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Abstract

This paper is a survey of the history of max-plus algebra and its role in the
field of discrete event systems during the last three decades. It is based on the
perspective of the authors but it covers a large variety of topics, where max-plus
algebra plays a key role.
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1. Emergence of max-plus approach. A system theory tailored for
synchronization.

This paper summarizes the history of max-plus algebra within the field of
discrete event systems. It is based on brief survey of the role of max-plus algebra
in the field of discrete event systems that appeared in [? ], but extended in
several directions. In particular, there is a section, where computational aspects
are discussed together with results about max-plus algebra from the computer
science literature.

The emergence of a system theory for classes of discrete event systems (DES),
in which max-plus algebra and similar algebraic tools play a central role, dates
from the early 1980’s. We emphasize that the idempotent semiring (also called
dioid) of extended real numbers (R ∪ {−∞}, max,+) is commonly called max-
plus algebra, while it is not formally an algebra in the strictly mathematic sense.

Its inspiration stems certainly from the following observation: synchroniza-
tion, which is a very non smooth and nonlinear phenomenon with regard to
”usual” system theory, can be modeled by linear equations in particular alge-
braic structures such as max-plus algebra and other idempotent semiring struc-
tures [? ? ].

Two important features characterize this approach often called max-plus
linear system theory :

1The research was supported by GAČR grant S15-2532 and by RVO 67985840.
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• most of the contributions have used as a guideline the ”classical” linear
system theory;

• it is turned towards DES performance related issues (as opposed to logi-
cal aspects considered in other approaches such as automata and formal
language theory) by including timing aspects in DES description.

A consideration has significantly contributed to the promotion and the scope
definition of the approach: a class of ordinary2 Petri nets, namely the timed
event graphs (TEGs) has been identified to capture the class of stationary3

max-plus linear systems [? ] and subsequent publications by Max Plus team4.
TEGs are timed Petri nets in which each place has a single input transition and
a single output transition. A single output transition means that no conflict is
considered for the tokens consumption in the place, in other words, the attention
is restricted to DES in which all potential conflicts have been solved by some
predefined policy. Symmetrically, a single input transition implies that there is
no competition in supplying tokens in the place. In the end, mostly synchro-
nization phenomena (corresponding to the configuration in which a transition
has several input places and/or several output places) can be considered, and
this is the price to pay for linearity.

Example 1. Figure 1 depicts a TEG, that is a Petri net in which each place
(represented by a circle) has exactly one input transition (represented by a rect-
angle) and one output transition. The number next to a place indicates the
sojourn time for a token, that is the number of units of time that must elapse
before the token becomes available for the firing of the output transition. Let

u(k) denote the date of the kth firing of transition u (same notation for x1,
x2 and y). Considering the earliest firing rule (a transition is fired as soon as
there is an available token in each input place), we have the following evolution
equations

x1(k) = max(2 + u(k), 1 + x2(k − 1))
x2(k) = 3 + x1(k − 1)
y(k) = 1 + x2(k).

Denoting ⊕ (resp. ⊗) the addition corresponding to max operation (resp. the
multiplication corresponding to usual addition), we obtain linear equations in
max-plus algebra, that is:

x1(k) = 2⊗ u(k)⊕ 1⊗ x2(k − 1)
x2(k) = 3⊗ x1(k − 1)
y(k) = 1⊗ x2(k)

2Petri nets in which all arc weights are 1.
3Stationarity is defined conventionally but over operators of max-plus algebra.
4Max Plus is a collective name for a working group on max-plus algebra, at INRIA Roc-

quencourt, comprising: Marianne Akian, Guy Cohen, Stéphane Gaubert, Jean-Pierre Quadrat
and Michel Viot.
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Rewriting the resulting equations in max-plus-algebraic matrix notation leads to
a state-space representation:

[
x1(k)
x2(k)

]
=

[
ε 1
3 ε

]
⊗
[
x1(k − 1)
x2(k − 1)

]
⊕
[

2
ε

]
⊗ u(k)

y(k) =
[
ε 1

]
⊗
[
x1(k)
x2(k)

]
where ε is equal to −∞.

TEG.pdf

Figure 1: A Timed Event Graph.

This new area of linear system theory has benefited from existing mathematical
tools related to idempotent algebras such as lattice theory [? ], residuation
theory [? ], graph theory [? ], optimization [? ] and idempotent analysis [? ],
however it is worth mentioning that the progress has probably been impeded by
the fact that some fundamental mathematical issues in this area are still open.

