Convergence of graphons and the weak* topology

(joint work with J. Grebík, J. Hladký, I. Rocha, V. Rozhoň)

Institute of Mathematics of the Czech Academy of Sciences

Summer Symposium in Real Analysis Санкт-Петербург June 9-15, 2018

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

How to understand very large networks?

How to understand very large networks? (E.g. internet, social networks, neurons in the human brain etc.)

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

How to understand very large networks? (E.g. internet, social networks, neurons in the human brain etc.)

A graph is a pair G = (V, E) where V is a finite set and E is a set of 2-element subsets of V.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

How to understand very large networks? (E.g. internet, social networks, neurons in the human brain etc.)

A graph is a pair G = (V, E) where V is a finite set and E is a set of 2-element subsets of V.

But huge networks are never completely known, often not even well defined.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Two types of large networks:

Two types of large networks:

 sparse networks (each vertex has a bounded number of neighbors)

(ロ)、

Two types of large networks:

- sparse networks (each vertex has a bounded number of neighbors)
- dense networks (each node is a neighbor of a positive percent of other vertices)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Two types of large networks:

- sparse networks (each vertex has a bounded number of neighbors)
- dense networks (each node is a neighbor of a positive percent of other vertices)

We are interested in the approximation of dense networks by certain 'analytic' objects.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Two types of large networks:

- sparse networks (each vertex has a bounded number of neighbors)
- dense networks (each node is a neighbor of a positive percent of other vertices)

We are interested in the approximation of dense networks by certain 'analytic' objects.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Our plan: Let (G_n) be a sequence of graphs whose number of vertices tends to infinity.

Two types of large networks:

- sparse networks (each vertex has a bounded number of neighbors)
- dense networks (each node is a neighbor of a positive percent of other vertices)

We are interested in the approximation of dense networks by certain 'analytic' objects.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Our plan: Let (G_n) be a sequence of graphs whose number of vertices tends to infinity. When is such a sequence convergent?

Two types of large networks:

- sparse networks (each vertex has a bounded number of neighbors)
- dense networks (each node is a neighbor of a positive percent of other vertices)

We are interested in the approximation of dense networks by certain 'analytic' objects.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Our plan: Let (G_n) be a sequence of graphs whose number of vertices tends to infinity. When is such a sequence convergent? What is the limit object?

A graphon is a symmetric Lebesgue measurable function $W \colon [0,1]^2 \to [0,1].$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

A graphon is a symmetric Lebesgue measurable function $W \colon [0,1]^2 \to [0,1].$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

How do we measure the distance of two graphons?

A graphon is a symmetric Lebesgue measurable function $W: [0,1]^2 \rightarrow [0,1].$

How do we measure the distance of two graphons?

For every measurable function $V : [0,1]^2 \rightarrow [-1,1]$ we define the cut norm of V by

$$\|V\|_{\Box} := \sup_{S,T \subseteq [0,1]} \int_{S \times T} V(x,y)$$

where the supremum ranges over all measurable sets $S, T \subseteq [0, 1]$.

ション ふゆ アメリア メリア しょうくしゃ

A graphon is a symmetric Lebesgue measurable function $W : [0,1]^2 \rightarrow [0,1].$

How do we measure the distance of two graphons?

For every measurable function $V : [0,1]^2 \rightarrow [-1,1]$ we define the cut norm of V by

$$\|V\|_{\Box} := \sup_{S,T \subseteq [0,1]} \int_{S \times T} V(x,y)$$

where the supremum ranges over all measurable sets $S, T \subseteq [0, 1]$. For graphons U, W we define the cut distance of U and W by

$$\delta_{\Box}(U,W) := \inf_{arphi \colon [0,1] o [0,1]} \| U^{arphi} - W \|_{\Box}$$

where the infimum ranges over all invertible measure preserving maps $\varphi \colon [0,1] \to [0,1]$ and U^{φ} is defined by

$$U^{\varphi}(x,y) = U(\varphi(x),\varphi(y)).$$

The cut-distance δ_{\Box} is a pseudometric.

The cut-distance δ_{\Box} is a pseudometric. If we identify two graphons whenever their cut distance is 0 then the space of all (equivalence classes of) graphons is a metric space.

