theorem For every η > 0 there exists a solution {u, θ} of Problem Pη.

Proof Let us denote by {vi ∈ V ; i ∈ N} a basis of V orthonormal with respect
to the inner product

(u, y)a =
∫
Ω
(uy + a∇u · ∇y) dx, u, y ∈ H̊1(Ω)

9



and by {wi ∈ H̊1(Ω); i ∈ N} a basis of H̊1(Ω), orthonormal with respect to
the standard inner product in L2(Ω). We construct the Galerkin approximation
{um, θm} of a solution in the form

um(t) = w +
m∑

j=1

αj(t)vj ; θm(t) =
m∑

j=1

βj(t)wj ; {αj(t), βj(t)} ∈ R2, t ∈ I,

j = 1, ...,m, to satisfy the following system of equations∫
Ω
(ümvi + a∇üm · ∇vi) dx+ 〈Λ(um, θm), vi〉 =

∫
Ω
(η−1u−m + f) vi dx, (18)

∫
Ω

(
θ̇mwi + κ∇θm · ∇wi + dθmwi + e∇u̇m · ∇wi

)
dx =

∫
Ω
qwi dx, (19)

i = 1, ...,m, and the initial conditions

um(0) = u0m, u0m → u0 in H2(Ω);

u̇m(0) = v0m, v0m → v0 in H̊1(Ω);

θm(0) = θ0m, θ0m → θ0 in L2(Ω).

(20)

The initial value problem (18)–(20) fulfils the conditions for the local existence
of solution {um, θm} on some interval Im ≡ [0, tm], 0 < tm < T.

Let us set γ = χ/e. To derive the a priori estimates for solutions of (18)–(20)
we multiply the equations (18) by α̇i(t) and (19) by γβi(t), respectively, sum
with respect to i, and integrate on [0, tm]. Taking in mind∫

Ω
[u, v]y dx =

∫
Ω
[u, y]v dx

if at least one element of {u, v, y} belongs to H̊2(Ω) (cf. [4, Lemma 2.2.2,
Chapter 2]), we obtain after integrating for Qm := Im × Ω the relation

∫
Qm

[1
2
∂t

(
u̇2

m + a|∇u̇m|2 +A(um, um) + E(∆ Φ(um, um))2/2

+γθ2m + η−1(u−m)2
)
+ γ(κ|∇θm|2 + dθ2m)

]
dt dx

=
∫
Qm

(fu̇m + γ q θm) dt dx,

which leads to the estimate

|u̇m|2L∞(I;H̊1(Ω))
+ |um|2L∞(I;H2(Ω)) + |Φ(um, um)|2L∞(I;H2(Ω))

+η−1|u−m|2L∞(I;L2(Ω)) + |θm|2L∞(I;L2(Ω)) + |θm|2L2(I;H̊1(Ω))

≤ C1 ≡ C1(f, q, u0, v0, θ0).

(21)

The prolongation to the whole interval I is due to the fact that the original
estimate for Im does not depend on m. Moreover the estimate (8) implies

|Φ(um, um)|L∞(I;W 2
p (Ω)) ≤ cp ≡ cp(f, u0, u1) for all p > 2.

The estimate (21) further implies that with r = 2p/(p+ 2) we have

[um,Φ(um, um)] ∈ L2(I;Lr(Ω)),∣∣∣[um,Φ(um, um)]
∣∣∣
L2(I;Lr(Ω))

≤ cr ≡ cr(f, u0, u1).
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From the equation (19) we obtain straightforwardly the estimate

|θ̇m|L2(I;Wm
∗) ≤ C2(f, q, u0, v0, θ0), m ∈ N, (22)

where Wm ⊂ H̊1(Ω) is the linear hull of {wi}m
i=1. From (18) we obtain

|(1− a∆)∗üm|2L2(I;Vm
∗) ≤ C3(η), m ∈ N, (23)

where Vm ⊂ H2(Ω) is the linear hull of {vi}m
i=1.

We proceed with the convergence of the Galerkin approximation. Applying
the estimate (21), the compact embedding theorem and interpolation in Sobolev
spaces we obtain on the base of the well known Alaoglu principle used for duals of
separable Banach spaces the existence of subsequences of {um}, {θm} (denoted
again by {um}, {θm}), and functions u, θ with the convergences

um ⇀∗ u in L∞(I;H2(Ω)),

u̇m ⇀∗ u̇ in L∞(I; H̊1(Ω)),

θm ⇀∗ θ in L∞(I;L2(Ω)),

θm ⇀ θ in L2(I; H̊1(Ω)).


(24)

The estimates (22), (23) imply the convergences

θ̇m ⇀ θ̇ in L2(I;W ∗), (25)

(1− a∆)∗üm ⇀ (1− a∆)∗ü in L2(I;Y ∗), (26)

where W =
⋃

m∈NWm, W = H̊1(Ω) and Y =
⋃

m∈N Vm, Y = V. The conver-
gences (25), (26) imply

|θ̇m|L2(I;H−1(Ω)) ≤ C2(f, q, u0, v0, θ0), m ∈ N, (27)

θ̇m ⇀ θ̇ in L2(I;H−1(Ω)), (28)

|(1− a∆)∗üm|2L2(I;V ∗) ≤ C3(η), m ∈ N. (29)

Moreover we obtain from (29) a better acceleration estimate

|üm|L2(Q) ≤ C4(η) (30)

and the convergence
üm ⇀ ü in L2(Q) (31)

for a chosen subsequence denoted again by {üm}. We note that (29) implies (30)
since (cf. [1])

|üm|L2(Q) = |(1− a∆)−∗(1− a∆)∗üm|L2(Q) ≤ c|(1− a∆)∗üm|L2(I;V ∗)

as (1− a∆)−∗ : V ∗ → L2(Ω) is bounded, see Lemma 3.2(iii).
The estimate (30) implies after considering (24) the uniform convergences

um → u in C(Ī;H2−ε(Ω)),

u̇m → u̇ in C(Ī;H1−ε(Ω))
(32)

11



and the convergences

Φ(um, um) → Φ(u, u) in L2(I;H2(Ω)),

Φ(um, um) ⇀∗ Φ(u, u) in L∞(I;W 2
p (Ω)).

(33)

In fact to get the first two uniform convergences we use the following pattern:
we start from the proved weak convergences of the time and space derivatives.
The standard extension technique (cf. e.g. [8]) allows to extend in an appropri-
ate way all the employed functions from their domains to the whole spaces. The
Fourier transform and the suitable use of the Hölder inequality allows to prove
the week convergences in the spaces H1/2+ε(I;Hr(Ω)) for a small ε > 0 with
r ↗ 1 for u and r ↗ 1/2 for u̇ as ε↘ 0. The compact embedding of such spaces
to C(Ī;Hr′(Ω)) valid for any r′ < r gives the starting strong convergence. Then
we use the interpolation of this with the results in (24) and we are done. The
last two convergences are based on the previous ones and estimates from [13].