The overview of the contributions reveals that main concepts from linear
system theory have been step by step specified into max-plus linear system
theory. Without aiming to be exhaustive:

• several possible representations have been studied, namely state-space
equations, transfer function in event domain [? ? ], time domain [?
], and two-dimensional domain using series in two formal variables [? ]
(with more details in [? ]);

• performance analysis and stability are mostly based on the interpretation
of the eigenvalue of the state-matrix in terms of cycle-time, with its asso-
ciated eigenspace and related cyclicity property [? ? ];

• a wide range of control laws have been adapted such as:

– open-loop structures overcoming system output tracking [? , chap.
5.6], [? ? ] or model reference tracking [? ],

– closed-loop structures taking into account disturbances and model-
system mismatches [? ? ], possibly including a state-observer
[? ],

– model predictive control scheme [? ? ] with emphasis on stability in
[? ].

For a large survey on max-plus linear systems theory, we refer to books [?
? ? ? ], to manuscript [? ] and surveys [? ? ? ? ].
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2. Some extensions focused on synchronization in DES.

There is an important connection between min-max-plus systems, in which
time evolution depend on both max and min, but also addition operation and
the game theory. It goes back to [? ], where spectral properties of such systems
are studied. More recent references on this topic are [? ] and [? ]. The
latter work establishes an equivalence with mean payoff games, an important
open complexity problem in computer science, and it seems many verification
problems for max-plus systems reduce to mean payoff games. We mention that
many theoretical works on max-plus algebra and max-plus systems do not make
use of the words ”max-plus” but rather ”tropical”. The adjective tropical was
invented by French mathematicians, in honor of the Brazilian mathematician
and computer scientist Imre Simon (1943-2009).

A natural generalization of deterministic max-plus-linear systems are stochas-
tic max-plus-linear systems, which have been studied for more than two decades.
Ergodic theory of stochastic timed event graphs is developed in [? ], where most
of the theory is covered. In particular, asymptotic properties of stochastic max-
plus-linear systems are studied therein in terms of the so-called Lyapunov ex-
ponents that correspond to the asymptotic mean value of the norm of the state
variables. In the case the underlying event graph is strongly connected the
Lyapunov exponent is the unique value to which the mean value almost surely
converges. For general event graphs there is a maximal Lyapunov exponent.

Uncertainty can also be considered through intervals defining the possible
values for parameters of the system. In [? ] TEGs, in which the number of
initial tokens and the time delays are only known to belong to intervals, are
represented over a semiring of intervals and robust controllers are designed.

Another way of extending techniques for linear systems is to consider that
parameters of the models may vary, that is study non-stationary linear systems.
This possibility has been examined within the max-plus linear setting [? ? ? ]
with contributions mainly focused on representation, control and performance
analysis.

Continuous TEGs in which fluids hold rather than discrete tokens and the
fluid flow through transitions can be limited to a maximum value. Moreover, an
initial volume of fluid can be defined in places and times can be associated with
places to model fluid transportation times [? ]. Such graphs are relevant for
example to approximate the behavior of high throughput manufacturing systems
in which the number of processed parts is very large. In parallel, a similar
approach called network calculus has been developed by considering computer
network traffic as a flow (based on the use of ’leaky buckets’) to approximate
the high number of conveyed packets [? ? ]. Extension on fluid timed event
graphs with multipliers in a new algebra, analogous to the min-plus algebra,
has been proposed in [? ], [? ].

Switching Max-Plus-Linear (SMPL) systems are discrete-event systems that
can switch between different modes of operation [? ]. The switching allows to
change the structure of the system, to break synchronization, or to change the
order of events. In each mode the system is described by a max-plus-linear state
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equation and a max-plus-linear output equation. Note that regular max-plus-
linear systems are a subclass of SMPL system, namely with only one mode.
In [? ], authors describe the commutation between different max-plus-linear
modes and shows that an SMPL system can be written as a piecewise affine
system which allows for using similar techniques in such seemingly different
classes of systems. In cyclic DES the operations appear in a cyclic way. After
all operations in a system have been completed, the cycle is closed and a new
cycle begins. In the case of changes in operations and resources per cycle the
system is called semi-cyclic. SMPL models can be used to describe the dynamics
of various semi-cyclic DES.

Another extension of the class of systems that can be modeled in max-
plus algebras consists in considering hybrid Petri nets, and more particularly,
hybrid TEGs that consist of a discrete part (a TEG) and a continuous part (a
continuous TEG). It has been shown in [? ] that a linear model can be obtained
based on counter function if only one type of the interface between continuous
and discrete part is present. However, for application to just in time control
this constraint can be relaxed as it has been shown in [? ].

The weighted5 TEGs make it possible to describe batching and duplication
(unbatching) phenomena. In[? ], authors show that such graphs can be also
linearly modeled by transfer series in a particular max-plus algebra. In addition
to event and time shifts, two additional operators are used to describe the
batching/unbatching operations.