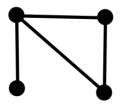
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The cut-distance δ_{\Box} is a pseudometric. If we identify two graphons whenever their cut distance is 0 then the space of all (equivalence classes of) graphons is a metric space.

ション ふゆ く 山 マ チャット しょうくしゃ

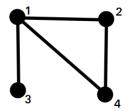
The cut-distance δ_{\Box} is a pseudometric. If we identify two graphons whenever their cut distance is 0 then the space of all (equivalence classes of) graphons is a metric space.

・ロト ・ 四ト ・ モト ・ モト

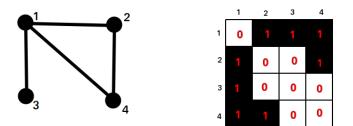


The cut-distance δ_{\Box} is a pseudometric. If we identify two graphons whenever their cut distance is 0 then the space of all (equivalence classes of) graphons is a metric space.

・ロト ・ 日本 ・ 日本 ・ 日本



The cut-distance δ_{\Box} is a pseudometric. If we identify two graphons whenever their cut distance is 0 then the space of all (equivalence classes of) graphons is a metric space.



 $K_{n,n}$ the complete bipartite graph with both partitions of size n

 $K_{n,n}$ the complete bipartite graph with both partitions of size n

 $K_{3,3}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $K_{n,n}$ the complete bipartite graph with both partitions of size n

*K*_{3,3}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

There are many representations of $K_{n,n}$.

 $K_{n,n}$ the complete bipartite graph with both partitions of size n

*K*_{3,3}

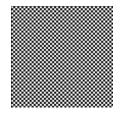
There are many representations of $K_{n,n}$. Here is one of them (for large n):

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $K_{n,n}$ the complete bipartite graph with both partitions of size n

*K*_{3,3}

There are many representations of $K_{n,n}$. Here is one of them (for large n):



Theorem (Lovász & Szegedy, 2006)

The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Theorem (Lovász & Szegedy, 2006)

The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Known proofs:

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Known proofs:

Lovász & Szegedy, 2006:

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Known proofs:

 Lovász & Szegedy, 2006: Szemerédi's regularity lemma

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

Known proofs:

- Lovász & Szegedy, 2006: Szemerédi's regularity lemma
- Diaconis & Janson and (independently) Austin, 2008:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

Known proofs:

- Lovász & Szegedy, 2006: Szemerédi's regularity lemma
- Diaconis & Janson and (independently) Austin, 2008: Aldous-Hoover theorem on exchangeable arrays (1981)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

Known proofs:

- Lovász & Szegedy, 2006: Szemerédi's regularity lemma
- Diaconis & Janson and (independently) Austin, 2008: Aldous-Hoover theorem on exchangeable arrays (1981)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Elek & Szegedy, 2012:

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

Known proofs:

- Lovász & Szegedy, 2006: Szemerédi's regularity lemma
- Diaconis & Janson and (independently) Austin, 2008: Aldous-Hoover theorem on exchangeable arrays (1981)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 Elek & Szegedy, 2012: ultraproducts

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

Known proofs:

- Lovász & Szegedy, 2006: Szemerédi's regularity lemma
- Diaconis & Janson and (independently) Austin, 2008: Aldous-Hoover theorem on exchangeable arrays (1981)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Elek & Szegedy, 2012: ultraproducts
- Our proof:

Compactness of the cut-distance

Theorem (Lovász & Szegedy, 2006) The space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box} is compact.

Known proofs:

- Lovász & Szegedy, 2006: Szemerédi's regularity lemma
- Diaconis & Janson and (independently) Austin, 2008: Aldous-Hoover theorem on exchangeable arrays (1981)
- Elek & Szegedy, 2012: ultraproducts
- Our proof:

weak* topology of $L^{\infty}([0,1]^2)$

Every graphon belongs to the unit ball of the dual Banach space $L^{\infty}([0,1]^2)$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Every graphon belongs to the unit ball of the dual Banach space $L^{\infty}([0,1]^2)$.

We consider the restriction of the weak \ast topology to the space of all graphons.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Every graphon belongs to the unit ball of the dual Banach space $L^{\infty}([0,1]^2)$.

We consider the restriction of the weak \ast topology to the space of all graphons.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Then we have that...