Let µ ∈ N, yµ =
∑µ

i=1 φi(t)vi, zµ =
∑µ

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ.
We have for arbitrary t ∈ I the relations∫

Ω
üm(1− a∆)yµdx+ 〈Λ(um, θm)(t), yµ〉 −

∫
Ω
η−1umyµ dx =

∫
Ω
fyµ dx,

∫
Ω

(
θ̇mzµ + κ∇θm · ∇zµ + dθmzµ + e∇u̇m · ∇zµ

)
dx =

∫
Ω
qzµ dx, for all m ≥ µ.

The convergences (24), (28), (31) imply that functions {u, θ} ∈ (w+L∞(I;V ))×
L2(I; H̊1(Ω)) fulfil

∫
Q
ü(1− a∆)yµdt dx+ 〈Λ(u, θ)(t), yµ〉 −

∫
Ω
η−1uyµ dt dx =

∫
Q
fyµ dt dx, (34)

∫
Q

(
θ̇zµ + κ∇θ · ∇zµ + dθzµ + e∇u̇ · ∇zµ

)
dt dx =

∫
Q
qzµ dt dx. (35)

The functions {yµ}, {zµ} form dense subsets of the spaces L2(I;V ) and L2(I;
H̊1(Ω)) respectively. Then we obtain from (34), (35) the relations (17). More-
over the relation θ ∈ L2(I; H̊1(Ω))∩H1(I;H−1(Ω)) implies θ ∈ C(Ī;L2(Ω)) ([9,
Theorem 3, Chapter 5]). The convergence (28), the uniform convergence (32),
a continuity of t 7→ θ(t) ∈ H−1(Ω) and the properties (20) imply the initial
conditions (3) and the proof of the existence of a solution is complete.

4.2 Solvability of the original problem

The estimates (21), (27) imply the following η-independent estimates:

|u̇η|2L∞(I;H̊1(Ω))
+ |uη|2L∞(I;H2(Ω)) + |Φ(uη, uη)|2L∞(I;W 2

p (Ω)) + η−1|u−η |2L∞(I;L2(Ω))

+|θη|2L∞(I;L2(Ω)) + |θη|2L2(I;H̊1(Ω))
+ |θ̇η|2L2(I;H−1(Ω)) ≤ C5,

(36)
C5 ≡ C5(f, q, u0, v0, θ0) for a solution {uη, θη}, η > 0, of the penalized problem.
The acceleration term üη does not appear in (36). It is then suitable to transform
the penalized relation (17)1 using the integration by parts with respect to t. We

12



obtain the system∫
I
〈Λ(uη, θη), y〉 dt −

∫
Q

(1− a∆)u̇η ẏ dt dx+
∫
Ω
(1− a∆)u̇η y(T, ·) dx

=
∫
Ω
(1− a∆)v0 y(0, ·) dx+

∫
Q

(f + η−1u−η )y dt dx,∫
Q

(
θ̇ηz + κ∇θη · ∇z + dθηz + e∇u̇η · ∇z

)
dt dx =

∫
Q
qy dt dx


(37)

holding for any {y, z} ∈ L2(I;V ) × L2(I; H̊1(Ω)) with ẏ ∈ L2(I; H̊1(Ω)). We
derive the following crucial η−independent estimate of the penalty term η−1u−η .
Applying Assumptions (11) and the definition of u−η we obtain

0 ≤ wmin

∫
Q
η−1u−η dt dx ≤

∫
Q
η−1u−η w dt dx ≤

∫
Q
η−1u−η (w − uη) dt dx

based on its sign. After inserting y = w − uη in (37)1 and invoking estimates
(36) we achieve the crucial estimate

|η−1u−η |L1(Q) ≤ C6 ≡ C6(f, q, u0, v0, θ0). (38)

By this estimate we have üη ∈ L1(I;V ∗) for each η > 0. Abbreviating Λη =
Λ(uη, θη), we rewrite (34) in the form

∫
Q

(1− a∆)∗üηp dt dx =
∫
I
〈Λη, p〉 dt+

∫
Q
η−1u−η p dt dx+

∫
Q
fp dt dx

for every p ∈ C0(I;V ). There exists a unique measure gη ∈ M (I;V ∗) such that∫
I
〈p, dgη〉 =

∫
Q
η−1u−η p dt dx for every p ∈ C0(I;V ). Then

(1− a∆)∗üηL 1 I = ΛηL 1 I + gη (39)

and estimates (36) and (38) give

|Λη|L2(I;V ∗) ≤ C7, |gη|M (I;V ∗) ≤ C8 (40)

for some constants C7 = C7(f, q, u0, v0, θ0), C8 = C8(f, q, u0, v0, θ0) and all
η > 0. The application of the bounded operator (1 − a∆)−∗ to (39) yields by
Lemma 3.2(iii) also

|üηL 1 I|M (I;L2(Ω)) ≤ c (41)

for some c <∞ and all η > 0.
We now choose arbitrary sequence ηk → 0 and write (·)k := (·)ηk

. Using
the estimates (36), (38), and (40), on the basis of the Alaoglu principle there
exist functions {u, θ} ∈ (w + L∞(I;V )) × [L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω))] and
measures g ∈ M (I;V ∗) and G ∈ M (Q) such the following convergences hold
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up to a subsequence:

uk ⇀
∗ u in w + L∞(I;V ),

uk → u uniformly in C(clQ),

u̇k ⇀
∗ u̇ in L∞(I; H̊1(Ω)),

ükL 1 I ⇀∗ ü in M (I;L2(Ω)),

uk → u in C(I;H2−ε(Ω)) for any ε > 0,

gk ⇀
∗ g in M (I;V ∗)

η−1u−k L 3 ⇀∗ G in M (Q),

Φ(uk, uk) → Φ(u, u) in L2(I;H2(Ω))),

Φ(uk, uk) ⇀∗ Φ(u, u) in L∞(I;W 2
p (Ω)),

θk ⇀
∗ θ in L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω)),

θ̇k ⇀ θ̇ in L2(I;H−1(Ω)),

Λk ⇀ Λ in L2(I;V ∗)



(42)

where Λ = Λ(u, θ). As mentioned above, the weak∗ convergences follow from
the estimates, where we use the identifications (6) and (7) and where we note
that a priori the sequences u̇k, ük and θ̇k weak∗ converge to some limits which
only subsequently turn out to be u̇, ü and θ̇ by the linearity of the definitions
of weak derivatives. The convergence (42)2 is a consequence of Aubin’s lemma
(see (64), below). The strong convergences are derived in the same way as in
(32) and (33) (observe that the strong convergence for u̇ is missing here). The
above convergences prove the initial conditions u(0, ·) = u0, θ(0, ·) = θ0 and
u̇(0, ·) = v0.

