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Motivation

How to understand very large networks?

(E.g. internet, social
networks, neurons in the human brain etc.)

A graph is a pair G = (V ,E ) where V is a finite set and E is a set
of 2-element subsets of V .

But huge networks are never completely known, often not even well
defined.
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Introduction

Two types of large networks:

I sparse networks (each vertex has a bounded number of
neighbors)

I dense networks (each node is a neighbor of a positive percent
of other vertices)

We are interested in the approximation of dense networks by certain
‘analytic’ objects.

Our plan: Let (Gn) be a sequence of graphs whose number of
vertices tends to infinity. When is such a sequence convergent?
What is the limit object?
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Graphons and cut distance
A graphon is a symmetric Lebesgue measurable function
W : [0, 1]2 → [0, 1].

How do we measure the distance of two graphons?

For every measurable function V : [0, 1]2 → [−1, 1] we define the
cut norm of V by

‖V ‖� := sup
S ,T⊆[0,1]

∫
S×T

V (x , y)

where the supremum ranges over all measurable sets S ,T ⊆ [0, 1].

For graphons U,W we define the cut distance of U and W by

δ�(U,W ) := inf
ϕ : [0,1]→[0,1]

‖Uϕ −W ‖�

where the infimum ranges over all invertible measure preserving
maps ϕ : [0, 1]→ [0, 1] and Uϕ is defined by

Uϕ(x , y) = U(ϕ(x), ϕ(y)).
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If we identify two graphons
whenever their cut distance is 0 then the space of all (equivalence
classes of) graphons is a metric space.

Every graph can be represented by a graphon:
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Basic example
Kn,n ..... the complete bipartite graph with both partitions of size n

K3,3

There are many representations of Kn,n. Here is one of them (for
large n):
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Compactness of the cut-distance

Theorem (Lovász & Szegedy, 2006)
The space of all (equivalence classes of) graphons equipped by the
cut distance δ� is compact.

Known proofs:

I Lovász & Szegedy, 2006:
Szemerédi’s regularity lemma

I Diaconis & Janson and (independently) Austin, 2008:
Aldous-Hoover theorem on exchangeable arrays (1981)

I Elek & Szegedy, 2012:
ultraproducts

I Our proof:
weak* topology of L∞([0, 1]2)
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The weak* topology

Every graphon belongs to the unit ball of the dual Banach space
L∞([0, 1]2).

We consider the restriction of the weak* topology to the space of
all graphons.

Then we have that...

...a sequence (Wn)n of graphons weak* converges to a graphon W
iff for every measurable set S ⊆ [0, 1] it holds

lim
n→∞

∫
S×S

Wn(x , y) =

∫
S×S

W (x , y).
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Basic example again

A representation of Kn,n (for large n):

When n→∞ then
I these graphons weak* converge to the constant graphon

C 1
2
≡ 1

2

I all these graphons belong to the same equivalence class
I therefore these graphons do not converge to C 1

2
in the cut

distance
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Our proof of compactness
Let (Wn)n be a sequence of graphons.

We need to find an
accumulation point W of (Wn)n in the cut distance δ�.

For a graphon W and an invertible measure preserving map
ϕ : [0, 1]→ [0, 1] we define the graphon W ϕ by

W ϕ(x , y) = W (ϕ(x), ϕ(y)).

We define

LIMw∗((Wn)n) := {W : there are invertible measure preserving
maps ϕn : [0, 1]→ [0, 1] such that W
is a weak* limit of (W ϕn

n )n}

and

ACCw∗((Wn)n) := {W : there are invertible measure preserving
maps ϕn : [0, 1]→ [0, 1] such that W
is a weak* accumulation point of (W ϕn

n )n}.
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Our proof of compactness

We want to take the ‘most structured’ element of either
LIMw∗((Wn)n) or ACCw∗((Wn)n) and prove that it is an
accumulation point of (Wn)n in the cut distance δ�.

Problems:
I the set LIMw∗((Wn)n) may be empty
I the set ACCw∗((Wn)n) is nonempty (by Banach-Alaoglu

theorem) but the ‘most structured’ element of ACCw∗((Wn)n)
may not exist
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Our proof of compactness

Key Theorem A
For every sequence (Wn)n of graphons there is a subsequence
(Wnk )k of (Wn)n such that

ACCw∗((Wnk )k) = LIMw∗((Wnk )k).