Every graphon belongs to the unit ball of the dual Banach space $L^{\infty}([0,1]^2)$.

We consider the restriction of the weak \ast topology to the space of all graphons.

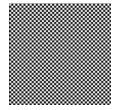
Then we have that...

...a sequence $(W_n)_n$ of graphons weak* converges to a graphon W iff for every measurable set $S \subseteq [0, 1]$ it holds

$$\lim_{n\to\infty}\int_{S\times S}W_n(x,y)=\int_{S\times S}W(x,y).$$

ション ふゆ アメリア メリア しょうくしゃ

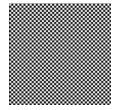
A representation of $K_{n,n}$ (for large n):



(日) (四) (日) (日)

э

A representation of $K_{n,n}$ (for large n):

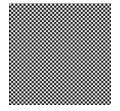


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト …

э

When $n \to \infty$ then

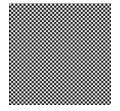
A representation of $K_{n,n}$ (for large n):



When $n \to \infty$ then

▶ these graphons weak* converge to the constant graphon $C_{\frac{1}{2}} \equiv \frac{1}{2}$

A representation of $K_{n,n}$ (for large n):

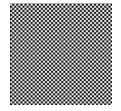


When $n \to \infty$ then

- ▶ these graphons weak* converge to the constant graphon $C_{\frac{1}{2}} \equiv \frac{1}{2}$
- all these graphons belong to the same equivalence class

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

A representation of $K_{n,n}$ (for large n):



When $n \to \infty$ then

- ▶ these graphons weak* converge to the constant graphon $C_{\frac{1}{2}} \equiv \frac{1}{2}$
- all these graphons belong to the same equivalence class
- ► therefore these graphons <u>do not</u> converge to C_{1/2} in the cut distance

Let $(W_n)_n$ be a sequence of graphons.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let $(W_n)_n$ be a sequence of graphons. We need to find an accumulation point W of $(W_n)_n$ in the cut distance δ_{\Box} .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let $(W_n)_n$ be a sequence of graphons. We need to find an accumulation point W of $(W_n)_n$ in the cut distance δ_{\Box} .

For a graphon W and an invertible measure preserving map $\varphi\colon [0,1]\to [0,1]$ we define the graphon W^φ by

$$W^{\varphi}(x,y) = W(\varphi(x),\varphi(y)).$$

ション ふゆ く 山 マ チャット しょうくしゃ

Let $(W_n)_n$ be a sequence of graphons. We need to find an accumulation point W of $(W_n)_n$ in the cut distance δ_{\Box} .

For a graphon W and an invertible measure preserving map $\varphi\colon [0,1]\to [0,1]$ we define the graphon W^φ by

$$W^{\varphi}(x,y) = W(\varphi(x),\varphi(y)).$$

ション ふゆ く 山 マ チャット しょうくしゃ

We define

Let $(W_n)_n$ be a sequence of graphons. We need to find an accumulation point W of $(W_n)_n$ in the cut distance δ_{\Box} .

For a graphon W and an invertible measure preserving map $\varphi\colon [0,1]\to [0,1]$ we define the graphon W^φ by

$$W^{\varphi}(x,y) = W(\varphi(x),\varphi(y)).$$

We define

$$\begin{split} \mathsf{LIM}_{w*}((W_n)_n) &:= \{ W: \text{ there are invertible measure preserving} \\ & \text{maps } \varphi_n \colon [0,1] \to [0,1] \text{ such that } W \\ & \text{ is a weak* limit of } (W_n^{\varphi_n})_n \} \end{split}$$

Let $(W_n)_n$ be a sequence of graphons. We need to find an accumulation point W of $(W_n)_n$ in the cut distance δ_{\Box} .

For a graphon W and an invertible measure preserving map $\varphi\colon [0,1]\to [0,1]$ we define the graphon W^φ by

$$W^{\varphi}(x,y) = W(\varphi(x),\varphi(y)).$$

We define

$$\begin{split} \mathsf{LIM}_{w*}((W_n)_n) &:= \{ W \colon \text{ there are invertible measure preserving} \\ & \text{maps } \varphi_n \colon [0,1] \to [0,1] \text{ such that } W \\ & \text{ is a weak* limit of } (W_n^{\varphi_n})_n \} \end{split}$$

and

Let $(W_n)_n$ be a sequence of graphons. We need to find an accumulation point W of $(W_n)_n$ in the cut distance δ_{\Box} .

