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Stability of weakly collisional magnetized plasma in the E×B fields is studied with Particle-In-Cell 

simulations. In addition to the physical instability that was expected from theoretical 

considerations, numerical instability has been identified. The simulation stability is usually related 

to the resolution of the Debye length. However, the observed numerical instability is likely due to 

the low resolution of the electron Larmor radius (i.e. for grid spacing being larger than the Larmor 

radius but smaller than Debye length).  The effect of the instability is the plasma filamentation, and 

large growth rate of potential fluctuations even for the physically stable cases.  

 

1. Introduction 

As instability we can designate a phenomenon 

during which the amplitude of small initial 

perturbation grows instead of being damped. In an 

unstable system the source of free energy must exist, 

as well as there must be a positive feedback of the 

system. Plasma instabilities can be divided into two 

main categories: (i) Macroinstabilities which are 

dominant on large scales, have long wavelengths 

and are caused by space configuration. (ii) Micro-

instabilities, which are dominant on small scales, 

have large wavenumbers and are driven by 

distortions in the velocity phase-space. 

Theoretical description of plasma instabilities 

can be done with magnetohydrodynamics (MHD) 

theory, which is suitable for macroinstabilities, or 

the kinetic theory, which can be used for both 

micro- and macroinstabilities. Since instabilities are 

highly nonlinear phenomena, the fully analytical 

solution might be very complicated and difficult in 

many cases and the problem must be linearized or 

solved by using some quasilinear theory. 

Due to difficulties with analytical solutions, 

numerical simulations, which allow for detailed 

study of nonlinear phenomena such as instabilities 

or turbulences, became more important in last 

decades. However, when using numerical simulation 

one should be aware of particular issues that are 

important for numerical stability of the simulations. 

The most important parameters which affect 

numerical stability are spatial grid resolution Δx and 

size of the time step Δt. These arise due to 

approximations of derivatives by finite differences. 

The role of spatial and temporal spacing for 

numerical stability has been well studied already by 

1980’s [1]. For instance numerical instabilities due 

to spatial spacing will occur if k Δx < 1, or 

λD/Δx < 1, where k is the characteristic wavenumber 

in the system, and λD is the Debye length. 

In our recent study, we focused on the influence 

of collision type on the stability of weakly 

collisional plasma in E×B fields [2]. In the 

numerical study we encountered numerical 

instabilities even for the cases, which should 

otherwise be numerically stable according to the 

well-established stability conditions [1]. In this work 

we identify these instabilities and suggest their 

origin. 

 

2. Numerical simulations 

We use the self-consistent electrostatic 3D 

Particle-in-Cell (PIC) numerical simulations. Our 

code allows us to set external static magnetic and 

electric field in arbitrary direction and set collisions 

with neutrals using the Monte Carlo null collision 

method [3]. 

For the simulation we set the external magnetic 

field B magnitude to B = 0.005 T in the x–direction, 

and the external electric field E magnitude to 

E = 550 V∙m
−1

 in the y–direction. The plasma 

particle trajectories are calculated using the leap-

frog method combined with the Boris algorithm [4]. 

The neutrals are assumed to be cold, of the same 

mass as ions, and collision frequency between 

neutrals and plasma particles is set to be constant. 

For electron-neutral collisions we assume only 

elastic collisions, while for ion-neutral collision the 

charge exchange (C.E.) and elastic collisions (E.S.) 

are considered.  
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Tab. 1 – Spacing, ratio of gyroradius and spacing, and 

collision type for all simulated systems. 

 Case 1 

C.E 

Case 1 

E.S. 

Case 2 

C.E. 

Case 2 

E.S. 

Δ x 3.9 mm 3.9 mm 7.8 mm 7.8 mm 

RL/Δ x 1.05 1.05 0.52 0.52 

Coll. Ch. Ex. Elast. Ch. Ex. Elast. 