We now complete the proof of Theorem 3.5. The uniform convergence (42)2
implies u±k → u± uniformly. On the other hand, (38) implies that u−k → 0
for a.e. point of Q and hence u−k → 0 uniformly on clQ. Thus the limit u is
nonnegative and

u+
k → u uniformly in clQ. (43)

We have
∫
Q
u+

k η
−1u−k dt dx = 0 and thus using the limits (43) and (42)7 we

obtain ∫
Q
u dG = 0.

The limit with (39) provides

(1− a∆)∗ü = ΛL 1 I + g

where
∫
I
〈p, dg〉 =

∫
Q
p dG for every p ∈ C0(I;V ). Then for y ∈ K

∫
Q

(1− a∆)(y − u) dü−
∫
I
〈Λ(u, θ), y − u〉 dt =

∫
Q

(y − u) dG =
∫
Q
y dG ≥ 0,

i.e., we have (10)1. A similar but easier proof applies to the proof of (10)2. �
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5 Measures in M (I; V ), M (I; L2(Ω)) and M0(Q)

The contact force and the acceleration as treated above are measures generally
not absolutely continuous with respect to the Lebesgue measure. The subse-
quent treatment will show that these quantities are most naturally modeled as
elements of the spaces M (I;V ∗) and M (I;L2(Ω)) of vector valued measures
on I ranging in V ∗ and L2(Ω), respectively. The reader is referred to Appendix
B (Section 8) for details on vector valued measures.

5.1 Definition A measure ν ∈ M (I;V ∗) is said to be nonnegative if
∫
I
〈p, dν〉 ≥

0 for every p ∈ C0(I;V ) such that p ≥ 0.

We determine all nonnegative measures in M (I;V ∗), which will be helpful in
analyzing the contact force between the plate and the obstacle. The result is
not entirely straightforward, see (46), below.

To formulate the next result, we recall that Ω is assumed to be a bounded
two-dimensional manifold which is either star–shaped with a piecewise class C2

boundary or possesses a class C3,1 boundary (cf. requirements in [13]). We
denote by C2

pw(∂Ω) the set of all piecewise class C2 functions on ∂Ω. Then in
accordance with the system of notation summarized in Appendix A (Section
7, below), C0(I;C2

pw(∂Ω)) is the set of all continuous maps p : R → C2
pw(∂Ω)

(continuous in time with respect to the norm of C2
pw(∂Ω)) such that p = 0

outside I.

5.2 Lemma For every κ ∈ C0(I;C2
pw(∂Ω)) there exists a function p ∈ C0(I;V )

with the restriction of p to I × ∂Ω in C0(I;C2
pw(∂Ω)) such that

−∇p · n = κ (44)

everywhere on I×∂Ω with the exception of the corner points of ∂Ω. This function
can be chosen nonnegative if κ is nonnegative. Actually, there exists a uniformly
bounded sequence of nonnegative functions pk ∈ C0(I;C2

pw(∂Ω)) such that

−∇pk · n = κ on I × ∂Ω and

pk → 0 pointwise on Q

 (45)

with the exception of the corner points of ∂Ω. Recall that n is the outer normal
to ∂Ω.

Proof To simplify the notation, assume that ∂Ω is of class C2 and κ ∈
C0(I;C2(∂Ω)). (The case of piecewise class C2 boundary and κ ∈ C0(I;C2

pw(∂Ω))
involves minor modifications.) The restriction ω of dist(·, ∂Ω) to cl Ω is class
C2 in a neighborhood N of ∂Ω with ω = 0 and ∇ω = −n on ∂Ω. For the
given κ ∈ C0(I;C2

pw(∂Ω)) let κ̃ ∈ C0(I;C2(cl Ω)) be any extension of κ such
that κ̃ = 0 on Q \ I × N, chosen nonnegative if κ is nonnegative. Thus we
require κ̃(t, x) = κ(t, x) for every (t, x) ∈ I × ∂Ω ⊂ I × cl Ω and κ̃(t, x) 6= 0
only if (t, x) ∈ I ×N. The function κ̃ is easy to construct by locally flattening
∂Ω by a class C2 diffeomorphism Φ, performing an (easy) construction of κ̃ in
the flattened picture, returning back to the curved ∂Ω via Φ−1, and then to
globalize the local construction using the compactness of ∂Ω and partition of
unity.
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Then p := κ̃ω satisfies (44). Further, let ψk : cl Ω → [0, 1] be any sequence
of functions on clQ such that each ψk is equal to 1 in a neighborhood I × Nk

of I × ∂Ω and ψk → 0 pointwise on Q. Then pk := ψkp satisfies (45). �

5.3 Proposition A measure ν ∈ M (I;V ∗) is nonnegative if and only if there
exists a unique measure G ∈ M +

1 (Q), a unique finite nonnegative measure ζ on
I and a unique function F ∈ L∞(I;L2(∂Ω), ζ) with

|F (t)|L2(∂Ω) = 1 for ζ almost every t ∈ I

such that ∫
I
〈p, dν〉 =

∫
Q
p dG−

∫
I

∫
∂Ω
F (t)∇p(t) · n dH 1dζ(t) (46)

for every p ∈ C0(I;V ). Here H 1 is the length element on ∂Ω.

Proof Uniqueness: Let Gi, Fi and ζi, i = 1, 2, be two pairs corresponding to
the same ν. Then in particular

∫
Q
p dG1 =

∫
Q
p dG2 for each p ∈ C0(I;V ) such

that the support of p is in I × Ω. Then G1 = G2. Consequently,∫
I

∫
∂Ω
F1(t)∇p(t) · n dH 1dζ1(t) =

∫
I

∫
∂Ω
F2(t)∇p(t) · n dH 1dζ2(t)

for each p ∈ C0(I;V ). By Lemma 5.2 then∫
I

∫
∂Ω
F1(t)κ dH 1dζ1(t) =

∫
I

∫
∂Ω
F2(t)κ dH 1dζ2(t)

for every κ as in the statement of that lemma. This implies that the signed
measures F1ζ1 and F2ζ2 coincide; the condition |F1(t)|L2(∂Ω) = |F2(t)|L2(∂Ω) = 1
then gives ζ1 = ζ2 and F1(t) = F2(t) at ζ1 = ζ2 almost every point t of I.