For a graphon W and an invertible measure preserving map $\varphi\colon [0,1]\to [0,1]$ we define the graphon W^φ by

$$W^{\varphi}(x,y) = W(\varphi(x),\varphi(y)).$$

We define

$$\begin{split} \mathsf{LIM}_{w*}((W_n)_n) &:= \{ W \colon \text{ there are invertible measure preserving} \\ & \text{maps } \varphi_n \colon [0,1] \to [0,1] \text{ such that } W \\ & \text{ is a weak* limit of } (W_n^{\varphi_n})_n \} \end{split}$$

and

 $\begin{aligned} \mathsf{ACC}_{w*}((W_n)_n) &:= \{ W: \text{ there are invertible measure preserving} \\ & \text{maps } \varphi_n \colon [0,1] \to [0,1] \text{ such that } W \\ & \text{ is a weak* accumulation point of } (W_n^{\varphi_n})_n \}. \end{aligned}$

We want to take the 'most structured' element of either $LIM_{w*}((W_n)_n)$ or $ACC_{w*}((W_n)_n)$ and prove that it is an accumulation point of $(W_n)_n$ in the cut distance δ_{\Box} .

ション ふゆ アメリア メリア しょうくしゃ

We want to take the 'most structured' element of either $LIM_{w*}((W_n)_n)$ or $ACC_{w*}((W_n)_n)$ and prove that it is an accumulation point of $(W_n)_n$ in the cut distance δ_{\Box} .

ション ふゆ アメリア メリア しょうくしゃ

Problems:

We want to take the 'most structured' element of either $LIM_{w*}((W_n)_n)$ or $ACC_{w*}((W_n)_n)$ and prove that it is an accumulation point of $(W_n)_n$ in the cut distance δ_{\Box} .

ション ふゆ く 山 マ チャット しょうくしゃ

Problems:

• the set $LIM_{w*}((W_n)_n)$ may be empty

We want to take the 'most structured' element of either $LIM_{w*}((W_n)_n)$ or $ACC_{w*}((W_n)_n)$ and prove that it is an accumulation point of $(W_n)_n$ in the cut distance δ_{\Box} .

Problems:

- the set $LIM_{w*}((W_n)_n)$ may be empty
- ► the set ACC_{w*}((W_n)_n) is nonempty (by Banach-Alaoglu theorem)

ション ふゆ く 山 マ チャット しょうくしゃ

We want to take the 'most structured' element of either $LIM_{w*}((W_n)_n)$ or $ACC_{w*}((W_n)_n)$ and prove that it is an accumulation point of $(W_n)_n$ in the cut distance δ_{\Box} .

Problems:

- the set $LIM_{w*}((W_n)_n)$ may be empty
- ► the set ACC_{w*}((W_n)_n) is nonempty (by Banach-Alaoglu theorem) but the 'most structured' element of ACC_{w*}((W_n)_n) may not exist

Key Theorem A

For every sequence $(W_n)_n$ of graphons there is a subsequence $(W_{n_k})_k$ of $(W_n)_n$ such that

$$\mathsf{ACC}_{w*}((W_{n_k})_k) = \mathsf{LIM}_{w*}((W_{n_k})_k).$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Key Theorem A

For every sequence $(W_n)_n$ of graphons there is a subsequence $(W_{n_k})_k$ of $(W_n)_n$ such that

$$\mathsf{ACC}_{w*}((W_{n_k})_k) = \mathsf{LIM}_{w*}((W_{n_k})_k).$$

Key Theorem B

For every sequence $(W_k)_k$ of graphons the following conditions are equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Key Theorem A

For every sequence $(W_n)_n$ of graphons there is a subsequence $(W_{n_k})_k$ of $(W_n)_n$ such that

$$\mathsf{ACC}_{w*}((W_{n_k})_k) = \mathsf{LIM}_{w*}((W_{n_k})_k).$$

Key Theorem B

For every sequence $(W_k)_k$ of graphons the following conditions are equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