P-time Petri nets form an important extension of Petri nets, where the tim-
ing of places/transitions is nondeterministic. P-time Event Graphs have been
studied in max-plus algebras in [? ], [? ]. They find their applications e.g. in
modeling of electroplating lines or chemical processes, where both upper and
lower bound constraints processing time are required, see e.g. [? ].

3. Timed DES with shared resources.

A major issue with application of max-plus linear systems to modeling of
timed DES (important among others in manufacturing systems or in computer
and communication networks) is that it appears difficult to model resource shar-
ing within TEGs that correspond to stationary max-plus linear systems. In real
manufacturing systems, however, there are typically several processes (tasks)
that share (and compete for) given resources such as robots in manufacturing
systems or memory in computer systems. In the max-plus systems literature
various resource allocations policies have been proposed to integrate conflict
resolution with other typical phenomena of timed DES, namely synchroniza-
tion and parallelism. For instance, within timed Petri nets resource allocations
policies has been studied based on the dual counter function description in the
idempotent semiring min-plus [? ]. General Petri net models have been ad-
dressed by preselection rules in [? ], which enables to describe their evolution

5Arcs weights can be any positive integers.
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using max-plus dynamics. More general monotone homogeneous dynamics, rel-
evant to free choice Petri nets, and their optimal routing is studied in [? ].

More recently, conflicts among several TEGs have been studied in [? ],
where conflicting TEGs (CTEG) have been proposed with some fairly restrictive
assumptions. It should be stated that resource allocation policies studied in [?
] are either FIFO or cyclic (periodic) policies. On one hand the performance
analysis (computation of an upper bound on the cycle time of CTEG) has been
proposed and it is dependent on the cycle time of individual TEGs and on
timing of the conflict places. On the other hand, the approach has not yet been
applied to control problems.

Unlike the approach based on TEGs, where different resource allocation poli-
cies are handled one by one, there exists a max-plus automata based approach
that allows simultaneous modeling of different resource allocation policies within
a single model as long as these policies can be represented by a regular language.
An automaton-based model it can handle several such policies at the same time
within a single model without having to rebuild the model each time the policy
is changed.

The framework of max-plus automata has enabled a deep investigation of
performance evaluation [? ] of DES with shared resources. Max-plus automata
can be viewed as a rather special class of automata models enriched with time,
because unlike timed automata they do not time non determinism, where both
lower and upper bounds on timing of events can be defined. However, they have
strong expressive power in terms of timed Petri nets as shown in [? ] and [? ].
In particular, every safe timed Petri net can be represented by special max-plus
automaton, called heap model.

Example 2. A safe timed Petri net is depicted on Figure 2. The number next to
the label of a transition specifies its firing duration, that is the minimal time that
must elapse, starting from the time at which it is enabled, until the transition
can fire. All the places are assumed to have a sojourn duration equal to 0 unit
of time. Its behavior can be described by the heap model on the left-hand side of
Figure 3. In few words, a heap model is composed of

• slots which correspond to resources (tokens in the Petri net) and one slot
is associated to each place (possibly containing a token),

• pieces which represent activities (firings of transitions in the Petri net)
and one piece is associated to each transition.

The activities require resources (transitions consume token(s) to be fired in the
Petri net and pieces occupy slots in the heap model) during predefined durations
(transitions firing durations rendered by specific heights of pieces in slots). The
dynamics is then modeled by the sequence of pieces (transitions firing sequence
in the Petri net) pilling up according to the Tetris game mechanism. It can be
shown that the height of heaps of pieces is recognized by a particular (max,+)
automaton (especially useful for algebraic computations). The (max,+) automa-

6



ton derived from the example of heap model is depicted6 on the right-hand side
of Figure 3.

TPN.pdf

Figure 2: A timed Petri net.

HM_Aut.pdf

Figure 3: Heap model and associated (max,+) automaton to represent the timed Petri net of
Figure 2.

S. Gaubert has presented several important analysis results in [? ], where
the worst case, the optimal case, and the mean case performance of max-plus
automata are examined in detail. Better results are naturally obtained for de-
terministic max-plus automata, but most of the paper is focused on general
nondeterministic max-plus automata. We emphasize that not all max-plus au-
tomata can be determinized and their determinization, i.e. existence of a deter-
ministic max-plus automaton having the same behavior (recognizing the same