Sufficiency: If ν is of the form (46) then ν is nonnegative. Indeed, if p ∈
C0(I;V ) is a nonnegative function then the first term on the right hand side of
(46) is clearly nonnegative while the second term is nonnegative since ∇p(t)·n ≤
0 on I × ∂Ω since p vanishes on I × ∂Ω and is nonnegative on I × Ω.

Necessity: We prove the existence of the measure G and the function F as
follows. The restriction of the functional p 7→

∫
I
〈p, dν〉 to p from D(Q) gives a

nonnegative Schwartz’s distribution and hence by the well known theorem on
nonnegative distributions [19, Theorem III] there exists a nonnegative measure
G on Q such that ∫

I
〈p, dν〉 =

∫
Q
p dG (47)

for every p ∈ D(Q). We now extend (47) to all p ∈ C0(I; H̊2(Ω)) as follows.
If p ∈ C0(I; H̊2(Ω)), there exists a sequence pk ∈ D(Q) such that pk → p in
C0(I;V ) and in particular, pk → p uniformly on Q is view of the embedding
H̊2(Ω) into C(cl Ω). Then∫

Q
pk dG =

∫
I
〈pk, dν〉 →

∫
Q
p dG and

∫
I
〈pk, dν〉 →

∫
I
〈p, dν〉

and thus (47) holds. The continuity gives (12).
To complete the proof of (46), note that

p 7→
∫
I
〈p, dν〉 −

∫
Q
p dG
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a continuous linear functional on C0(I;V ). Theorem 8.5 then gives a measure
νb ∈ M (I;V ∗) such that

∫
I
〈p, dνb〉 =

∫
I
〈p, dν〉 −

∫
Q
p dG

for every p ∈ C0(I;V ). Since (47) holds for all p ∈ C0(I; H̊2), we have
∫
I
〈p, dνb〉 = 0 for every p ∈ C0(I; H̊2(Ω)).

We shall prove that as a consequence,∫
I
〈p, dνb〉 = −

∫
I

∫
∂Ω
F (t)∇p(t) · n dH 1dζ(t) (48)

for every p ∈ C0(I;V ) where F and ζ are as in the statement of the proposition
except the nonnegativity. By the general form of a general measure in M (I;V ∗)
we have νb = γb|νb|V ∗ where γb : I → V ∗ is |νb|V ∗ integrable map. Property
(47) gives that

〈γb(t), λ〉 = 0

for each λ ∈ H̊2(Ω) and |νb|V ∗ almost every t ∈ I. Fix such a t and put γ = γb(t)
for brevity. Prove that there exists a function f ∈ L2(∂Ω) such that

〈γ, λ〉 = −
∫
∂Ω
f∇λ · n dH 1 (49)

for each λ ∈ V. The function f is determined uniquely. Since the scalar product

(λ1, λ2) ≡
∫
Ω

∆λ1 ·∆λ2 dx

gives rise to the norm equivalent to the standard norm on V, by the Riesz
representation theorem for Hilbert spaces there exists a σ ∈ V such that

〈γ, λ〉 = (σ, λ) =
∫
Ω

∆σ ·∆λ dx

for each λ ∈ V. Denoting f := −∆σ ∈ L2(Ω), the condition 〈γ, λ〉 = 0 for each
λ ∈ H̊2(Ω) is seen to imply that

∆ f = 0 (50)

on Ω in the sense of distributions. The conditions f ∈ L2(Ω), ∆ f = 0 ∈ L2(Ω)
are known to imply f ∈ H2(Ω). Since

∫
Ω
∇f · ∇λ dx = −

∫
Ω

∆ f · λ dx = 0

by (50), Green’s theorem then gives

〈γ, λ〉 = −
∫
Ω
f ∆λ dx = −

∫
∂Ω
f∇λ · n dH 1.

Thus we have (49) with f the trace of f on ∂Ω. Consequently we have (48) by
putting F (t) = f/|f |L2(∂Ω), ζ = |f |L2(∂Ω)|νb|.
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We complete the proof by showing that F is nonnegative. We invoke Lemma
5.2 to this end. Let κ be a nonnegative function as in that lemma and let pk be
the sequence assured by the statement of lemma. Then∫

I
〈pk, dν〉 =

∫
Q
pk dG−

∫
I

∫
∂Ω
F (t)∇pk(t) · n dH 1dζ(t)

=
∫
Q
pk dG+

∫
I

∫
∂Ω
F (t)κ(t) dH 1dζ(t) ≥ 0.

Since
∫
Q
pk dG→ 0, we must have

∫
I

∫
∂Ω
F (t)κ(t) dH 1dζ(t) ≥ 0 and the arbi-

trariness of κ ≥ 0 gives F (t) ≥ 0. �

For each M ∈ M0(Q) denote by |M |M0(Q) the smallest constant such that
(4) holds. Then | · |M0(Q) is a norm which converts M0(Q) into a Banach space.
We have the following statements in which we identify maps p : I → L2(Ω) with
real valued functions p : Q→ R:

5.4 Proposition
(i) the space M0(Q) is isometrically isomorphic to the space M (I;L2(Ω)) un-

der the identification of M ∈ M (Q) with µ ∈ M (I;L2(Ω)) by the require-
ment that ∫

I
(p, dµ)L2(Ω) =

∫
Q
p dM (51)

for each p ∈ C0(Q);
(ii) under the above identification of M and µ, a general map p : I → L2(Ω) is

|µ|L2(Ω) integrable if and only if p is M integrable and then (51) holds.

Proof (i): Since C0(Q) is dense in C0(I;L2(Ω)), by Inequality (4) for any
M ∈ M0(Q) the functional p 7→

∫
Q
p dM extends by continuity to a functional

F0 on C0(I;L2(Ω)). By Theorem 8.5 that functional has a representation in
terms of a measure µ ∈ M (I;L2(Ω)) as in (51).

Conversely, given µ ∈ M (I;L2(Ω)), then by restricting the functional p 7→∫
I
(p, dµ)L2(Ω) from C0(I;L2(Ω)) to C0(Q) one obtains a functional F that sat-

isfies

|F (p)| ≤ |µ|M (I;L2(Ω))|p|C0(I;L2(Ω)) ≤ |µ|M (I;L2(Ω))L
2(Ω)|p|C0(Q).

Thus the scalar Riesz representation theorem gives a measure M as in (51).
One then has∣∣∣∫

Q
p dM

∣∣∣ =
∣∣∣∫

I
(p, dµ)L2(Ω)

∣∣∣ ≤ |µ|M (I;L2(Ω))|p|C0(I;L2(Ω))

and hence M ∈ M0(Q) as we have (4).
This establishes a one to one correspondence between the measures M and

µ. An easy examination of the involved constants shows that the correspondence
is isometric.