•
$$ACC_{w*}((W_k)_k) = LIM_{w*}((W_k)_k)$$
,

Key Theorem A

For every sequence $(W_n)_n$ of graphons there is a subsequence $(W_{n_k})_k$ of $(W_n)_n$ such that

$$\mathsf{ACC}_{w*}((W_{n_k})_k) = \mathsf{LIM}_{w*}((W_{n_k})_k).$$

Key Theorem B

For every sequence $(W_k)_k$ of graphons the following conditions are equivalent:

ション ふゆ く 山 マ チャット しょうくしゃ

•
$$ACC_{w*}((W_k)_k) = LIM_{w*}((W_k)_k),$$

• $(W_k)_k$ is Cauchy for the cut distance δ_{\Box} .

Key Theorem A

For every sequence $(W_n)_n$ of graphons there is a subsequence $(W_{n_k})_k$ of $(W_n)_n$ such that

$$\mathsf{ACC}_{w*}((W_{n_k})_k) = \mathsf{LIM}_{w*}((W_{n_k})_k).$$

Key Theorem B

For every sequence $(W_k)_k$ of graphons the following conditions are equivalent:

- $ACC_{w*}((W_k)_k) = LIM_{w*}((W_k)_k),$
- $(W_k)_k$ is Cauchy for the cut distance δ_{\Box} .

If one of these conditions holds then $(W_k)_k$ converges in the cut distance δ_{\Box} to the 'most structured' element of $\text{LIM}_{w*}((W_k)_k)$.

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For every graphon W we define the envelope of W as $\langle W \rangle := \text{LIM}_{w*}((W)_n).$

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

For every graphon W we define the envelope of W as $\langle W \rangle := \text{LIM}_{w*}((W)_n).$

We say that U is at most as structured as W, $U \leq W$, if $\langle U \rangle \subseteq \langle W \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

For every graphon W we define the envelope of W as $\langle W \rangle := \text{LIM}_{w*}((W)_n).$

We say that U is at most as structured as W, $U \leq W$, if $\langle U \rangle \subseteq \langle W \rangle$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Consider the mapping $\mathcal{W}\mapsto \langle \mathcal{W}
angle$

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

For every graphon W we define the envelope of W as $\langle W \rangle := \text{LIM}_{w*}((W)_n).$

We say that U is at most as structured as W, $U \leq W$, if $\langle U \rangle \subseteq \langle W \rangle$.

Consider the mapping $W \mapsto \langle W
angle$

▶ defined on the space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box}

ション ふゆ アメリア メリア しょうくしゃ

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

For every graphon W we define the envelope of W as $\langle W \rangle := \text{LIM}_{w*}((W)_n).$

We say that U is at most as structured as W, $U \leq W$, if $\langle U \rangle \subseteq \langle W \rangle$.

Consider the mapping $W \mapsto \langle W \rangle$

- ▶ defined on the space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box}
- ▶ with values in the hyperspace of all weak* compact subsets of L[∞]([0, 1]²) equipped by the Vietoris topology.

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

For every graphon W we define the envelope of W as $\langle W \rangle := \text{LIM}_{w*}((W)_n).$

We say that U is at most as structured as W, $U \leq W$, if $\langle U \rangle \subseteq \langle W \rangle$.

Consider the mapping $W \mapsto \langle W \rangle$

- ▶ defined on the space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box}
- ▶ with values in the hyperspace of all weak* compact subsets of L[∞]([0, 1]²) equipped by the Vietoris topology.

It turns out that it is a homeomorphism onto a closed subset of the hyperspace.

What does it mean to be the 'most structured' element of $LIM_{w*}((W_k)_k)$?

For every graphon W we define the envelope of W as $\langle W \rangle := \text{LIM}_{w*}((W)_n).$

We say that U is at most as structured as W, $U \leq W$, if $\langle U \rangle \subseteq \langle W \rangle$.

Consider the mapping $W \mapsto \langle W \rangle$

- ▶ defined on the space of all (equivalence classes of) graphons equipped by the cut distance δ_{\Box}
- ▶ with values in the hyperspace of all weak* compact subsets of L[∞]([0, 1]²) equipped by the Vietoris topology.

It turns out that it is a homeomorphism onto a closed subset of the hyperspace. As the hyperspace is compact, the space of all (equivalence classes of) graphons is compact as well.