6The graphical representation of a (max,+) automaton is such that: nodes correspond to
states, an arrow from a state to another with label a/n denotes a state transition requiring n
units of time before event a can occur, an input arrow symbolizes an initial state.
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formal power series), is still an open problem and it is not even known if deter-
minization of a given nondeterministic max-plus automaton is decidable. In [? ]
a sufficient condition in terms of projectively finite semigroups for determiniza-
tion of max-plus automata is provided, which can be used as a semi-algorithm
for determinization (with no guarantee of success). Several other works on de-
terminization of max-plus automata have appeared later. Mohri developed a
semi-algorithm for determinization of max-plus automata in [? ] with a very
successful application in speech recognition. It is known that the twins property,
generalized to clones property for polynomially ambiguous in [? ], is a sufficient
condition for the termination of this algorithm. In [? ] the authors propose an
algorithm for deciding unambiguity and sequentiality of polynomially ambigu-
ous min-plus automata, which leaves the unambiguity and sequentiality problem
open only for non polynomially ambiguous class of both max-plus and min-plus
automata.

4. Max-plus-algebra and theoretical computer science.

In this section we will address algorithms in max-plus-algebra from a com-
puter science perspective, where a special emphasis is put on complexity issues.
Time and space complexities of algorithms are important in the whole the-
ory of discrete-event systems, which includes among others supervisory control,
stochastic discrete systems (Markov Chains), and timed discrete event systems.
Max-plus algebra finds its applications mainly in timed discrete event systems.
Although the underlying system models vary from deterministic-time models
such as timed event graphs to non deterministic-time models such as time event
graphs, the main operations used in equations describing the evolution of these
systems are the rational matrix operations: sum, product, and the Kleene star.
Matrix multiplication, including the one in the max-plus-algebra is well known
to have the worst case complexity O(n3) for square matrices with n lines and
columns. This rather naive bound can be improved, which is a major topic of
research in algebraic complexity theory, where algorithms for matrix multipli-
cation and inversion in nω with ω ≤ 2.373 are known for matrices over field.
The complexity of the matrix product and Kleene star in the tropical setting
is a major open problem, see [? ]. The important aspect is, however, that all
rational operations on matrices (including the Kleene star, which reduces to
the finite sum of the first n+ 1 max-plus-powers) are of polynomial worst case
complexity. The same complexity result obviously holds for matrix residuation
used in solutions to various control problems, because matrix residuation can
be viewed as a dual multiplication with the so called conjugate matrix [? ].
This is a very good news, because control problems for max-plus-linear systems
listed in Section 1 are based on matrix multiplication and residuation, i.e. can
be solved in polynomial time.

Similarly, the max-plus and min-plus operations on vectors are of polynomial
time complexity. We recall that min-plus convolution of two vectors plays a
central role in the dynamic programming. Since the early 1960’s, it is known
that it can be computed in O(n2) time. This bound can be further improved in
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some special cases, e.g. for two convex sequences it can be computed in O(n)
time [? ? ] by a simple merge (the Minkowski sum) of two convex polygons [?
]. This special case is already used in image processing and computer vision.

However, the above discussion mainly applies to approaches covered in Sec-
tions 1 and 2. One should bear in mind that choice phenomena (i.e. resource
sharings) are then excluded and the models correspond to recurrent equations on
natural numbers that count events, without making distinction between them.
As mentioned in Section 3, some DES including choice phenomena can be seen
as max-plus linear systems, e.g. max-plus automata, if one uses recurrent equa-
tion on words reflecting sequences of differentiated events. The complexity pic-
ture is then very different, because we will recall below that many fundamental
verification problems are already undecidable.

