Nanomaterials 2021, 11(2), 472; https://doi.org/10.3390/nano11020472 (registering DOI) - 12 Feb 2021
Abstract
Hydrophobic films are widely used in aerospace, military weapons, high-rise building exterior glass, and non-destructive pipeline transportation due to their antifouling and self-cleaning properties. This paper details the successful preparation of hydrophobic epoxy caged sesquioxane (EP-POSS) via two steps of simple organic synthesis,
[...] Read more.
Hydrophobic films are widely used in aerospace, military weapons, high-rise building exterior glass, and non-destructive pipeline transportation due to their antifouling and self-cleaning properties. This paper details the successful preparation of hydrophobic epoxy caged sesquioxane (EP-POSS) via two steps of simple organic synthesis, along with studies on the effects of viscosity and reaction time on the reaction. Interestingly, the EP-POSS presented a large contact angle of 125°, indicating its excellent hydrophobicity. The surface micromorphology was observed via FE-SEM (field emission scanning electron microscopy), transmission electron microscopy (TEM), and atomic force microscopy (AFM), and the structural composition and elemental contents were analyzed via X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrometry (EDS). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests showed that EP-POSS had excellent thermal properties, and the first degradation reaction occurred at 354 °C. The mechanical performance and abrasion resistance results demonstrated that EP-POSS could be used in solar panels.
Full article
(This article belongs to the Special Issue State-of-the-Art Nanomaterials and Nanotechnology in China)