(ii): By Subsection 8.4(c), the measure µ has the form µ = π|µ|L2(Ω) where
π : I → L2(Ω) is |µ|L2(Ω) integrable and |π(t)|L2(Ω) = 1 for |µ|L2(Ω) almost every
t ∈ I. Therefore, if we define the measure M1 := π|µ|L2(Ω)⊗(L 2 Ω) ∈ M (Q),
then ∫

I
(p, dµ)L2(Ω) ≡

∫
I
(p, π)L2(Ω)d|µ|L2(Ω) =

∫
Q
p dM1
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for each p ∈ C0(Q). Equation (51) then gives∫
Q
p dM1 =

∫
Q
p dM

for each p ∈ C0(Q). The uniqueness assertion in the scalar Riesz representation
theorem in the class of regular signed measures (see, e.g., [18, Theorem 6.19])
and the fact that finite measures on Rn are automatically regular ([18, Theorem
2.18]) implies that the measures M and M1 are the same. Thus M1(B) = M(B)
for each Borel subset of Q. This extends the validity of (51) to characteristic
functions of Borel subsets of Q; hence to simple functions, and as any integrable
function is the limit of simple functions, we have (51) generally. We leave the
details to the reader. �

5.5 Corollary
(i) The class M0(Q) permits only the following ambiguity of integrands: if p1,

p2 are two Borel measurable scalar functions on Q then∫
Q
p1 dM =

∫
Q
p2 dM (52)

for all M ∈ M0(Q) if and only if

for every t ∈ I we have p1(t, x) = p2(t, x) for L 2 almost every x ∈ Ω.
(53)

(ii) If p : I → L2(Ω) is a weakly continuous norm bounded map then p is
M integrable for any M ∈ M0(Q); in particular, if p ∈ Cw(Ī;V ) then
t 7→ (1 − a∆)p(t) is a weakly continuous map from Ī to L2(Ω) and hence
M integrable for any M ∈ M0(Q).

Proof (i): If f ∈ L2(Ω), t ∈ I, and δt is the Dirac measure at t, then
M := fδt⊗L 2 Ω ∈ M0(Q); hence testing (52) on this M and varying f and t
yields (53). Conversely, invoking the integrability of p1 an p2 with respect to any
M ∈ M0(Q), the particular case of M as above yields p1(t, ·), p2(t, ·) ∈ L2(Ω)
for any t ∈ I, Equation (53) then guarantees that p1 and p2, are the same maps
from I → L2(Ω) and thus (52) holds for any M ∈ M0(Q) by the identification
in Item (i).

(ii): Let µ ∈ M (I;L2(Ω)) be the measure related to M as in Proposition
5.4(i). Then p is |µ|L2(Ω) measurable by the Pettis measurability theorem men-
tioned after Definitions 8.3 since L2(Ω) is separable. The norm boundedness of
p then implies that p is |µ|L2(Ω) integrable and hence M integrable by Propo-
sition 5.4(ii). In particular, if v ∈ Cw(Ī;V ), the weak continuity of v in V
and the continuity of 1 − a∆ : V → L2(Ω) implies the weak continuity of
t 7→ (1− a∆)v(t) on Ī in L2(Ω). Since Ī is compact, the continuous numerical
function t 7→ ((1− a∆)v(t), g)L2(Ω) is bounded on Ī for each g ∈ L2(Ω). Hence
it is norm bounded in the sense that |(1 − a∆)v(t)|L2(Ω) ≤ c < ∞ for some c
and all t ∈ Ī by the uniform boundedness principle. The conclusion then follows
from the first part of the assertion. �

6 Proof of Theorem 3.6

Let (u, θ) be a solution of Problem P. Write Λ = Λ(u, θ).
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(i): Since by (9) and (4) the map

p 7→
∫
Q

(1− a∆)p dü−
∫
I
〈Λ, p〉 dt

is a continuous linear functional on C0(I;V ), by Theorem 8.5 there exists a
unique measure g ∈ M (I;V ∗) such that∫

Q
(1− a∆)p dü−

∫
I
〈Λ(u, θ), p〉 dt =

∫
I
〈p, dg〉

for every p ∈ C0(I;V ). Let us prove that g is a nonnegative measure. Indeed,
let p ∈ C0(I;V ) be nonnegative. For every τ > 0 put y = u+ τp. Inserting this
y into (10)1, dividing by τ and letting τ →∞ we obtain

∫
Q

(1− a∆)p dü−
∫
I
〈Λ, p〉 dt ≥ 0

which proves that g is nonnegative. Thus g has the form (46) where G, F and
ζ are as in Proposition 5.3. If y ∈ K is such that y(0) = u(0) and y(T ) = u(T )
then y − u ∈ C0(I;V ) and hence∫

I
〈y − u, dg〉 =

∫
Q

(1− a∆)(y − u) dü−
∫
I
〈Λ(u, θ), y − u〉 dt ≥ 0

by (10)1. Thus
∫
Q

(y − u) dG−
∫
I

∫
∂Ω
F ∇(y − u) · n dH 1dζ ≥ 0 (54)

for every y ∈ K such that y(0) = u(0) and y(T ) = u(T ). If κ ∈ C0(I × ∂Ω,R)
is a class C2 function, we can choose a uniformly bounded sequence yk ∈ K
such that yk(0) = u(0) and yk(T ) = u(T ), −∇(yk − u) · n = κ on I × ∂Ω and
yk − u→ 0 pointwise on Q by Lemma 5.2. The limit in (54) provides

−
∫
I

∫
∂Ω
F κ dH 1dζ ≥ 0

and thus F = 0 by the arbitrariness of κ. Equation (46) then reduces to∫
I
〈p, dg〉 =

∫
I
p dG, which completes the proof of (i).

(ii): Interpreting ü as an element of M (I;L2(Ω)) by Proposition 5.4, we
denote the regular and singular parts relative to L 1 in the sense of the Lebesgue
decomposition theorem [5, Theorem 9, p. 31] by ür and üs. Thus we have (14)
and ür is absolutely continuous with respect to L 1 in the sense that if B is a
Borel subset of I such that L 1(B) = 0 then üs(B) = 0 while üs is singular to
L 1 in the sense that there exists a Borel subset J of I with L 1(J) = 0 such that
üs(B) = 0 for each Borel subset B of I \ J. Since by the results of Section 8, all
measures in M (I;L2(Ω)) are representable by densities via the Radon–Nikodým
theorem, we have ür = hL 1 I for some h ∈ L1(I;L2(Ω)) and üs = πφ for
a L 1 singular nonnegative measure φ and some π ∈ L1(I;L2(Ω), φ). It follows
that the Lebesgue decomposition of ü, now interpreted as a scalar measure from
M0(Q), takes the form (14)–(15) with h, π and φ having the properties required
by (ii), except for the nonnegativity of π, which will be proved below.