4.1. Max-plus automata and properties of their series

Max-plus automata have been introduced by S. Gaubert in [? ] as a gen-
eralization of both max-plus-linear systems and standard Boolean automata.
Max-plus automata as weighted automata with weights (sometimes called mul-
tiplicities) in the max-plus semiring have also been studied by the computer
science community. The basic referenceon the theory of automata of multiplici-
ties developed by Eilenberg and Schutzenberger is [? ]. It has been understood
in 1990’s that several fundamental problems undecidable for general timed sys-
tems, such as timed automata, are already undecidable for max-plus automata.
In particular, it has been shown in [? ] that equalities and inequalities of ratio-
nal max-plus formal power series are undecidable. Since it is well known that
rational max-plus formal power series are behaviors (weighted languages) of fi-
nite (state) max-plus automata, the result of D. Krob means that, in general, it
is not algorithmically possible to compare the behaviors of finite max-plus au-
tomata. Some other verification problems are decidable for max-plus automata.
For instance, it can be decided in polynomial time (namely O(n3) with n the
size of the state set of the recognizer, see [? ]) if a rational max-plus power
series has all coefficients non positive, i.e. 〈S,w〉 ≤ 0 for all w ∈ A∗. This
means that existence of w ∈ A∗ with 〈S,w〉 > 0 can be decided in polynomial
time as well. On the other hand, the problem 〈S,w〉 ≥ 0 for all w ∈ A∗ is
undecidable, cf. [? ]. It is also known that equality to a constant is decidable,
i.e. for a rational max-plus power series it can be decided if for all w ∈ A∗ it
holds that 〈S,w〉 = c for some real constant c, see [? ]. In the literature one
encounters also min-plus automata, which are weighted automata with weight
in the (dual) min-plus semiring. They are also nondeterministic: minimum,
instead of maximum, of weights of paths that shared a label is taken for com-
putation of the corresponding min-plus formal series. For min-plus automata
dual decidability results hold meaning that it is decidable in O(n3) to check if
〈S,w〉 ≥ 0 for all w ∈ A∗, while it is undecidable to check if 〈S,w〉 ≤ 0 for all
w ∈ A∗. Very interesting are complexity results concerning the comparisons of
max-plus and min-plus series. It is known that inequality S(w) ≤ S′(w) for all
w ∈ A∗ can be decided if S is a max-plus rational formal power series and S′ is
a min-plus rational series, but the opposite inequality is then undecidable! In [?
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] the series which are recognized both by a finite max-plus and a finite min-plus
automaton, i.e. series at the same time max-plus and min-plus rational, have
been characterized. It has been shown that these series are precisely the unam-
biguous max-plus (equivalently, unambiguous min-plus) series. We recall that
unambiguous max-plus series are those recognized by unambiguous max-plus
automata: for every word w, there is at most one successful path labeled by
w. Note that inverting the coefficient of a rational max-plus series, i.e. multi-
plying all its coefficients by −1 does not yield a rational max-plus series, but
rather a rational min-plus series. This helps understanding the above discussed
asymmetries in the fundamental decision problems discussed above.

4.2. Bisimulation properties

It is quite disappointing that several fundamental problems are undecidable
for max-plus automata. We point out that recently there are also more opti-
mistic complexity results about max-plus automata. The well known concept of
bisimulation, which captures behavioral equivalence of nondeterministic transi-
tion systems, has been introduced for max-plus automata in [? ]. It is a stronger
property that equality of formal power series, but may serve as a partial rem-
edy to undecidability of inequalities and equalities between formal power series.
Bisimulation between two max-plus automata means that the related (equiva-
lent) states match each other’s transitions (not only from the logical viewpoint:
existence of transitions, but also from quantitative view point: the weights of
two matching transitions should be identical). Algebraic approach to the inves-
tigation of bisimulation relations encoded as Boolean matrices has been adopted
in [? ], where bisimulation is characterized by max-plus-linear matrix inequali-
ties (to be distinguished from MLI’s in classical control theory) and a fix-point
algorithm with a polynomial complexity for algebraic computation of largest
bisimulations has been proposed.

In concurrency theory there is a concept of weak bisimulation, which weakens
the bisimulation by not requiring internal (externally invisible) transitions to be
preserved. In [? ] the concept of projected max-plus automaton has appeared
first (although it is not explicitly named so). The authors of that paper de-
fine weak bisimulations as (strong) bisimulations between projected automata,
which enables to use their algebraic characterization. Since bisimulations are
stronger than language (formal power series) equalities, it immediately follows
that existence of a weak bisimulation between two max-plus automata implies
the equality of their projected behaviors. This particular definition of bisim-
ulation is very much influenced by the concurrency theory community, where
instead of unobservable events (as a subset of the event set) as customary in
DES community the notion of an internal action denoted by τ is used. We be-
lieve that concepts like weak bisimulation will be proven very useful for partially
observed max-plus automata in a near future, because firstly they admit nice
algebraic characterization and secondly they can be computed in a polynomial
time.
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4.3. Supervisory control
Supervisory control theory can be viewed as a generalization of verification.

The idea is that if a property to be verified fails to be satisfied it can still
be imposed by a supervisor. Supervisory control is a formal approach intro-
duced first for control of logical automata with partial transition functions that
aims to solve the safety issue (avoidance of forbidden states given by control
specifications) and nonblockingness (avoidance of deadlocks and livelocks). If
a control specification (property) is given informally, software engineers must
translate them into control software manually. The ultimate goal of supervi-
sory control is to develop formal theory that enables an automated synthesis
of controllers that are correct by construction so that further verification is not
needed. Given a control specification describing required behavior of the sys-
tem, one has to construct a supervisor that observes a subset of events (yielding
a possibly partial information about the state of the plant) and selects actua-
tors, that can control the execution of some controllable events in order to meet
the prescribed specification language, which specifies a property of the system
such as certain states must be forbidden. An interesting control approach to
max-plus automata is presented in [? ], where the problem of (A,B)-invariance
for formal power series is solved.