 

We use the box size of L = 0.5 m in each 

direction. With the time-step of Δ t ≈ 0.04 τLe, where 

τLe is the electron gyroperiod, we resolve well the 

electron gyromotion, which is the fastest motion in 

the system. The simulated plasma density is 

n = 4.3×10
13 

m
−3

, electron temperature Te = 74.1 eV, 

the electron to ion temperature ratio Te/Ti = 4, and 

electron to ion mass ration me/mi = 1/500. Thus, the 

crossfield drift under these conditions is subsonic. 

To simulate physical processes we use grid spacing 

chosen to resolve electron gyroradius, which is 

smaller than the Debye length in our system thus it 

the smallest scale. However, in cases where the 

electron gyroradius is not resolved we do observe 

numerical instabilities. 

We simulate 4×10
7
 particles per plasma specie, 

and parallelization is done using the Message-

Passing-Interface (MPI). We have verified that such 

number of simulated particles is sufficient and the 

numerical noise is acceptable. Due to the finite 

number of the simulated particles, we cannot reach 

the Vlasov limit in the collisionless case, which is a 

general shortcoming of the PIC method. 

 

3. Results 

In this section we present results of our 

observations of numerical instabilities. For the 

simulated plasma system described above, we have 

monitored the RMS values of electrostatic potential 

fluctuations. While in simulations with the 

gyroradius to grid spacing ratio RL/Δx = 1.05 we 

observed purely physical behaviour as it was 

expected from theoretical considerations, in 

simulation with the ratio RL/Δx = 0.52 there was a 

growth of artificial instability. Parameters of the 

simulated cases are summarized in Tab. 1 and 

results are shown in Figs. 1 a 2. Fig. 1 shows 

potential fluctuations in the simulation with charge 

exchange collisions where the physical growth of 

fluctuations [5] after one ion gyroperiod for the 

Case 1 C.E., and unphysical growth for the Case 2 

C.E. 

 

 
Fig. 1 – Temporal evolution of potential fluctuations for 

charge exchange collision case. Black solid line is for 

Case 1 C.E. and blue dashed line is for Case 2 C.E.. 

 

 
Fig. 2 – Temporal evolution of potential fluctuations for 

the case with elastic collisions. Black solid line is for 

Case 1 E.S.  and blue dashed line is for Case 2 E.S. 

 

 
Fig. 3 – Filament structures in potential density in later 

stages of simulation with elastic collisions. 



 

32nd ICPIG, July 26-31, 2015, Iași, Romania 

Similar situation is depicted in Fig. 2 for 

simulation with elastic collisions (E.S.). There is 

a visible damping in the system with better grid 

resolution and a large growth of fluctuations in the 

system with worse resolution. In Fig. 3 we show the 

cut through the potential in the direction 

perpendicular to the magnetic field for the case with 

elastic collisions with worse grid, where the 

filamentation of the plasma can easily be 

recognized. In all simulations the standard stability 

condition λD/Δx > 1 was fulfilled, and apart from the 

grid spacing, all other parameters remain 

unchanged. 

 

4. Discussion 

Since in our simulations we fulfilled the stability 

conditions given in [1], it is open question what is 

behind the observed numerical instabilities. 

The only change in the two sets of simulations is 

in spatial resolution of electron Larmor radius. In 

our simulations the electron gyroradius for thermal 

velocity is RL ≈ 4.1 mm, so with worse grid 

resolution we have RL/Δx < 1. For the better grid 

resolution we have RL/Δx > 1. In previous studies it 

has been stated that the electron gyroradius is not 

crucial for the stability of the system [6]. In [1,7] 

authors focused on study of numerical stability for 

small timestep with respect to the electron 

gyroperiod and noted that not resolving RL can have 

stabilizing effects. In our simulations, the temporal 

resolution of electron gyromotion is sufficient, and 

we do observe the numerical instability.  

 

5. Conclusions 

In our recent study covering numerical 

simulation of weakly collisional magnetized plasmas 

we observed numerical instability, which is likely to 

originate from insufficient resolution of the electron 

gyroradius. It is characterized by a rapid growth of 

the electrostatic potential fluctuations and forming 

filamentary structures in the electrostatic potential. 

This numerical instability should be addressed in 

more detail, and thus it is a focus of our current 

studies. 
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