Key Theorem B
For every sequence (Wk)k of graphons the following conditions are
equivalent:
I ACCw∗((Wk)k) = LIMw∗((Wk)k),
I (Wk)k is Cauchy for the cut distance δ�.

If one of these conditions holds then (Wk)k converges in the cut
distance δ� to the ‘most structured’ element of LIMw∗((Wk)k).
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Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉
I defined on the space of all (equivalence classes of) graphons

equipped by the cut distance δ�
I with values in the hyperspace of all weak* compact subsets of

L∞([0, 1]2) equipped by the Vietoris topology.
It turns out that it is a homeomorphism onto a closed subset of the
hyperspace. As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉
I defined on the space of all (equivalence classes of) graphons

equipped by the cut distance δ�
I with values in the hyperspace of all weak* compact subsets of

L∞([0, 1]2) equipped by the Vietoris topology.
It turns out that it is a homeomorphism onto a closed subset of the
hyperspace. As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉
I defined on the space of all (equivalence classes of) graphons

equipped by the cut distance δ�
I with values in the hyperspace of all weak* compact subsets of

L∞([0, 1]2) equipped by the Vietoris topology.
It turns out that it is a homeomorphism onto a closed subset of the
hyperspace. As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉

I defined on the space of all (equivalence classes of) graphons
equipped by the cut distance δ�

I with values in the hyperspace of all weak* compact subsets of
L∞([0, 1]2) equipped by the Vietoris topology.

It turns out that it is a homeomorphism onto a closed subset of the
hyperspace. As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉
I defined on the space of all (equivalence classes of) graphons

equipped by the cut distance δ�

I with values in the hyperspace of all weak* compact subsets of
L∞([0, 1]2) equipped by the Vietoris topology.

It turns out that it is a homeomorphism onto a closed subset of the
hyperspace. As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉
I defined on the space of all (equivalence classes of) graphons

equipped by the cut distance δ�
I with values in the hyperspace of all weak* compact subsets of

L∞([0, 1]2) equipped by the Vietoris topology.

It turns out that it is a homeomorphism onto a closed subset of the
hyperspace. As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉
I defined on the space of all (equivalence classes of) graphons

equipped by the cut distance δ�
I with values in the hyperspace of all weak* compact subsets of

L∞([0, 1]2) equipped by the Vietoris topology.
It turns out that it is a homeomorphism onto a closed subset of the
hyperspace.

As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



Structuredness order

What does it mean to be the ‘most structured’ element of
LIMw∗((Wk)k)?

For every graphon W we define the envelope of W as
〈W 〉 := LIMw∗((W )n).

We say that U is at most as structured as W , U �W , if
〈U〉 ⊆ 〈W 〉.

Consider the mapping W 7→ 〈W 〉
I defined on the space of all (equivalence classes of) graphons

equipped by the cut distance δ�
I with values in the hyperspace of all weak* compact subsets of

L∞([0, 1]2) equipped by the Vietoris topology.
It turns out that it is a homeomorphism onto a closed subset of the
hyperspace. As the hyperspace is compact, the space of all
(equivalence classes of) graphons is compact as well.



How to find the most structured graphon?

Suppose that ACCw∗((Wn)n) = LIMw∗((Wn)n).

Fix an arbitrary strictly convex function f : [0, 1]→ R.

The most structured W in LIMw∗((Wn)n) is that one which
maximizes

∫
[0,1]2 f (W (x , y)).

In particular, if we choose choose f (z) = z2 then we have that...

...the most structured W in LIMw∗((Wn)n) is that one which
maximizes ‖W ‖L2 .
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Basic example once more
A representation of Kn,n (for large n):

Wn

Then ACCw∗((Wn)n) = LIMw∗((Wn)n).
The constant graphon C 1

2
≡ 1

2 and the graphon W1 are both
elements of LIMw∗((Wn)n).
The graphon W1 is more structured than C 1

2
as∫

[0,1]2
f (C 1

2
(x , y)) = f

(
1
2

)
<

1

2
(f (0) + f (1)) =

∫
[0,1]2

f (W1(x , y)).

In fact, W1 is the most structured element of LIMw∗((Wn)n).
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