Supervisory control theory of max-plus automata with complete observations
has been proposed in [? ], where the basic elements of supervisory control, such
as supervisor, closed-loop system, and controllability are extended from logical
to max-plus automata. However, it follows from results presented therein that
rational (i.e. finite state) controllers can only be obtained for systems (plants)
which have behaviors at the same time max-plus and min-plus rational. The
problem is that the controller series is based on residuation of the Hadamard
product of series, which can be seen as a Hadamard product with a series hav-
ing all its coefficients inverted. This operation has already been discussed in
subsection 4.1 and it outputs a min-plus rational series for a given max-plus
rational series. We then need to work with the class of series that are at the
same time max-plus and min-plus rational in order to have rational (finite-state)
controllers. Unfortunately, it has been shown in [? ] that this class of series
coincides with the class of unambiguous series (series recognized by an unam-
biguous automaton). Although unambiguous series is less restrictive property
than deterministic series (series recognized by a deterministic max-plus automa-
ton), a typical approach for imposing unambiguity is to determinize a max-plus
automaton.

More complete picture about rationality issues extended to more general set-
ting is presented in [? ]. More specifically, minimally permissive and just-after-
time supervisors are studied in order to guarantee a minimal required behavior
and to delay the system as little as possible so that sequences of events occur
later than prescribed dates, which is important for applications in transporta-
tion networks (e.g. improving train connections in railway systems), but also in
manufacturing systems and communication networks. It has been shown that
finite state controllers exist if the system-series and the specification (reference-
series) are both unambiguous. This assumption is met for several classes of
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practically relevant max-plus automata, e.g. those modeling a type of manufac-
turing systems such as safe Flow-shops and Job-shops. Another class of timed
system called timed weighted systems has been studied in [? ]. Timed weighted
systems are simply modular automata (collection of local automata) endowed
with the so called mutual exclusion function as well as a time-weighted func-
tion. Timed weighted systems can be understood as a synchronous product of
max-plus automata, which is not made explicit and the durations of events are
described by time-weighted function.

In our opinion max-plus automata form a gateway to the general timed au-
tomata, because systems modeled by max-plus automata exhibit most of decid-
ability and determinization issues that are present for general timed automata,
while they are conceptually simpler, which allows for better grasping the core of
these fundamental problems. Fortunately, there exist several ways how to deal
with these issues. For instance, further progress in determinization of max-plus
automata is possible as it is shown in [? ]. There exist approaches to approxi-
mate determinization of weighted automata [? ]. Finally, one may replace the
control specification (requirement) in terms of inequality of formal power series
by a simulation-based specification and introduce the supervisory control theory
for imposition of simulation properties.

5. Max-plus planning and model predictive control

The Model Predictive Control (MPC) design method can be applied to
(switching) max-plus linear systems [? ]. MPC for conventional (non-DES)
systems is very popular in the process industry [? ] and a key advantage of
MPC is that it can accommodate constraints on the inputs and outputs. For
every cycle the future control actions are optimized by minimizing a cost func-
tion over a prediction window subject to constraints. If the cost function and
the constraints are piecewise affine functions in the input, output, and state
variables, the resulting optimization problem will be a mixed-integer linear pro-
gramming (MILP) problem, for which fast and reliable algorithms exist. An
alternative approach is to use optimistic optimization [? ]. In [? ] MPC for
regular max-plus-linear systems was studied using the just-in-time cost function
with constraints that were monotonically nondecreasing in the output. In that
case the problem turns out to be a linear programming problem.

A natural generalization of deterministic max-plus-linear systems are max-
plus-linear systems with uncertainty. This uncertainty can either have a bounded
nature or a stochastic nature. The uncertainty will appear in a max-plus-
multiplicative way as perturbations of the system parameters [? ].

In the bounded uncertainty approach the parameters of the models may
vary, which leads to the study of non-stationary linear systems approach. This
possibility has been examined within the max-plus linear setting [? ? ? ]
with contributions mainly focused on representation, control and performance
analysis. Bounded uncertainty can also be considered through intervals defining
the possible values for parameters of the system. In [? ] TEGs, in which
the number of initial tokens and the time delays are only known to belong to
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intervals, are represented over a semiring of intervals and robust controllers are
designed. A dynamic programming approach to robust state-feedback control of
max-plus-linear systems with interval bounded matrices is given in [? ] in which
it is shown that the min-max control problem can be recast as a deterministic
optimal control problem by employing results from dynamic programming.

Stochastic Max Plus Linear systems, defined as MPL systems where the
matrices entries are characterized by stochastic variables [? ? ], have been
studied for more than two decades. As noticed in Section 2, most of the ergodic
theory of stochastic timed event graphs is covered in [? ]. Results for MPC of
stochastic max-plus linear systems are given in [? ], where the authors show
that under quite general conditions the resulting optimization problems turn
out to be convex. The main problem with this method is that the computation
of the expected value can be highly complex and expensive, which also results
in a high computation time to solve the optimization problem. To this end [?
] use an approximation method based on the moments of a random variable to
obtain a much lower computation time while still guaranteeing a comparable
performance.