(iii): Equation (13) shows that

(1− a∆)∗ü = ΛL 1 I + g
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where (1− a∆)∗ü ∈ M (I;V ∗) is a measure defined by [(1− a∆)∗ü](B) = (1−
a∆)∗[ü(B)] for any Borel subset B of I. Since ΛL 1 I is absolutely continuous
with respect to L 1, we see from the last relation that the singular parts gs and
üs of g and ü, respectively, in the sense of the Lebesgue decomposition theorem
on I relative to L 1, are related by

(1− a∆)∗üs = gs, üs = (1− a∆)−∗gs.

Since g is nonnegative, also gs is nonnegative. Lemma 3.2(iii) then provides
that üs is nonnegative. Consequently also π is nonnegative and we have (16).

(iv): Prove that the support of G is contained in C. Inserting p = y− u into
(13) one obtains

∫
I
((1− a∆)(y − u), dü)L2(Ω) −

∫
I
〈Λ, u− y〉 dt =

∫
Q

(y − u) dG

for every y ∈ K ; inequality (10)1 then gives
∫
Q

(y − u) dG ≥ 0.

Taking any uniformly bounded sequence yk ∈ K such that yk → 0 pointwise
on Q we obtain −

∫
Q
u dG ≥ 0 and hence

∫
Q
u dG = 0 as both u and G are

nonnegative. Then suppG ⊂ C follows.
Finally, prove also that the support of üs is contained in C. Since üs and u

are nonnegative, we have

0 ≤
∫
I
(u, düs)L2(Ω) =

∫
I
〈(1− a∆)u, dgs〉 = −a

∫
I
〈∆u, dgs〉 ≤ 0

since
∫
I
〈∆u, dgs〉 ≥ 0 as we now show. Indeed, the integration in the last

integral is effective only on the contact zone C as ∆u = 0 outside C. However,
on C we have ∆u ≥ 0. To explain it, note that we have ∆u = 0 in the interior
of C. Further, every boundary point of C is a point of minimum of u and thus
the second differential of u is positive semidefinite; consequently the laplacian
is nonnegative. �

7 Appendix A: Remarks on notation

Let L n denote the Lebesgue measure in Rn for any n and let φ M denote
the restriction of a measure φ to a Borel set M, given by

(φ M)(A) = φ(M ∩A) (55)

for each φ measurable set A. Further, M (Q) denotes the set of all (finite) signed
scalar Borel measures on Q.

If K is a compact space and X a Banach space then C(K;X) denotes the
set of all continuous maps from K into X with the maximum norm | · |C(K;X). If
P ⊂ Rn then C0(P ;X) is the set of all continuous maps from Rn into X which
vanish outside P. This defines in particular C0(I;X) where I ⊂ R is the time
interval. D(Q) denotes the Schwartz’s space of class C∞ functions p : R3 → R
with compact support contained in Q.
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If M stands for any of Ω, Q or ∂Ω and 1 ≤ p ≤ ∞, we define the Lebesgue
space Lp(M) of (Lebesgue classes of) real valued Lebesgue measurable functions,
integrable with power p if p < ∞, and essentially bounded if p = ∞. If X is a
Banach space, then Lp(I;X) denotes the Lebesgue space of X valued maps on
I [5, Chapter IV, Section 1], [21, Sections 23.2 and 23.3].

By Hk(M) ⊂ L2(M) with k ≥ 0 we denote the Hilbert–type Sobolev (for
a noninteger k the Sobolev-Slobodetskii) spaces of functions defined on M . By
H̊1(Ω) we denote the subspace of functions from H1(Ω) with zero traces on
∂Ω. The dual of H̊1(Ω) is denoted by H−1(Ω) with the duality pairing 〈·, ·〉
introduced in Section 3.

8 Appendix B: Vector valued measures

For convenience of the reader, we present a summary of Banach space valued
measures on I. In practically every assertion, the interval I can be replaced by
a locally compact space. We refer to Dinculeanu [6], Diestel & Uhl [5], and
Dunford & Schwartz [7, Chapter IV]. Section 5 applies the material presented
here to vector valued measures pertinent to Problem P.

Throughout the section, let X be a Banach space with the norm | · |X ; we
denote by 〈γ, ξ〉 ≡ 〈ξ, γ〉 the value of γ ∈ X∗ on an element ξ ∈ X.

8.1 Definitions (Cf. [6, Definition 3, p. 16 and Definition 1, p. 302])
(i) Let A be the collection of Borel subsets of I. A map µ : A → X is called

an X valued measure on I if
(a) it is countably additive in the norm sense;
(b) its variation |µ|X is finite, i.e., if for any Borel set B ⊂ I one has

|µ|X(B) := sup
{ k∑

j=1

|µ(Bj)|X : Bj ∈ A , j = 1, . . . , k, is

a pairwise disjoint partition of B
}
<∞.

(ii) The function |µ|X is a finite nonnegative Radon measure on I, called the
total variation measure of µ.

(iii) Denote by M (I;X) the set of all X valued measures on I with the norm
|µ|M (I;X) := |µ|X(I), under which M (I;X) becomes a Banach space.

8.2 Remarks
(i) In the scalar case, i.e., if X = R, Property (b) in Definition 8.1 is a conse-

quence of (a). See, e.g., [18, Theorem 6.4]. Not so for a general X.
(ii) Since every open subset of I is the union of a countable family of compact

sets, |µ|X is automatically regular [18, Theorem 2.18], i.e., for every B ∈ A
and every ε > 0 there exist a compact set C and an open set U such that
C ⊂ B ⊂ U and

|µ|X(U)− |µ|X(C) < ε;

consequently |µ(C)− µ(B)|X < ε, |µ(B)− µ(U)|X < ε.
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8.3 Definitions Let α : I → X and let φ be a nonnegative measure on I.
(i) α is said to be simple if its range is finite and for each ξ ∈ X the set

α−1(
{
ξ

}
) ⊂ I is borelian.

(ii) α is said to be φ measurable if there exists a sequence of simple functions
that converges to α at φ almost every point of I.

(iii) α is said to be φ integrable if it is φ measurable and there exists a sequence
of simple maps αk such that∫

I
|αk − α|X dφ→ 0

where it is noted that the φ measurability of α implies that the numerical
sequence |αk −α| is φ measurable. We denote by L (φ,X) the set of all X
valued φ integrable maps. Clearly,

∫
I
|α|X dφ <∞ for any α ∈ L (φ,X).