Suppose that $ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose that $ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n)$.

Fix an arbitrary strictly convex function $f: [0,1] \rightarrow \mathbb{R}$.

- Suppose that $ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n)$.
- Fix an arbitrary strictly convex function $f : [0,1] \rightarrow \mathbb{R}$.
- The most structured W in $LIM_{w*}((W_n)_n)$ is that one which maximizes $\int_{[0,1]^2} f(W(x,y))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Suppose that $ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n)$.
- Fix an arbitrary strictly convex function $f : [0,1] \rightarrow \mathbb{R}$.
- The most structured W in $LIM_{w*}((W_n)_n)$ is that one which maximizes $\int_{[0,1]^2} f(W(x,y))$.

In particular, if we choose choose $f(z) = z^2$ then we have that...

- Suppose that $ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n)$.
- Fix an arbitrary strictly convex function $f: [0,1] \rightarrow \mathbb{R}$.
- The most structured W in $LIM_{w*}((W_n)_n)$ is that one which maximizes $\int_{[0,1]^2} f(W(x,y))$.

In particular, if we choose choose $f(z) = z^2$ then we have that...

...the most structured W in $LIM_{w*}((W_n)_n)$ is that one which maximizes $||W||_{L^2}$.

A representation of $K_{n,n}$ (for large n):

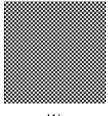


 W_n

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

A representation of $K_{n,n}$ (for large n):



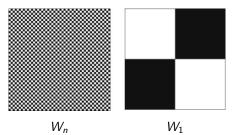
 W_n

・ロト ・ 日本 ・ 日本 ・ 日本

ж

Then $ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n)$.

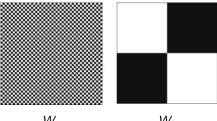
A representation of $K_{n,n}$ (for large n):



Then ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n). The constant graphon $C_{\frac{1}{2}} \equiv \frac{1}{2}$ and the graphon W_1 are both elements of LIM_{w*}((W_n)_n).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

A representation of $K_{n,n}$ (for large *n*):



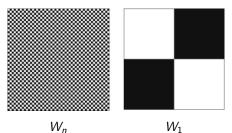
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Then ACC_{w*}($(W_n)_n$) = LIM_{w*}($(W_n)_n$). The constant graphon $C_{\frac{1}{2}} \equiv \frac{1}{2}$ and the graphon W_1 are both elements of $\text{LIM}_{W*}((W_n)_n)$.

The graphon W_1 is more structured than $C_{\frac{1}{2}}$ as

$$\int_{[0,1]^2} f(C_{\frac{1}{2}}(x,y)) = f\left(\frac{1}{2}\right) < \frac{1}{2} \left(f(0) + f(1)\right) = \int_{[0,1]^2} f(W_1(x,y)).$$

A representation of $K_{n,n}$ (for large n):



Then $ACC_{w*}((W_n)_n) = LIM_{w*}((W_n)_n)$. The constant graphon $C_{\frac{1}{2}} \equiv \frac{1}{2}$ and the graphon W_1 are both elements of $LIM_{w*}((W_n)_n)$.

The graphon W_1 is more structured than $C_{\frac{1}{2}}$ as

$$\int_{[0,1]^2} f(C_{\frac{1}{2}}(x,y)) = f\left(\frac{1}{2}\right) < \frac{1}{2} \left(f(0) + f(1)\right) = \int_{[0,1]^2} f(W_1(x,y)).$$

In fact, W_1 is the most structured element of $\lim_{M \to \infty} ((W_n)_n)_{\mathbb{R}}$, \mathbb{R}

Selected references

- M. Doležal, J. Hladký. Cut-norm and entropy minimization over weak* limits. Preprint.
- [2] M. Doležal, J. Grebík, J. Hladký, I. Rocha, V. Rozhoň. Cut distance identifying graphon parameters over weak* limits. Manuscript.
- [3] M. Doležal, J. Grebík, J. Hladký, I. Rocha, V. Rozhoň. Relating the cut distance and the weak* topology for graphons. Manuscript.
- [4] L. Lovász. Large networks and graph limits (2012).
- [5] L. Lovász and B. Szegedy. Limits of dense graph sequences (2006).