Switching max-plus linear systems with both stochastic and deterministic
switching are discussed in [? ]. In general, the optimization in the model
predictive control approach boils down to a nonlinear nonconvex optimization
problem, where the cost criterion is piecewise polynomial on polyhedral sets
and the inequality constraints are linear. However, in the case of stochastic
switching that depends on the previous mode only, the resulting optimization
problem can be solved using linear programming algorithms.

In [? ] a general framework has been set up for model predictive scheduling
of semi-cyclic discrete event systems. In a systematic way the main scheduling
steps, i.e. routing, ordering, and synchronization, can be modeled. A switching
max-plus linear model has been derived with scheduling parameters for each
scheduling step. The system matrix is max-plus affine in the max-plus binary
scheduling parameters and a model predictive scheduling problem has been for-
mulated. This model predictive scheduling problem can be recast into a mixed
integer linear programming problem. This scheduling technique has been ap-
plied in [? ], where a railway traffic management algorithm has been derived
that can determine new conflict-free schedules and routes for a railway traffic
network when delays occur. See figure 4 for the scheme of the railway network
in the Netherlands.

Scheduling using switching max-plus linear models has also been described
in [? ], where the transition between different gait transition schemes in legged
robots has been discussed and optimal transitions are derived such that the
stance time variation is minimized, allowing for constant acceleration and de-
celeration. In [? ] an optimal scheduler for paper-handling in a duplex printer
is presented. The scheduling is based on the max-plus modeling framework.
It is shown that the proposed method successfully finds the globally optimal
schedule for different types of the sheets.
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Figure 4: Dutch railway network

6. Max-plus and Min-plus geometry

It is well understood that linear algebra is closely connected to geometry
and that geometric concepts play an important role in control of linear systems.

As we have argued in previous sections, control theory for max-plus-linear
systems has been inspired mainly by the theory of linear systems. A funda-
mental concept in both linear algebra and geometry is that of vector spaces or
more generally modules. Their max-plus counterparts are known as idempotent
semimodules, which are module-like structures, but over an idempotent semir-
ing (such as max-plus semiring) rather than over a ring. The basic properties of
idempotent semimodules including the concepts of independence and dimension
have been studied since late 1980’s by E. Wagneur [? ] or Russian school [?
]. A fundamental control theoretic concept is (A,B) invariant space, which is a
controlled invariance of a semimodule. Namely, it requires that any trajectory
starting in this semimodule can be controlled such that it remains forever within
this semimodule. It has been investigated in [? ], where a classical algorithm
for the computation of the maximal (A, B)-invariant subspace contained in a
given space is generalized to the max-plus linear systems. Although the algo-
rithm needs not converge in a finite number of steps, the sufficient conditions (of
demonstrated practical interest for a class of semimodules) have been proposed
for the convergence in a finite number of steps.

The study of invariance properties for max-plus linear systems are inspired
by the Wonham’s geometric theory of linear systems [? ]. We emphasize that
this theory has been at the very origin of the supervisory control theory de-
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veloped in early 1980’s in parallel with the theory of max-plus-linear systems.
The geometric framework has enabled among others to solve disturbance decou-
pling problem for linear systems. Following similar ideas, modified disturbance
decoupling problem for max-plus linear systems has been studied in [? ].

Another interesting work is [? ], where projection onto images of operators
and parallel to the kernels of operators have been studied. It should be noted
that these operators are useful not only in control of max-plus linear systems,
but admit also specific application to aggregation and other problems for Markov
chains.

Very important concept, convexity, a powerful tool in optimization and op-
erational research, has been extended to the max-plus framework. Well known
Minkowski theorem from linear algebra states that a non-empty compact convex
subset of a finite dimensional space is the convex hull of its set of extreme points.
The max-plus counterpart of Minkowski theorem presented in [? ] extends this
result to max-plus convex sets. This result is very important, because max-plus
convex sets arise in many different domains, ranging from max-plus-linear sys-
tems, abstractions of timed automata to solutions of Hamilton-Jacobi equations
associated with a deterministic optimal control problem, see e.g. [? ].

More recently, an interesting relation has been discovered between geometric
approach to max-plus-linear systems proposed in [? ] and reachability analysis
of timed automata, cf. [? ]. Timed automata are very general models of timed
DES that involve several parallel clocks variables that measure time elapsed
since their last reset and define time constraints (known as guards) for enabling
logical transitions in timed automata.