By the Pettis measurability theorem [5, Theorem 2, p. 42], α is φ measurable if
and only if α is φ essentially separably valued, i.e., there exists a Borel set E ⊂ I
of null φ measure such that α(I \E) is norm separable and for each γ ∈ X∗, the
numerical function 〈α, γ〉 is φ measurable. In particular if α is norm continuous
or weakly continuous and essentially separably valued then α is φ integrable.

8.4 Integrals Let µ ∈ M (I;X), φ ∈ M (I;R), φ ≥ 0. The theory of vector
valued measures provides definitions of three types of integrals in (a)–(c) below.
We shall reduce the definitions of these vector valued integrals to the scalar
case.

(a) The Bochner integral of a φ integrable map α : I → X; the result is a
unique element

∫
I
αdφ of X such that

〈
γ,

∫
I
αdφ

〉
=

∫
I
〈γ, α〉 dφ

for any γ ∈ X∗. Note that such an element exists in X and not only in the
second dual X∗ ∗; this has to be proved via the limits of integrals of simple
maps. One has |

∫
I
αdφ|X ≤

∫
I
|α|X dφ.

(b) The integral of a |µ|X integrable scalar valued function ϕ : I → R with
respect to µ; the result is the unique vector

∫
I
ϕdµ in X such that

〈
γ,

∫
I
ϕdµ

〉
=

∫
I
ϕd 〈γ, µ〉

for any γ ∈ X∗. One has |
∫
I
ϕdµ|X ≤

∫
I
|ϕ| d|µ|X .

(c) The integral
∫
I
〈α, dµ〉 of a |µ|X integrable map α : I → X∗; the result

is a real number
∫
I
〈α, µ〉 . We give the definition only in the particular case

when X is either reflexive or a separable dual of some Banach space. Namely,
then the Radon Nikodým theorem holds [5, Corollary 13, p. 76 and Theorem
1, p. 79]. Therefore, since µ is absolutely continuous with respect to |µ|X (i.e.,
µ(B) = 0 whenever |µ|X(B) = 0), there exists a |µ|X integrable map π : I → X
such that µ = π|µ|X , where the last is a measure defined by

(π|µ|X)(B) =
∫
B
π d|µ|X
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for any Borel set B ⊂ I. One has |π|X = 1 for |µ|X almost every point of I. We
then define ∫

I
〈α, dµ〉 :=

∫
I
〈α, π〉 d|µ|X . (56)

One has |
∫
I
〈α, dµ〉 | ≤

∫
I
|α|X∗d|µ|X . In the subsequent treatment, we apply

the above notions only to the choices X = L2(Ω) and X = V ∗; both these
are separable duals, so the above hypotheses hold. If X = L2(Ω), we write∫
I
(α, dµ)L2(Ω) for (56). We note in passing that the Radon Nikodým theorem,

which does not hold generally, is one of the central topics of the theory of
vector valued measures. See [5, Chapters III & IV]; the above result is a simple
particular case.

The following direct generalization of the Riesz representation theorem is
the main result of this section.

8.5 Theorem (Singer [20]; see also [6, Corollary 2, p. 387] and [5, Theorem,
p. 182]) If X is a Banach space then C0(I;X)∗ is isometrically isomorphic with
M (I;X∗) under the identification of F ∈ C0(I;X)∗ with µ ∈ M (I;X∗) via

〈α, F 〉 =
∫
I
〈α, dµ〉

for any α ∈ C0(I;X).

9 Appendix C: Weakly differentiable maps

Throughout the section, X and Y are Banach spaces with norms | · |X and | · |Y
with X reflexive and compactly and densely embedded in Y .

9.1 Remark We have

Cw(Ī;X) = L∞(I;X) ∩ C(Ī;Y ),

Rw(Ī;X) = L∞(I;X) ∩R(Ī;Y );

 (57)

so
Cw(Ī;V ) = L∞(I;V ) ∩ C(Ī; H̊1(Ω)),

Rw(Ī; H̊1(Ω)) = L∞(I; H̊1(Ω)) ∩R(Ī;L2(Ω)).

 (58)

Here Cw(Ī;X) is the space of weakly continuous maps, i.e., such that t 7→
〈γ, p(t)〉 is a continuous function for each γ ∈ X∗, C(Ī;Y ) the set of norm
continuous maps, Rw(Ī;X) the set of weakly regulated maps, defined in the
same way as in Section 3.1 with H̊1(Ω) replaced by X, R(Ī;Y ) the set of norm
regulated maps, defined by replacing the weak topology by the norm topology.

Proof Let p ∈ L∞(I;X)∩C(Ī;Y ). Let us first prove that p(t) ∈ X for every
t ∈ Ī (and not just for a.e. t ∈ Ī). Assume, on the contrary, that t ∈ Ī be
such that p(t) /∈ X. Let tk → t be any sequence in Ī such that p(tk) ∈ X for
each k. The sequence |p(tk)|X is bounded and therefore, by the reflexivity of
X, there exists a subsequence, again denoted by p(tk), such that p(tk) ⇀ w for
some w ∈ X and lim infk→∞ |p(tk)|X ≥ |w|X . We have Y ∗ ⊂ X∗ and thus if
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γ ∈ Y ∗, we have 〈γ, p(tk)〉 → 〈γ,w〉 However, the Y continuity of p implies that
〈γ, p(tk)〉 → 〈γ, p(t)〉 . Thus

〈γ,w〉 = 〈γ, p(t)〉 for all γ ∈ Y ∗. (59)

Since Y ∗ dense in X∗ by the density of X in Y, (59) implies p(t) = w ∈ X.
Hence p(t) ∈ X for every t ∈ Ī and |p(t)|X ≤ |u|L∞(I;X). The same argument
shows that if t ∈ Ī then

〈γ, p(s)〉 → 〈γ, p(t)〉 (60)

for s→ t for every γ ∈ Y ∗. The boundedness of the X norm of p then extends
(60) to all γ ∈ X∗ by density. Thus p is weakly continuous as a map from Ī to
X. This proves the inclusion ⊃ in (57)1.

Conversely, let p ∈ Cw(Ī;X). By the Banach Steinhaus theorem, p is norm
bounded. Since the embedding of X into Y is compact, p ∈ Cw(Ī;X) implies
p ∈ C(Ī;Y ), which proves the opposite inclusion.

The assertion about the regulated maps is proved similarly. �

9.2 Remark If X∗ is separable then for every p ∈ Rw(Ī;X) we have p(t+) =
p(t−) for all t ∈ Ī except possibly an at most countable set L ⊂ Ī .

Proof Let S0 be a countable dense subset of X∗. Let L be the set of all t such
that p(t+) 6= p(t−) and for each γ ∈ S0 the symbol Lγ be the set of all t such
that 〈γ, p(t+)〉 6= 〈γ, p(t−)〉 . The assumption implies that

L =
⋃

γ∈S0

Lγ .

By a well–known property of scalar valued regulated functions, each Lγ is at
most countable. �

9.3 Theorem
(i) For every p ∈ L∞(I;X) with ṗ ∈ M (I;Y ) we can choose a unique repre-

sentative p that belongs to Rw(Ī;X). There exists a β ∈ Y such that we
have

p(t) = β + ṗ((0, t)) (61)

for every t ∈ Ī ,

p(t−) = ṗ((0, t)), p(t)− p(t−) = ṗ
({
t
})

with the limits in the sense of the norm | · |Y .
(ii) If p ∈ L∞(I;X) and ṗ ∈ L1(I;Y ) then the unique representative p from (i)

belongs to Cw(Ī;X) and (61) reduces to

p(t) = β +
∫ t

0
ṗ dt

for some β ∈ Y and all t ∈ Ī .

Here ṗ ∈ M (I;Y ) and ṗ ∈ L1(I;Y ) are generalized derivatives, obtained by
interpreting p and ṗ as X or Y valued distributions on (0, T ) in the usual way
[10, Chapter IV], [21, Chapter 21], and defining the derivatives in the same way
as in the scalar case.
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Proof (i): By [5, Theorem 9, p. 49] the integrability of p implies that for a.e.
s ∈ Ī we have

lim
h→0

h−1
∫ s+h

s
|p(t)− p(s)|X dt = 0,

lim
h→0

h−1
∫ s+h

s
p(t) dt = p(s) in the | · |X norm sense in X. (62)

Let s ∈ Ī be such that (62) holds. Let J = [s, t] ⊂ int Ī and for every h > 0 let
ϕh : R → R be defined by ϕh(τ) = max

{
1− h−1 dist(τ, [s, t− h]), 0

}
. Applying

the definition
∫
I
ϕ̇p dt = −

∫
I
ϕdṗ to ϕh, evaluating the derivative of ϕh and

using (62) one finds that
∫
I
ϕ̇hp dt→ p(t)− p(s)

in the norm | · |X sense. Since ϕh converges pointwise to the characteristic
function 1[s,t] of the interval [s, t], the vectorial Lebesgue dominated convergence
theorem ([6, Theorem 3, p. 136]) gives

∫
I
ϕh dṗ → ṗ([s, t]) and thus the limit

with ∫
I
ϕ̇hp dt = −

∫
I
ϕh dṗ (63)

gives
p(t)− p(s) = ṗ([s, t])

which holds for a.e. s, t ∈ Ī . As there is at most countable set of s such that
ṗ

({
s

})
6= 0, we also have

p(t)− p(s) = ṗ((s, t])

for a.e. s, t ∈ Ī . It follows that there is a β ∈ Y such that the p given by (61)
differs from any element of the Lebesgue class on a set of Lebesgue measure 0.
The representative from (61) then satisfies

|p(t)− p(s)|Y ≤ |ṗ|((s, t])

and the scalar Lebesgue dominated convergence theorem gives the continuity of
p from the right. The rest of (i) is immediate in view of Remark 9.1.

(ii) is a direct consequence of (i). �

9.4 Definition Let v ∈ L1(I;Y ) and w be a representative of v.
(i) Then the variation Var(w) is defined as

Var(w) ≡ sup


k∑
j=1

|w(tj+1)− w(tj)|Y : 0 = t1 < · · · < tk+1 = T, k = 2, 3, . . .


and the essential variation ess Var(v) as

ess Var(v) = inf
{
Var(w) : w ∈ v

}
.

(ii) We say that v has finite | · |Y variation if ess Var(v) < ∞. We denote by
BV (I;Y ) the set of all maps v ∈ L1(I;Y ) of finite essential variation.
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9.5 Theorem Let v ∈ L1(I;V ). Then v ∈ BV (I;Y ) if and only if v has a
weak derivative represented by a measure v̇ from M (I;V ). If these two equivalent
conditions are satisfied then

ess Var(v) = |v̇|Y (I).

Proof From [6, Theorem 1, p. 358] one deduces the existence of a measure
v̇ ∈ M (I;Y ) such that (61) holds for every t ∈ Ī and some β ∈ Y. If γ ∈ Y ∗

then the measure 〈γ, v̇〉 is a numerical signed measure on Ī and the standard
scalar integration by parts gives〈

γ,
∫
I
ϕ̇v dt

〉
= −

〈
γ,

∫
I
ϕdv̇

〉

which in turn gives (63) for every ϕ ∈ C∞0 (Ī), which proves the direct implica-
tion. The converse implication is immediate. �

9.6 Remark
(i) The definitions of W in (5)1 and (6) are equivalent.
(ii) If uk ∈ W is a sequence such that uk ⇀

∗ u in w+L∞(I;V ), then u ∈ w+W
and

uk → u uniformly in C(clQ). (64)

Proof (i): If u belongs to the right hand side of (5)1 then (58) shows that
u belongs to the right hand side of (6). Conversely, assume that u belongs to
the right hand side of (6) and prove that we can choose the representatives
u and u̇ as in the right hand side of (5)1. Indeed, if p̈ ∈ M0(Ī;L2(Ω)) and
ṗ ∈ L∞(I; H̊1(Ω)) then ṗ ∈ Rw(Ī; H̊1(Ω)) by Theorem 9.3(i). Similarly, if
ṗ ∈ L∞(I; H̊1(Ω)) and p ∈ L∞(I;V ) then p ∈ Cw(Ī;V ) by Theorem 9.3(ii).

(ii): Equation (64) follows from Aubin’s lemma where uk ∈ w + L∞(I;V )
where V is compactly embedded into C(cl Ω)) and the derivative is taken as a
bounded sequence in L∞(I;V ∗); we thus have C(cl Ω) ⊂ V ∗. �
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[10] Gajewski, H.; Gröger, K.; Zacharias, K.: Nichtlineare Operatorgleichungen
und Operatordifferentialgleichungen. Berlin: Akademie–Verlag, 1974.

[11] Gilbarg, D.; Trudinger, N.S.: Elliptic partial differential equations of second
order, Second edition. Berlin: Springer, 1983.

[12] Jiang, S.; Racke, R.: Evolution Equations in Thermoelasticity. Boca
Raton–London–New York–Washington: Chapman& Hall/CRC, (Taylor &
Francis Group), 2000.

[13] Koch, H.; Stahel, A.: Global existence of classical solutions to the dynami-
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