Interestingly, max-plus geometry can be applied in reachability analysis of
timed automata. Timed automata with infinite (but finite dimensional) clock
spaces are abstracted into finite automata called region or zone automata, where
the infinite clock space is abstracted by a finite number of regions or geometric
zones. This abstraction is shown to be a timed bisimulations and this enables to
solve several fundamental problems for timed automata such as non emptiness.
The zones are represented by efficient data structures called difference bound
matrices (DBM) that represents the bounds on differences between state vari-
ables. The reachability of different zones can be studied using max-plus-cones
from geometric theory of max-plus-linear systems.

It has been shown in [? ] that every max-plus cone (also called max-plus
polyhedron) can actually be described as a union of finitely many DBM’s as
shown in [? ]. These geometric objects have proven to be extremely useful
for both forward and backward reachability analysis, see e.g. [? ]. Forward
reachability analysis aims at computing the set of possible states that can be
reached under the model dynamics, over a set of consecutive events from a set
of initial conditions and possibly by choosing control actions [? ]. Backward
reachability analysis consists in computing the set of states that enter a given
set of final states, possibly by choosing control actions. This is of practical
importance in safety control problems consisting in the determination of the set
of initial conditions leading to unsafe states. However, for backward reachability
analysis the system matrix has to be max-plus invertible, i.e. in each row
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and in each column there should be a single finite element (not equal to -∞),
which is restrictive. The main advantage of using max-plus polyhedra is in
saving computational complexity, because time complexity of these approaches
is polynomial as all standard DBM based algorithms.

From a practical perspective, there are two basic ways of describing max-plus
polyhedra. The first one, internal, gives the extreme points and rays, the second
one, external, gives linear inequalities over max-plus semiring. It has been shown
in [? ], see [? ] for more recent work, how to pass from the external description
of a polyhedron to the internal description. Namely, the extremal points are
computed in a recursive way, where the problem of checking the extremality of a
point reduces to checking whether there is only one minimal strongly connected
component in an hyper-graph. For the latter problem there exists a fast (almost
linear time) algorithm, which allows quick elimination of redundant generators,
but the number of generators can be exponential in general.

7. Applications

It can appear somewhat surprising that methods based on very particular
structure of max-plus algebra can find a large number of applications. But it
turns out that max-plus system theory has been indeed applied to a large variety
of domains, such as:

• capacity assessment, evaluation and control of delays in transportation
systems [? ? ? ? ] and car traffic [? ],

• sizing, optimization and production management in manufacturing sys-
tems [? ? ? ? ],

• performance guarantees in communication networks through so-called net-
work calculus [? ? ],

• high throughput screening in biology and chemistry [? ],

• modeling, analysis and control of legged locomotion [? ? ],

• speech recognition [? ] or image processing [? ] through weighted au-
tomata such as max-plus automata,

• optimization of crop rotation in agriculture [? ],

• scheduling of energy flows for parallel batch processes [? ],

• max-plus model of ribosome dynamics during mRNA translation [? ],

• paper handling in printers [? ],

• performance evaluation of the emergency call center 17-18-112 in the Paris
area [? ],

• control of cluster tools in semiconductor manufacturing [? ],
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• biological sequence comparisons [? ].

This diversity is to be emphasized all the more since these applications have
sometimes suggested new theoretical questions.

We cannot finish this brief overview of the role of max-plus algebra in the his-
tory of DES without mentioning the important connections with other fields of
research: dynamic programming and optimal control with solutions to Hamilton-
Jacobi-Bellman (partial) differential equations [? ? ], statistical mechanics [? ],
operations research [? ],...
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[68] N. Damljanović, M. Ćirić, J. Ignjatović, Bisimulations for weighted au-
tomata over an additively idempotent semiring, Theoretical Computer
Science 534 (2014) 86 – 100”.

[69] A solution to the problem of (a,b)-invariance for series, Theoretical Com-
puter Science 293 (1) (2003) 115 – 139.

[70] J. Komenda, S. Lahaye, J. Boimond, Supervisory control of (max, +) au-
tomata: A behavioral approach, Discrete Event Dynamic Systems 19 (4)
(2009) 525–549.

[71] S. Lahaye, J. Komenda, J.-L. Boimond, Supervisory control of (max,+)
automata: extensions towards applications, International Journal of Con-
trol 88 (12) (2015) 2523–2537.

[72] R. Su, J. H. van Schuppen, J. E. Rooda, The synthesis of time optimal
supervisors by using heaps-of-pieces, IEEE Trans. Automat. Contr. 57 (1)
(2012) 105–118.

[73] S. Lahaye, A. Lai, J. Komenda, Contribution à la déterminisation des au-
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